class ZEAEDGMultifamily
This class holds methods that apply the “standard” assumptions for Zero Energy Advanced Energy Design Guide for Multifamily Buildings to a given model. @ref [References::ZEAEDGMultifamily]
Attributes
Public Class Methods
ASHRAE901::new
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.rb, line 8 def initialize super() @template = 'ZE AEDG Multifamily' load_standards_database end
Public Instance Methods
Apply efficiency values to the erv
@param erv [OpenStudio::Model::HeatExchangerAirToAirSensibleAndLatent] erv to apply efficiency values @param erv_type [String] erv type ERV or HRV @param heat_exchanger_type [String] heat exchanger type Rotary or Plate @return [OpenStudio::Model::HeatExchangerAirToAirSensibleAndLatent] erv to apply efficiency values
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.AirLoopHVAC.rb, line 777 def air_loop_hvac_apply_energy_recovery_ventilator_efficiency(erv, erv_type: 'ERV', heat_exchanger_type: 'Rotary') if heat_exchanger_type == 'Plate' # based on Zehnder ComfoAir if erv_type == 'HRV' erv.setSensibleEffectivenessat100HeatingAirFlow(0.865) erv.setLatentEffectivenessat100HeatingAirFlow(0.0) erv.setSensibleEffectivenessat75HeatingAirFlow(0.887) erv.setLatentEffectivenessat75HeatingAirFlow(0.0) erv.setSensibleEffectivenessat100CoolingAirFlow(0.865) erv.setLatentEffectivenessat100CoolingAirFlow(0.0) erv.setSensibleEffectivenessat75CoolingAirFlow(0.887) erv.setLatentEffectivenessat75CoolingAirFlow(0.0) else erv.setSensibleEffectivenessat100HeatingAirFlow(0.755) erv.setLatentEffectivenessat100HeatingAirFlow(0.564) erv.setSensibleEffectivenessat75HeatingAirFlow(0.791) erv.setLatentEffectivenessat75HeatingAirFlow(0.625) erv.setSensibleEffectivenessat100CoolingAirFlow(0.755) erv.setLatentEffectivenessat100CoolingAirFlow(0.564) erv.setSensibleEffectivenessat75CoolingAirFlow(0.791) erv.setLatentEffectivenessat75CoolingAirFlow(0.625) end else if erv_type == 'HRV' erv.setSensibleEffectivenessat100HeatingAirFlow(0.75) erv.setLatentEffectivenessat100HeatingAirFlow(0.0) erv.setSensibleEffectivenessat75HeatingAirFlow(0.79) erv.setLatentEffectivenessat75HeatingAirFlow(0.0) erv.setSensibleEffectivenessat100CoolingAirFlow(0.75) erv.setLatentEffectivenessat100CoolingAirFlow(0.0) erv.setSensibleEffectivenessat75CoolingAirFlow(0.78) erv.setLatentEffectivenessat75CoolingAirFlow(0.0) else erv.setSensibleEffectivenessat100HeatingAirFlow(0.75) erv.setLatentEffectivenessat100HeatingAirFlow(0.74) erv.setSensibleEffectivenessat75HeatingAirFlow(0.79) erv.setLatentEffectivenessat75HeatingAirFlow(0.79) erv.setSensibleEffectivenessat100CoolingAirFlow(0.75) erv.setLatentEffectivenessat100CoolingAirFlow(0.74) erv.setSensibleEffectivenessat75CoolingAirFlow(0.78) erv.setLatentEffectivenessat75CoolingAirFlow(0.78) end end return erv end
Determine if the standard has an exception for demand control ventilation when an energy recovery device is present. DCV and an ERV may be used in conjunction.
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @return [Boolean] returns true if required, false if not
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.AirLoopHVAC.rb, line 282 def air_loop_hvac_dcv_required_when_erv(air_loop_hvac) dcv_required_when_erv_present = true return dcv_required_when_erv_present end
Determines the OA flow rates above which an economizer is required. Two separate rates, one for systems with an economizer and another for systems without.
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @return [Array<Double>] [min_oa_without_economizer_cfm, min_oa_with_economizer_cfm]
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.AirLoopHVAC.rb, line 271 def air_loop_hvac_demand_control_ventilation_limits(air_loop_hvac) min_oa_without_economizer_cfm = 1500.0 # half the 90.1-2013 requirement min_oa_with_economizer_cfm = 375.0 # half the 90.1-2013 requirement return [min_oa_without_economizer_cfm, min_oa_with_economizer_cfm] end
Determine the limits for the type of economizer present on the AirLoopHVAC, if any. @note Same as 90.1-2013
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [Array<Double>] [drybulb_limit_f, enthalpy_limit_btu_per_lb, dewpoint_limit_f]
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.AirLoopHVAC.rb, line 10 def air_loop_hvac_economizer_limits(air_loop_hvac, climate_zone) drybulb_limit_f = nil enthalpy_limit_btu_per_lb = nil dewpoint_limit_f = nil # Get the OA system and OA controller oa_sys = air_loop_hvac.airLoopHVACOutdoorAirSystem return [nil, nil, nil] unless oa_sys.is_initialized # No OA system oa_sys = oa_sys.get oa_control = oa_sys.getControllerOutdoorAir economizer_type = oa_control.getEconomizerControlType oa_control.resetEconomizerMinimumLimitDryBulbTemperature case economizer_type when 'NoEconomizer' OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name} no economizer") return [nil, nil, nil] when 'FixedDryBulb' case climate_zone when 'ASHRAE 169-2006-0B', 'ASHRAE 169-2006-1B', 'ASHRAE 169-2006-2B', 'ASHRAE 169-2006-3B', 'ASHRAE 169-2006-3C', 'ASHRAE 169-2006-4B', 'ASHRAE 169-2006-4C', 'ASHRAE 169-2006-5B', 'ASHRAE 169-2006-5C', 'ASHRAE 169-2006-6B', 'ASHRAE 169-2006-7A', 'ASHRAE 169-2006-7B', 'ASHRAE 169-2006-8A', 'ASHRAE 169-2006-8B', 'ASHRAE 169-2013-0B', 'ASHRAE 169-2013-1B', 'ASHRAE 169-2013-2B', 'ASHRAE 169-2013-3B', 'ASHRAE 169-2013-3C', 'ASHRAE 169-2013-4B', 'ASHRAE 169-2013-4C', 'ASHRAE 169-2013-5B', 'ASHRAE 169-2013-5C', 'ASHRAE 169-2013-6B', 'ASHRAE 169-2013-7A', 'ASHRAE 169-2013-7B', 'ASHRAE 169-2013-8A', 'ASHRAE 169-2013-8B' drybulb_limit_f = 75.0 when 'ASHRAE 169-2006-5A', 'ASHRAE 169-2006-6A', 'ASHRAE 169-2013-5A', 'ASHRAE 169-2013-6A' drybulb_limit_f = 70.0 end when 'FixedEnthalpy' enthalpy_limit_btu_per_lb = 28.0 when 'FixedDewPointAndDryBulb' drybulb_limit_f = 75.0 dewpoint_limit_f = 55.0 when 'DifferentialDryBulb', 'DifferentialEnthalpy' OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: Economizer type = #{economizer_type}, no limits defined.") end OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: Economizer type = #{economizer_type}, limits [#{drybulb_limit_f},#{enthalpy_limit_btu_per_lb},#{dewpoint_limit_f}]") return [drybulb_limit_f, enthalpy_limit_btu_per_lb, dewpoint_limit_f] end
Same as 90.1-2013 Check the economizer type currently specified in the ControllerOutdoorAir object on this air loop is acceptable per the standard.
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [Boolean] Returns true if allowable, if the system has no economizer or no OA system.
Returns false if the economizer type is not allowable.
