Name: python-lwMCMC Version: 1.0 Release: 1%{?dist} Summary: A parameter space sampling class for lightweight Bayesian inference. Running on a NumPy-based implementation of the Metropolis-Hastings algorithm. # Check if the automatically generated License and its spelling is correct for Fedora # https://docs.fedoraproject.org/en-US/packaging-guidelines/LicensingGuidelines/ License: MIT URL: https://github.com/daniel-furman/lwMCMC Source0: %{pypi_source lwMCMC} BuildArch: noarch BuildRequires: python3-devel # Fill in the actual package description to submit package to Fedora %global _description %{expand: This is package 'lwmcmc' generated automatically by pyp2spec.} %description %_description %package -n python3-lwMCMC Summary: %{summary} %description -n python3-lwMCMC %_description %prep %autosetup -p1 -n lwMCMC-%{version} %generate_buildrequires %pyproject_buildrequires -r %build %pyproject_wheel %install %pyproject_install # For official Fedora packages, including files with '*' +auto is not allowed # Replace it with a list of relevant Python modules/globs and list extra files in %%files %pyproject_save_files '*' +auto %check %pyproject_check_import -t %files -n python3-lwMCMC -f %{pyproject_files} %changelog * Sat Feb 05 2022 mockbuilder - 1.0-1 - Package generated with pyp2spec