
IRB Reboot:
Modernize

Implementation
and Features

IRB Reboot:
Modernize

Implementation
and Features

ITOYANAGI Sakura
RubyKaigi 2018

Powered by Rabbit 2.2.1 and COZMIXNG

Greeting

1st day's morning,

it was cloudy.

Greeting

2nd day's morning,

it was rainy.

Greeting

But today...

Greeting

It's a beautiful day outside.

Greeting

Birds are singing, flowers are
blooming...

Greeting

On days like these...

IRB Reboot:
Modernize

Implementation
and Features

Let me introduce myself

name

ITOYANAGI Sakura

GitHub

aycabta

maintainer

RDoc

Community: Asakusa.rb

Asakusa.rb every Ruby Tuesday

Company:
Space Pirates, LLC.

Space Pirates, LLC.

Hobby: Climbing

I planed to climb Mt. Zao, it's
the highest mountain in
Miyagi. The highest mountain
is the nearest place to space.
It fits for Space Pirates.

Hobby: Climbing

But it's so far from this venue,
so I went to gorge near here.

Hobby: Climbing

The gorge means narrow
river between escarpments.

Hobby: Climbing

The Tohoku University official
web site provides digging
points map for fossils.

Hobby: Climbing

http://www.museum.tohoku.ac.jp/exhibition_info/mini/
fosss/locality/locmap.html

Hobby: Climbing

A dozen pink points are fossils
digging points.

Hobby: Climbing

This venue is hemmed in by
many fossils digging points.

Hobby: Climbing

I went to some digging points.

Hobby: Climbing

Waterfall

Hobby: Climbing

Waterfall

Hobby: Climbing

Gorge

Hobby: Climbing

Gorge

Hobby: Climbing

I burst through from 4m to
10m many waterfalls into
several kilometers gorge.

Hobby: Climbing

I bivouacked in the gorge with a
bonfire for cooking rice and

miso soup.

Hobby: Climbing

When I was cooking rice and
miso soup early morning by
bonfire I was given notice
"Today, we have Asakusa.rb"
so I escaped the gorge quickly
and went to Asakusa.rb by
bullet train and joined it and
went back to Sendai by
midnight highway bus,

Hobby: Climbing

in a 24 hours period.

And joined pre-party of
RubyKaigi.

Hobby: Climbing

It was the hardest experience
of this RubyKaigi.

Hobby: Climbing

In gorge, I didn't find a fossil
of the aimed whale, but found
so many shell beds(dense
shell fossils) and leaf's
fossils.

Hobby: Climbing

Shell...?

Today's topic

IRB Reboot:
Modernize Implementation
and Features

Recent years keiju-san's

In the several past
RubyKaigis, keiju-san who is
godfather of Ruby and the
author of IRB talked about old
Ruby.

Recent years keiju-san's

He said

"The first language design
of Ruby was like shell."

in "Ruby Archaeology"
at RubyKaigi 2013.

Recent years keiju-san's

After that, keiju-san carries on
talking about Ruby and shell.

Recent years keiju-san's

2014: Reish, an unix shell
for rubyist.

2015: Usage and
implementation of Reish
which is an Unix shell for
Rubyist

2017: Irb 20th anniversary
memorial session: Reish
and Irb2

Recent years keiju-san's

Next session of
Hagi(#rubykaigiC) is keiju-
san's one, don't miss it.

Today's topic

Let's back up a minute.

Today's topic

I sent 2 patches to IRB.

#14683 IRB with Ripper

#14787 Show documents
when completion

#14683 IRB with Ripper
...How use RDoc use Ripper

I talked about RDoc with
Ripper,

"Ruby Parser
In IRB 20th Anniversary...
Now Let Time Resume"

at RubyKaigi 2017.

#14683 IRB with Ripper
...How use RDoc use Ripper

Ruby syntax is very complex.

#14683 IRB with Ripper
...How use RDoc use Ripper

Ruby's parser is spaghetti.

Lexical analyzer is tightly
coupled with parser

parse.y has over 11,000
lines

The overwhelming weight
of syntax to come and the
uncertainty of lex_state

#14683 IRB with Ripper
...How use RDoc use Ripper

Ruby's syntax is
very dirty.

#14683 IRB with Ripper
...How use RDoc use Ripper

Ruby's syntax is
very dirty .

#14683 IRB with Ripper
...How use RDoc use Ripper

Ruby's syntax is
very complex .

#14683 IRB with Ripper
...How use RDoc use Ripper

Ruby's syntax
abrades parser developer.

#14683 IRB with Ripper
...How use RDoc use Ripper

But, the abradable syntax for
parser developer
is gentle for Ruby users
by matz.