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.AirLoopHVAC.rb, line 98 def air_loop_hvac_economizer_type_allowable?(air_loop_hvac, climate_zone) # EnergyPlus economizer types # 'NoEconomizer' # 'FixedDryBulb' # 'FixedEnthalpy' # 'DifferentialDryBulb' # 'DifferentialEnthalpy' # 'FixedDewPointAndDryBulb' # 'ElectronicEnthalpy' # 'DifferentialDryBulbAndEnthalpy' # Get the OA system and OA controller oa_sys = air_loop_hvac.airLoopHVACOutdoorAirSystem return true unless oa_sys.is_initialized oa_sys = oa_sys.get oa_control = oa_sys.getControllerOutdoorAir economizer_type = oa_control.getEconomizerControlType # Return true if no economizer is present if economizer_type == 'NoEconomizer' return true end # Determine the prohibited types prohibited_types = [] case climate_zone when 'ASHRAE 169-2006-0B', 'ASHRAE 169-2006-1B', 'ASHRAE 169-2006-2B', 'ASHRAE 169-2006-3B', 'ASHRAE 169-2006-3C', 'ASHRAE 169-2006-4B', 'ASHRAE 169-2006-4C', 'ASHRAE 169-2006-5B', 'ASHRAE 169-2006-6B', 'ASHRAE 169-2006-7A', 'ASHRAE 169-2006-7B', 'ASHRAE 169-2006-8A', 'ASHRAE 169-2006-8B', 'ASHRAE 169-2013-0B', 'ASHRAE 169-2013-1B', 'ASHRAE 169-2013-2B', 'ASHRAE 169-2013-3B', 'ASHRAE 169-2013-3C', 'ASHRAE 169-2013-4B', 'ASHRAE 169-2013-4C', 'ASHRAE 169-2013-5B', 'ASHRAE 169-2013-6B', 'ASHRAE 169-2013-7A', 'ASHRAE 169-2013-7B', 'ASHRAE 169-2013-8A', 'ASHRAE 169-2013-8B' prohibited_types = ['FixedEnthalpy'] when 'ASHRAE 169-2006-0A', 'ASHRAE 169-2006-1A', 'ASHRAE 169-2006-2A', 'ASHRAE 169-2006-3A', 'ASHRAE 169-2006-4A', 'ASHRAE 169-2013-0A', 'ASHRAE 169-2013-1A', 'ASHRAE 169-2013-2A', 'ASHRAE 169-2013-3A', 'ASHRAE 169-2013-4A' prohibited_types = ['FixedDryBulb', 'DifferentialDryBulb'] when 'ASHRAE 169-2006-5A', 'ASHRAE 169-2006-6A', 'ASHRAE 169-2013-5A', 'ASHRAE 169-2013-6A' prohibited_types = [] end # Check if the specified type is allowed economizer_type_allowed = true if prohibited_types.include?(economizer_type) economizer_type_allowed = false end return economizer_type_allowed end
Determine the airflow limits that govern whether or not an ERV is required. Based on climate zone and % OA, plus the number of operating hours the system has. @note Same as 90.1-2016
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @param pct_oa [Double] percentage of outdoor air @return [Double] the flow rate above which an ERV is required. if nil, ERV is never required.
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.AirLoopHVAC.rb, line 485 def air_loop_hvac_energy_recovery_ventilator_flow_limit(air_loop_hvac, climate_zone, pct_oa) # Calculate the number of system operating hours # based on the availability schedule. ann_op_hrs = 0.0 avail_sch = air_loop_hvac.availabilitySchedule if avail_sch == air_loop_hvac.model.alwaysOnDiscreteSchedule ann_op_hrs = 8760.0 elsif avail_sch.to_ScheduleRuleset.is_initialized avail_sch = avail_sch.to_ScheduleRuleset.get ann_op_hrs = OpenstudioStandards::Schedules.schedule_ruleset_get_hours_above_value(avail_sch, 0.0) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: could not determine annual operating hours. Assuming less than 8,000 for ERV determination.") end if ann_op_hrs < 8000.0 # Table 6.5.6.1-1, less than 8000 hrs case climate_zone when 'ASHRAE 169-2006-3B', 'ASHRAE 169-2006-3C', 'ASHRAE 169-2006-4B', 'ASHRAE 169-2006-4C', 'ASHRAE 169-2006-5B', 'ASHRAE 169-2013-3B', 'ASHRAE 169-2013-3C', 'ASHRAE 169-2013-4B', 'ASHRAE 169-2013-4C', 'ASHRAE 169-2013-5B' erv_cfm = nil when 'ASHRAE 169-2006-0B', 'ASHRAE 169-2006-1B', 'ASHRAE 169-2006-2B', 'ASHRAE 169-2006-5C', 'ASHRAE 169-2013-0B', 'ASHRAE 169-2013-1B', 'ASHRAE 169-2013-2B', 'ASHRAE 169-2013-5C' if pct_oa < 0.5 erv_cfm = nil elsif pct_oa >= 0.5 && pct_oa < 0.6 erv_cfm = 26_000 elsif pct_oa >= 0.6 && pct_oa < 0.7 erv_cfm = 12_000 elsif pct_oa >= 0.7 && pct_oa < 0.8 erv_cfm = 5000 elsif pct_oa >= 0.8 erv_cfm = 4000 end when 'ASHRAE 169-2006-6B', 'ASHRAE 169-2013-6B' if pct_oa < 0.1 erv_cfm = nil elsif pct_oa >= 0.1 && pct_oa < 0.2 erv_cfm = 28_000 elsif pct_oa >= 0.2 && pct_oa < 0.3 erv_cfm = 26_500 elsif pct_oa >= 0.3 && pct_oa < 0.4 erv_cfm = 11_000 elsif pct_oa >= 0.4 && pct_oa < 0.5 erv_cfm = 5500 elsif pct_oa >= 0.5 && pct_oa < 0.6 erv_cfm = 4500 elsif pct_oa >= 0.6 && pct_oa < 0.7 erv_cfm = 3500 elsif pct_oa >= 0.7 && pct_oa < 0.8 erv_cfm = 2500 elsif pct_oa >= 0.8 erv_cfm = 1500 end when 'ASHRAE 169-2006-0A', 'ASHRAE 169-2006-1A', 'ASHRAE 169-2006-2A', 'ASHRAE 169-2006-3A', 'ASHRAE 169-2006-4A', 'ASHRAE 169-2006-5A', 'ASHRAE 169-2006-6A', 'ASHRAE 169-2013-0A', 'ASHRAE 169-2013-1A', 'ASHRAE 169-2013-2A', 'ASHRAE 169-2013-3A', 'ASHRAE 169-2013-4A', 'ASHRAE 169-2013-5A', 'ASHRAE 169-2013-6A' if pct_oa < 0.1 erv_cfm = nil elsif pct_oa >= 0.1 && pct_oa < 0.2 erv_cfm = 26_000 elsif pct_oa >= 0.2 && pct_oa < 0.3 erv_cfm = 16_000 elsif pct_oa >= 0.3 && pct_oa < 0.4 erv_cfm = 5500 elsif pct_oa >= 0.4 && pct_oa < 0.5 erv_cfm = 4500 elsif pct_oa >= 0.5 && pct_oa < 0.6 erv_cfm = 3500 elsif pct_oa >= 0.6 && pct_oa < 0.7 erv_cfm = 2000 elsif pct_oa >= 0.7 && pct_oa < 0.8 erv_cfm = 1000 elsif pct_oa >= 0.8 erv_cfm = 120 end when 'ASHRAE 169-2006-7A', 'ASHRAE 169-2006-7B', 'ASHRAE 169-2006-8A', 'ASHRAE 169-2006-8B', 'ASHRAE 169-2013-7A', 'ASHRAE 169-2013-7B', 'ASHRAE 169-2013-8A', 'ASHRAE 169-2013-8B' if pct_oa < 0.1 erv_cfm = nil elsif pct_oa >= 0.1 && pct_oa < 0.2 erv_cfm = 4500 elsif pct_oa >= 0.2 && pct_oa < 0.3 erv_cfm = 4000 elsif pct_oa >= 0.3 && pct_oa < 0.4 erv_cfm = 2500 elsif pct_oa >= 0.4 && pct_oa < 0.5 erv_cfm = 1000 elsif pct_oa >= 0.5 && pct_oa < 0.6 erv_cfm = 140 elsif pct_oa >= 0.6 && pct_oa < 0.7 erv_cfm = 120 elsif pct_oa >= 0.7 && pct_oa < 0.8 erv_cfm = 100 elsif pct_oa >= 0.8 erv_cfm = 80 end end else # Table 6.5.6.1-2, above 8000 hrs case climate_zone when 'ASHRAE 169-2006-3C', 'ASHRAE 169-2013-3C' erv_cfm = nil when 'ASHRAE 169-2006-0B', 'ASHRAE 169-2006-1B', 'ASHRAE 169-2006-2B', 'ASHRAE 169-2006-3B', 'ASHRAE 169-2006-4C', 'ASHRAE 169-2006-5C', 'ASHRAE 169-2013-0B', 'ASHRAE 169-2013-1B', 'ASHRAE 169-2013-2B', 'ASHRAE 169-2013-3B', 'ASHRAE 169-2013-4C', 'ASHRAE 169-2013-5C' if pct_oa < 0.2 erv_cfm = nil elsif pct_oa >= 0.2 && pct_oa < 0.3 erv_cfm = 19_500 elsif pct_oa >= 0.3 && pct_oa < 0.4 erv_cfm = 9000 elsif pct_oa >= 0.4 && pct_oa < 0.5 erv_cfm = 5000 elsif pct_oa >= 0.5 && pct_oa < 0.6 erv_cfm = 4000 elsif pct_oa >= 0.6 && pct_oa < 0.7 erv_cfm = 3000 elsif pct_oa >= 0.7 && pct_oa < 0.8 erv_cfm = 1500 elsif pct_oa >= 0.8 erv_cfm = 120 end when 'ASHRAE 169-2006-0A', 