
David Andrews
Ruby Hack Night
Part 1: July 29, 2015, Part 2: August 26, 2015

Captain’s Mistress Workshop

Captain’s Mistress Workshop
� 

During his long sea voyages, Captain Cook would
retire to his cabin for extended periods. The crew used
to joke that he had a mistress hidden away there. They
soon discovered that the Captain had been playing a

game with the ship’s scientist.

The game came to be known as
‘The Captain’s Mistress’.

Rules of Captain’s Mistress
1. The game consists of balls and a rack.
2. There are 2 coloured sets of 21 balls each, coloured black and
white.

3. The rack has 7 channels (columns) and 6 rows.
4. The rack is oriented vertically so that the balls create 7 stacks.
5. Two players take turns dropping balls into the channels.
6. A ball falls until it lands on top of the existing stack, or the

bottom of the rack.
7. Players cannot drop balls into channels that are full.
8. The winner is the first player to create a line of four balls in

any direction.

Do you recognize it?

Our needs from the very high-level
�  The Game and 2 Players:

�  The Game entity
� manages the game board,
�  enforces the rules (including flow of play), and
�  game state (including winning conditions).

�  The Player entity
�  answers the question: what is your next move?

�  The Player entity will want to ask questions about the
game state in order to make decisions about the next
move. How do Players ask questions? Through an API!

Divide and conquer

Split up into three teams:
1.  Strategy Team 1
2.  Strategy Team 2
3.  Game Core Team

Plan for development
Phase 1

� Game Core Team - use TDD to develop the game
components

�  Strategy Team 1 & 2 - research play strategies
Phase 2

� All - work together to define the API
Phase 3

� Game Core Team - build the API
�  Strategy Team 1 & 2 – implement several strategies using
the API

Phase 4
� All - pit players against each other and play!

Useful resources

Game Core Team
�  https://www.pivotaltracker.com/n/projects/1396446

Strategy Teams
�  http://gizmodo.com/heres-how-to-win-every-time-at-
connect-four-1474572099

�  https://en.wikipedia.org/wiki/Connect_Four

Discussion of the solution – the rack
�  The team decided the best datatype for storing the rack

is an array of channels, each channel storing the ball
colour in order from bottom to top

�  This datatype has the benefits that Array#push can be
used to place new balls, and balls naturally “fall” to
their correct locations in the stack. Also, checking the
rack for full channels and fullness overall is easy using
Array#length

�  This datatype has the drawback that it requires
manipulation to output. We felt it was preferable to
have all of this manipulation in one place rather than
spreading checks and tests required by other datatypes
across the code.

Discussion of the solution – ���
printing the rack

�  To print the rack we need each row of the rack in order
from top to bottom. This requires a bit of manipulation.

�  The rack is a compressed (i.e. empty rack spaces are not
stored) representation of the channel contents bottom-to-
top

�  To get rows sorted top-to-bottom we have to do three
things:

�  1. expand the rack (i.e. insert the empty rack spaces)
�  2. Array#transpose the contents turning channels into
rows

�  3. Reverse the row order so it is top-to-bottom

Discussion of the solution – win
detection

�  There are four patterns of four balls that need detection:
horizontal (in a row), vertical (in a channel), diagonal
right (top-left to bottom-right), diagonal left

�  The solution uses array manipulation to create four
“views” of the rack, each optimal for examining contents
in these four orientations

�  Balls that cannot participate in a win for a specific
orientation are discarded to avoid false positives

�  Detection is as simple as finding a continuous string of
four balls of the same colour

Discussion of the solution -
automatons

�  Our computer players, or automatons, were more
difficult to program than we had anticipated

�  We created one “super easy” automaton that randomly
picks an open channel, dubbed “George”

�  With a small amount of effort, we should be able to
repurpose the win detection code into an API useful for
examining the rack for opportunities and threats

�  A simple next step would be to build a “three ball”
detector and have the automaton chase the opportunity
(or block the threat)

�  In the meantime, it’s fun to play against George, or pit
him against himself

Discussion of the solution – the Game
�  The Game entity grew by leaps and bounds near the

end of our session
�  It has three problems:
1.  Lack of focus
2.  Many long and complicated methods
3.  Insufficient test coverage

