%global packname TDMR %global packver 2.2 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 2.2 Release: 3%{?dist} Summary: Tuned Data Mining in R License: GPL (>= 2) URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 3.0.0 Requires: R-core >= 3.0.0 BuildArch: noarch BuildRequires: R-CRAN-SPOT >= 2.0 BuildRequires: R-CRAN-twiddler BuildRequires: R-CRAN-testit BuildRequires: R-methods BuildRequires: R-CRAN-adabag Requires: R-CRAN-SPOT >= 2.0 Requires: R-CRAN-twiddler Requires: R-CRAN-testit Requires: R-methods Requires: R-CRAN-adabag %description Tuned Data Mining in R ('TDMR') performs the complete tuning of a data mining task (predictive analytics, that is classification and regression). Preprocessing parameters and modeling parameters can be tuned simultaneously. It incorporates a variety of tuners (among them 'SPOT' and 'CMA' with package 'rCMA') and allows integration of additional tuners. Noise handling in the data mining optimization process is supported, see Koch et al. (2015) . %prep %setup -q -c -n %{packname} find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css %files %dir %{rlibdir}/%{packname} %doc %{rlibdir}/%{packname}/html %{rlibdir}/%{packname}/Meta %{rlibdir}/%{packname}/help %doc %{rlibdir}/%{packname}/demo %{rlibdir}/%{packname}/DESCRIPTION %{rlibdir}/%{packname}/NAMESPACE %{rlibdir}/%{packname}/R %doc %{rlibdir}/%{packname}/demo01cpu %doc %{rlibdir}/%{packname}/demo02sonar %doc %{rlibdir}/%{packname}/doc %doc %{rlibdir}/%{packname}/examples %doc %{rlibdir}/%{packname}/tdmMapDesign.csv %{rlibdir}/%{packname}/INDEX