class ASHRAE9012010
This class holds methods that apply ASHRAE 90.1-2010 to a given model. @ref [References::ASHRAE9012010]
Attributes
Public Class Methods
ASHRAE901::new
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.rb, line 8 def initialize super() @template = '90.1-2010' load_standards_database end
Public Instance Methods
Determines the OA flow rates above which an economizer is required. Two separate rates, one for systems with an economizer and another for systems without.
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @return [Array<Double>] [min_oa_without_economizer_cfm, min_oa_with_economizer_cfm]
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb, line 233 def air_loop_hvac_demand_control_ventilation_limits(air_loop_hvac) min_oa_without_economizer_cfm = 3000 min_oa_with_economizer_cfm = 1200 return [min_oa_without_economizer_cfm, min_oa_with_economizer_cfm] end
Determine the limits for the type of economizer present on the AirLoopHVAC, if any.
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [Array<Double>] [drybulb_limit_f, enthalpy_limit_btu_per_lb, dewpoint_limit_f]
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb, line 9 def air_loop_hvac_economizer_limits(air_loop_hvac, climate_zone) drybulb_limit_f = nil enthalpy_limit_btu_per_lb = nil dewpoint_limit_f = nil # Get the OA system and OA controller oa_sys = air_loop_hvac.airLoopHVACOutdoorAirSystem return [nil, nil, nil] unless oa_sys.is_initialized # No OA system oa_sys = oa_sys.get oa_control = oa_sys.getControllerOutdoorAir economizer_type = oa_control.getEconomizerControlType case economizer_type when 'NoEconomizer' return [nil, nil, nil] when 'FixedDryBulb' search_criteria = { 'template' => template, 'climate_zone' => climate_zone } econ_limits = model_find_object(standards_data['economizers'], search_criteria) drybulb_limit_f = econ_limits['fixed_dry_bulb_high_limit_shutoff_temp'] when 'FixedEnthalpy' enthalpy_limit_btu_per_lb = 28 when 'FixedDewPointAndDryBulb' drybulb_limit_f = 75 dewpoint_limit_f = 55 end return [drybulb_limit_f, enthalpy_limit_btu_per_lb, dewpoint_limit_f] end
Check the economizer type currently specified in the ControllerOutdoorAir object on this air loop is acceptable per the standard.
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [Boolean] Returns true if allowable, if the system has no economizer or no OA system.
Returns false if the economizer type is not allowable.
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb, line 59 def air_loop_hvac_economizer_type_allowable?(air_loop_hvac, climate_zone) # EnergyPlus economizer types # 'NoEconomizer' # 'FixedDryBulb' # 'FixedEnthalpy' # 'DifferentialDryBulb' # 'DifferentialEnthalpy' # 'FixedDewPointAndDryBulb' # 'ElectronicEnthalpy' # 'DifferentialDryBulbAndEnthalpy' # Get the OA system and OA controller oa_sys = air_loop_hvac.airLoopHVACOutdoorAirSystem return true unless oa_sys.is_initialized oa_sys = oa_sys.get oa_control = oa_sys.getControllerOutdoorAir economizer_type = oa_control.getEconomizerControlType # Return true if no economizer is present if economizer_type == 'NoEconomizer' return true end # Determine the prohibited types prohibited_types = [] case climate_zone when 'ASHRAE 169-2006-0B', 'ASHRAE 169-2006-1B', 'ASHRAE 169-2006-2B', 'ASHRAE 169-2006-3B', 'ASHRAE 169-2006-3C', 'ASHRAE 169-2006-4B', 'ASHRAE 169-2006-4C', 'ASHRAE 169-2006-5B', 'ASHRAE 169-2006-6B', 'ASHRAE 169-2006-7A', 'ASHRAE 169-2006-7B', 'ASHRAE 169-2006-8A', 'ASHRAE 169-2006-8B', 'ASHRAE 169-2013-0B', 'ASHRAE 169-2013-1B', 'ASHRAE 169-2013-2B', 'ASHRAE 169-2013-3B', 'ASHRAE 169-2013-3C', 'ASHRAE 169-2013-4B', 'ASHRAE 169-2013-4C', 'ASHRAE 169-2013-5B', 'ASHRAE 169-2013-6B', 'ASHRAE 169-2013-7A', 'ASHRAE 169-2013-7B', 'ASHRAE 169-2013-8A', 'ASHRAE 169-2013-8B' prohibited_types = ['FixedEnthalpy'] when 'ASHRAE 169-2006-0A', 'ASHRAE 169-2006-1A', 'ASHRAE 169-2006-2A', 'ASHRAE 169-2006-3A', 'ASHRAE 169-2006-4A', 'ASHRAE 169-2013-0A', 'ASHRAE 169-2013-1A', 'ASHRAE 169-2013-2A', 'ASHRAE 169-2013-3A', 'ASHRAE 169-2013-4A' prohibited_types = ['FixedDryBulb', 'DifferentialDryBulb'] when 'ASHRAE 169-2006-5A', 'ASHRAE 169-2006-6A', 'ASHRAE 169-2013-5A', 'ASHRAE 169-2013-6A' prohibited_types = [] end # Check if the specified type is allowed economizer_type_allowed = true if prohibited_types.include?(economizer_type) economizer_type_allowed = false end return economizer_type_allowed end
Determine the airflow limits that govern whether or not an ERV is required. Based on climate zone and % OA.
