
How to do reproducible research in Ruby with gKnit
Rodrigo Botafogo

Daniel Mossé - University of Pittsburgh
29/04/2019

1 Introduction

The idea of “literate programming” was first introduced by Donald Knuth in the 1980’s (Knuth 1984).
The main intention of this approach was to develop software interspersing macro snippets, traditional
source code, and a natural language such as English in a document that could be compiled into executable
code and at the same time easily read by a human developer. According to Knuth “The practitioner
of literate programming can be regarded as an essayist, whose main concern is with exposition and
excellence of style.”

The idea of literate programming evolved into the idea of reproducible research, in which all the data,
software code, documentation, graphics etc. needed to reproduce the research and its reports could
be included in a single document or set of documents that when distributed to peers could be rerun
generating the same output and reports.

The R community has put a great deal of effort in reproducible research. In 2002, Sweave was introduced
and it allowed mixing R code with Latex generating high quality PDF documents. A Sweave document
could include code, the results of executing the code, graphics and text such that it contained the whole
narrative to reproduce the research. In 2012, Knitr, developed by Yihui Xie from RStudio was released
to replace Sweave and to consolidate in one single package the many extensions and add-on packages
that were necessary for Sweave.

With Knitr, R markdown was also developed, an extension to the Markdown format. With R
markdown and Knitr it is possible to generate reports in a multitude of formats such as HTML,
markdown, Latex, PDF, dvi, etc. R markdown also allows the use of multiple programming languages
such as R, Ruby, Python, etc. in the same document.

In R markdown, text is interspersed with code chunks that can be executed and both the code and
its results can become part of the final report. Although R markdown allows multiple programming
languages in the same document, only R and Python (with the reticulate package) can persist variables
between chunks. For other languages, such as Ruby, every chunk will start a new process and thus all
data is lost between chunks, unless it is somehow stored in a data file that is read by the next chunk.

Being able to persist data between chunks is critical for literate programming otherwise the flow of the
narrative is lost by all the effort of having to save data and then reload it. Although this might, at first,
seem like a small nuisance, not being able to persist data between chunks is a major issue. For example,
let’s take a look at the following simple example in which we want to show how to create a list and the
use it. Let’s first assume that data cannot be persisted between chunks. In the next chunk we create a
list, then we would need to save it to file, but to save it, we need somehow to marshal the data into a
binary format:
lst = R.list(a: 1, b: 2, c: 3)
lst.saveRDS("lst.rds")

then, on the next chunk, where variable ‘lst’ is used, we need to read back it’s value
lst = R.readRDS("lst.rds")
puts lst

$a
[1] 1
##
$b
[1] 2

1

2 GKNITTING A DOCUMENT

##
$c
[1] 3

Now, any single code has dozens of variables that we might want to use and reuse between chunks. Clearly,
such an approach becomes quickly unmanageable. Probably, because of this problem, it is very rare to
see any R markdown document in the Ruby community.

When variables can be used accross chunks, then no overhead is needed:
lst = R.list(a: 1, b: 2, c: 3)
any other code can be added here

puts lst

$a
[1] 1
##
$b
[1] 2
##
$c
[1] 3

In the Python community, the same effort to have code and text in an integrated environment started
around the first decade of 2000. In 2006 iPython 0.7.2 was released. In 2014, Fernando Pérez, spun off
project Jupyter from iPython creating a web-based interactive computation environment. Jupyter can now
be used with many languages, including Ruby with the iruby gem (https://github.com/SciRuby/iruby).
In order to have multiple languages in a Jupyter notebook the SoS kernel was developed (https://vatlab.
github.io/sos-docs/).

2 gKnitting a Document

This document describes gKnit. gKnit is based on knitr and R markdown and can knit a document
written both in Ruby and/or R and output it in any of the available formats of R markdown. gKnit
allows ruby developers to do literate programming and reproducible research by allowing them to have in
a single document, text and code.

gKnit runs atop of GraalVM, and Galaaz (an integration library between Ruby and R - see bellow). In
gKnit, Ruby variables are persisted between chunks, making it an ideal solution for literate programming
in this language. Also, since it is based on Galaaz, Ruby chunks can have access to R variables and
Polyglot Programming with Ruby and R is quite natural.

