
Calculation of the Gradient of a Quantum
Cost Function using “Threading”.

Application of these “threaded gradients” to a
Quantum Neural Net

inspired by
Quantum Bayesian Networks

Robert R. Tucci
tucci@ar-tiste.com

April 21, 2019

1 Introduction

Hybrid Quantum Classical (HQC) computation as being pursued by Rigetti
Inc. involves minimizing a “quantum cost function”, i.e., the mean value of a
Hermitian operator, wherein that mean value is calculated empirically from
the data yielded by a physical quantum computer.

There are many methods available for minimizing a cost function on a
classical computer. Which minimizing method performs best for a partic-
ular case depends on the nature of the cost function and of the computing
resources at the user’s disposal. Some methods, like, for instance, the Powell
method (available on scipy.optimize.minimize), do not require calculating
the gradient of the cost function. Others, the “gradient based methods”, do.
One method that is particularly well suited to AI problems when distributed

1

computing (GPU, TPU) resources are available, is gradient descent used in
conjunction with a method of calculating gradients called back-propagation
(BP). This begs the question, can we find a good method like BP for calculat-
ing the gradients of a quantum cost function, and then use gradient descent
to minimize the cost function? The grand goal is to give an exact analytical
formula for the gradients of a quantum cost function, and to express that
formula as a sum of parts that can each be readily evaluated empirically on
a qc.

Several teams from the Univ. of Tokyo Refs.[1][2], Xanadu Inc. Ref.[3],
and QCWare Inc. Ref.[4] have already implemented their own algorithms for
accomplishing this grand goal. Refs. [1] and [3] use a formula that allows
them to split the calculation of the gradient of a single uncontrolled rotation
along either the X, Y or Z axes into two quantum circuits. Refs.[2] and [4]
use a tomographic approach.

The method proposed in this paper to tackle this grand goal is not to-
mographic like the methods of Refs.[2] and [4]. Our method is more akin to
the approach of Refs. [1] and [3], except that we use an ancilla qubit (they
don’t), and we handle the case of gates with multiple controls (they only
consider derivatives of gates with no controls). Furthermore, we apply our
method to a novel quantum circuit, a quantum neural net inspired by Quan-
tum Bayesian Networks. Last but not least, we point out the huge benefits of
“qc threading” for our method. The benefits are particularly high for NISQ
(Noisy Intermediate Scale Quantum) devices such as those available on the
Rigetti Cloud.

This paper describing our method is being released concurrently with a
full implementation, open source, in Python, of our method. The implemen-
tation is part of the Qubiter repo at GitHub.

2 Derivative of Uncontrolled U(2) gate

In this section, we will show how to express the derivative of a 2-dim U(2)
matrix with respect to one of its 4 parameters, as a linear combination of
three U(2) matrices. Luckily, the parameters of most standard quantum gates
always appear inside a 2-dim U(2) matrix with zero, one, or more controls
attached. So, in this section, we will only concern ourselves with calculating
the derivatives of a U(2) matrix.

Mitarai, et al. in Ref. [1] and the authors of Xanadu’s PennyLane soft-

2

ware Ref.[3] have come up with a similar scheme, but their method differs
from ours in some important respects. To tackle a general U(2) transforma-
tion, they first decompose it into an Euler product of 3 rotations along the
standard X,Y or Z axes, and then they take the derivatives of each of those
3 rotations. In this paper, we give a method that can handle an arbitrary
U(2) transformation, without having to do an Euler decomposition first.

Let us first consider a rotation about a standard axis, X, Y or Z, instead
of a general U(2) matrix. If we let σk for k = 1, 2, 3 denote the Pauli matrices,
then a rotation about the Z axis is

U(θ3) = eiσ3θ3 = C + iσ3S , (1)

where θ3 is some real number and we abbreviate S = sin θ3, C = cos θ3. Then

dU

dt
= θ̇3(−S + iσ3C) . (2)

Hence
dU

dθ3
= −S + iσ3C = ei(

π
2
+θ3)σ3 = U(

π

2
+ θ3) . (3)

Thus, for a rotation along a standard axis, one can evaluate the derivative
of a gate simply by replacing that gate by that gate with its angle advanced
by π

2
. No need to take finite differences.

Now let us consider the most general U(2). We will parameterize it as

U = ei(θ0+θ1σX+θ2σY +θ3σZ) , (4)

where θk for k = 0, 1, 2, 3 are real numbers. Derivatives with respect to θ0
are trivial so we will set θ0 = 0 henceforth. Using the Einstein summation
convention,

U = eiσkθk = C + iσk
θk
θ
S , (5)

where we are abbreviating

θ =
√
θkθk, S = sin θ, C = cos θ . (6)

Then, it’s easy to show that

dU

dt
= −Sθk

θ
θ̇k + iσkθ̇r

[
θkθr
θ2

C +
S

θ
(−θkθr

θ2
+ δk,r)

]
. (7)

3

In the rest of this section, we will try to recast the right hand side of
Eq.(7) into a form that is more convenient for empirical calculation from qc
data. Before embarking on this task, let us introduce some notation.

