
Calculating the Gradient of a Cost Function
for a Parametric Quantum Circuit in

FIVE EASY PIECES

Robert R. Tucci
P.O. Box 226

Bedford, MA 01730
tucci@ar-tiste.com
www.artiste-qb.net

March 31, 2019

Hybrid Quantum Classical (HQC) computation as being pursued by Rigetti
Inc. involves minimizing the mean value of a Hermitian operator, wherein
that mean value is calculated empirically from the data yielded by Rigetti’s
qc. One very popular method of minimizing a function is using back prop-
agation (BP). The software PennyLane by Xanadu Inc. and the software
Qubiter that I manage for Artiste-qb.net Inc. can already do BP to a lim-
ited extent on the Rigetti virtual and real qc’s. The goal of this brief article
is to discuss some ideas that might allow us to exploit BP to its full potential
in HQC in the future.

Suppose that you want to minimize a cost function C(x) where x has
components xk. BP is a way of calculating ∇C(x) which one then uses to
update the value of x iteratively using what is called gradient descent:

xnewk = xk − η
∂C(x)

∂xk
, (1)

1

where η > 0. The idea behind gradient descent is that the increment in
cost is dC = (xnewk − xk)(dxk)(−1/η), which we expect to be negative since
(xnewk −xk)(dxk) ≈ (dxk)

2 > 0. If dC < 0 each time, then we expect the cost
will move towards a minimum. At this point, the question arises, what C(x)
should one use for HQC and how does one calculate it and its gradient?

Qubiter currently minimizes C(x) = Cexact(x), where Cexact(x) is the cost
function calculated exactly (theoretically) from the wavefunction calculated
by the Qubiter simulator. This is an interesting case because, to calculate
∇Cexact, one can do BP distributively, using GPU and TPU, via softwares
like TensorFlow and PyTorch. It is known that the computational complexity
of back propagation (BP) and forward propagation (FP) are about the same.
Since doing a classical simulation of a quantum circuit (in other words, doing
FP) blows up exponentially with the number of qubits, the same will be true
if we attempt to do BP. So why do either? The motivations for doing BP
to calculate ∇Cexact on a quantum simulator are the same as those for doing
FP on a quantum simulator. One does it to generate new ideas and to test
various things on a smallish number of qubits.

Ultimately, the HQC people will want to minimize C(x) = Cemp(x), in-
stead of C(x) = Cexact(x), where Cemp(x) is the cost function calculated em-
pirically, from the data yielded by the qc hardware. Presumably, qc hardware
can calculate Cemp(x) and its gradient much faster that classical hardware
can calculate Cexact(x) and it gradient. Calculating the gradient of Cemp(x)
has many potential benefits, but it is not obvious what is the best way of
doing this. Finding a good way will require some novel and careful thinking.
If one does something like BP, this will require calculating the derivatives
∂

∂xk
of each gate that depends on the parameters x of the quantum circuit.

Cemp is a statistical quantity compiled from many “shots” (samples), so it
fluctuates, and a naive calculation of the derivatives of a gate by a finite
difference method, with no other type of averaging, is bound to fail. It’s
difficult to calculate meaningfully the difference of two values that are very
close and fluctuating.

Next, I will show how to calculate the derivative of a quantum gate with
respect to one of its parameters, by calculating 5 separate mean values, and
obtaining the derivative as a linear combination of those 5 mean values.
The authors of PennyLane have come up with a similar scheme, but their
method is different to mine. To tackle a general U(2) transformation, they
first decompose it into an Euler product of 3 rotations along the standard X,Y

2

or Z axes, and then they take the derivatives of each of those 3 rotations. In
this paper, I give a method that can handle an arbitrary U(2) transformation,
without having to do the Euler decomposition first. Nevertheless, check their
method out! You might like it more than the method I propose here.

Lucky for us, the parameters of a quantum gate almost always appear
inside a 2-dim unitary matrix (an element of the group U(2)). So, from here
on, we will only concern ourselves with calculating the derivatives of a U(2)
matrix.