Galaaz has already been describe in the following posts:

• https://towardsdatascience.com/ruby-plotting-with-galaaz-an-example-of-tightly-coupling-ruby-and-r-in-graalvm-520b69e21021.

• https://medium.freecodecamp.org/how-to-make-beautiful-ruby-plots-with-galaaz-320848058857

This is not a blog post on R markdown, and the interested user is directed to the following links for
detailed information on its capabilities and use.

• https://rmarkdown.rstudio.com/ or
• https://bookdown.org/yihui/rmarkdown/

In this post, we will describe just the main aspects of R markdown, so the user can start gKnitting
Ruby and R documents quickly.

2

https://github.com/SciRuby/iruby
https://vatlab.github.io/sos-docs/
https://vatlab.github.io/sos-docs/
https://towardsdatascience.com/ruby-plotting-with-galaaz-an-example-of-tightly-coupling-ruby-and-r-in-graalvm-520b69e21021
https://medium.freecodecamp.org/how-to-make-beautiful-ruby-plots-with-galaaz-320848058857
https://rmarkdown.rstudio.com/
https://bookdown.org/yihui/rmarkdown/

2.1 The Yaml header 2 GKNITTING A DOCUMENT

2.1 The Yaml header

An R markdown document should start with a Yaml header and be stored in a file with ‘.Rmd’ extension.
This document has the following header for gKitting an HTML document.

title: "How to do reproducible research in Ruby with gKnit"
author:

- "Rodrigo Botafogo"
- "Daniel Mossé - University of Pittsburgh"

tags: [Tech, Data Science, Ruby, R, GraalVM]
date: "20/02/2019"
output:

html_document:
self_contained: true
keep_md: true

pdf_document:
includes:

in_header: ["../../sty/galaaz.sty"]
number_sections: yes

For more information on the options in the Yaml header, check https://bookdown.org/yihui/rmarkdown/
html-document.html.

2.2 R Markdown formatting

Document formatting can be done with simple markups such as:

2.2.1 Headers

Header 1

Header 2

Header 3

2.2.2 Lists

Unordered lists:

* Item 1
* Item 2

+ Item 2a
+ Item 2b

Ordered Lists

1. Item 1
2. Item 2
3. Item 3

+ Item 3a
+ Item 3b

For more R markdown formatting go to https://rmarkdown.rstudio.com/authoring_basics.html.

3

https://bookdown.org/yihui/rmarkdown/html-document.html
https://bookdown.org/yihui/rmarkdown/html-document.html
https://rmarkdown.rstudio.com/authoring_basics.html

2.2 R Markdown formatting 2 GKNITTING A DOCUMENT

2.2.3 R chunks

Running and executing Ruby and R code is actually what really interests us is this blog.
Inserting a code chunk is done by adding code in a block delimited by three back ticks followed by an open
curly brace (‘{’) followed with the engine name (r, ruby, rb, include, . . .), an any optional chunk_label
and options, as shown bellow:

```{engine_name [chunk_label], [chunk_options]}
```

for instance, let’s add an R chunk to the document labeled ‘first_r_chunk’. This is a very simple code
just to create a variable and print it out, as follows:

```{r first_r_chunk}
vec <- c(1, 2, 3)
print(vec)
```

If this block is added to an R markdown document and gKnitted the result will be:
vec <- c(1, 2, 3)
print(vec)

[1] 1 2 3

Now let’s say that we want to do some analysis in the code, but just print the result and not the code
itself. For this, we need to add the option ‘echo = FALSE’.

```{r second_r_chunk, echo = FALSE}
vec2 <- c(10, 20, 30)
vec3 <- vec * vec2
print(vec3)
```

Here is how this block will show up in the document. Observe that the code is not shown and we only
see the execution result in a white box

[1] 10 40 90

A description of the available chunk options can be found in https://yihui.name/knitr/.

Let’s add another R chunk with a function definition. In this example, a vector ‘r_vec’ is created and a
new function ‘reduce_sum’ is defined. The chunk specification is

```{r data_creation}
r_vec <- c(1, 2, 3, 4, 5)

reduce_sum <- function(...) {
Reduce(sum, as.list(...))

}
```

and this is how it will look like once executed. From now on, to be concise in the presentation we will not
show chunk definitions any longer.
r_vec <- c(1, 2, 3, 4, 5)

reduce_sum <- function(...) {
Reduce(sum, as.list(...))