'ASHRAE 169-2006-1A', 'ASHRAE 169-2006-2A', 'ASHRAE 169-2006-3A', 'ASHRAE 169-2006-4B', 'ASHRAE 169-2006-5B', 'ASHRAE 169-2013-0A', 'ASHRAE 169-2013-1A', 'ASHRAE 169-2013-2A', 'ASHRAE 169-2013-3A', 'ASHRAE 169-2013-4B', 'ASHRAE 169-2013-5B' if pct_oa < 0.1 erv_cfm = nil elsif pct_oa >= 0.1 && pct_oa < 0.2 erv_cfm = 2500 elsif pct_oa >= 0.2 && pct_oa < 0.3 erv_cfm = 2000 elsif pct_oa >= 0.3 && pct_oa < 0.4 erv_cfm = 1000 elsif pct_oa >= 0.4 && pct_oa < 0.5 erv_cfm = 500 elsif pct_oa >= 0.5 && pct_oa < 0.6 erv_cfm = 140 elsif pct_oa >= 0.6 && pct_oa < 0.7 erv_cfm = 120 elsif pct_oa >= 0.7 && pct_oa < 0.8 erv_cfm = 100 elsif pct_oa >= 0.8 erv_cfm = 80 end when 'ASHRAE 169-2006-4A', 'ASHRAE 169-2006-5A', 'ASHRAE 169-2006-6A', 'ASHRAE 169-2006-6B', 'ASHRAE 169-2006-7A', 'ASHRAE 169-2006-7B', 'ASHRAE 169-2006-8A', 'ASHRAE 169-2006-8B', 'ASHRAE 169-2013-4A', 'ASHRAE 169-2013-5A', 'ASHRAE 169-2013-6A', 'ASHRAE 169-2013-6B', 'ASHRAE 169-2013-7A', 'ASHRAE 169-2013-7B', 'ASHRAE 169-2013-8A', 'ASHRAE 169-2013-8B' if pct_oa < 0.1 erv_cfm = nil elsif pct_oa >= 0.1 && pct_oa < 0.2 erv_cfm = 200 elsif pct_oa >= 0.2 && pct_oa < 0.3 erv_cfm = 130 elsif pct_oa >= 0.3 && pct_oa < 0.4 erv_cfm = 100 elsif pct_oa >= 0.4 && pct_oa < 0.5 erv_cfm = 80 elsif pct_oa >= 0.5 && pct_oa < 0.6 erv_cfm = 70 elsif pct_oa >= 0.6 && pct_oa < 0.7 erv_cfm = 60 elsif pct_oa >= 0.7 && pct_oa < 0.8 erv_cfm = 50 elsif pct_oa >= 0.8 erv_cfm = 40 end end end return erv_cfm end
Determine whether to use a Plate-Frame or Rotary Wheel style ERV depending on air loop outdoor air flow rate Defaults to Rotary.
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @return [String] the erv type
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.AirLoopHVAC.rb, line 738 def air_loop_hvac_energy_recovery_ventilator_heat_exchanger_type(air_loop_hvac) # Get the OA system if air_loop_hvac.airLoopHVACOutdoorAirSystem.is_initialized oa_system = air_loop_hvac.airLoopHVACOutdoorAirSystem.get controller_oa = oa_system.getControllerOutdoorAir else OpenStudio.logFree(OpenStudio::Info, 'openstudio.nrel_zne_ready_2017.AirLoopHVAC', "For #{air_loop_hvac.name}, ERV type not applicable because it has no OA intake.") return false end # Get the minimum OA flow rate if controller_oa.maximumOutdoorAirFlowRate.is_initialized max_oa_flow_m3_per_s = controller_oa.maximumOutdoorAirFlowRate.get elsif controller_oa.autosizedMaximumOutdoorAirFlowRate.is_initialized max_oa_flow_m3_per_s = controller_oa.autosizedMaximumOutdoorAirFlowRate.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.nrel_zne_ready_2017.AirLoopHVAC', "For #{controller_oa.name}: maximum OA flow rate is not available, cannot determine ERV type.") return false end max_oa_flow_cfm = OpenStudio.convert(max_oa_flow_m3_per_s, 'm^3/s', 'cfm').get # Use a 500 cfm threshold if max_oa_flow_cfm < 500.0 heat_exchanger_type = 'Plate' OpenStudio.logFree(OpenStudio::Info, 'openstudio.nrel_zne_ready_2017.AirLoopHVAC', "For #{air_loop_hvac.name}, maximum outdoor air flow rate is less than 500 cfm, assuming a plate and frame heat exchanger.") else heat_exchanger_type = 'Rotary' OpenStudio.logFree(OpenStudio::Info, 'openstudio.nrel_zne_ready_2017.AirLoopHVAC', "For #{air_loop_hvac.name}, maximum outdoor air flow rate is greater than 500 cfm, assuming a rotary wheel heat exchanger.") end return heat_exchanger_type end
Same as Standards method but with no DCV exception Check if ERV is required on this airloop.
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [Boolean] Returns true if required, false if not
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.AirLoopHVAC.rb, line 422 def air_loop_hvac_energy_recovery_ventilator_required?(air_loop_hvac, climate_zone) if air_loop_hvac.airLoopHVACOutdoorAirSystem.is_initialized oa_system = air_loop_hvac.airLoopHVACOutdoorAirSystem.get controller_oa = oa_system.getControllerOutdoorAir controller_mv = controller_oa.controllerMechanicalVentilation else OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}, ERV not applicable because it has no OA intake.") return false end # Get the AHU design supply air flow rate dsn_flow_m3_per_s = nil if air_loop_hvac.designSupplyAirFlowRate.is_initialized dsn_flow_m3_per_s = air_loop_hvac.designSupplyAirFlowRate.get elsif air_loop_hvac.autosizedDesignSupplyAirFlowRate.is_initialized dsn_flow_m3_per_s = air_loop_hvac.autosizedDesignSupplyAirFlowRate.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name} design supply air flow rate is not available, cannot apply efficiency standard.") return false end dsn_flow_cfm = OpenStudio.convert(dsn_flow_m3_per_s, 'm^3/s', 'cfm').get # Get the minimum OA flow rate min_oa_flow_m3_per_s = nil if controller_oa.minimumOutdoorAirFlowRate.is_initialized min_oa_flow_m3_per_s = controller_oa.minimumOutdoorAirFlowRate.get elsif controller_oa.autosizedMinimumOutdoorAirFlowRate.is_initialized min_oa_flow_m3_per_s = controller_oa.autosizedMinimumOutdoorAirFlowRate.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{controller_oa.name}: minimum OA flow rate is not available, cannot apply efficiency standard.") return false end min_oa_flow_cfm = OpenStudio.convert(min_oa_flow_m3_per_s, 'm^3/s', 'cfm').get # Calculate the percent OA at design airflow pct_oa = min_oa_flow_m3_per_s / dsn_flow_m3_per_s # Determine the airflow limit erv_cfm = air_loop_hvac_energy_recovery_ventilator_flow_limit(air_loop_hvac, climate_zone, pct_oa) # Determine if an ERV is required if erv_cfm.nil? OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}, ERV not required based on #{(pct_oa * 100).round}% OA flow, design supply air flow of #{dsn_flow_cfm.round}cfm, and climate zone #{climate_zone}.") erv_required = false elsif dsn_flow_cfm < erv_cfm OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}, ERV not required based on #{(pct_oa * 100).round}% OA flow, design supply air flow of #{dsn_flow_cfm.round}cfm, and climate zone #{climate_zone}. Does not exceed minimum flow requirement of #{erv_cfm}cfm.") erv_required = false else OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}, ERV required based on #{(pct_oa * 100).round}% OA flow, design supply air flow of #{dsn_flow_cfm.round}cfm, and climate zone #{climate_zone}. Exceeds minimum flow requirement of #{erv_cfm}cfm.") erv_required = true end return erv_required end
Determine whether to apply an Energy Recovery Ventilator ‘ERV’ or a Heat Recovery Ventilator ‘HRV’ depending on the climate zone Defaults to ERV.
