Macaulay2 » Documentation
Packages » RandomComplexes :: testTimeForLLLonSyzygies
next | previous | forward | backward | up | index | toc

testTimeForLLLonSyzygies -- test timing for LLL on syzygies

Description

We randomly choose an $r \times\ n$ matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.

i1 : setRandomSeed "nice example 2";
 -- setting random seed to 12638458417381289481402307077
i2 : r=10,n=20

o2 = (10, 20)

o2 : Sequence
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11)

o3 = ({5, 2.91596e52, 9}, .00199951, .00100013)

o3 : Sequence
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100)

o4 = ({50, 2.30853e454, 98}, .00499884, .0359353)

o4 : Sequence
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2})

o5 = {{.00787515, .0119989}, {.00599922, .00399887}, {.0119835, .00699926},
     ------------------------------------------------------------------------
     {.012, .00998938}, {.0100017, .0139036}, {.0130005, .013}, {.0109998,
     ------------------------------------------------------------------------
     .00797838}, {.0120005, .00799865}, {.00890077, .00600076}, {.0130005,
     ------------------------------------------------------------------------
     .00899922}}

o5 : List
i6 : 1/10*sum(L,t->t_0)

o6 = .01057615869999995

o6 : RR (of precision 53)
i7 : 1/10*sum(L,t->t_1)

o7 = .009086710300000123

o7 : RR (of precision 53)

Ways to use testTimeForLLLonSyzygies:

  • testTimeForLLLonSyzygies(ZZ,ZZ)

For the programmer

The object testTimeForLLLonSyzygies is a method function with options.


The source of this document is in RandomComplexes.m2:492:0.