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Abstract

The purpose of this paper is to present some algebra that underlies some quantum
circuit identities from Ref.[1] that are used within the class CGateSEO writer of
Qubiter. By putting the algebra here, I hope it makes it easier for Qubiter users to
follow the code and to spot & report any mistakes if there are any in the algebra.
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1 Introduction

All the quantum circuit identities in this paper have been known for a long time.
They appear in Ref.[1] published in 1995. The purpose of this paper is to present
some algebra that underlies those identities. Most of that algebra is used within the
class CGateSEO writer of Qubiter.

Throughout this paper and in the Qubiter code, we use “1c u2” to mean a
singly controlled U(2) matrix and “c u2” to mean a controlled U(2) matrix. If we say
a gate is controlled, it may have 1 or more controls (it might be singly or multiply
controlled).

2 Notation and Preliminaries

In this section, we will review briefly some of the more unconventional notation used
in this paper. For a more detailed discussion of Tucci’s notation, especially its more
idiosyncratic aspects, see, for example, Ref.[2].

Note that in our circuit diagrams, time points in this direction←, in agreement
with the usual ordering of operators in Dirac notation. This is contrary to most
papers on quantum computing, which draw quantum circuits with time pointing in
this direction →.

As usual, the Pauli matrices are defined by:

σX =

[
0 1
1 0

]
, σY =

[
0 −i
i 0

]
, σZ =

[
1 0
0 −1

]
. (1)

We will denote the projectors onto the states 0 and 1 by

P1 = |1⟩ ⟨1| = n (2)

(n is often referred to as the number operator because it equals 1 if the state has 1
particle and 0 if 0) and

P0 = |0⟩ ⟨0| = 1− n = n . (3)

Note that

n =

[
0 0
0 1

]
=

1− σZ

2
(4)

and

n =

[
1 0
0 0

]
=

1 + σZ

2
. (5)
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Recall that the 2-dim Hadamard matrix defined by

H =
1√
2

[
1 1
1 −1

]
(6)

satisfies

H2 = H , HσXH = σZ . (7)

Let r̂ · σ⃗ = σr for any (3-dim, real) unit vector r̂.
One can show by Taylor expansion that

eiθσr = cos(θ) + iσr sin(θ) (8)

for any real number θ and unit vector r̂.
For any unit vectors r̂ and ŝ, the Pauli matrices satisfy:

σrσs = r̂ · ŝ+ iσr × σs . (9)

Any SU(2) matrix W can be expressed as eiθwσw for some real number θw and
unit vector ŵ. We will call (θw, ŵ) the SU(2)-pair corresponding to W . Since the
product of two SU(2) matrices equals another SU(2) matrix, the following equation:

eiθw1σw1eiθw2σw2 = eiθwσw (10)

defines a map of 2 SU(2)-pairs into a new one.

(θw1 , ŵ1), (θw2 , ŵ2)→ (θw, ŵ) . (11)

One can find analytic expressions for the output SU(2)-pair in terms of the two input
SU(2)-pairs as follows. Let c = cos(θw) and s = sin(θw). Also abbreviate cj = cos(θwj

)
and sj = sin(θwj

) for j = 1, 2. Then

(c1 + iσw1s1)(c2 + iσw2s2) =

{
c1c2 − s1s2ŵ1 · ŵ2

+is1c2σw1 + is2c1σw2 − is1s2σŵ1×ŵ2

(12)

= c+ iσws . (13)

Define
r⃗ = s1c2ŵ1 + s2c1ŵ2 − s1s2ŵ1 × ŵ2 (14)

and

ŵ =
r⃗

|r⃗|
. (15)

Then
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c = c1c2 − s1s2ŵ1 · ŵ2

s = |r⃗|
θw = arctan 2(s, c) = arctan(s/c)

. (16)

Some U(2) matrices to which Qubiter allows one to attach controls are:

eiθn = ei
π
2 ei

θ
2
σZ , (17a)

eiθn = ei
π
2 e−i θ

2
σZ , (17b)

σa = (−i)(iσa) = e−iπ
2 ei

π
2
σa (17c)

for a = X, Y, Z, and

H =
σX + σZ√

2
= (−i)(iσa) = e−iπ

2 ei
π
2
σa (17d)

for a = x̂+ẑ√
2
.

3 One Controlled U(2) (1c u2)

In this section, we will show how to express a 1c u2 as a product of CNOTs and single
qubit rotations. Pictorially , if W is any U(2) matrix, we want to expand:

W (1)n(0) =
• 0

W 1

. (18)

In general, a 1c u2 requires 3 CNOTs to express it, but in some special cases, one can
get away with using only 1 or 2 CNOTs. This section contains 3 subsections dealing
with the cases of 1, 2 and 3 CNOTs, in that order.