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [String] the erv type
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.AirLoopHVAC.rb, line 728 def air_loop_hvac_energy_recovery_ventilator_type(air_loop_hvac, climate_zone) erv_type = 'ERV' return erv_type end
Determine if the system economizer must be integrated or not. @note same as 90.1-2013 All economizers must be integrated in 90.1-2013
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [Boolean] returns true if required, false if not
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.AirLoopHVAC.rb, line 86 def air_loop_hvac_integrated_economizer_required?(air_loop_hvac, climate_zone) return true end
Determine the air flow and number of story limits for whether motorized OA damper is required. @note Same as 90.1-2013
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [Array<Double>] [minimum_oa_flow_cfm, maximum_stories]. If both nil, never required
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.AirLoopHVAC.rb, line 293 def air_loop_hvac_motorized_oa_damper_limits(air_loop_hvac, climate_zone) case climate_zone when 'ASHRAE 169-2006-0A', 'ASHRAE 169-2006-0B', 'ASHRAE 169-2006-1A', 'ASHRAE 169-2006-1B', 'ASHRAE 169-2006-2A', 'ASHRAE 169-2006-2B', 'ASHRAE 169-2006-3A', 'ASHRAE 169-2006-3B', 'ASHRAE 169-2006-3C', 'ASHRAE 169-2013-0A', 'ASHRAE 169-2013-0B', 'ASHRAE 169-2013-1A', 'ASHRAE 169-2013-1B', 'ASHRAE 169-2013-2A', 'ASHRAE 169-2013-2B', 'ASHRAE 169-2013-3A', 'ASHRAE 169-2013-3B', 'ASHRAE 169-2013-3C' minimum_oa_flow_cfm = 0 maximum_stories = 999 # Any number of stories else minimum_oa_flow_cfm = 0 maximum_stories = 0 end return [minimum_oa_flow_cfm, maximum_stories] end
Determine if multizone vav optimization is required. @note Same as 90.1-2013
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [Boolean] returns true if required, false if not @todo Add exception logic for systems with AIA healthcare ventilation requirements dual duct systems
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.AirLoopHVAC.rb, line 186 def air_loop_hvac_multizone_vav_optimization_required?(air_loop_hvac, climate_zone) multizone_opt_required = false # Not required for systems with fan-powered terminals num_fan_powered_terminals = 0 air_loop_hvac.demandComponents.each do |comp| if comp.to_AirTerminalSingleDuctParallelPIUReheat.is_initialized || comp.to_AirTerminalSingleDuctSeriesPIUReheat.is_initialized num_fan_powered_terminals += 1 end end if num_fan_powered_terminals > 0 OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}, multizone vav optimization is not required because the system has #{num_fan_powered_terminals} fan-powered terminals.") return multizone_opt_required end # Not required for systems that require an ERV if air_loop_hvac_energy_recovery?(air_loop_hvac) OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: multizone vav optimization is not required because the system has Energy Recovery.") return multizone_opt_required end # Get the OA intake controller_oa = nil controller_mv = nil oa_system = nil if air_loop_hvac.airLoopHVACOutdoorAirSystem.is_initialized oa_system = air_loop_hvac.airLoopHVACOutdoorAirSystem.get controller_oa = oa_system.getControllerOutdoorAir controller_mv = controller_oa.controllerMechanicalVentilation else OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}, multizone optimization is not applicable because system has no OA intake.") return multizone_opt_required end # Get the AHU design supply air flow rate dsn_flow_m3_per_s = nil if air_loop_hvac.designSupplyAirFlowRate.is_initialized dsn_flow_m3_per_s = air_loop_hvac.designSupplyAirFlowRate.get elsif air_loop_hvac.autosizedDesignSupplyAirFlowRate.is_initialized dsn_flow_m3_per_s = air_loop_hvac.autosizedDesignSupplyAirFlowRate.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name} design supply air flow rate is not available, cannot apply efficiency standard.") return multizone_opt_required end dsn_flow_cfm = OpenStudio.convert(dsn_flow_m3_per_s, 'm^3/s', 'cfm').get # Get the minimum OA flow rate min_oa_flow_m3_per_s = nil if controller_oa.minimumOutdoorAirFlowRate.is_initialized min_oa_flow_m3_per_s = controller_oa.minimumOutdoorAirFlowRate.get elsif controller_oa.autosizedMinimumOutdoorAirFlowRate.is_initialized min_oa_flow_m3_per_s = controller_oa.autosizedMinimumOutdoorAirFlowRate.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{controller_oa.name}: minimum OA flow rate is not available, cannot apply efficiency standard.") return multizone_opt_required end min_oa_flow_cfm = OpenStudio.convert(min_oa_flow_m3_per_s, 'm^3/s', 'cfm').get # Calculate the percent OA at design airflow pct_oa = min_oa_flow_m3_per_s / dsn_flow_m3_per_s # Not required for systems where # exhaust is more than 70% of the total OA intake. if pct_oa > 0.7 OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{controller_oa.name}: multizone optimization is not applicable because system is more than 70% OA.") return multizone_opt_required end # @todo Not required for dual-duct systems # if self.isDualDuct # OpenStudio::logFree(OpenStudio::Info, "openstudio.standards.AirLoopHVAC", "For #{controller_oa.name}: multizone optimization is not applicable because it is a dual duct system") # return multizone_opt_required # end # If here, multizone vav optimization is required multizone_opt_required = true return multizone_opt_required end
Determine the number of stages that should be used as controls for single zone DX systems. @note Same as 90.1-2013 90.1-2013 depends on the cooling capacity of the system.
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [Integer] the number of stages: 0, 1, 2
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.AirLoopHVAC.rb, line 330 def air_loop_hvac_single_zone_controls_num_stages(air_loop_hvac, climate_zone) min_clg_cap_btu_per_hr = 65_000 clg_cap_btu_per_hr = OpenStudio.convert(air_loop_hvac_total_cooling_capacity(air_loop_hvac), 'W', 'Btu/hr').get if clg_cap_btu_per_hr >= min_clg_cap_btu_per_hr num_stages = 2 OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: two-stage control is required since cooling capacity of #{clg_cap_btu_per_hr.round} Btu/hr exceeds the minimum of #{min_clg_cap_btu_per_hr.round} Btu/hr .") else num_stages = 1 OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: two-stage control is not required since cooling capacity of #{clg_cap_btu_per_hr.round} Btu/hr is less than the minimum of #{min_clg_cap_btu_per_hr.round} Btu/hr .") end return num_stages end
Determine if the system required supply air temperature (SAT) reset. @note Same as 90.1-2013 For 90.1-2013, SAT reset requirements are based on climate zone.