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @param pct_oa [Double] percentage of outdoor air @return [Double] the flow rate above which an ERV is required. if nil, ERV is never required.
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb, line 366 def air_loop_hvac_energy_recovery_ventilator_flow_limit(air_loop_hvac, climate_zone, pct_oa) # Table 6.5.6.1 search_criteria = { 'template' => template, 'climate_zone' => climate_zone } energy_recovery_limits = model_find_object(standards_data['energy_recovery'], search_criteria) if energy_recovery_limits.nil? OpenStudio.logFree(OpenStudio::Warn, 'openstudio.ashrae_90_1_2010.AirLoopHVAC', "Cannot find energy recovery limits for template '#{template}', climate zone '#{climate_zone}', assuming no energy recovery required.") return nil end if pct_oa < 0.2 erv_cfm = nil elsif pct_oa >= 0.2 && pct_oa < 0.3 erv_cfm = energy_recovery_limits['20_to_30_percent_oa'] elsif pct_oa >= 0.3 && pct_oa < 0.4 erv_cfm = energy_recovery_limits['30_to_40_percent_oa'] elsif pct_oa >= 0.4 && pct_oa < 0.5 erv_cfm = energy_recovery_limits['40_to_50_percent_oa'] elsif pct_oa >= 0.5 && pct_oa < 0.6 erv_cfm = energy_recovery_limits['50_to_60_percent_oa'] elsif pct_oa >= 0.6 && pct_oa < 0.7 erv_cfm = energy_recovery_limits['60_to_70_percent_oa'] elsif pct_oa >= 0.7 && pct_oa < 0.8 erv_cfm = energy_recovery_limits['70_to_80_percent_oa'] elsif pct_oa >= 0.8 erv_cfm = energy_recovery_limits['greater_than_80_percent_oa'] end return erv_cfm end
Determine if the system economizer must be integrated or not. All economizers must be integrated in 90.1-2010
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [Boolean] returns true if required, false if not
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb, line 48 def air_loop_hvac_integrated_economizer_required?(air_loop_hvac, climate_zone) return true end
Determine the air flow and number of story limits for whether motorized OA damper is required.
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [Array<Double>] [minimum_oa_flow_cfm, maximum_stories]. If both nil, never required
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb, line 244 def air_loop_hvac_motorized_oa_damper_limits(air_loop_hvac, climate_zone) case climate_zone when 'ASHRAE 169-2006-0A', 'ASHRAE 169-2006-1A', 'ASHRAE 169-2006-0B', 'ASHRAE 169-2006-1B', 'ASHRAE 169-2006-2A', 'ASHRAE 169-2006-2B', 'ASHRAE 169-2006-3A', 'ASHRAE 169-2006-3B', 'ASHRAE 169-2006-3C', 'ASHRAE 169-2013-0A', 'ASHRAE 169-2013-1A', 'ASHRAE 169-2013-0B', 'ASHRAE 169-2013-1B', 'ASHRAE 169-2013-2A', 'ASHRAE 169-2013-2B', 'ASHRAE 169-2013-3A', 'ASHRAE 169-2013-3B', 'ASHRAE 169-2013-3C' minimum_oa_flow_cfm = 0 maximum_stories = 999 # Any number of stories else minimum_oa_flow_cfm = 0 maximum_stories = 0 end return [minimum_oa_flow_cfm, maximum_stories] end
Determine if multizone vav optimization is required. @note code_sections [90.1-2010_6.5.3.3]
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [Boolean] returns true if required, false if not @todo Add exception logic for systems with AIA healthcare ventilation requirements dual duct systems
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb, line 147 def air_loop_hvac_multizone_vav_optimization_required?(air_loop_hvac, climate_zone) multizone_opt_required = false # Not required for systems with fan-powered terminals num_fan_powered_terminals = 0 air_loop_hvac.demandComponents.each do |comp| if comp.to_AirTerminalSingleDuctParallelPIUReheat.is_initialized || comp.to_AirTerminalSingleDuctSeriesPIUReheat.is_initialized num_fan_powered_terminals += 1 end end if num_fan_powered_terminals > 0 OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}, multizone vav optimization is not required because the system has #{num_fan_powered_terminals} fan-powered terminals.") return multizone_opt_required end # Not required for systems that require an ERV # Exception 2 to Section 6.5.3.3 if air_loop_hvac_energy_recovery?(air_loop_hvac) OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: multizone vav optimization is not required because the system has Energy Recovery.") return multizone_opt_required end # Get the OA intake controller_oa = nil controller_mv = nil oa_system = nil if air_loop_hvac.airLoopHVACOutdoorAirSystem.is_initialized oa_system = air_loop_hvac.airLoopHVACOutdoorAirSystem.get controller_oa = oa_system.getControllerOutdoorAir controller_mv = controller_oa.controllerMechanicalVentilation else OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}, multizone optimization is not applicable because system has no OA intake.") return multizone_opt_required end # Get the AHU design supply air flow rate dsn_flow_m3_per_s = nil if air_loop_hvac.designSupplyAirFlowRate.is_initialized dsn_flow_m3_per_s = air_loop_hvac.designSupplyAirFlowRate.get elsif air_loop_hvac.autosizedDesignSupplyAirFlowRate.is_initialized dsn_flow_m3_per_s = air_loop_hvac.autosizedDesignSupplyAirFlowRate.