Let’s start easy, with a rotation about a standard axis, X, Y, Z, instead of
a general U(2) matrix. If we let σk for k = 1, 2, 3 denote the Pauli matrices,
then a rotation about the Z axis is

U(θ3) = eiσ3θ3 = C + iσ3S , (2)

where θ3 is some real number and we abbreviate S = sin θ3, C = cos θ3. Then

dU

dt
= θ̇3(−S + iσ3C) . (3)

Hence
dU

dθ3
= −S + iσ3C = ei(

π
2
+θ3)σ3 = U(

π

2
+ θ3) . (4)

Thus, for a rotation along a standard axis, one can evaluate the derivative
of a gate simply by replacing that gate by that gate with its angle advanced
by π

2
. No need to take finite differences. This begs the question, can we

calculate the gradient of a general U(2) matrix, in an exact, closed form that
is just as convenient? Yes we can, as I will show next.

Now let us consider the most general U(2). We will parameterize it as

U = ei(θ0+θ1σX+θ2σY +θ3σZ) , (5)

where θk for k = 0, 1, 2, 3 are real numbers. Derivatives with respect to θ0 are
trivial so we will set θ0 = 0 henceforth. Expressing things using the Einstein
summation convention,

U = eiσkθk = C + iσk
θk
θ
S , (6)

where we are abbreviating

θ =
√
θkθk, S = sin θ, C = cos θ . (7)

3

Then, it’s easy to show that

dU

dt
= −Sθk

θ
θ̇k + iσkθ̇r

[
θkθr
θ2

C +
S

θ
(−θkθr

θ2
+ δk,r)

]
. (8)

Eq.(8) has been checked numerically by Qubiter’s code. and is already coded
into Qubiter’s implementation of Autograd.

In the rest of this article, we will try to recast the right hand side of
Eq.(8) into a form that is more convenient for empirical calculation from qc
data. Before embarking on this task, let us introduce some notation. As
physicists are fond of doing, we will represent a unit vector by a letter with
a caret above it: â = a⃗

|⃗a| . Also, for any 3-dim vector a⃗, let

σa⃗ = a⃗ · σ⃗ . (9)

Eq.(9) is a natural generalization of the Pauli matrix notation. If êA is the
unit vector in direction A for A = X, Y, Z, then êA · σ⃗ = σA for A = X,Y, Z.
Expressed in the notation of Eq.(9), two familiar Pauli matrix identities are

σa⃗σb⃗ = a⃗ · b⃗+ iσa⃗×b⃗ , (10)

where a⃗ and b⃗ are any two 3-dim vectors, and

eiθσn̂ = cos θ + iσn̂ sin θ , (11)

where θ is a real number and n̂ is a 3-dim unit vector. Eq.(11) can be proven
by Taylor expanding, and using σ2

n̂ = 1.
We will also use the following notation for the projectors P0 and P1 along

the direction of |0⟩ and |1⟩, respectively, in a 1-qubit space.

n = P1 = |1⟩⟨1|,
n̄ = 1− n = P0 = |0⟩⟨0| . (12)

n is often called the number operator. Whenever we say Ω(α) for a 1-qubit
operator Ω, we mean Ω applied to qubit α.

As usual, let U ∈ U(2). Our next goal is to express , U̇ , the derivative of
U with respect to a parameter t, as a linear combination of unitary operators
Uk, where the real numbers xk sum to one:

U̇ =
∑
k

xkUk , (13a)

4

∑
k

xk = 1, UkU
†
k = 1 ∀k . (13b)

It’s important to note that we don’t require xk > 0 for all k, so the xk are
not probabilities.

Why do we want to express U̇ in the form of Eqs.(13)? Because in a qc,
U̇ will often be subject to 1 or more controls. Controls are easy to deal with
if U̇ can be expressed as in Eqs.(13), because then

U̇(0)n(1)n(2) =

[∑
k

xkUk

]n(1)n(2)

=
∑
k

xkUk(0)
n(1)n(2) . (14)

The fact that Eq.(14) holds can be easily verified by considering the two
cases n(1)n(2) = 0, 1 separately. If LHS=left hand side, RHS=right hand
side, refer to the two sides of Eq.(14):

n(1)n(2) = 0 : LHS = 1, RHS =
∑

k xk = 1

n(1)n(2) = 1 : LHS = U̇(0), RHS =
∑

k xkUk(0)
. (15)