It's great point of Ruby.

#14683 IRB with Ripper
...How use RDoc use Ripper

So RDoc had very many bugs
in parsing Ruby code.

#14683 IRB with Ripper
...How use RDoc use Ripper

I fixed so many bugs of RDoc,
and replaced it fixed RDoc
with Ripper version.

#14683 IRB with Ripper
...How use RDoc use Ripper

Ripper is one of Ruby's
standard libraries of lexical
analysis by parse.y.

#14683 IRB with Ripper
...How use RDoc use Ripper

I think that Ripper is best way
for parsing Ruby code, for
following latest Ruby syntax.

#14683 IRB with Ripper

But IRB implement pure Ruby
parser. It's hard to support
Ruby's new syntax.

#14683 IRB with Ripper

I thought that Ripper makes
IRB's source code parsing
better.

#14683 IRB with Ripper

I discussed Ruby's REPL with
matz, and matz said "I
implemented mruby's
REPL(mirb), learning from
IRB's history".

#14683 IRB with Ripper

REPL needs when code block
will end(close) because REPL
evaluates it at the timing.

#14683 IRB with Ripper

The mirb uses

token's lex_state
parser->lstate

syntax error messages
parser-
>error_buffer[0].message

(The parser is a
struct mrb_parser_state)

#14683 IRB with Ripper

In CRuby,

token's lex_state
Ripper

syntax error messages
RubyVM::InstructionSequen
ce

#14683 IRB with Ripper

I ported mirb's
implementation to IRB.

#14683 IRB with Ripper

IRB has some prompt
features, PROMPT_N, PROMPT_S,
and %NNi.

#14683 IRB with Ripper

PROMPT_N

Prompt when
the code line is continued

PROMPT_S

Prompt when
the code block is in literal

%NNi

Nesting level of
the code block

#14683 IRB with Ripper

PROMPT_N

Ripper

PROMPT_S

Ripper

%NNi

Ripper

#14683 IRB with Ripper

In CRuby, I could resolve the
parameters of prompt by
Ripper.

#14683 IRB with Ripper

The PROMPT_N is a part of
"when the code block is
ended" logic.

#14683 IRB with Ripper

Inside "splitted sentence", IRB
uses PROMPT_N prompt.

Like:

method(a,
 b,
 c)

#14683 IRB with Ripper

The PROMPT_S is implemented
by checking corresponding
open and close tokens of
literals.

#14683 IRB with Ripper

Literal tokens:
"

'

percent literals
%q{ and }

%w{ and }

blah blah blah

here-document

#14683 IRB with Ripper

Example:

"This
 is
 multiline
 string"

#14683 IRB with Ripper

Example:

%w{
 array
 of
 strings
}

#14683 IRB with Ripper

Inside String or other literal,
IRB uses PROMPT_S prompt.

#14683 IRB with Ripper

The %NNi is implemented by
count corresponding name
space open and close tokens.

#14683 IRB with Ripper

Increase nesting level
when takes open token

if, unless, while, until,
rescue

skip post-fix version (it doesn't
need end)

def, do, case, for, begin,
class, module

[, {, (

#14683 IRB with Ripper

Decrease down nesting
level when takes open
token

end

], },)

#14683 IRB with Ripper

 # nesting level is 0
class C # increase nesting level to 1
 def m # increase nesting level to 2
 if true # increase nesting level to 3
 1 if true # skip (post-fix if)
 end # decrease nesting level to 2
 end # decrease nesting level to 1
end # decrease nesting level to 0
<=== evaluation!

#14683 IRB with Ripper

Actual example by default:

 ↓ %NNi (nesting level)
irb(main):001:0> def foo(a,
irb(main):002:2* b) # PROMPT_N
irb(main):003:1> <<-EOM
irb(main):004:1" Hello, # PROMPT_S
irb(main):005:1" World! # PROMPT_S
irb(main):006:1" EOM # PROMPT_S
irb(main):007:1> end
=> :foo
irb(main):008:0>

#14683 IRB with Ripper

https://bugs.ruby-lang.org/
issues/14683

#14683 IRB with Ripper

This removes

lib/irb/slex.rb (283 lines)

lib/irb/ruby-token.rb (268
lines)

#14683 IRB with Ripper

This simplifies

lib/irb/ruby-lex.rb (1181 to
287 lines)

#14683 IRB with Ripper

Ruby parser of IRB was
shrunk from total 1732 lines
to 287 lines.

#14683 IRB with Ripper

The simple implementation is
best, because Ruby syntax is
complex.

