%global packname missSBM %global packver 0.2.1 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 0.2.1 Release: 3%{?dist} Summary: Handling Missing Data in Stochastic Block Models License: GPL-3 URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 3.4.0 Requires: R-core >= 3.4.0 BuildRequires: R-CRAN-Rcpp BuildRequires: R-methods BuildRequires: R-CRAN-ape BuildRequires: R-CRAN-igraph BuildRequires: R-CRAN-nloptr BuildRequires: R-CRAN-ggplot2 BuildRequires: R-CRAN-corrplot BuildRequires: R-CRAN-R6 BuildRequires: R-CRAN-magrittr BuildRequires: R-CRAN-RcppArmadillo Requires: R-CRAN-Rcpp Requires: R-methods Requires: R-CRAN-ape Requires: R-CRAN-igraph Requires: R-CRAN-nloptr Requires: R-CRAN-ggplot2 Requires: R-CRAN-corrplot Requires: R-CRAN-R6 Requires: R-CRAN-magrittr %description When a network is partially observed (here, NAs in the adjacency matrix rather than 1 or 0 due to missing information between node pairs), it is possible to account for the underlying process that generates those NAs. 'missSBM' adjusts the popular stochastic block model from network data sampled under various missing data conditions, as described in Tabouy, Barbillon and Chiquet (2019) . %prep %setup -q -c -n %{packname} %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css %files %dir %{rlibdir}/%{packname} %doc %{rlibdir}/%{packname}/html %{rlibdir}/%{packname}/Meta %{rlibdir}/%{packname}/help %{rlibdir}/%{packname}/data %{rlibdir}/%{packname}/DESCRIPTION %{rlibdir}/%{packname}/NAMESPACE %doc %{rlibdir}/%{packname}/NEWS.md %{rlibdir}/%{packname}/R %doc %{rlibdir}/%{packname}/CITATION %doc %{rlibdir}/%{packname}/covariates.R %doc %{rlibdir}/%{packname}/doc %{rlibdir}/%{packname}/extdata %{rlibdir}/%{packname}/INDEX %{rlibdir}/%{packname}/libs