@param air_loop_hvac [OpenStudio::Model::AirLoopHVAC] air loop @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [Boolean] returns true if required, false if not
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.AirLoopHVAC.rb, line 351 def air_loop_hvac_supply_air_temperature_reset_required?(air_loop_hvac, climate_zone) is_sat_reset_required = false # Only required for multizone VAV systems unless air_loop_hvac_multizone_vav_system?(air_loop_hvac) return is_sat_reset_required end case climate_zone when 'ASHRAE 169-2006-0A', 'ASHRAE 169-2006-1A', 'ASHRAE 169-2006-2A', 'ASHRAE 169-2006-3A', 'ASHRAE 169-2013-0A', 'ASHRAE 169-2013-1A', 'ASHRAE 169-2013-2A', 'ASHRAE 169-2013-3A' OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: Supply air temperature reset is not required per 6.5.3.4 Exception 1, the system is located in climate zone #{climate_zone}.") return is_sat_reset_required when 'ASHRAE 169-2006-0B', 'ASHRAE 169-2006-1B', 'ASHRAE 169-2006-2B', 'ASHRAE 169-2006-3B', 'ASHRAE 169-2006-3C', 'ASHRAE 169-2006-4A', 'ASHRAE 169-2006-4B', 'ASHRAE 169-2006-4C', 'ASHRAE 169-2006-5A', 'ASHRAE 169-2006-5B', 'ASHRAE 169-2006-5C', 'ASHRAE 169-2006-6A', 'ASHRAE 169-2006-6B', 'ASHRAE 169-2006-7A', 'ASHRAE 169-2006-7B', 'ASHRAE 169-2006-8A', 'ASHRAE 169-2006-8B', 'ASHRAE 169-2013-0B', 'ASHRAE 169-2013-1B', 'ASHRAE 169-2013-2B', 'ASHRAE 169-2013-3B', 'ASHRAE 169-2013-3C', 'ASHRAE 169-2013-4A', 'ASHRAE 169-2013-4B', 'ASHRAE 169-2013-4C', 'ASHRAE 169-2013-5A', 'ASHRAE 169-2013-5B', 'ASHRAE 169-2013-5C', 'ASHRAE 169-2013-6A', 'ASHRAE 169-2013-6B', 'ASHRAE 169-2013-7A', 'ASHRAE 169-2013-7B', 'ASHRAE 169-2013-8A', 'ASHRAE 169-2013-8B' is_sat_reset_required = true OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: Supply air temperature reset is required.") return is_sat_reset_required end end
Default occupancy fraction threshold for determining if the spaces on the air loop are occupied @return [Double] threshold at which the air loop space are considered unoccupied
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.AirLoopHVAC.rb, line 412 def air_loop_hvac_unoccupied_threshold return 0.05 end
@!group AirTerminalSingleDuctVAVReheat Set the initial minimum damper position based on OA rate of the space and the template. Zones with low OA per area get lower initial guesses. Final position will be adjusted upward as necessary by Standards.AirLoopHVAC.apply_minimum_vav_damper_positions
@param air_terminal_single_duct_vav_reheat [OpenStudio::Model::AirTerminalSingleDuctVAVReheat] the air terminal object @param zone_oa_per_area [Double] the zone outdoor air per area in m^3/s*m^2 @return [Boolean] returns true if successful, false if not
# File lib/openstudio-standards/prototypes/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.AirTerminalSingleDuctVAVReheat.rb, line 10 def air_terminal_single_duct_vav_reheat_apply_initial_prototype_damper_position(air_terminal_single_duct_vav_reheat, zone_oa_per_area) min_damper_position = case air_terminal_single_duct_vav_reheat_reheat_type(air_terminal_single_duct_vav_reheat) when 'HotWater' 0.2 when 'Electricity', 'NaturalGas' 0.3 end # Set the minimum flow fraction air_terminal_single_duct_vav_reheat.setConstantMinimumAirFlowFraction(min_damper_position) return true end
Specifies the minimum damper position for VAV dampers. For terminals with hot water heat and DDC, the minimum is 20%, otherwise the minimum is 30%.
@param air_terminal_single_duct_vav_reheat [OpenStudio::Model::AirTerminalSingleDuctVAVReheat] the air terminal object @param has_ddc [Boolean] whether or not there is DDC control of the VAV terminal in question @return [Double] minimum damper position
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.AirTerminalSingleDuctVAVReheat.rb, line 10 def air_terminal_single_duct_vav_reheat_minimum_damper_position(air_terminal_single_duct_vav_reheat, has_ddc = true) min_damper_position = nil case air_terminal_single_duct_vav_reheat_reheat_type(air_terminal_single_duct_vav_reheat) when 'HotWater' min_damper_position = if has_ddc 0.2 else 0.3 end when 'Electricity', 'NaturalGas' min_damper_position = 0.3 end return min_damper_position end
Apply the efficiency, plus Multicell heat rejection with VSD per 90.1-2013 6.5.2.2
@param cooling_tower_variable_speed [OpenStudio::Model::CoolingTowerVariableSpeed] variable speed cooling tower @return [Boolean] returns true if successful, false if not
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.CoolingTowerVariableSpeed.rb, line 10 def cooling_tower_variable_speed_apply_efficiency_and_curves(cooling_tower_variable_speed) cooling_tower_apply_minimum_power_per_flow(cooling_tower_variable_speed) cooling_tower_variable_speed.setCellControl('MaximalCell') return true end
Determine the prototype fan pressure rise for a constant volume fan on an AirLoopHVAC based on system airflow. Defaults to the logic from ASHRAE 90.1-2004 prototypes.
@param fan_constant_volume [OpenStudio::Model::FanConstantVolume] constant volume fan object @return [Double] pressure rise in inches H20
# File lib/openstudio-standards/prototypes/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.FanConstantVolume.rb, line 9 def fan_constant_volume_airloop_fan_pressure_rise(fan_constant_volume) # Get the max flow rate from the fan. maximum_flow_rate_m3_per_s = nil if fan_constant_volume.maximumFlowRate.is_initialized maximum_flow_rate_m3_per_s = fan_constant_volume.maximumFlowRate.get elsif fan_constant_volume.autosizedMaximumFlowRate.is_initialized maximum_flow_rate_m3_per_s = fan_constant_volume.autosizedMaximumFlowRate.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.prototype.FanConstantVolume', "For #{fan_constant_volume.name} max flow rate is not available, cannot apply prototype assumptions.") return false end # Convert max flow rate to cfm maximum_flow_rate_cfm = OpenStudio.convert(maximum_flow_rate_m3_per_s, 'm^3/s', 'cfm').get # Determine the pressure rise pressure_rise_in_h2o = if maximum_flow_rate_cfm < 7437 2.5 else # Over 7,437 cfm 4.09 end return pressure_rise_in_h2o end
Determine the prototype fan pressure rise for an on off fan on an AirLoopHVAC or inside a unitary system based on system airflow. Defaults to the logic from ASHRAE 90.1-2004 prototypes.
@param fan_on_off [OpenStudio::Model::FanOnOff] on off fan object @return [Double] pressure rise in inches H20
# File lib/openstudio-standards/prototypes/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.FanOnOff.rb, line 9 def fan_on_off_airloop_or_unitary_fan_pressure_rise(fan_on_off) # Get the max flow rate from the fan. maximum_flow_rate_m3_per_s = nil if fan_on_off.maximumFlowRate.is_initialized maximum_flow_rate_m3_per_s = fan_on_off.maximumFlowRate.get elsif fan_on_off.autosizedMaximumFlowRate.is_initialized maximum_flow_rate_m3_per_s = fan_on_off.autosizedMaximumFlowRate.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.prototype.FanOnOff', "For #{fan_on_off.name} max flow rate is not available, cannot apply prototype assumptions.") return false end # Convert max flow rate to cfm maximum_flow_rate_cfm = OpenStudio.convert(maximum_flow_rate_m3_per_s, 'm^3/s', 'cfm').get # Determine the pressure rise pressure_rise_in_h2o = if maximum_flow_rate_cfm < 7437 2.5 else # Over 7,437 cfm 4.09 end return pressure_rise_in_h2o end
Determine the prototype fan pressure rise for a variable volume fan on an AirLoopHVAC based on system airflow. Defaults to the logic from ASHRAE 90.1-2004 prototypes.