We will express W in two ways:

W = eiδeiθwσw , (19)

and

W = eiδeiασZeiγσY eiβσZ , (20)

for real numbers δ, θw, α, γ, β and a unit vector ŵ. Next, we shall express the param-
eters (α, γ, β) in terms of the SU(2)-pair (θ, ŵ).

Define w± = wx ± iwy. For any angle ξ, we will use the abbreviations cξ =
cos(ξ) and sξ = sin(ξ). One has
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[
eiα 0
0 e−iα

] [
cγ sγ
−sγ cγ

] [
eiβ 0
0 e−iβ

]
=

[
cθw + iwzsθw isθww−

isθww+ cθw − iwzsθw

]
(21)

so

ei(α+β)cγ = cθw + iwzsθw (22)

and

ei(α−β)sγ = isθww− . (23)

Define mag, cγ and sγ by

mag =
√
c2θw + w2

zs
2
θw

, (24)

cγ = mag (25)

and

sγ = sθw |w−| . (26)

Then

ei(α+β) =
cθw + iwzsθw

mag
= eiθ1 (27)

and

ei(α−β) =
iwx + wy

|w−|
= eiθ2 . (28)

The last two equations should be taken as the definitions of the real parameters θ1
and θ2. It follows that

α = θ1+θ2
2

β = θ1−θ2
2

γ = arctan 2(sθw |w−|,mag)
. (29)

3.1 1 CNOTS, 2 target rots

Assume that we can write

• 0

W 1

=
eiδn • 0

A × A† 1

(30)

for U(2) matrices W,A and a real parameter δ.
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Eq.(30) implies that
W = eiδAσXA

† . (31)

Therefore

W = eiδσw . (32)

Next we show that Eq.(31) can be satisfied if we assume A can be expressed as:

A = iσa . (33)

Eqs.(31), (32) and (33) imply

σw = σaσXσa . (34)

But

σaσXσa = (ax + iσâ×x̂)σa (35)

= axσa + i (â× x̂) · â︸ ︷︷ ︸
0

−σ(â× x̂)× â︸ ︷︷ ︸
x̂−axâ

(36)

= 2axσa − σX , (37)

so

wx = 2a2x − 1
wy = 2axay
wz = 2axaz

(38)

which can be inverted to

ax =
√

wx+1
2

ay =
wy

2ax

az =
wz

2ax

. (39)

3.2 2 CNOTS, 2 target rots

Assume that we can write

• 0

W 1

=
eiδn • • 0

A × A† × 1

(40)

for U(2) matrices W,A and a real parameter δ.
Eq.(40) implies that

W = eiδAσXA
†σX . (41)
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Therefore

wx = 0 . (42)

Next we show that Eq.(41) can be satisfied if we assume A can be expressed
as:

A = eiασZei
γ
2
σY (43)

for real parameters α, γ. Indeed, just set (this is a special case of Eqs.(29)):

α = β = θ1
2

γ = arctan 2(sθwwy,mag)
. (44)

3.3 3 CNOTS, 3 target rots

Assume that we can write

• 0

W 1

=
eiδn • • 0

A × B × C 1

(45)

for U(2) matrices W,A,B,C and a real parameter δ.
Eq.(45) implies

1 = ABC (46)

and

W = eiδAσXBσXC . (47)

The last two equations are satisfied if we set

A = eiασZei
γ
2
σY , (48)

B = e−i γ
2
σY e−iα+β

2
σZ , (49)

C = ei
β−α
2

σZ (50)

with the real parameters α, β, γ given by Eqs.(29).
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4 Controlled U(2) (c u2)

In this section, we will show how to express a c u2 as a product of CNOTs and single
qubit rotations. Pictorially , if W is any U(2) matrix, we want to expand:

W (3)n(2)n(1)n(0) =

• 0

• 1

• 2

W 3

. (51)

This example has 3 controls, but we are interested in any number greater or equal to
1. The one control case was dealt with in the previous section, so in this section we
will only show how to express an c u2 as a product of single qubit rotations, CNOTs
and 1c u2’s.

