61 unsigned char x,
y,
z;
71 case LO_ACE: reg[pc->
y] = pc->
c + reg[pc->
x];
break;
72 case LO_AEC: reg[pc->
y] = reg[pc->
x] + pc->
c;
break;
73 case LO_AEE: reg[pc->
z] = reg[pc->
x] + reg[pc->
y];
break;
74 case LO_SCE: reg[pc->
y] = pc->
c - reg[pc->
x];
break;
75 case LO_SEC: reg[pc->
y] = reg[pc->
x] - pc->
c;
break;
76 case LO_SEE: reg[pc->
z] = reg[pc->
x] - reg[pc->
y];
break;
77 case LO_SE: reg[pc->
y] = -reg[pc->
x];
break;
78 case LO_MCE: reg[pc->
y] = pc->
c * reg[pc->
x];
break;
79 case LO_MEC: reg[pc->
y] = reg[pc->
x] * pc->
c;
break;
101 :
Test(
"MiniModel::LinExpr::Int::"+s,4,-3,3),
lis(lis0) {
106 int reg[3] = {x[0],x[1],x[2]};
125 :
Test(
"MiniModel::LinExpr::Bool::"+s,4,-3,3),
lis(lis0) {
131 if ((
x[i] < 0) || (
x[i] > 1))
133 int reg[3] = {
x[0],
x[1],
x[2]};
154 :
Test(
"MiniModel::LinExpr::Mixed::"+s,4,-3,3),
lis(lis0) {
159 if ((
x[2] < 0) || (
x[2] > 1))
161 int reg[3] = {
x[0],
x[1],
x[2]};
188 :
Test(
"MiniModel::LinRel::Int::"+s+
"::"+
str(irt0),3,-3,3,true),
195 int l_reg[3] = {
x[0],
x[1],
x[2]};
196 int r_reg[3] = {
x[0],
x[1],
x[2]};
284 :
Test(
"MiniModel::LinRel::Bool::"+s+
"::"+
str(irt0),3,0,1,true),
291 int l_reg[3] = {
x[0],
x[1],
x[2]};
292 int r_reg[3] = {
x[0],
x[1],
x[2]};
386 :
Test(
"MiniModel::LinRel::Mixed::"+s+
"::"+
str(irt0),6,0,1,true),
393 int l_reg[3] = {
x[0],
x[1],
x[2]};
394 int r_reg[3] = {
x[3],
x[4],
x[5]};
470 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
474 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
478 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
482 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
486 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
490 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
494 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
498 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
502 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
506 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
510 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
514 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
518 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
522 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
526 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
530 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
534 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
538 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
542 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
546 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
550 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
554 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
558 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
562 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
566 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
570 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
574 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
578 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
582 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
586 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
590 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
594 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
598 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
602 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
606 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
610 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
614 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
618 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
622 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
626 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
630 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
634 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
638 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
642 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
646 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
650 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
654 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
658 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
662 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
666 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
670 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
674 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
678 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
682 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
686 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
690 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
694 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
698 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
702 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
706 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
710 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
714 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
718 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
722 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
726 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
730 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
734 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
738 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
742 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
746 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
750 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
754 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
758 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
762 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
766 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
770 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
774 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
778 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
782 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
786 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
790 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
794 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
798 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
802 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
806 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
810 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
814 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
818 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
822 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
826 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
830 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
834 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
838 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
842 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
846 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
850 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
854 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
858 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
862 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
866 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
870 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
874 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
878 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
882 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
886 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
890 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
894 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
898 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
902 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
906 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
910 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
914 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
918 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
922 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
926 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
930 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
934 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
938 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
942 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
946 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
950 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
954 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
958 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
962 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
966 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
970 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
974 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
978 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
982 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
986 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
990 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
994 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
998 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1002 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1006 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1010 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1014 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1018 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1022 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1026 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1030 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1034 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1038 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1042 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1046 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1050 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1054 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1058 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1062 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1066 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1070 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1074 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1078 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1082 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1086 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1090 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1094 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1098 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1102 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1106 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1110 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1114 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1118 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1122 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1126 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1130 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1134 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1138 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1142 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1146 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1150 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1154 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1158 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1162 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1166 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1170 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1174 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1178 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1182 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1186 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1190 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1194 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1198 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1202 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1206 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1210 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1214 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1218 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1222 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1226 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1230 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1234 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1238 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1242 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1246 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1250 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1254 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1258 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1262 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1266 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1270 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1274 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1278 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1282 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1286 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1290 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1294 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1298 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1302 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1306 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1310 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1314 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1318 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1322 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1326 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1330 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1334 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1338 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1342 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1346 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1350 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1354 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1358 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1362 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1366 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1370 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1374 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1378 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1382 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1386 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1390 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1394 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1398 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1402 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1406 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1410 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1414 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1418 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1422 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1426 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1430 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1434 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1438 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1442 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1446 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1450 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1454 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1458 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1462 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1466 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1470 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1474 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1478 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1482 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1486 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1490 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1494 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1498 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1502 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1506 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1510 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1514 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1518 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1522 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1526 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1530 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1534 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1538 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1542 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1546 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1550 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1554 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1558 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1562 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1566 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1570 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1574 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1578 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1582 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1586 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1590 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1594 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1598 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1602 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1606 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1610 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1614 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1618 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1622 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1626 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1630 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1634 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1638 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1642 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1646 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1650 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1654 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1658 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1662 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1666 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1670 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1674 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1678 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1682 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1686 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1690 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1694 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1698 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1702 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1706 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1710 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1714 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1718 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1722 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1726 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1730 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1734 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1738 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1742 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1746 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1750 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1754 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1758 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1762 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1766 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1770 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1774 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1778 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1782 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1786 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1790 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1794 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1798 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1802 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1806 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1810 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1814 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1818 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1822 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1826 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1830 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1834 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1838 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1842 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1846 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1850 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1854 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1858 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1862 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1866 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1870 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1874 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1878 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1882 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1886 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1890 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1894 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1898 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1902 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1906 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1910 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1914 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1918 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1922 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1926 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1930 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1934 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1938 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1942 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1946 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1950 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1954 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1958 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1962 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1966 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1970 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1974 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1978 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1982 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1986 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1990 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1994 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1998 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
2002 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
2006 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
2010 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
2014 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
2018 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
2022 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
2026 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
2030 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
2034 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
2038 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
2042 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
2046 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
2050 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
2054 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
2058 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
2062 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
2066 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
2146 for (
int i=0; i<n; i++) {
2150 }
else if (i < 100) {
2158 for (
int i=0; i<n/2; i++) {
2162 }
else if (i < 100) {
Passing Boolean variables.