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name} design supply air flow rate is not available, cannot apply efficiency standard.") return multizone_opt_required end dsn_flow_cfm = OpenStudio.convert(dsn_flow_m3_per_s, 'm^3/s', 'cfm').get # Get the minimum OA flow rate min_oa_flow_m3_per_s = nil if controller_oa.minimumOutdoorAirFlowRate.is_initialized min_oa_flow_m3_per_s = controller_oa.minimumOutdoorAirFlowRate.get elsif controller_oa.autosizedMinimumOutdoorAirFlowRate.is_initialized min_oa_flow_m3_per_s = controller_oa.autosizedMinimumOutdoorAirFlowRate.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{controller_oa.name}: minimum OA flow rate is not available, cannot apply efficiency standard.") return multizone_opt_required end min_oa_flow_cfm = OpenStudio.convert(min_oa_flow_m3_per_s, 'm^3/s', 'cfm').get # Calculate the percent OA at design airflow pct_oa = min_oa_flow_m3_per_s / dsn_flow_m3_per_s # Not required for systems where # exhaust is more than 70% of the total OA intake. if pct_oa > 0.7 OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{controller_oa.name}: multizone optimization is not applicable because system is more than 70% OA.") return multizone_opt_required end # @todo Not required for dual-duct systems # if self.isDualDuct # OpenStudio::logFree(OpenStudio::Info, "openstudio.standards.AirLoopHVAC", "For #{controller_oa.name}: multizone optimization is not applicable because it is a dual duct system") # return multizone_opt_required # end # If here, multizone vav optimization is required multizone_opt_required = true return multizone_opt_required end
Determine the number of stages that should be used as controls for single zone DX systems. 90.1-2010 depends on the cooling capacity of the system.
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [Integer] the number of stages: 0, 1, 2
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb, line 280 def air_loop_hvac_single_zone_controls_num_stages(air_loop_hvac, climate_zone) min_clg_cap_btu_per_hr = 65_000 clg_cap_btu_per_hr = OpenStudio.convert(air_loop_hvac_total_cooling_capacity(air_loop_hvac), 'W', 'Btu/hr').get if clg_cap_btu_per_hr >= min_clg_cap_btu_per_hr num_stages = 2 OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: two-stage control is required since cooling capacity of #{clg_cap_btu_per_hr.round} Btu/hr exceeds the minimum of #{min_clg_cap_btu_per_hr.round} Btu/hr .") else num_stages = 1 OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: two-stage control is not required since cooling capacity of #{clg_cap_btu_per_hr.round} Btu/hr is less than the minimum of #{min_clg_cap_btu_per_hr.round} Btu/hr .") end return num_stages end
Determine if the system required supply air temperature (SAT) reset. For 90.1-2010, SAT reset requirements are based on climate zone.
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [Boolean] returns true if required, false if not
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb, line 300 def air_loop_hvac_supply_air_temperature_reset_required?(air_loop_hvac, climate_zone) is_sat_reset_required = false # Only required for multizone VAV systems unless air_loop_hvac_multizone_vav_system?(air_loop_hvac) return is_sat_reset_required end case climate_zone when 'ASHRAE 169-2006-0A', 'ASHRAE 169-2006-1A', 'ASHRAE 169-2006-2A', 'ASHRAE 169-2006-3A', 'ASHRAE 169-2013-0A', 'ASHRAE 169-2013-1A', 'ASHRAE 169-2013-2A', 'ASHRAE 169-2013-3A' OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: Supply air temperature reset is not required per 6.5.3.4 Exception 1, the system is located in climate zone #{climate_zone}.") return is_sat_reset_required when 'ASHRAE 169-2006-0B', 'ASHRAE 169-2006-1B', 'ASHRAE 169-2006-2B', 'ASHRAE 169-2006-3B', 'ASHRAE 169-2006-3C', 'ASHRAE 169-2006-4A', 'ASHRAE 169-2006-4B', 'ASHRAE 169-2006-4C', 'ASHRAE 169-2006-5A', 'ASHRAE 169-2006-5B', 'ASHRAE 169-2006-5C', 'ASHRAE 169-2006-6A', 'ASHRAE 169-2006-6B', 'ASHRAE 169-2006-7A', 'ASHRAE 169-2006-7B', 'ASHRAE 169-2006-8A', 'ASHRAE 169-2006-8B', 'ASHRAE 169-2013-0B', 'ASHRAE 169-2013-1B', 'ASHRAE 169-2013-2B', 'ASHRAE 169-2013-3B', 'ASHRAE 169-2013-3C', 'ASHRAE 169-2013-4A', 'ASHRAE 169-2013-4B', 'ASHRAE 169-2013-4C', 'ASHRAE 169-2013-5A', 'ASHRAE 169-2013-5B', 'ASHRAE 169-2013-5C', 'ASHRAE 169-2013-6A', 'ASHRAE 169-2013-6B', 'ASHRAE 169-2013-7A', 'ASHRAE 169-2013-7B', 'ASHRAE 169-2013-8A', 'ASHRAE 169-2013-8B' is_sat_reset_required = true OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: Supply air temperature reset is required.") return is_sat_reset_required end end