Henceforth, we will represent a real-valued unit vector by a letter with a
caret above it: â = a⃗

|⃗a| . Also, for any real-valued 3-dim vector a⃗, let

σa⃗ = a⃗ · σ⃗ . (8)

Eq.(8) is a natural generalization of the Pauli matrix notation. If êA is the
unit vector in direction A for A = X, Y, Z, then êA · σ⃗ = σA for A = X,Y, Z.
Expressed in the notation of Eq.(8), two familiar Pauli matrix identities are

σa⃗σb⃗ = a⃗ · b⃗+ iσa⃗×b⃗ , (9)

where a⃗ and b⃗ are any two 3-dim vectors, and

eiθσn̂ = cos θ + iσn̂ sin θ , (10)

where θ is a real number and n̂ is a 3-dim unit vector. Eq.(10) can be proven
by Taylor expanding, and using σ2

n̂ = 1.
We will also use the following notation for the projectors P0 and P1 along

the direction of |0⟩ and |1⟩, respectively, in a 1-qubit space.

n = P1 = |1⟩⟨1|,
n̄ = 1− n = P0 = |0⟩⟨0| . (11)

n is often called the number operator. Whenever we say Ω(α) for a 1-qubit
operator Ω, we mean Ω applied to qubit α.

Eq.(7) for the general form of U̇ when parameterized as Eq.(4) (with
θ0 = 0) is fairly opaque. To clarify Eq.(7), we start by specializing it to
t = θ1. The cases t = θ2, θ3 can be obtained from the case t = θ1 simply
by replacing 1 subscripts in our final result by 2 or 3. So, setting t = θ1 in
Eq.(7), we immediately get:

∂U

∂θ1
=


− θ1S

θ2
[iσθ̂]

+ θ1
θ
[−S + iσθ̂C]

+S
θ
[iσ1]

. (12)

If we define

p1 =
θ1
θ
, pS =

S

θ
, (13)

4

then

∂U

∂θ1
=


−p1pS

[
ei

π
2
σ
θ̂

]
+p1

[
ei(

π
2
+θ)σθ̂

]
+pS

[
ei

π
2
σ1
] . (14)

Henceforth, we will refer to these 3 pieces as “dparts”, which stands for
“derivative parts”. Note that we can replace 1 by 2 or 3 in Eq.(14) to get
partials of U with respect to θ2 and θ3.

3 Derivative of Quantum Cost Function

In this section, we show how to express the gradient of a quantum cost
function as a sum of mean values that can be readily evaluated empirically
on a real qc.

Suppose a,A are integers such that a ≤ A, and Ωj are operators acting
on Nb qubits. Define

Ω[a,A] = ΩaΩa+1 . . .ΩA (15)

and

Ω[A,a] = ΩA . . .Ωa+1Ωa . (16)

Note that

(Ω[a,A])
† = Ω†

[A,a] . (17)

The cost function that we minimize in Hybrid Quantum Classical com-
puting can be expressed analytically as

C = ⟨ψ0|(Ω[T−1,0])
†HΩ[T−1,0]|ψ0⟩ , (18)

where the Ωj are unitary operators and H is a Hermitian operator acting on
Nb qubits. Now let us focus on taking the derivative of Ωτ , the gate for a
particular time τ ∈ {0, 1, . . . T − 1}. Define

|ψτ ⟩ = Ω[τ−1,0]|ψ0⟩ (19)

and

Hτ = (Ω[T−1,τ])
†HΩ[T−1,τ] . (20)

5

Henceforth, we will use the angled brackets to denote an average with respect
to state |ψτ ⟩:

⟨ψτ | · |ψτ ⟩ = ⟨·⟩ . (21)

Using the above notation, the cost function and its derivative with respect
to a parameter θτ1 that lives inside the operator Ωτ1, can be expressed as

C = ⟨Hτ ⟩ , (22)

and

∂C

∂θτ1
= ⟨HτΩ

†
τ

∂Ωτ

∂θτ1
⟩+ h.c. (23)

h.c. denotes the hermitian conjugate of the preceding twin expression.
Let Uτ (0) be an element of SU(2) acting on qubit 0. Uτ (0) can be pa-

rameterized as

Uτ (0) = ei[θτ1σX(0)+θτ2σY (0)+θτ3σZ(0)] , (24)

where the θτd for d = 1, 2, 3 are real numbers, and σX(0), σY (0), σZ(0) are the
Pauli matrices acting on qubit 0. For definiteness and as a good illustration,
we will henceforth assume that the unitary operator Ωτ has the special form
of an SU(2) gate with two controls:

Ωτ = Uτ (0)
n(1)n(2) , (25)

where, as usual, n = |0⟩⟨0| is the number operator, and n(1), n(2) are number
operators acting on qubits 1 and 2, respectively. As was shown in Section 2,
one can express the partial derivative of Uτ (0) with respect to its parameter
θτ1, as a linear combination

∂Uτ (0)

∂θτ1
=

∑
k

λτ1,kVτ1,k(0) , (26)

where the coefficients λτ1,k are real numbers and the Vτ1,k(0) are elements of
SU(2). Here k = 1, 2, 3. From Eqs.(25) and (26), it follows that

Ω†
τ

∂Ωτ

∂θτ1
=

∑
k

λτ1,k
[
n(1)n(2)U †

τ (0)Vτ1,k(0)
]
, (27)

which, when substituted into Eq.(23), yields:

6

∂C

∂θτ1
=

∑
k

λτ1,k
⟨
Hτn(1)n(2)U

†
τ (0)Vτ1,k(0) + h.c.

⟩
. (28)

Note that U †
τ (0)Vτ1,k(0) is a product of SU(2) matrices, so it is itself an

SU(2) matrix acting on qubit 0. Hence, it can be expressed as

U †
τ (0)Vτ1,k(0) = exp[iατ1,kσα̂τ1,k

(0)] = Wτ1,k(0) , (29)

where ατ1,k is a real number and α̂τ1,k is a real valued unit vector.
Recall that if σZ(β) is the Z Pauli matrix, and n(β) = |0⟩⟨0|β is the

number operator, acting on qubit β, then

1− 2n(β) = (−1)n(β) = σZ(β) . (30)

This result relies on the fact that the projection operator n satisfies n2 = n
and, therefore, it can only have two eigenvalues, 0 and 1. Let

η(1, 2) = n(1)n(2) . (31)

Eta’s square also equals itself so η ∈ {0, 1}. Therefore

1− 2η = (−1)η = (−1)n(1)n(2) = σZ(1)
n(2) = σZ(2)

n(1) . (32)

Let “dpart” (derivative part) stand for

dpart = ⟨Hτη(1, 2)W (0)⟩+ h.c. . (33)

Since

η =
1

2
(1− (−1)η) , (34)

it follows that

dpart =

{
1
2
⟨HτW ⟩+ h.c.

−1
2
⟨Hτ (−1)ηW ⟩+ h.c.

. (35)

Next we add to the quantum circuit an extra ancilla qubit called ξ. We
will refer to the top (resp., bottom) term on the right hand side of Eq.(35)
as depart+ (resp., dpart−). The sign of the dpart will be referred to as its
“polarity”. We can get dpart± by starting the ancilla qubit ξ at |0⟩, applying
a Hadamard matrix to it, and measuring the mean value of σX for ξ. In other
words, one can verify that

7

dpart+ =

 ⟨ψτ | | Hτ | |ψτ ⟩
(W †)n(ξ) W n(ξ)

⟨0|ξHad(ξ) | σX(ξ) | Had(ξ)|0⟩ξ

 , (36)

and

dpart− = −

 ⟨ψτ | | Hτ | |ψτ ⟩
(W †)n(ξ)σZ(ξ)

η σZ(ξ)
ηW n(ξ)

⟨0|ξHad(ξ) | σX(ξ) | Had(ξ)|0⟩ξ

 .

(37)

4 Application to a type of Quantum Neural

Net inspired by Quantum Bayesian Net-

works

So far, we have considered the derivative of any single gate of a quantum cost
function. We considered a multi-controlled U(2) gate, and a derivative with
respect to any of its 4 parameters. But we left the quantum cost function
arbitrary. In this section, we apply the results of previous sections to a very
special type of quantum cost function.

More specifically, in this section we will consider a quantum cost function
⟨ψT |H|ψT ⟩ whose state |ψT ⟩ is a quantum circuit that could be described as
a Quantum Neural Net inspired by Quantum Bayesian Networks. We will
also assume that the Hermitian operator H is given to us already expressed
as a “QubitOperator”. QubitOperator is a class in the open-source software
OpenFermion. It stores H as a a linear combination with real coefficients cr
of tensor products (aka Pauli strings) of a Pauli operator (or the identity)
acting on each qubit:

H =
∑
r

cr

Nb−1∏
β=0

σdβ,r(β) . (38)

Here dβ,r ∈ {0, 1, 2, 3} so as to include the identity and the 3 Pauli matrices.
In Qubiter’s implementation of the ideas of this paper, we call the quan-

tum circuit representing |ψT ⟩ a “Stairs Circuit”. For example, this is what
the Qubiter’s Picture file of a Stairs Circuit looks like for 3 qubits

8

U | |

O---U |

@---U |

O---O---U

O---@---U

@---O---U

@---@---U

Here, U is a general U(2) matrix with 4 parameters, all of which can be
made into placeholder variables or simply kept as floats. If each U is repre-
sented by a node and the controls of each U represent its parents, then this
quantum circuit can be represented by a fully connected Quantum Bayesian
Network (QB net). (See my 10 year old blog called “Quantum Bayesian
Networks” for more info than you would ever want to know about QB nets).

