%global packname Routliers %global packver 0.0.0.3 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 0.0.0.3 Release: 3%{?dist} Summary: Robust Outliers Detection License: MIT + file LICENSE URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 2.10 Requires: R-core >= 2.10 BuildArch: noarch BuildRequires: R-MASS BuildRequires: R-stats BuildRequires: R-graphics BuildRequires: R-CRAN-ggplot2 Requires: R-MASS Requires: R-stats Requires: R-graphics Requires: R-CRAN-ggplot2 %description Detecting outliers using robust methods, i.e. the Median Absolute Deviation (MAD) for univariate outliers; Leys, Ley, Klein, Bernard, & Licata (2013) and the Mahalanobis-Minimum Covariance Determinant (MMCD) for multivariate outliers; Leys, C., Klein, O., Dominicy, Y. & Ley, C. (2018) . There is also the more known but less robust Mahalanobis distance method, only for comparison purposes. %prep %setup -q -c -n %{packname} find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css %files %dir %{rlibdir}/%{packname} %doc %{rlibdir}/%{packname}/html %{rlibdir}/%{packname}/Meta %{rlibdir}/%{packname}/help %{rlibdir}/%{packname}/data %{rlibdir}/%{packname}/DESCRIPTION %license %{rlibdir}/%{packname}/LICENSE %{rlibdir}/%{packname}/NAMESPACE %doc %{rlibdir}/%{packname}/NEWS.md %{rlibdir}/%{packname}/R %{rlibdir}/%{packname}/INDEX