@!group AirTerminalSingleDuctVAVReheat Set the initial minimum damper position based on OA rate of the space and the template. Zones with low OA per area get lower initial guesses. Final position will be adjusted upward as necessary by Standards.AirLoopHVAC.apply_minimum_vav_damper_positions
@param air_terminal_single_duct_vav_reheat [OpenStudio::Model::AirTerminalSingleDuctVAVReheat] the air terminal object @param zone_oa_per_area [Double] the zone outdoor air per area in m^3/s*m^2 @return [Boolean] returns true if successful, false if not
# File lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirTerminalSingleDuctVAVReheat.rb, line 10 def air_terminal_single_duct_vav_reheat_apply_initial_prototype_damper_position(air_terminal_single_duct_vav_reheat, zone_oa_per_area) min_damper_position = case air_terminal_single_duct_vav_reheat_reheat_type(air_terminal_single_duct_vav_reheat) when 'Electricity', 'NaturalGas' 0.3 else # 'HotWater', other 0.2 end # Set the minimum flow fraction air_terminal_single_duct_vav_reheat.setConstantMinimumAirFlowFraction(min_damper_position) return true end
Specifies the minimum damper position for VAV dampers. For terminals with hot water heat and DDC, the minimum is 20%, otherwise the minimum is 30%.
@param air_terminal_single_duct_vav_reheat [OpenStudio::Model::AirTerminalSingleDuctVAVReheat] the air terminal object @param has_ddc [Boolean] whether or not there is DDC control of the VAV terminal in question @return [Double] minimum damper position
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirTerminalSingleDuctVAVReheat.rb, line 10 def air_terminal_single_duct_vav_reheat_minimum_damper_position(air_terminal_single_duct_vav_reheat, has_ddc = false) min_damper_position = nil case air_terminal_single_duct_vav_reheat_reheat_type(air_terminal_single_duct_vav_reheat) when 'HotWater' min_damper_position = if has_ddc 0.2 else 0.3 end when 'Electricity', 'NaturalGas' min_damper_position = 0.3 end return min_damper_position end
Determine what part load efficiency degredation curve should be used for a boiler
@param boiler_hot_water [OpenStudio::Model::BoilerHotWater] hot water boiler object @return [String] returns name of the boiler curve to be used, or nil if not applicable
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.BoilerHotWater.rb, line 6 def boiler_get_eff_fplr(boiler_hot_water) return 'Boiler with No Minimum Turndown' end
Get applicable performance curve for capacity as a function of temperature
@param chiller_electric_eir [OpenStudio::Model::ChillerElectricEIR] chiller object @param compressor_type [String] compressor type @param cooling_type [String] cooling type (‘AirCooled’ or ‘WaterCooled’) @param chiller_tonnage [Double] chiller capacity in ton @return [String] name of applicable cuvre, nil if not found @todo the current assingment is meant to replicate what was in the data, it probably needs to be reviewed
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.ChillerElectricEIR.rb, line 10 def chiller_electric_eir_get_cap_f_t_curve_name(chiller_electric_eir, compressor_type, cooling_type, chiller_tonnage, compliance_path) case cooling_type when 'AirCooled' return 'AirCooled_Chiller_2010_PathA_CAPFT' when 'WaterCooled' case compressor_type when 'Centrifugal' return 'WaterCooled_Centrifugal_Chiller_GT150_2004_CAPFT' if chiller_tonnage >= 150 return 'WaterCooled_Centrifugal_Chiller_LT150_2004_CAPFT' when 'Reciprocating', 'Rotary Screw', 'Scroll' # 2010 reference might suggest that this is the wrong curve return 'WaterCooled_PositiveDisplacement_Chiller_GT150_2010_PathA_CAPFT' if chiller_tonnage >= 150 # 2010 reference might suggest that this is the wrong curve return 'WaterCooled_PositiveDisplacement_Chiller_LT150_2010_PathA_CAPFT' else return nil end else return nil end end
Get applicable performance curve for EIR as a function of part load ratio
@param chiller_electric_eir [OpenStudio::Model::ChillerElectricEIR] chiller object @param compressor_type [String] compressor type @param cooling_type [String] cooling type (‘AirCooled’ or ‘WaterCooled’) @param chiller_tonnage [Double] chiller capacity in ton @return [String] name of applicable cuvre, nil if not found @todo the current assingment is meant to replicate what was in the data, it probably needs to be reviewed