The simple implementation is
easy to support and keep the
gentleness of Ruby.

#14787 Show documents
when completion

This is second patch for IRB.

#14787 Show documents
when completion

I talked about this Q&A time
at RubyKaigi 2017.

#14787 Show documents
when completion

First, RDoc's RI binary files
are installed to Ruby's
directory.

#14787 Show documents
when completion

CRuby:

$ tar xvzf ruby-2.5.1.tar.gz
$ cd ruby-2.5.1
$ autoconf
$./configure
$ make
$ make install # <=== RDoc runs inside

#14787 Show documents
when completion

CRuby:

$ rbenv install 2.5.1 # <=== RDoc runs inside

#14787 Show documents
when completion

RubyGems:

$ gem install rails # <=== RDoc runs inside

#14787 Show documents
when completion

But many users set:

$ gem install rails --no-document

#14787 Show documents
when completion

Many blogs recommend:

$ cat ~/.gemrc
install: --no-document
update: --no-document

#14787 Show documents
when completion

Unfortunately many users
don't need documents data,
but I understand it.

#14787 Show documents
when completion

Because it's just for RI(ri
command).

#14787 Show documents
when completion

Usage of class:

$ ri 'String'

#14787 Show documents
when completion

Usage of instance method:

$ ri 'String#gsub'

#14787 Show documents
when completion

Usage of class method:

$ ri 'String.new'

#14787 Show documents
when completion

Bothersome.

#14787 Show documents
when completion

I wrote on the ticket:

RDoc installs all
documents to Ruby's
directory by default.

[cited from `#14787']

#14787 Show documents
when completion

Many users never use it
because it's just for
RI("ri" command).

[cited from `#14787']

#14787 Show documents
when completion

I think that it is a
reason of that many
users don't attach
importance to
documentation.

[cited from `#14787']

#14787 Show documents
when completion

I want to improve the
importance of RDoc's data.

#14787 Show documents
when completion

shevegen (Robert A. Heiler)
replied to the ticket:

I also do not use "ri" on
the commandline.

[cited from `#14787 shevegen']

#14787 Show documents
when completion

I would not know why,
because I myself simply
do not use local look-up
ways for documentation
normally.

[cited from `#14787 shevegen']

#14787 Show documents
when completion

It's the same opinion of me.

#14787 Show documents
when completion

And the continuation of
shevegen's comment:

#14787 Show documents
when completion

I really "just google".
[cited from `#14787 shevegen']

#14787 Show documents
when completion

And using the browser
is about 100x more
convenient for me as
well.

[cited from `#14787 shevegen']

#14787 Show documents
when completion

It's the exact same opinion of
me.

#14787 Show documents
when completion

Perfect.

#14787 Show documents
when completion

I'm actually sad.

#14787 Show documents
when completion

I want to improve the
importance of RDoc's data(2).

#14787 Show documents
when completion

IRB(with Readline) completes
namespace such as classes,
modules, methods and so on
when it caught TAB key.

#14787 Show documents
when completion

In the patch of this ticket, I
use RDoc as a library.

#14787 Show documents
when completion

When you press TAB key one
more just after that
namespace is exact matched,
RI document is shown.

#14787 Show documents
when completion

Demonstration

#14787 Show documents
when completion

This is just an aside, I want
Ruby's documentation design.

#14787 Show documents
when completion

In the ticket, I talked about
language documentation
design.

#14787 Show documents
when completion

Perl has "perldoc"
feature and users easily
access documents of
modules by "perldoc"
command.

[cited from `#14787']

#14787 Show documents
when completion

Python has "docstring"
feature and users can
access it on REPL.

[cited from `#14787']

#14787 Show documents
when completion

Those are each
language's design of
importance.

[cited from `#14787']

#14787 Show documents
when completion

Users use the language
on the documentation
design, so library
developers write
documents on the
documentation design.

[cited from `#14787']

#14787 Show documents
when completion

Ruby doesn't have
documentation design
like Perl and Python.

[cited from `#14787']

#14787 Show documents
when completion

Ruby just has RDoc,
IRB, and any other
supports, but these are
just fragmented
features, these are not
a documentation design.

[cited from `#14787']

Documentation design

I want to improve Ruby's
documentation design.

Documentation design

This ticket is a slice of my
documentation design.

Documentation design

I want to improve
the gentleness
of Ruby's documentation
design.

Documentation design

I think that
the gentleness for users
is very important in Ruby.

Documentation design

Please remove
--no-document
for
improvement documentation
at Ruby 2.6 or later.

Thank you for your attention

Please write documents!

Powered by Rabbit 2.2.1 and COZMIXNG