The Rack has two representations

1A	
 2A	
 3A	
 4A	
 5A	
 6A	
 7A	

1B	
 2B	
 3B	
 4B	
 5B	
 6B	
 7B	

1C	
 2C	
 3C	
 4C	
 5C	
 6C	
 7C	

1D	
 2D	
 3D	
 4D	
 5D	
 6D	
 7D	

1E	
 2E	
 3E	
 4E	
 5E	
 6E	
 7E	

1F	
 2F	
 3F	
 4F	
 5F	
 6F	
 7F	

How players see it

How we store it

Enumeration of winning patterns

Vertical winners

1A	
 2A	
 3A	
 4A	
 5A	
 6A	
 7A	

1B	
 2B	
 3B	
 4B	
 5B	
 6B	
 7B	

1C	
 2C	
 3C	
 4C	
 5C	
 6C	
 7C	

1D	
 2D	
 3D	
 4D	
 5D	
 6D	
 7D	

1E	
 2E	
 3E	
 4E	
 5E	
 6E	
 7E	

1F	
 2F	
 3F	
 4F	
 5F	
 6F	
 7F	

Horizontal winners

Enumeration of winning patterns

x x
x x

x

x

x x x
x x
x

x x x
x x

x
x
x
x

x
x x

Top-Right winners Top-left winners

Check each winning pattern

1F, 1E, 1D, 1C
1E, 1D, 1C, 1B
1D, 1C, 1B, 1A
2F, 2E, 2D, 2C
2E, 2D, 2C, 2B
2D, 2C, 2B, 2A
3F, 3E, 3D, 3C
3E, 3D, 3C, 3B
3D, 3C, 3B, 3A

4F, 4E, 4D, 4C
4E, 4D, 4C, 4B
4D, 4C, 4B, 4A
5F, 5E, 5D, 5C
5E, 5D, 5C, 5B
5D, 5C, 6B, 5A

7F, 7E, 7D, 7C
7E, 7D, 7C, 7B
7D, 7C, 7B, 7A

6F, 6E, 6D, 6C
6E, 6D, 6C, 6B
6D, 6C, 6B, 6A

Potential winning positions for vertical stacks

Win detection… ugh!

This approach to win detection is unweildy:
� Ugh-ly (ughful?)
� Hard to read
� Hard to debug
� Hard to validate

Don’t use enumeration as the solution
-> use it as the test!

Rotate to find four continuous symbols

Vertical winners

1A	
 2A	
 3A	
 4A	
 5A	
 6A	
 7A	

1B	
 2B	
 3B	
 4B	
 5B	
 6B	
 7B	

1C	
 2C	
 3C	
 4C	
 5C	
 6C	
 7C	

1D	
 2D	
 3D	
 4D	
 5D	
 6D	
 7D	

1E	
 2E	
 3E	
 4E	
 5E	
 6E	
 7E	

1F	
 2F	
 3F	
 4F	
 5F	
 6F	
 7F	

Horizontal winners
(rotate -90°)

Rotation also works for diagonal
“Top-right” winners
(rotate -45°)

“Top-left” winners
(rotate -135°)

Win detection… beautiful!
�  Complexity is in the rotation logic,

which is easy to factor out.
�  Code to check for winner is same in each case,���

look for a string of four same-type symbols.
�  Can be accomplished in 25 checks, ���

versus 69 enumerations.

The question “does anyone have a line of four?” is pretty
similar to the question “does anyone have a line of three?”

Approaching the API
We can use this approach to answer the automaton’s

questions about the state of the rack!
i.e. to answer the question:

Where should I play to progress or block?���

Given the ability to find arbitrary patterns in the rack
we can locate opportinities. What if the solution
offered the ability to find spaces as well as tokens?

Appropriate division of responsibilities
1.  #fetch_rack

- give me the rack so automaton can find the next best move
- perhaps more correctly named #do_it_all_yourself

2.  #find_locations(<pattern>)
-  return locations of tokens and spaces in the rack

3.  #find_best_location
- return the best channel to play
- perhaps more correctly named #just_play_for_me
-  the strategy for deciding the best next play is unclear

Defining the API
�  Rack#find_locations(<pattern>) – return a list of

locations where pattern exists e.g. finding a four-
position pattern => [[“1A”,”2B”,”3C”,”4B”],
[“4F”,”5F”,”6F”,”7F”]]

�  What then? How do we use this to help the automaton?
Think about it.