@param fan_variable_volume [OpenStudio::Model::FanVariableVolume] variable volume fan object @return [Double] pressure rise in inches H20
# File lib/openstudio-standards/prototypes/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.FanVariableVolume.rb, line 9 def fan_variable_volume_airloop_fan_pressure_rise(fan_variable_volume) # Get the max flow rate from the fan. maximum_flow_rate_m3_per_s = nil if fan_variable_volume.maximumFlowRate.is_initialized maximum_flow_rate_m3_per_s = fan_variable_volume.maximumFlowRate.get elsif fan_variable_volume.autosizedMaximumFlowRate.is_initialized maximum_flow_rate_m3_per_s = fan_variable_volume.autosizedMaximumFlowRate.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.prototype.FanVariableVolume', "For #{fan_variable_volume.name} max flow rate is not available, cannot apply prototype assumptions.") return false end # Convert max flow rate to cfm maximum_flow_rate_cfm = OpenStudio.convert(maximum_flow_rate_m3_per_s, 'm^3/s', 'cfm').get # Determine the pressure rise pressure_rise_in_h2o = if maximum_flow_rate_cfm < 4648 4.0 else # Over 7,437 cfm 5.58 end return pressure_rise_in_h2o end
The threhold capacity below which part load control is not required. Per 90.1-2013, table 6.5.3.2.1: the cooling capacity threshold is 75000 instead of 110000 as of 1/1/2014
@param fan_variable_volume [OpenStudio::Model::FanVariableVolume] variable volume fan object @return [Double] the limit, in Btu/hr. Return nil for no limit by default.
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.FanVariableVolume.rb, line 27 def fan_variable_volume_part_load_fan_power_limitation_capacity_limit(fan_variable_volume) cap_limit_btu_per_hr = case fan_variable_volume_cooling_system_type(fan_variable_volume) when 'dx' 110_000 end return cap_limit_btu_per_hr end
The threhold horsepower below which part load control is not required. Per 90.1-2013, table 6.5.3.2.1: the fan motor size for chiller-water and evaporative cooling is 0.25 hp as of 1/1/2014 instead of 5 hp
@param fan_variable_volume [OpenStudio::Model::FanVariableVolume] variable volume fan object @return [Double] the limit, in horsepower. Return nil for no limit by default.
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.FanVariableVolume.rb, line 10 def fan_variable_volume_part_load_fan_power_limitation_hp_limit(fan_variable_volume) hp_limit = case fan_variable_volume_cooling_system_type(fan_variable_volume) when 'dx' 0.0 when 'chw', 'evap' 0.25 end return hp_limit end
Sets the minimum effectiveness of the heat exchanger
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.HeatExchangerSensLat.rb, line 5 def heat_exchanger_air_to_air_sensible_and_latent_apply_effectiveness(heat_exchanger_air_to_air_sensible_and_latent) # Assumed to be sensible and latent at all flow heat_exchanger_type = heat_exchanger_air_to_air_sensible_and_latent.heatExchangerType if heat_exchanger_type == 'Plate' heat_exchanger_air_to_air_sensible_and_latent.setSensibleEffectivenessat100HeatingAirFlow(0.755) heat_exchanger_air_to_air_sensible_and_latent.setLatentEffectivenessat100HeatingAirFlow(0.564) heat_exchanger_air_to_air_sensible_and_latent.setSensibleEffectivenessat75HeatingAirFlow(0.791) heat_exchanger_air_to_air_sensible_and_latent.setLatentEffectivenessat75HeatingAirFlow(0.625) heat_exchanger_air_to_air_sensible_and_latent.setSensibleEffectivenessat100CoolingAirFlow(0.755) heat_exchanger_air_to_air_sensible_and_latent.setLatentEffectivenessat100CoolingAirFlow(0.564) heat_exchanger_air_to_air_sensible_and_latent.setSensibleEffectivenessat75CoolingAirFlow(0.791) heat_exchanger_air_to_air_sensible_and_latent.setLatentEffectivenessat75CoolingAirFlow(0.625) heat_exchanger_air_to_air_sensible_and_latent.setNominalElectricPower(0.0) else # Rotary heat_exchanger_air_to_air_sensible_and_latent.setSensibleEffectivenessat100HeatingAirFlow(0.75) heat_exchanger_air_to_air_sensible_and_latent.setLatentEffectivenessat100HeatingAirFlow(0.74) heat_exchanger_air_to_air_sensible_and_latent.setSensibleEffectivenessat75HeatingAirFlow(0.79) heat_exchanger_air_to_air_sensible_and_latent.setLatentEffectivenessat75HeatingAirFlow(0.79) heat_exchanger_air_to_air_sensible_and_latent.setSensibleEffectivenessat100CoolingAirFlow(0.75) heat_exchanger_air_to_air_sensible_and_latent.setLatentEffectivenessat100CoolingAirFlow(0.74) heat_exchanger_air_to_air_sensible_and_latent.setSensibleEffectivenessat75CoolingAirFlow(0.78) heat_exchanger_air_to_air_sensible_and_latent.setLatentEffectivenessat75CoolingAirFlow(0.78) end OpenStudio.logFree(OpenStudio::Info, 'openstudio.ze_aedg_multifamily.HeatExchangerAirToAirSensibleAndLatent', "For #{heat_exchanger_air_to_air_sensible_and_latent.name}, set sensible and latent effectiveness to #{heat_exchanger_type} values.") return true end
Default fan efficiency assumption for the prm added fan power
@return [Double] default fan efficiency
# File lib/openstudio-standards/prototypes/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.HeatExchangerAirToAirSensibleAndLatent.rb, line 7 def heat_exchanger_air_to_air_sensible_and_latent_prototype_default_fan_efficiency default_fan_efficiency = 0.55 return default_fan_efficiency end
Loads the openstudio standards dataset for this standard.
@param data_directories [Array<String>] array of file paths that contain standards data @return [Hash] a hash of standards data
ASHRAE901#load_standards_database
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.rb, line 18 def load_standards_database(data_directories = []) super([__dir__] + data_directories) end
Applies the HVAC parts of the template to all objects in the model using the the template specified in the model.