}

We can, possibly in another chunk, access the vector and call the function as follows:
print(r_vec)

[1] 1 2 3 4 5

4

https://yihui.name/knitr/

2.2 R Markdown formatting 2 GKNITTING A DOCUMENT

print(reduce_sum(r_vec))

[1] 15

2.2.4 R Graphics with ggplot

In the following chunk, we create a bubble chart in R using ggplot and include it in this document. Note
that there is no directive in the code to include the image, this occurs automatically. The ‘mpg’ dataframe
is natively available to R and to Galaaz as well.

For the reader not knowledgeable of ggplot, ggplot is a graphics library based on “the gram-
mar of graphics” (Wilkinson 2005). The idea of the grammar of graphics is to build a graphics
by adding layers to the plot. More information can be found in https://towardsdatascience.com/
a-comprehensive-guide-to-the-grammar-of-graphics-for-effective-visualization-of-multi-dimensional-1f92b4ed4149.

In the plot bellow the ‘mpg’ dataset from base R is used. “The data concerns city-cycle fuel consumption
in miles per gallon, to be predicted in terms of 3 multivalued discrete and 5 continuous attributes.”
(Quinlan, 1993)

First, the ‘mpg’ dataset if filtered to extract only cars from the following manumactures: Audi, Ford,
Honda, and Hyundai and stored in the ‘mpg_select’ variable. Then, the selected dataframe is passed
to the ggplot function specifying in the aesthetic method (aes) that ‘displacement’ (disp) should be
plotted in the ‘x’ axis and ‘city mileage’ should be on the ‘y’ axis. In the ‘labs’ layer we pass the ‘title’
and ‘subtitle’ for the plot. To the basic plot ‘g’, geom_jitter is added, that plots cars from the same
manufactures with the same color (col=manufactures) and the size of the car point equal its high way
consumption (size = hwy). Finally, a last layer is plotter containing a linear regression line (method =
“lm”) for every manufacturer.
load package and data
library(ggplot2)

Message:
Registered S3 methods overwritten by 'ggplot2':
method from
[.quosures rlang
c.quosures rlang
print.quosures rlang
data(mpg, package="ggplot2")

mpg_select <- mpg[mpg$manufacturer %in% c("audi", "ford", "honda", "hyundai"),]

Scatterplot
theme_set(theme_bw()) # pre-set the bw theme.
g <- ggplot(mpg_select, aes(displ, cty)) +

labs(subtitle="mpg: Displacement vs City Mileage",
title="Bubble chart")

g + geom_jitter(aes(col=manufacturer, size=hwy)) +
geom_smooth(aes(col=manufacturer), method="lm", se=F)

5

https://towardsdatascience.com/a-comprehensive-guide-to-the-grammar-of-graphics-for-effective-visualization-of-multi-dimensional-1f92b4ed4149
https://towardsdatascience.com/a-comprehensive-guide-to-the-grammar-of-graphics-for-effective-visualization-of-multi-dimensional-1f92b4ed4149

2.2 R Markdown formatting 2 GKNITTING A DOCUMENT

2.2.5 Ruby chunks

Including a Ruby chunk is just as easy as including an R chunk in the document: just change the name
of the engine to ‘ruby’. It is also possible to pass chunk options to the Ruby engine; however, this version
does not accept all the options that are available to R chunks. Future versions will add those options.

```{ruby first_ruby_chunk}
```

In this example, the ruby chunk is called ‘first_ruby_chunk’. One important aspect of chunk labels is
that they cannot be duplicated. If a chunk label is duplicated, gKnit will stop with an error.

In the following chunk, variable ‘a’, ‘b’ and ‘c’ are standard Ruby variables and ‘vec’ and ‘vec2’ are two
vectors created by calling the ‘c’ method on the R module.

In Galaaz, the R module allows us to access R functions transparently. The ‘c’ function in R, is a function
that concatenates its arguments making a vector.