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.ChillerElectricEIR.rb, line 74 def chiller_electric_eir_get_eir_f_plr_curve_name(chiller_electric_eir, compressor_type, cooling_type, chiller_tonnage, compliance_path) case cooling_type when 'AirCooled' return 'AirCooled_Chiller_AllCapacities_2004_2010_EIRFPLR' when 'WaterCooled' case compressor_type when 'Centrifugal' return 'ChlrWtrCentPathAAllEIRRatio_fQRatio' when 'Reciprocating', 'Rotary Screw', 'Scroll' return 'ChlrWtrPosDispPathAAllEIRRatio_fQRatio' else return nil end else return nil end end
Get applicable performance curve for EIR as a function of temperature
@param chiller_electric_eir [OpenStudio::Model::ChillerElectricEIR] chiller object @param compressor_type [String] compressor type @param cooling_type [String] cooling type (‘AirCooled’ or ‘WaterCooled’) @param chiller_tonnage [Double] chiller capacity in ton @return [String] name of applicable cuvre, nil if not found @todo the current assingment is meant to replicate what was in the data, it probably needs to be reviewed
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.ChillerElectricEIR.rb, line 42 def chiller_electric_eir_get_eir_f_t_curve_name(chiller_electric_eir, compressor_type, cooling_type, chiller_tonnage, compliance_path) case cooling_type when 'AirCooled' return 'AirCooled_Chiller_2010_PathA_EIRFT' when 'WaterCooled' case compressor_type when 'Centrifugal' return 'WaterCooled_Centrifugal_Chiller_GT150_2004_EIRFT' if chiller_tonnage >= 150 return 'WaterCooled_Centrifugal_Chiller_LT150_2004_EIRFT' when 'Reciprocating', 'Rotary Screw', 'Scroll' # 2010 reference might suggest that this is the wrong curve return 'WaterCooled_PositiveDisplacement_Chiller_GT150_2010_PathA_EIRFT' if chiller_tonnage >= 150 # 2010 reference might suggest that this is the wrong curve return 'WaterCooled_PositiveDisplacement_Chiller_LT150_2010_PathA_EIRFT' else return nil end else return nil end end
Determine the prototype fan pressure rise for a constant volume fan on an AirLoopHVAC based on system airflow. Defaults to the logic from ASHRAE 90.1-2004 prototypes.
@param fan_constant_volume [OpenStudio::Model::FanConstantVolume] constant volume fan object @return [Double] pressure rise in inches H20
# File lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.FanConstantVolume.rb, line 9 def fan_constant_volume_airloop_fan_pressure_rise(fan_constant_volume) # Get the max flow rate from the fan. maximum_flow_rate_m3_per_s = nil if fan_constant_volume.maximumFlowRate.is_initialized maximum_flow_rate_m3_per_s = fan_constant_volume.maximumFlowRate.get elsif fan_constant_volume.autosizedMaximumFlowRate.is_initialized maximum_flow_rate_m3_per_s = fan_constant_volume.autosizedMaximumFlowRate.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.prototype.FanConstantVolume', "For #{fan_constant_volume.name} max flow rate is not available, cannot apply prototype assumptions.") return false end # Convert max flow rate to cfm maximum_flow_rate_cfm = OpenStudio.convert(maximum_flow_rate_m3_per_s, 'm^3/s', 'cfm').get # Determine the pressure rise pressure_rise_in_h2o = if maximum_flow_rate_cfm < 7437 2.5 else # Over 7,437 cfm 4.09 end return pressure_rise_in_h2o end
Determine the prototype fan pressure rise for an on off fan on an AirLoopHVAC or inside a unitary system based on system airflow. Defaults to the logic from ASHRAE 90.1-2004 prototypes.
@param fan_on_off [OpenStudio::Model::FanOnOff] on off fan object @return [Double] pressure rise in inches H20
# File lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.FanOnOff.rb, line 9 def fan_on_off_airloop_or_unitary_fan_pressure_rise(fan_on_off) # Get the max flow rate from the fan. maximum_flow_rate_m3_per_s = nil if fan_on_off.maximumFlowRate.is_initialized maximum_flow_rate_m3_per_s = fan_on_off.maximumFlowRate.get elsif fan_on_off.autosizedMaximumFlowRate.is_initialized maximum_flow_rate_m3_per_s = fan_on_off.autosizedMaximumFlowRate.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.prototype.FanOnOff', "For #{fan_on_off.name} max flow rate is not available, cannot apply prototype assumptions.") return false end # Convert max flow rate to cfm maximum_flow_rate_cfm = OpenStudio.convert(maximum_flow_rate_m3_per_s, 'm^3/s', 'cfm').get # Determine the pressure rise pressure_rise_in_h2o = if maximum_flow_rate_cfm < 7437 2.5 else # Over 7,437 cfm 4.09 end return pressure_rise_in_h2o end
Determine the prototype fan pressure rise for a variable volume fan on an AirLoopHVAC based on system airflow. Defaults to the logic from ASHRAE 90.1-2004 prototypes.