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.Model.rb, line 5 def model_apply_hvac_efficiency_standard(model, climate_zone, apply_controls: true) sql_db_vars_map = {} OpenStudio.logFree(OpenStudio::Info, 'openstudio.ze_aedg_multifamily.Model', "Started applying HVAC efficiency standards for #{template} template.") # Air Loop Controls if apply_controls.nil? || apply_controls == true model.getAirLoopHVACs.sort.each { |obj| air_loop_hvac_apply_standard_controls(obj, climate_zone) unless air_loop_hvac_unitary_system?(obj) } end # Plant Loop Controls if apply_controls.nil? || apply_controls == true model.getPlantLoops.sort.each { |obj| plant_loop_apply_standard_controls(obj, climate_zone) } end # Zone HVAC Controls model.getZoneHVACComponents.sort.each { |obj| zone_hvac_component_apply_standard_controls(obj) } ##### Apply equipment efficiencies # Fans model.getFanVariableVolumes.sort.each { |obj| fan_apply_standard_minimum_motor_efficiency(obj, fan_brake_horsepower(obj)) } model.getFanConstantVolumes.sort.each { |obj| fan_apply_standard_minimum_motor_efficiency(obj, fan_brake_horsepower(obj)) } model.getFanOnOffs.sort.each { |obj| fan_apply_standard_minimum_motor_efficiency(obj, fan_brake_horsepower(obj)) } model.getFanZoneExhausts.sort.each { |obj| fan_apply_standard_minimum_motor_efficiency(obj, fan_brake_horsepower(obj)) } model.getZoneHVACComponents.sort.each { |obj| zone_hvac_component_apply_prm_baseline_fan_power(obj) } # Pumps model.getPumpConstantSpeeds.sort.each { |obj| pump_apply_standard_minimum_motor_efficiency(obj) } model.getPumpVariableSpeeds.sort.each { |obj| pump_apply_standard_minimum_motor_efficiency(obj) } model.getHeaderedPumpsConstantSpeeds.sort.each { |obj| pump_apply_standard_minimum_motor_efficiency(obj) } model.getHeaderedPumpsVariableSpeeds.sort.each { |obj| pump_apply_standard_minimum_motor_efficiency(obj) } model.getPlantLoops.sort.each { |obj| plant_loop_apply_prm_baseline_pumping_type(obj) unless plant_loop_swh_loop?(obj) } # Unitary HPs # set DX HP coils before DX clg coils because when DX HP coils need to first # pull the capacities of their paired DX clg coils, and this does not work # correctly if the DX clg coil efficiencies have been set because they are renamed. model.getCoilHeatingDXSingleSpeeds.sort.each { |obj| sql_db_vars_map = coil_heating_dx_single_speed_apply_efficiency_and_curves(obj, sql_db_vars_map) } # Unitary ACs model.getCoilCoolingDXTwoSpeeds.sort.each { |obj| sql_db_vars_map = coil_cooling_dx_two_speed_apply_efficiency_and_curves(obj, sql_db_vars_map) } model.getCoilCoolingDXSingleSpeeds.sort.each { |obj| sql_db_vars_map = coil_cooling_dx_single_speed_apply_efficiency_and_curves(obj, sql_db_vars_map) } # WSHPs # set WSHP heating coils before cooling coils to get cooling coil capacities before they are renamed model.getCoilHeatingWaterToAirHeatPumpEquationFits.sort.each { |obj| sql_db_vars_map = coil_heating_water_to_air_heat_pump_apply_efficiency_and_curves(obj, sql_db_vars_map) } model.getCoilCoolingWaterToAirHeatPumpEquationFits.sort.each { |obj| sql_db_vars_map = coil_cooling_water_to_air_heat_pump_apply_efficiency_and_curves(obj, sql_db_vars_map) } # Chillers clg_tower_objs = model.getCoolingTowerSingleSpeeds model.getChillerElectricEIRs.sort.each { |obj| chiller_electric_eir_apply_efficiency_and_curves(obj, clg_tower_objs) } # Boilers model.getBoilerHotWaters.sort.each { |obj| boiler_hot_water_apply_efficiency_and_curves(obj) } # Water Heaters model.getWaterHeaterMixeds.sort.each { |obj| water_heater_mixed_apply_efficiency(obj) } # Cooling Towers model.getCoolingTowerSingleSpeeds.sort.each { |obj| cooling_tower_single_speed_apply_efficiency_and_curves(obj) } model.getCoolingTowerTwoSpeeds.sort.each { |obj| cooling_tower_two_speed_apply_efficiency_and_curves(obj) } model.getCoolingTowerVariableSpeeds.sort.each { |obj| cooling_tower_variable_speed_apply_efficiency_and_curves(obj) } # Fluid Coolers model.getFluidCoolerSingleSpeeds.sort.each { |obj| fluid_cooler_apply_minimum_power_per_flow(obj, equipment_type: 'Dry Cooler') } model.getFluidCoolerTwoSpeeds.sort.each { |obj| fluid_cooler_apply_minimum_power_per_flow(obj, equipment_type: 'Dry Cooler') } model.getEvaporativeFluidCoolerSingleSpeeds.sort.each { |obj| fluid_cooler_apply_minimum_power_per_flow(obj, equipment_type: 'Closed Cooling Tower') } model.getEvaporativeFluidCoolerTwoSpeeds.sort.each { |obj| fluid_cooler_apply_minimum_power_per_flow(obj, equipment_type: 'Closed Cooling Tower') } # ERVs model.getHeatExchangerAirToAirSensibleAndLatents.each { |obj| heat_exchanger_air_to_air_sensible_and_latent_apply_effectiveness(obj) } # Gas Heaters model.getCoilHeatingGass.sort.each { |obj| coil_heating_gas_apply_efficiency_and_curves(obj) } OpenStudio.logFree(OpenStudio::Info, 'openstudio.ze_aedg_multifamily.Model', "Finished applying HVAC efficiency standards for #{template} template.") end
Determine which type of fan the cooling tower will have. Variable Speed Fan
for NREL ZNE Ready 2017.
@param model [OpenStudio::Model::Model] OpenStudio model object @return [String] the fan type: TwoSpeed Fan
, Variable Speed Fan
# File lib/openstudio-standards/prototypes/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.hvac_systems.rb, line 9 def model_cw_loop_cooling_tower_fan_type(model) fan_type = 'Variable Speed Fan' return fan_type end
Determine the prototypical economizer type for the model.
@param model [OpenStudio::Model::Model] OpenStudio model object @param climate_zone [String] ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’ @return [String] the economizer type. Possible values are:
'NoEconomizer' 'FixedDryBulb' 'FixedEnthalpy' 'DifferentialDryBulb' 'DifferentialEnthalpy' 'FixedDewPointAndDryBulb' 'ElectronicEnthalpy' 'DifferentialDryBulbAndEnthalpy'
# File lib/openstudio-standards/prototypes/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.Model.rb, line 17 def model_economizer_type(model, climate_zone) economizer_type = case climate_zone when 'ASHRAE 169-2006-0A', 'ASHRAE 169-2006-1A', 'ASHRAE 169-2006-2A', 'ASHRAE 169-2006-3A', 'ASHRAE 169-2006-4A', 'ASHRAE 169-2013-0A', 'ASHRAE 169-2013-1A', 'ASHRAE 169-2013-2A', 'ASHRAE 169-2013-3A', 'ASHRAE 169-2013-4A' 'DifferentialEnthalpy' else 'DifferentialDryBulb' end return economizer_type end
Determines the power of the elevator ventilation fan. Same as 90.1-2013, which has a requirement for ventilation fan efficiency.
@param model [OpenStudio::Model::Model] OpenStudio model object @param vent_rate_cfm [Double] the ventilation rate in ft^3/min @return [Double] the ventilation fan power in watts
# File lib/openstudio-standards/prototypes/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.Model.elevators.rb, line 21 def model_elevator_fan_pwr(model, vent_rate_cfm) vent_pwr_per_flow_w_per_cfm = 0.33 vent_pwr_w = vent_pwr_per_flow_w_per_cfm * vent_rate_cfm # addendum 90.1-2007 aj has requirement on efficiency vent_pwr_w = vent_pwr_w * 0.29 / 0.70 return vent_pwr_w end
Determines the percentage of the elevator cab lighting that is incandescent. The remainder is assumed to be LED. Defaults to 0% incandescent (100% LED), representing newer elevators.
@param model [OpenStudio::Model::Model] OpenStudio model object @return [Double] incandescent lighting percentage
# File lib/openstudio-standards/prototypes/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.Model.elevators.rb, line 10 def model_elevator_lighting_pct_incandescent(model) pct_incandescent = 0.0 # 100% LED return pct_incandescent end
Applies the chilled water pumping controls to the loop based on Appendix G.
@param plant_loop [OpenStudio::Model::PlantLoop] chilled water loop @return [Boolean] returns true if successful, false if not
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.PlantLoop.rb, line 8 def plant_loop_apply_prm_baseline_chilled_water_pumping_type(plant_loop) pri_control_type = 'VSD DP Reset' sec_control_type = 'VSD DP Reset' has_secondary_pump = false # Modify all the secondary pumps plant_loop.demandComponents.each do |sc| if sc.to_PumpVariableSpeed.is_initialized pump = sc.to_PumpVariableSpeed.get pump_variable_speed_set_control_type(pump, sec_control_type) has_secondary_pump = true elsif sc.to_HeaderedPumpsVariableSpeed.is_initialized pump = sc.to_HeaderedPumpsVariableSpeed.get headered_pumps_variable_speed_set_control_type(pump, control_type) has_secondary_pump = true end end # Primary is constant flow if primary/secondary setup pri_control_type = 'Constant Flow' if has_secondary_pump # Modify all the primary pumps plant_loop.supplyComponents.each do |sc| if sc.to_PumpVariableSpeed.is_initialized pump = sc.to_PumpVariableSpeed.get pump_variable_speed_set_control_type(pump, pri_control_type) elsif sc.to_HeaderedPumpsVariableSpeed.is_initialized pump = sc.to_HeaderedPumpsVariableSpeed.get headered_pumps_variable_speed_set_control_type(pump, control_type) end end # Report out the pumping type unless pri_control_type.nil? OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{plant_loop.name}, primary pump type is #{pri_control_type}.") end if has_secondary_pump OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{plant_loop.name}, secondary pump type is #{sec_control_type}.") end return true end
Applies the hot water pumping controls to the loop
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.PlantLoop.rb, line 53 def plant_loop_apply_prm_baseline_hot_water_pumping_type(plant_loop) control_type = 'VSD DP Reset' # Modify all the primary pumps plant_loop.supplyComponents.each do |sc| if sc.to_PumpVariableSpeed.is_initialized pump = sc.to_PumpVariableSpeed.get pump_variable_speed_set_control_type(pump, control_type) end end # Report out the pumping type unless control_type.nil? OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{plant_loop.name}, pump type is #{control_type}.") end return true end
Determines the method used to extend the daylighted area horizontally next to a window. If the method is ‘fixed’, 2 ft is added to the width of each window. If the method is ‘proportional’, a distance equal to half of the head height of the window is added. If the method is ‘none’, no additional width is added.