Only some locations are “playable”
�  Rack#playable_cells - return list of locations that are
playable (bottom blank cell in each channel) =>
[“1A”,“3B”,“4C”,“5C”,“6F”]

�  Crossing this list with the results from #find_locations
would provide us with playable spaces within the
patterns. Something like:

�  find_locations(pattern).flatten.uniq & playable_cells =>
[“4C”]

�  Let’s call these “opportunities”

How should we decide between
multiple opportunities?

�  If we find multiple opportunities, we will want to decide
on the “best”

�  The main responsibility of any automaton is to decide
on how to optimize, both which API calls to make, and
how to interpret and analyze the results

�  Let’s start with the obvious…

Decision tree for offensive moves
Goal: Complete a line of four

 Extend a line of three with a vacant end (3A) xxx- or -xxx
 Extend a line of two with vacancies on either end (2A) -xx-
 Place a token with two vacancies on one end and one on the other (1A) --x- or -x--
 Place a token with three vacancies on one end (1B) ---x or x---
 Extend a line of two with two vacancies on one end (2B) xx-- or --xx
 Place a token with two vacancies on one end and one on the other (1A) --x- or -x--
 Place a token with three vacancies on one end (1B) ---x or x---
 Extend and fill a line of two with one vacancy in the middle and one on the end (2C) x-x- or -x-x
 Place a token with two vacancies on one end and one on the other (1A) --x- or -x--
 Place a token with three vacancies on one end (1B) ---x or x---
 Fill a line of three with a vacant middle (3B) x-xx or xx-x
 Extend a line of two with two vacancies on one end (2B) xx-- or --xx
 Place a token with two vacancies on one end and one on the other (1A) --x- or -x--
 Place a token with three vacancies on one end (1B) ---x or x---
 Extend and fill a line of two with one vacancy in the middle and one on the end (2C) x-x- or -x-x
 Place a token with two vacancies on one end and one on the other (1A) --x- or -x--
 Place a token with three vacancies on one end (1B) ---x or x---
 Fill a line of two with two vacancies in the middle (2D) x--x
 Place a token with two vacancies on one end and one on the other (1A) --x- or -x--
 Place a token with three vacancies on one end (1B) ---x or x---

Decision tree for defensive moves
Goal: Block a line of four

 Extend a line of three with a vacant end (3A) ooo- or -ooo
 Extend a line of two with vacancies on either end (2A) -oo-
 Place a token with two vacancies on one end and one on the other (1A) --o- or -o--
 Place a token with three vacancies on one end (1B) ---o or o---
 Extend a line of two with two vacancies on one end (2B) oo-- or —oo
 Place a token with two vacancies on one end and one on the other (1A) --o- or -o--
 Place a token with three vacancies on one end (1B) ---o or o---
 Extend and fill a line of two with one vacancy in the middle and one on the end (2C) o-o- or -o-o
 Place a token with two vacancies on one end and one on the other (1A) --o- or -o--
 Place a token with three vacancies on one end (1B) ---o or o---
 Fill a line of three with a vacant middle (3B) o-oo or oo-o
 Extend a line of two with two vacancies on one end (2B) oo-- or --oo
 Place a token with two vacancies on one end and one on the other (1A) --o- or -o--
 Place a token with three vacancies on one end (1B) ---o or o---
 Extend and fill a line of two with one vacancy in the middle and one on the end (2C) o-o- or -o-o
 Place a token with two vacancies on one end and one on the other (1A) --o- or -o--
 Place a token with three vacancies on one end (1B) ---o or o---
 Fill a line of two with two vacancies in the middle (2D) o--o
 Place a token with two vacancies on one end and one on the other (1A) --o- or -o--
 Place a token with three vacancies on one end (1B) ---o or o---

How should we decide between
multiple opportunities?

�  Offensive moves should be prioritized above defensive
moves at the same “level” i.e. if you win the game by
completing your line of four this move, then there is no
need to block your opponent from completing their line
of four

�  Offensive moves in certain channels are better than
those made in other channels (generally centre is better)

�  Some defensive moves will actually help your opponent
win – the link provided earlier in this deck discusses
when and how this happens

�  Let’s discuss some reasonable next steps for building
better automatons…

Proposed agenda
1.  Refactor

�  implement tests
�  simplify/beautify the search code
�  split the Game class into Game and Rack
�  have an external board representation

2.  Implement the API
�  given a rack, what are the playable places?
�  given a rack, what are all of the locations that contain this
pattern?

3.  Build automatons