Eq.(8) for the general form of U̇ when parameterized as Eq.(5) (with
θ0 = 0) is fairly opaque. To clarify Eq.(8), we start by specializing it to
t = θ1. The cases t = θ2, θ3 can be obtained from the case t = θ1 simply
by replacing 1 subscripts in our final result by 2 or 3. So, setting t = θ1 in
Eq.(8), we immediately get:

∂U

∂θ1
=


− θ1S

θ2
[iσθ̂]

+ θ1
θ
[−S + iσθ̂C]

+S
θ
[iσ1]

. (16)

If we define

p1 =
θ1
θ
, pS =

S

θ
, (17)

then

∂U

∂θ1
=


−p1pS

[
ei

π
2
σθ̂

]
+p1

[
ei(

π
2
+θ)σθ̂

]
+pS

[
ei

π
2
σ1
] , (18)

which is equivalent to

5

∂U

∂θ1
=



1
2
(1− p1)(1− pS)[1]

+1
2
(1− p1)(1− pS)[−1]

−p1pS
[
ei

π
2
σθ̂

]
+p1

[
ei(

π
2
+θ)σ

θ̂

]
+pS

[
ei

π
2
σ1
] . (19)

But note that

p1 + pS − p1pS + (1− p1)(1− pS) = 1 . (20)

If we let Uk equal the unitary matrices inside the square brakets in the RHS
of Eq.(19), then it is clear that Eq.(19) satisfies

∂U

∂θ1
=

5∑
k=1

xkUk , (21a)

and

5∑
k=1

xk = 1, UkU
†
k = 1 ∀k . (21b)

Just what we wanted! ∂U
∂θ1

in five easy pieces. And replace 1 by 2 or 3 in
Eq.(19) to get partials of U with respect to θ2 and θ3.

ADDED LATER

The above essay was written in a colloquial style with the aim of generating
interest among my peers in this subject. A week later, I am adding this more
technical appendix to fill in some of the gaps that were left behind in the
above colloquial treatment. What I do in this appendix is to show how to
express the gradient of the cost function as a sum of mean values that are
readily evaluated empirically on a real qc.

Suppose a,A are integers such that a ≤ A, and Ωj are operators acting
on Nb qubits. Define

Ω[a,A] = ΩaΩa+1 . . .ΩA (22)

and

6

Ω[A,a] = ΩA . . .Ωa+1Ωa . (23)

Note that

(Ω[a,A])
† = Ω†

[A,a] . (24)

The cost function that we minimize in Hybrid Quantum Classical com-
puting can be expressed analytically as

C = ⟨ψ0|(Ω[T−1,0])
†HΩ[T−1,0]|ψ0⟩ , (25)

where the Ωj are unitary operators and H is a Hermitian operator acting on
Nb qubits. Now let us focus on taking the derivative of Ωτ , the gate for a
particular time τ ∈ {0, 1, . . . T − 1}. Define

|ψτ ⟩ = Ω[τ−1,0]|ψ0⟩ (26)

and

Hτ = (Ω[T−1,τ])
†HΩ[T−1,τ] . (27)

Henceforth, we will use the angled brackets to denote an average with respect
to state |ψτ ⟩:

⟨ψτ | · |ψτ ⟩ = ⟨·⟩ . (28)

Using the above notation, the cost function and its derivative with respect
to a parameter θτ1 that lives inside the operator Ωτ1, can be expressed as

C = ⟨Hτ ⟩ , (29)

and

∂C

∂θτ1
= ⟨HτΩ

†
τ

∂Ωτ

∂θτ1
⟩+ h.c. (30)

h.c. denotes the hermitian conjugate of the preceding twin expression.
Let Uτ1(0) be an element of SU(2) acting on qubit 0. Uτ1(0) can be

parameterized as

Uτ1(0) = ei[θτ1σX(0)+θτ2σY (0)+θτ3σZ(0)] , (31)

where the θτd for d = 1, 2, 3 are real numbers, and σX(0), σY (0), σZ(0) are the
Pauli matrices acting on qubit 0. For definiteness and as a good illustration,

7

we will henceforth assume that the unitary operator Ωτ has the special form
of an SU(2) gate with two controls:

Ωτ = Uτ1(0)
n(1)n(2) , (32)

where, as usual, n = |0⟩⟨0| is the number operator, and n(1), n(2) are number
operators acting on qubits 1 and 2, respectively. As was shown in the main
part of this essay, one can express the partial derivative of Uτ1(0) with respect
to its parameter θτ1, as a linear combination

∂Uτ1(0)

∂θτ1
=

∑
k

λτ1,kVτ1,k(0) , (33)

where the coefficients λτ1,k are real numbers and the Vτ1,k(0) are elements of
SU(2). Here k = 1, 2, 3 (we exclude the two terms that sum to zero because
there is no need for them in this situation). From Eqs.(32) and (33), it follows
that

Ω†
τ

∂Ωτ

∂θτ1
=

∑
k

λτ1,k

[
n(1)n(2)U †

τ1,k(0)Vτ1,k(0)
]
, (34)

which, when substituted into Eq.(30), yields:

∂C

∂θτ1
=

∑
k

λτ1,k

⟨
Hτn(1)n(2)U

†
τ1,k(0)Vτ1,k(0) + h.c.

⟩
. (35)

Note that U †
τ1,k(0)Vτ1,k(0) is a product of SU(2) matrices, so it is itself an

SU(2) matrix acting on qubit 0. Hence, it can be expressed as

U †
τ1,k(0)Vτ1,k(0) = cτ1,k + iσα̂τ1,k

(0)sτ1,k , (36)

where we abbreviate

cτ1,k = cos(ατ1,k), sτ1,k = sin(ατ1,k) . (37)

ατ1,k is a real number and α̂τ1,k is a real valued unit vector.
Note also that, since

n(1) =
1− σZ(1)

2
, n(2) =

1− σZ(2)

2
, (38)

one has

8

n(1)n(2) =
1

4
[1− σZ(1)− σZ(2) + σZ(1)σZ(2)] (39)

=
1

4

1∑
a=0

1∑
b=0

(−1)a+bσa
Z(1)σ

b
Z(2) . (40)

At this point, it clear that in order to evaluate ∂C
∂θτ1

empirically, one needs
to evaluate empirically two types of mean values that we will refer to as types
A and B:

Aτ = ⟨Hτn(1)n(2) + h.c.⟩ , (41)

Bτ,k = ⟨Hτσ
a
Z(1)σ

b
Z(2)iσα̂τ1,k

(0) + h.c.⟩ . (42)

Note that if we use Eq.(40) in type A (as we did for type B), then the two
terms on the RHS of type A are each a product of Pauli matrices, whereas
in type B, the two terms on the RHS are each a product of Pauli matrices
times i. As we shall see, that extra i in type B has giant repercussions,
making very different the methods that can be used to evaluate type A and
B mean values. As we shall see, evaluating type A mean values requires some
post-selection, whereas evaluating type B ones doesn’t. Type A mean values
don’t arise if gate Ωτ has no controls. So far, the PennyLane software only
considers evaluating the gradient of uncontrolled gates, so they never have
to evaluate type A mean values.

The above definitions for type A and B mean values are not in a form
that is readily evaluated empirically on a qc. The rest of this note will be
devoted to recasting them into a new form that is.

Define
Σ(0, 1, 2) = σa

Z(1)σ
b
Z(2)σα̂τ1,k

(0) . (43)

Note that Σ is a tensor product of Pauli matrices so it satisfies

Σ† = Σ, Σ2 = 1 . (44)

Taylor expanding and using Eqs.(44), one can easily show that

Q = ei
π
4
Σ =

1 + iΣ√
2

. (45)

9

Therefore1

Bτ,k = i⟨HτΣ− h.c.⟩ (46)

=
⟨
Q†HτQ−QHτQ

†⟩ . (47)

Eq.(47) expresses type B mean values in a form that is readily evaluated
empirically on a real qc. Can we do the same for type A mean values?