@param fan_variable_volume [OpenStudio::Model::FanVariableVolume] variable volume fan object @return [Double] pressure rise in inches H20
# File lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.FanVariableVolume.rb, line 9 def fan_variable_volume_airloop_fan_pressure_rise(fan_variable_volume) # Get the max flow rate from the fan. maximum_flow_rate_m3_per_s = nil if fan_variable_volume.maximumFlowRate.is_initialized maximum_flow_rate_m3_per_s = fan_variable_volume.maximumFlowRate.get elsif fan_variable_volume.autosizedMaximumFlowRate.is_initialized maximum_flow_rate_m3_per_s = fan_variable_volume.autosizedMaximumFlowRate.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.prototype.FanVariableVolume', "For #{fan_variable_volume.name} max flow rate is not available, cannot apply prototype assumptions.") return false end # Convert max flow rate to cfm maximum_flow_rate_cfm = OpenStudio.convert(maximum_flow_rate_m3_per_s, 'm^3/s', 'cfm').get # Determine the pressure rise pressure_rise_in_h2o = if maximum_flow_rate_cfm < 4648 4.0 else # Over 7,437 cfm 5.58 end return pressure_rise_in_h2o end
The threhold horsepower below which part load control is not required. 10 nameplate HP threshold is equivalent to motors with input powers of 7.54 HP per TSD
@param fan_variable_volume [OpenStudio::Model::FanVariableVolume] variable volume fan object @return [Double] the limit, in horsepower. Return nil for no limit by default. @todo AddRef
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.FanVariableVolume.rb, line 10 def fan_variable_volume_part_load_fan_power_limitation_hp_limit(fan_variable_volume) hp_limit = 7.54 return hp_limit end
Loads the openstudio standards dataset for this standard.
@param data_directories [Array<String>] array of file paths that contain standards data @return [Hash] a hash of standards data
ASHRAE901#load_standards_database
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.rb, line 18 def load_standards_database(data_directories = []) super([__dir__] + data_directories) end
Determine if there needs to be a sizing run after constructions are added so that EnergyPlus can calculate the VLTs of layer-by-layer glazing constructions. These VLT values are needed for the daylighting controls logic for 90.1-2010.
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Model.rb, line 8 def model_create_prm_baseline_building_requires_vlt_sizing_run(model) return true # Required for 90.1-2010 end
Determine the prototypical economizer type for the model.
@param model [OpenStudio::Model::Model] OpenStudio model object @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [String] the economizer type. Possible values are: ‘NoEconomizer’ ‘FixedDryBulb’ ‘FixedEnthalpy’ ‘DifferentialDryBulb’ ‘DifferentialEnthalpy’ ‘FixedDewPointAndDryBulb’ ‘ElectronicEnthalpy’ ‘DifferentialDryBulbAndEnthalpy’
# File lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Model.rb, line 17 def model_economizer_type(model, climate_zone) economizer_type = case climate_zone when 'ASHRAE 169-2006-0A', 'ASHRAE 169-2006-1A', 'ASHRAE 169-2006-2A', 'ASHRAE 169-2006-3A', 'ASHRAE 169-2006-4A', 'ASHRAE 169-2013-0A', 'ASHRAE 169-2013-1A', 'ASHRAE 169-2013-2A', 'ASHRAE 169-2013-3A', 'ASHRAE 169-2013-4A' 'DifferentialEnthalpy' else 'DifferentialDryBulb' end return economizer_type end
Determines the percentage of the elevator cab lighting that is incandescent. The remainder is assumed to be LED. Defaults to 0% incandescent (100% LED), representing newer elevators.
@param model [OpenStudio::Model::Model] OpenStudio model object @return [Double] incandescent lighting percentage
# File lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Model.elevators.rb, line 10 def model_elevator_lighting_pct_incandescent(model) pct_incandescent = 0.0 # 100% LED return pct_incandescent end
Adjust model to comply with fenestration orientation requirements @note code_sections [90.1-2010_5.5.4.5]
@param model [OpenStudio::Model::Model] OpenStudio model object @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [Boolean] Returns true if successful, false otherwise
# File lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Model.rb, line 42 def model_fenestration_orientation(model, climate_zone) wwr = false win_area_w = OpenstudioStandards::Geometry.model_get_exterior_window_and_wall_area_by_orientation(model)['west_window'] win_area_e = OpenstudioStandards::Geometry.model_get_exterior_window_and_wall_area_by_orientation(model)['east_window'] win_area_s = OpenstudioStandards::Geometry.model_get_exterior_window_and_wall_area_by_orientation(model)['south_window'] # Make prototype specific adjustment to meet the code requirement if !((win_area_s > win_area_w) && (win_area_s > win_area_e)) if model.getBuilding.standardsBuildingType.is_initialized building_type = model.getBuilding.standardsBuildingType.get case building_type # @todo Implementatation for other building types not meeting the requirement # The offices, schools, warehouse (exempted), large hotel, outpatient, # retails, apartments should meet the requirement according to Section # 5.2.1.7 in Thornton et al. 2011 when 'Hospital' # Rotate the building counter-clockwise OpenstudioStandards::Geometry.model_set_building_north_axis(model, 270.0) when 'SmallHotel' # Rotate the building clockwise OpenstudioStandards::Geometry.model_set_building_north_axis(model, 180.0) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.ashrae_90_1_2010', "The prototype model doesn't meet the requirement from Section 5.5.4.5 in ASHRAE Standard 90.1-2010.") end else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.ashrae_90_1_2010', "The prototype model doesn't meet the requirement from Section 5.5.4.5 in ASHRAE Standard 90.1-2010, its standards building type shall be specified.") end end return true end
Determines which system number is used for the baseline system. @return [String] the system number: 1_or_2, 3_or_4, 5_or_6, 7_or_8, 9_or_10