Qubiter can also be asked to construct a QB net that is **not** fully
connected, by limiting the number of controls for a given U to fewer than a
control on all the qubits to the left of U. For example, suppose that in the
3 qubits case, we restrict the parents of the U in the last gate to just one,
instead of the 2 parents that it has in the fully connected case. Then we get

U | |

O---U |

@---U |

O---+---U

@---+---U

when qubit 0 has qubit 2 but not 1 as a parent, or

U | |

O---U |

@---U |

| O---U

| @---U

when qubit 0 has qubit 1 but not 2 as a parent.
Qubiter appends at the end of the above quantum circuits a “coda” (tail).

Note that

e−iπ
4
σY σZe

iπ
4
σY = σX , (39)

9

ei
π
4
σXσZe

−iπ
4
σX = σY . (40)

A coda is a rotation ei
π
4
σY for every Pauli σX , and a rotation e−iπ

4
σX for every

Pauli σY , whenever σX or σY occur on the right hand side of Eq.(38). If such
a coda is appended to the quantum circuit, then we only have to measure
mean values of σZ or 1 on all qubits. Such mean values are easy to evaluate
because they are diagonal matrices of ones and minus ones.

The quantum circuit corresponding to a fully connected QB net has a
number of U(2) gates which grows exponentially with the number of qubits,
and each U(2) gate has as controls all the qubits to its left.1 Clearly, the
complexity of such quantum circuits blows up exponentially. But suppose we
limit the number of parents of every U(2) to a fixed number, say, for example,
to 2 (except for the first gate, the “prior”, which has no parents, and the
second gate, which can have only one parent). Such parent-limited quantum
circuits have a complexity which increases polynomially in the number of
qubits. Which 2 parents are chosen for each U(2) can be decided heuristically
in numerous ways. For example, one can move one parent, chosen at random,
from qubit A to qubit B, evaluate the cost function for each case, and choose
the parent with the lower cost.

5 Threaded Gradients

As an example, suppose that we are taking the derivative of the third gate,
of the fully connected 3 qubit graph with respect to t1 = θ1:

U | |

O---U |

d/dt1 @---U |

O---O---U

O---@---U

@---O---U

@---@---U

When we do so, we get a quantum circuit with positive polarity:

1Furthermore, current quantum computers require exponential complexity in number
of controls to calculate multi-controlled gates. I characterize this as a paradox and a
serious shortcoming.

10

| U | |

| O---U |

@---@---U |

| O---O---U

| O---@---U

| @---O---U

| @---@---U

and one with negative polarity:

| U | |

| O---U |

@---@---U |

Z---@ | |

| O---O---U

| O---@---U

| @---O---U

| @---@---U

We would also have to append codas to these circuits. Note that an ancilla
qubit was added, so the quantum circuit being differentiated has 3 qubits,
but its derivative parts have 4 qubits.

The idea of “threaded gradients” is to partition all the qubits of a qc
into groups of 4 qubits (4 is just for this example), and to evolve each of
these 4 qubit islands independently, and concurrently. Each 4 qubit island is
assigned the task of evaluating the mean value of one of the dparts.

Obviously, multi-threading the task of evaluating a gradient of a quantum
cost function, is ideal for a NISQ device, because it only requires quantum
entanglement inside small islands of 4 (4 is just for this example) qubits each,
but no correlation among islands.

References

[1] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii.
“Quantum circuit learning” arXiv:1803.00745.

[2] Ken M. Nakanishi, Keisuke Fujii, Synge Todo, “Sequential minimal op-
timization for quantum-classical hybrid algorithms”, arXiv:1903.12166
[quant-ph]

11

[3] PennyLane documentation has large list of references to arXiv papers
by themselves and others.

[4] Robert M. Parrish, Joseph T. Iosue, Asier Ozaeta, Peter L. McMa-
hon, “A Jacobi Diagonalization and Anderson Acceleration Algo-
rithm For Variational Quantum Algorithm Parameter Optimization”,
arXiv:1904.03206 [quant-ph]

12