@return [String] returns ‘fixed’ or ‘proportional’
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.Space.rb, line 11 def space_daylighted_area_window_width(space) method = 'proportional' return method end
Determine if the space requires daylighting controls for toplighting, primary sidelighting, and secondary sidelighting. Defaults to false for all types.
@param space [OpenStudio::Model::Space] the space in question @param areas [Hash] a hash of daylighted areas @return [Array<Bool>] req_top_ctrl, req_pri_ctrl, req_sec_ctrl
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.Space.rb, line 23 def space_daylighting_control_required?(space, areas) req_top_ctrl = true req_pri_ctrl = true req_sec_ctrl = true # Get the LPD of the space space_lpd_w_per_m2 = space.lightingPowerPerFloorArea # Primary Sidelighting # Check if the primary sidelit area contains less than 150W of lighting if areas['primary_sidelighted_area'] < 0.01 OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{space.name}, primary sidelighting control not required because primary sidelighted area = 0ft2 per 9.4.1.1(e).") req_pri_ctrl = false elsif areas['primary_sidelighted_area'] * space_lpd_w_per_m2 < 150.0 OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, primary sidelighting control not required because less than 150W of lighting are present in the primary daylighted area per 9.4.1.1(e).") req_pri_ctrl = false else # Check the size of the windows if areas['total_window_area'] < OpenStudio.convert(20.0, 'ft^2', 'm^2').get OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, primary sidelighting control not required because there are less than 20ft2 of window per 9.4.1.1(e) Exception 2.") req_pri_ctrl = false end end # Secondary Sidelighting # Check if the primary and secondary sidelit areas contains less than 300W of lighting if areas['secondary_sidelighted_area'] < 0.01 OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{space.name}, secondary sidelighting control not required because secondary sidelighted area = 0ft2 per 9.4.1.1(e).") req_sec_ctrl = false elsif (areas['primary_sidelighted_area'] + areas['secondary_sidelighted_area']) * space_lpd_w_per_m2 < 300 OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, secondary sidelighting control not required because less than 300W of lighting are present in the combined primary and secondary daylighted areas per 9.4.1.1(e).") req_sec_ctrl = false else # Check the size of the windows if areas['total_window_area'] < OpenStudio.convert(20.0, 'ft^2', 'm^2').get OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, secondary sidelighting control not required because there are less than 20ft2 of window per 9.4.1.1(e) Exception 2.") req_sec_ctrl = false end end # Toplighting # Check if the toplit area contains less than 150W of lighting if areas['toplighted_area'] < 0.01 OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{space.name}, toplighting control not required because toplighted area = 0ft2 per 9.4.1.1(f).") req_top_ctrl = false elsif areas['toplighted_area'] * space_lpd_w_per_m2 < 150 OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, toplighting control not required because less than 150W of lighting are present in the toplighted area per 9.4.1.1(f).") req_top_ctrl = false end return [req_top_ctrl, req_pri_ctrl, req_sec_ctrl] end
Determine the fraction controlled by each sensor and which window each sensor should go near.
@param space [OpenStudio::Model::Space] space object @param areas [Hash] a hash of daylighted areas @param sorted_windows [Hash] a hash of windows, sorted by priority @param sorted_skylights [Hash] a hash of skylights, sorted by priority @param req_top_ctrl [Boolean] if toplighting controls are required @param req_pri_ctrl [Boolean] if primary sidelighting controls are required @param req_sec_ctrl [Boolean] if secondary sidelighting controls are required @return [Array] array of 4 items
[sensor 1 fraction, sensor 2 fraction, sensor 1 window, sensor 2 window]
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.Space.rb, line 87 def space_daylighting_fractions_and_windows(space, areas, sorted_windows, sorted_skylights, req_top_ctrl, req_pri_ctrl, req_sec_ctrl) sensor_1_frac = 0.0 sensor_2_frac = 0.0 sensor_1_window = nil sensor_2_window = nil # Get the area of the space space_area_m2 = space.floorArea if req_top_ctrl && req_pri_ctrl && req_sec_ctrl # Sensor 1 controls toplighted area sensor_1_frac = areas['toplighted_area'] / space_area_m2 sensor_1_window = sorted_skylights[0] # Sensor 2 controls primary + secondary area sensor_2_frac = (areas['primary_sidelighted_area'] + areas['secondary_sidelighted_area']) / space_area_m2 sensor_2_window = sorted_windows[0] elsif !req_top_ctrl && req_pri_ctrl && req_sec_ctrl # Sensor 1 controls primary area sensor_1_frac = areas['primary_sidelighted_area'] / space_area_m2 sensor_1_window = sorted_windows[0] # Sensor 2 controls secondary area sensor_2_frac = (areas['secondary_sidelighted_area'] / space_area_m2) sensor_2_window = sorted_windows[0] elsif req_top_ctrl && !req_pri_ctrl && req_sec_ctrl # Sensor 1 controls toplighted area sensor_1_frac = areas['toplighted_area'] / space_area_m2 sensor_1_window = sorted_skylights[0] # Sensor 2 controls secondary area sensor_2_frac = (areas['secondary_sidelighted_area'] / space_area_m2) sensor_2_window = sorted_windows[0] elsif req_top_ctrl && !req_pri_ctrl && !req_sec_ctrl # Sensor 1 controls toplighted area sensor_1_frac = areas['toplighted_area'] / space_area_m2 sensor_1_window = sorted_skylights[0] elsif !req_top_ctrl && req_pri_ctrl && !req_sec_ctrl # Sensor 1 controls primary area sensor_1_frac = areas['primary_sidelighted_area'] / space_area_m2 sensor_1_window = sorted_windows[0] elsif !req_top_ctrl && !req_pri_ctrl && req_sec_ctrl # Sensor 1 controls secondary area sensor_1_frac = areas['secondary_sidelighted_area'] / space_area_m2 sensor_1_window = sorted_windows[0] end return [sensor_1_frac, sensor_2_frac, sensor_1_window, sensor_2_window] end
Determine the base infiltration rate at 75 Pa.
@return [Double] the baseline infiltration rate, in cfm/ft^2 defaults to no infiltration.
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.Space.rb, line 144 def space_infiltration_rate_75_pa(space = nil) basic_infil_rate_cfm_per_ft2 = 0.5 # Half of 90.1-2013 return basic_infil_rate_cfm_per_ft2 end
Determine the area and occupancy level limits for demand control ventilation.
@param thermal_zone [OpenStudio::Model::ThermalZone] the thermal zone @return [Array<Double>] the minimum area, in m^2 and the minimum occupancy density in m^2/person. Returns nil if there is no requirement.
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.ThermalZone.rb, line 11 def thermal_zone_demand_control_ventilation_limits(thermal_zone) min_area_ft2 = 500 min_occ_per_1000_ft2 = 12 # half of 90.1-2013 # Convert to SI min_area_m2 = OpenStudio.convert(min_area_ft2, 'ft^2', 'm^2').get min_occ_per_ft2 = min_occ_per_1000_ft2 / 1000.0 min_ft2_per_occ = 1.0 / min_occ_per_ft2 min_m2_per_occ = OpenStudio.convert(min_ft2_per_occ, 'ft^2', 'm^2').get return [min_area_m2, min_m2_per_occ] end
default fan efficiency for small zone hvac fans, in watts per cfm
@return [Double] fan efficiency in watts per cfm
# File lib/openstudio-standards/standards/ashrae_90_1/ze_aedg_multifamily/ze_aedg_multifamily.ZoneHVACComponent.rb, line 7 def zone_hvac_component_prm_baseline_fan_efficacy fan_efficacy_w_per_cfm = 0.65 return fan_efficacy_w_per_cfm end