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Model.rb, line 16 def model_prm_baseline_system_number(model, climate_zone, area_type, fuel_type, area_ft2, num_stories, custom) sys_num = nil # Set the area limit limit_ft2 = 25_000 # Customization for Xcel EDA. # No special retail category # for regular 90.1-2010. if (custom != 'Xcel Energy CO EDA') && (area_type == 'retail') area_type = 'nonresidential' end case area_type when 'residential' sys_num = '1_or_2' when 'nonresidential' # nonresidential and 3 floors or less and <25,000 ft2 if num_stories <= 3 && area_ft2 < limit_ft2 sys_num = '3_or_4' # nonresidential and 4 or 5 floors or 5 floors or less and 25,000 ft2 to 150,000 ft2 elsif ((num_stories == 4 || num_stories == 5) && area_ft2 < limit_ft2) || (num_stories <= 5 && (area_ft2 >= limit_ft2 && area_ft2 <= 150_000)) sys_num = '5_or_6' # nonresidential and more than 5 floors or >150,000 ft2 elsif num_stories >= 5 || area_ft2 > 150_000 sys_num = '7_or_8' end when 'heatedonly' sys_num = '9_or_10' when 'retail' # Should only be hit by Xcel EDA sys_num = '3_or_4' end return sys_num end
Is transfer air required? @note code_sections [90.1-2010_6.5.7.1.2]
@param model [OpenStudio::Model::Model] OpenStudio model object @return [Boolean] true if transfer air is required, false otherwise
# File lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Model.rb, line 81 def model_transfer_air_required?(model) # @todo It actually is for kitchen but not implemented yet return false end
Determine type of pump part load control type @note code_sections [90.1-2010_6.5.4.1]
@param pump [OpenStudio::Model::PumpVariableSpeed] OpenStudio pump object @param plant_loop_type [String] Type of plant loop @param pump_nominal_hp [Float] Pump
nominal horsepower @return [String] Pump
part load control type
# File lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.PumpVariableSpeed.rb, line 11 def pump_variable_speed_get_control_type(pump, plant_loop_type, pump_nominal_hp) threshold = 5 # hp # Sizing factor to take into account that pumps # are typically sized to handle a ~10% pressure # increase and ~10% flow increase. design_sizing_factor = 1.25 return 'Riding Curve' if plant_loop_type == 'Heating' # Requirement only applies to CHW pumps return 'VSD DP Reset' if pump_nominal_hp * design_sizing_factor > threshold # else return 'Riding Curve' end
Determines the method used to extend the daylighted area horizontally next to a window. If the method is ‘fixed’, 2 ft is added to the width of each window. If the method is ‘proportional’, a distance equal to half of the head height of the window is added. If the method is ‘none’, no additional width is added.
@return [String] returns ‘fixed’ or ‘proportional’
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Space.rb, line 11 def space_daylighted_area_window_width(space) method = 'fixed' return method end
Determine if the space requires daylighting controls for toplighting, primary sidelighting, and secondary sidelighting. Defaults to false for all types.
@param space [OpenStudio::Model::Space] the space in question @param areas [Hash] a hash of daylighted areas @return [Array<Bool>] req_top_ctrl, req_pri_ctrl, req_sec_ctrl
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Space.rb, line 23 def space_daylighting_control_required?(space, areas) req_top_ctrl = true req_pri_ctrl = true req_sec_ctrl = false OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "primary_sidelighted_area = #{areas['primary_sidelighted_area']}") # Sidelighting # Check if the primary sidelit area < 250 ft2 if areas['primary_sidelighted_area'] < 0.01 OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{space.name}, primary sidelighting control not required because primary sidelighted area = 0ft2 per 9.4.1.4.") req_pri_ctrl = false elsif areas['primary_sidelighted_area'] < OpenStudio.convert(250, 'ft^2', 'm^2').get OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, primary sidelighting control not required because primary sidelighted area less than 250ft2 per 9.4.1.4.") req_pri_ctrl = false else # Check effective sidelighted aperture sidelighted_effective_aperture = space_sidelighting_effective_aperture(space, areas['primary_sidelighted_area']) OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "sidelighted_effective_aperture_pri = #{sidelighted_effective_aperture}") if sidelighted_effective_aperture < 0.1 && @instvarbuilding_type.nil? OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, primary sidelighting control not required because sidelighted effective aperture less than 0.1 per 9.4.1.4 Exception b.") req_pri_ctrl = false end end OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "toplighted_area = #{areas['toplighted_area']}") # Toplighting # Check if the toplit area < 900 ft2 if areas['toplighted_area'] < 0.01 OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{space.name}, toplighting control not required because toplighted area = 0ft2 per 9.4.1.5.") req_top_ctrl = false elsif areas['toplighted_area'] < OpenStudio.convert(900, 'ft^2', 'm^2').get OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, toplighting control not required because toplighted area less than 900ft2 per 9.4.1.5.") req_top_ctrl = false else # Check effective sidelighted aperture sidelighted_effective_aperture = space_skylight_effective_aperture(space, areas['toplighted_area']) OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "sidelighted_effective_aperture_top = #{sidelighted_effective_aperture}") if sidelighted_effective_aperture < 0.006 OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, toplighting control not required because skylight effective aperture less than 0.006 per 9.4.1.5 Exception b.") req_top_ctrl = false end end # Exceptions if space.spaceType.is_initialized case space.spaceType.get.standardsSpaceType.to_s when 'Core_Retail' # Retail spaces exception (c) to Section 9.4.1.4 # req_sec_ctrl set to true to create a second reference point req_pri_ctrl = false req_sec_ctrl = true when 'Entry', 'Front_Retail', 'Point_of_Sale', 'Strip mall - type 1', 'Strip mall - type 2', 'Strip mall - type 3' # Retail, Strip mall req_pri_ctrl = false req_sec_ctrl = false when 'Apartment', 'Apartment_topfloor_NS', 'Apartment_topfloor_WE' # Residential apartments req_top_ctrl = false req_pri_ctrl = false req_sec_ctrl = false end end return [req_top_ctrl, req_pri_ctrl, req_sec_ctrl] end
Determine the fraction controlled by each sensor and which window each sensor should go near.