Recall that if σZ(β) is the Z Pauli matrix, and n(β) = |0⟩⟨0|β is the
number operator, acting on qubit β, then

1− 2n(β) = (−1)n(β) = σZ(β) . (48)

This result relies on the fact that the projection operator n satisfies n2 = n
and therefore can only have two eigenvalues, 0 and 1. Let

η = n(1)n(2) . (49)

Eta’s square also equals itself so η ∈ {0, 1}. Therefore

1− 2η = (−1)η = (−1)n(1)n(2) = σZ(1)
n(2) = σZ(2)

n(1) . (50)

and

Hη + ηH =
−1

2
(1− 2η)H(1− 2η) +

1

2
H + 2ηHη (51)

=
−1

2
(−1)η)H(−1)η +

1

2
H + 2ηHη . (52)

This allows us to express type A mean values as

Aτ =
−1

2
⟨(−1)ηHτ (−1)η⟩+ 1

2
⟨Hτ ⟩+ 2⟨ηHτη⟩ . (53)

Of the 3 mean values on the RHS of Eq.(53), the first two are readily
evaluated empirically on a qc. The third one, ⟨ηHτη⟩, is not so ready. One
possible way to evaluate ⟨ηHτη⟩ on a qc is to first express the Hermitian
operator Hτ as a “QubitOperator”. QubitOperator is a class in the open-
source software OpenFermion. In other words, decompose ⟨ηHτη⟩ into a

1Ref.[2] credits Ref.[1] as the first paper to use Eq.(47) in the context of evaluating
gradients of cost functions in quantum computing.

10

linear combination with real coefficients cr of tensor products of a Pauli
operator (or the identity) acting on each qubit:

Hτ =
∑
r

cr

Nb−1∏
β=0

σdβ,r(β) . (54)

Here dβ,r ∈ {0, 1, 2, 3} so as to include the identity and the 3 Pauli matrices.
It follows that

⟨ηHτη⟩ =
∑
r

cr

⟨
η

Nb−1∏
β=0

σdβr (β)η

⟩
(55)

=
∑
r

cr⟨1|σd1(1)|1⟩⟨1|σd2(2)|1⟩

⟨
n(1)n(2)

∏
β ̸=1,2

σdβ(β)

⟩
. (56)

This final form for ⟨ηHτη⟩ makes it clear how to evaluate it empirically on a
qc. It involves post-selecting the outcomes of qubits 1 and 2.

ADDED LATER (2)

After posting the first addition to this essay yesterday, I thought of a way of
expressing the gradient of the cost function in a form that is readily evaluated
on a quantum computer and does not require the computationally expensive
task of expressing Hτ as a QubitOperator. This new method uses an extra
ancilla qubit that I will call ξ.

Let us apply Eq.(40) to the earlier definition Eq.(41) of Aτ and redefine
Aτ as

Aτ = ⟨Hτσ
a
Z(1)σ

b
Z(2) + h.c.⟩ . (57)

We keep the same defintion of Bτ,k as before:

Bτ,k = ⟨Hτσ
a
Z(1)σ

b
Z(2)iσα̂τ1,k

(0) + h.c.⟩ . (58)

Let

ΣA(1, 2) = σa
Z(1)σ

b
Z(2) , (59)

and

11

ΣB(0, 1, 2) = σa
Z(1)σ

b
Z(2)σα̂τ1,k

(0) . (60)

Note that Σ2
I = 1 and Σ†

I = ΣI for I = A,B so the ΣI behave like single
Pauli matrices.

The idea is to initialize the ancilla qubit ξ in state |0⟩, then apply a

Hadamard matrix to it, then apply a gate Σ
n(ξ)
I which acts on the main

system but has ξ as a control, then finally measure the mean value of a Pauli
matrix for qubit ξ (measure σX(ξ) for type A mean values or σY (ξ) for type
B mean values).

Aτ = ⟨HτΣA + ΣAHτ ⟩ (61)

=

 ⟨ψτ | | Hτ | |ψτ ⟩
Σ

n(ξ)
A Σ

n(ξ)
A

2⟨0|ξHad(ξ) | σX(ξ) | Had(ξ)|0⟩ξ

 (62)

Bτ,k = i⟨HτΣB − ΣBHτ ⟩ (63)

=

 ⟨ψτ | | Hτ | |ψτ ⟩
Σ

n(ξ)
B Σ

n(ξ)
B

2⟨0|ξHad(ξ) | σY (ξ) | Had(ξ)|0⟩ξ

 (64)

References

[1] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii.
“Quantum circuit learning” arXiv:1803.00745.

[2] PennyLane documentation has large list of references to arXiv papers.

12