For any xr denoting the labels of r distinct qubits, we will abbreviate a tensor
product of r Z-Pauli matrices by:

σZ(x
r) =

∏
j=0,1,...,r−1

σZ(xj) (52)

For example, σZ(1, 3) = σZ(1)σZ(3)
A useful identity is

× σZ × 0

• • 1

=

σZ 0

σZ 1

, (53)

or, written in algebraic language,

σX(0)
n(1)σZ(0)σX(0)

n(1) = σZ(0, 1) . (54)

Define the “generalized n (GN)” n(1, 0) by
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n(1, 0) =

GN 0

GN 1

(55)

=
× n × 0

• • 1

(56)

=
1

2
[1−

σZ 0

σZ 1

] (57)

=
1

2
[1− σZ(1, 0)] . (58)

Define the “generalized-n (GN)” n(2, 1, 0) by

n(2, 1, 0) =

GN 0

GN 1

GN 2

(59)

=

× n × 0

× • • × 1

• • 2

(60)

=
1

2
[1−

σZ 0

σZ 1

σZ 2

] (61)

=
1

2
[1− σZ(2, 1, 0)] . (62)

It’s clear from the definitions of n(1, 0) and n(2, 1, 0) how one can define by
analogy a generalized-n denoted by n(xr), where the indices xr denote r distinct
qubits. Note that n(xr) is a diagonal matrix that contains ±1 along its diagonal and
is symmetric in its indices.

Note that
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n(1)n(0) =
1

4
[1− σZ(1)][1− σZ(0)] (63)

=
1

4
[1− σZ(0)︸ ︷︷ ︸

1−2n(0)

− σZ(1)︸ ︷︷ ︸
1−2n(1)

+σZ(1, 0)︸ ︷︷ ︸
1−2n(1,0)

] (64)

=
1

2
[n(0) + n(1)− n(1, 0)] . (65)

Note also that

n(2)n(1, 0) =
1

4
[1− σZ(2)][1− σZ(1, 0)] (66)

=
1

4
[1− σZ(1, 0)− σZ(2) + σZ(2, 1, 0)] (67)

=
1

2
[n(1, 0) + n(2)− n(2, 1, 0)] . (68)

Therefore,

n(2)n(1)n(0) =
1

2
n(2)[n(0) + n(1)− n(1, 0)] (69)

=
1

2
[ n(2)n(0)︸ ︷︷ ︸
1
2
[n(2)+n(0)−n(2,0)]

+ n(2)n(1)︸ ︷︷ ︸
1
2
[n(2)+n(1)−n(2,1)]

− n(2)n(1, 0)︸ ︷︷ ︸
1
2
[n(1,0)+n(2)−n(2,1,0)]

] (70)

=
1

4


[n(0) + n(1) + n(2)]
−[n(1, 0) + n(2, 0) + n(2, 1)]
+n(2, 1, 0)

 . (71)

It’s clear that Eq.(65) for a tensor product of 2 n’s and Eq.(71) for a tensor
product of 3 n’s can be generalized by induction to a formula that expresses a tensor
product of an arbitrary number of n’s as a linear combination of generalized-n’s. That
generalization is

R−1∏
r=0

n(r) =
1

2R−1

R∑
r=1

∑
yr∈Combr({0,1,...,R−1})

(−1)r+1n(yr) , (72)

where Combr(S) denotes the r-length combinations of a set S. Eq.(72) can now be
used to achieve the original goal of this section, which is to expand an c u2 as a
product of CNOTs, single qubit rotations and 1c u2’s.

Note that
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× n × 0

× • • × 1

• • 2

=

×× n ×× 0

• • 1

• • 2

(73)

The Qubiter software uses the right hand side diagram to express a generalized-n
n(0, 1, 2).

Note that the right hand side of Eq.(72) contains R choose r terms summed

from r = 1 to r = R so it contains a total of
∑R

r=1

(
R
r

)
= 2R − 1 summands. The

power set 2S of a set S = {0, 1, 2, . . . , R− 1} contains 2R elements and that includes
the empty set. 2S minus the empty set contains 2R − 1 elements, just like the sum
in Eq.(72). It’s easy to see that 2S is in 1-1 correspondence with the set of binary
strings R digits long. Hence, it is easy to see that the summands in Eq.(72) are in 1-1
correspondence with the set of all binary strings R digits long, excluding the string
which is all zeros. Qubiter exponentiates Eq.(72), and orders the 2R − 1 factors in
Gray code so that adjacent factors differ by only one bit (in normal ordering they
may differ by more than 1 bit). This Gray code ordering is convenient to use because
it allows us to cancel CNOTs produced by the generalized-n’s of two adjacent factors,
a “compiling optimization” which is more difficult to do if Gray code is not used.
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