@param space [OpenStudio::Model::Space] space object @param areas [Hash] a hash of daylighted areas @param sorted_windows [Hash] a hash of windows, sorted by priority @param sorted_skylights [Hash] a hash of skylights, sorted by priority @param req_top_ctrl [Boolean] if toplighting controls are required @param req_pri_ctrl [Boolean] if primary sidelighting controls are required @param req_sec_ctrl [Boolean] if secondary sidelighting controls are required @return [Array] array of 4 items
[sensor 1 fraction, sensor 2 fraction, sensor 1 window, sensor 2 window]
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Space.rb, line 102 def space_daylighting_fractions_and_windows(space, areas, sorted_windows, sorted_skylights, req_top_ctrl, req_pri_ctrl, req_sec_ctrl) sensor_1_frac = 0.0 sensor_2_frac = 0.0 sensor_1_window = nil sensor_2_window = nil # Get the area of the space space_area_m2 = space.floorArea # get the climate zone climate_zone = OpenstudioStandards::Weather.model_get_climate_zone(space.model) if req_top_ctrl && req_pri_ctrl # Sensor 1 controls toplighted area sensor_1_frac = areas['toplighted_area'] / space_area_m2 sensor_1_window = sorted_skylights[0] # Sensor 2 controls primary area sensor_2_frac = areas['primary_sidelighted_area'] / space_area_m2 sensor_2_window = sorted_windows[0] elsif req_top_ctrl && !req_pri_ctrl # Sensor 1 controls toplighted area sensor_1_frac = areas['toplighted_area'] / space_area_m2 sensor_1_window = sorted_skylights[0] elsif req_top_ctrl && !req_pri_ctrl && req_sec_ctrl # Sensor 1 controls toplighted area sensor_1_frac = areas['toplighted_area'] / space_area_m2 sensor_1_window = sorted_skylights[0] # Sensor 2 controls secondary area sensor_2_frac = (areas['secondary_sidelighted_area'] / space_area_m2) # sorted_skylights[0] assigned to sensor_2_window so a second reference point is added for top daylighting sensor_2_window = sorted_skylights[0] elsif !req_top_ctrl && req_pri_ctrl if sorted_windows.size == 1 # Sensor 1 controls the whole primary area sensor_1_frac = areas['primary_sidelighted_area'] / space_area_m2 sensor_1_window = sorted_windows[0] else # Sensor 1 controls half the primary area sensor_1_frac = (areas['primary_sidelighted_area'] / space_area_m2) / 2 sensor_1_window = sorted_windows[0] # Sensor 2 controls the other half of primary area sensor_2_frac = (areas['primary_sidelighted_area'] / space_area_m2) / 2 sensor_2_window = sorted_windows[1] end end return [sensor_1_frac, sensor_2_frac, sensor_1_window, sensor_2_window] end
Determine the base infiltration rate at 75 Pa.
@return [Double] the baseline infiltration rate, in cfm/ft^2 defaults to no infiltration.
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Space.rb, line 161 def space_infiltration_rate_75_pa(space = nil) basic_infil_rate_cfm_per_ft2 = 1.0 return basic_infil_rate_cfm_per_ft2 end
Determine the area and occupancy level limits for demand control ventilation.
@param thermal_zone [OpenStudio::Model::ThermalZone] the thermal zone @return [Array<Double>] the minimum area, in m^2 and the minimum occupancy density in m^2/person. Returns nil if there is no requirement.
# File lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.ThermalZone.rb, line 11 def thermal_zone_demand_control_ventilation_limits(thermal_zone) min_area_ft2 = 500 min_occ_per_1000_ft2 = 40 # Convert to SI min_area_m2 = OpenStudio.convert(min_area_ft2, 'ft^2', 'm^2').get min_occ_per_ft2 = min_occ_per_1000_ft2 / 1000.0 min_ft2_per_occ = 1.0 / min_occ_per_ft2 min_m2_per_occ = OpenStudio.convert(min_ft2_per_occ, 'ft^2', 'm^2').get return [min_area_m2, min_m2_per_occ] end