Passing integer arguments.
Passing integer variables.
Linear expressions over integer variables.
Reification specification.
Base class for assignments
Iterator for integer relation types.
void reset(void)
Reset iterator.
Gecode::IntRelType irt(void) const
Return current relation type.
Help class to create and register tests.
Create(void)
Perform creation and registration.
Test linear expressions over Boolean variables
LinExprBool(const LinInstr *lis0, const std::string &s)
Create and register test.
const LinInstr * lis
Linear instruction sequence.
virtual bool solution(const Assignment &x) const
Test whether x is solution
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
Test linear expressions over integer variables
LinExprInt(const LinInstr *lis0, const std::string &s)
Create and register test.
virtual bool solution(const Assignment &x) const
Test whether x is solution
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
const LinInstr * lis
Linear instruction sequence.
Test linear expressions over integer and Boolean variables
LinExprMixed(const LinInstr *lis0, const std::string &s)
Create and register test.
virtual bool solution(const Assignment &x) const
Test whether x is solution
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
const LinInstr * lis
Linear instruction sequence.
Type for representing a linear instruction.
unsigned char z
Instruction arguments, y is destination (or z)
LinOpcode o
Which instruction to execute.
Test linear relations over Boolean variables
const LinInstr * r_lis
Linear instruction sequence for right hand side.
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x, Gecode::Reify r)
Post constraint on x for r.
const LinInstr * l_lis
Linear instruction sequence for left hand side.
virtual bool solution(const Assignment &x) const
Test whether x is solution
Gecode::IntRelType irt
Integer relation type to propagate.
LinRelBool(const LinInstr *l_lis0, const LinInstr *r_lis0, Gecode::IntRelType irt0, const std::string &s)
Create and register test.
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
Test linear relations over integer variables
virtual bool solution(const Assignment &x) const
Test whether x is solution
const LinInstr * l_lis
Linear instruction sequence for left hand side.
Gecode::IntRelType irt
Integer relation type to propagate.
const LinInstr * r_lis
Linear instruction sequence for right hand side.
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x, Gecode::Reify r)
Post constraint on x for r.
LinRelInt(const LinInstr *l_lis0, const LinInstr *r_lis0, Gecode::IntRelType irt0, const std::string &s)
Create and register test.
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
Test linear relations over integer and Boolean variables
Gecode::IntRelType irt
Integer relation type to propagate.
const LinInstr * l_lis
Linear instruction sequence for left hand side.
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
const LinInstr * r_lis
Linear instruction sequence for right hand side.
LinRelMixed(const LinInstr *l_lis0, const LinInstr *r_lis0, Gecode::IntRelType irt0, const std::string &s)
Create and register test.
virtual bool solution(const Assignment &x) const
Test whether x is solution
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x, Gecode::Reify r)
Post constraint on x for r.
bool testfix
Whether to perform fixpoint test.
int rms
Which reification modes are supported.
static std::string str(Gecode::IntPropLevel ipl)
Map integer propagation level to string.
static bool cmp(T x, Gecode::IntRelType r, T y)
Compare x and y with respect to r.
void rel(Home home, FloatVar x0, FloatRelType frt, FloatVar x1)
Post propagator for .
IntRelType
Relation types for integers.
@ IRT_GQ
Greater or equal ( )
@ IRT_LQ
Less or equal ( )
@ RM_EQV
Equivalence for reification (default)
Gecode toplevel namespace
void channel(Home home, FloatVar x0, IntVar x1)
Post propagator for channeling a float and an integer variable .
IntVar expr(Home home, const LinIntExpr &e, const IntPropLevels &ipls=IntPropLevels::def)
Post linear expression and return its value.
Post propagator for SetVar SetOpType SetVar y
LinIntExpr sum(const IntVarArgs &x)
Construct linear expression as sum of integer variables.
Post propagator for SetVar x
Tests for minimal modelling constraints (linear)
@ LO_AEC
Add expression and integer.
@ LO_SEC
Subtract expression and integer.
@ LO_ACE
Add integer and expression.
@ LO_MCE
Multiply constant and expression.
@ LO_SCE
Subtract integer and expression.
@ LO_MEC
Multiply constant and expression.
@ LO_SE
Unary subtraction.
@ LO_SEE
Subtract expressions.
Expr eval(const LinInstr *pc, Expr reg[])
Evaluate linear instructions.
Testing finite domain integers.
#define GECODE_NEVER
Assert that this command is never executed.