It should be clear that there is no requirement in gknit to call or use any R functions. gKnit will knit
standard Ruby code, or even general text without any code.
a = [1, 2, 3]
b = "US$ 250.000"
c = "The 'outputs' function"

vec = R.c(1, 2, 3)
vec2 = R.c(10, 20, 30)

In the next block, variables ‘a’, ‘vec’ and ‘vec2’ are used and printed.
puts a
puts vec * vec2

1

6

2.2 R Markdown formatting 2 GKNITTING A DOCUMENT

2
3
[1] 10 40 90

Note that ‘a’ is a standard Ruby Array and ‘vec’ and ‘vec2’ are vectors that behave accordingly, where
multiplication works as expected.

2.2.6 Accessing R from Ruby

One of the nice aspects of Galaaz on GraalVM, is that variables and functions defined in R, can be easily
accessed from Ruby. This next chunk, reads data from R and uses the ‘reduce_sum’ function defined
previously. To access an R variable from Ruby the ‘~’ function should be applied to the Ruby symbol
representing the R variable. Since the R variable is called ‘r_vec’, in Ruby, the symbol to acess it is
‘:r_vec’ and thus ‘~:r_vec’ retrieves the value of the variable.
puts ~:r_vec

[1] 1 2 3 4 5

In order to call an R function, the ‘R.’ module is used as follows
puts R.reduce_sum(~:r_vec)

[1] 15

2.2.7 Ruby Plotting

We have seen an example of plotting with R. Plotting with Ruby does not require anything different from
plotting with R. In the following example, we plot a diverging bar graph using the ‘mtcars’ dataframe from
R. This data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption
and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models). The ten
aspects are:

• mpg: Miles/(US) gallon
• cyl: Number of cylinders
• disp: Displacement (cu.in.)
• hp: Gross horsepower
• drat: Rear axle ratio
• wt: Weight (1000 lbs)
• qsec: 1/4 mile time
• vs: Engine (0 = V-shaped, 1 = straight)
• am: Transmission (0 = automatic, 1 = manual)
• gear: Number of forward gears
• carb: Number of carburetors

copy the R variable :mtcars to the Ruby mtcars variable
mtcars = ~:mtcars

create a new column 'car_name' to store the car names so that it can be
used for plotting. The 'rownames' of the data frame cannot be used as
data for plotting
mtcars.car_name = R.rownames(:mtcars)

compute normalized mpg and add it to a new column called mpg_z
Note that the mean value for mpg can be obtained by calling the 'mean'
function on the vector 'mtcars.mpg'. The same with the standard
deviation 'sd'. The vector is then rounded to two digits with 'round 2'
mtcars.mpg_z = ((mtcars.mpg - mtcars.mpg.mean)/mtcars.mpg.sd).round 2

create a new column 'mpg_type'. Function 'ifelse' is a vectorized function

7

2.2 R Markdown formatting 2 GKNITTING A DOCUMENT

that looks at every element of the mpg_z vector and if the value is below
0, returns 'below', otherwise returns 'above'
mtcars.mpg_type = (mtcars.mpg_z < 0).ifelse("below", "above")

order the mtcar data set by the mpg_z vector from smaler to larger values
mtcars = mtcars[mtcars.mpg_z.order, :all]

convert the car_name column to a factor to retain sorted order in plot
mtcars.car_name = mtcars.car_name.factor levels: mtcars.car_name

let's look at the first records of the final data frame
puts mtcars.head

mpg cyl disp hp drat wt qsec vs am gear carb
Cadillac Fleetwood 10.4 8 472 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460 215 3.00 5.424 17.82 0 0 3 4
Camaro Z28 13.3 8 350 245 3.73 3.840 15.41 0 0 3 4
Duster 360 14.3 8 360 245 3.21 3.570 15.84 0 0 3 4
Chrysler Imperial 14.7 8 440 230 3.23 5.345 17.42 0 0 3 4
Maserati Bora 15.0 8 301 335 3.54 3.570 14.60 0 1 5 8
car_name mpg_z mpg_type
Cadillac Fleetwood Cadillac Fleetwood -1.61 below
Lincoln Continental Lincoln Continental -1.61 below
Camaro Z28 Camaro Z28 -1.13 below
Duster 360 Duster 360 -0.96 below
Chrysler Imperial Chrysler Imperial -0.89 below
Maserati Bora Maserati Bora -0.84 below
require 'ggplot'

puts mtcars.ggplot(E.aes(x: :car_name, y: :mpg_z, label: :mpg_z)) +
R.geom_bar(E.aes(fill: :mpg_type), stat: 'identity', width: 0.5) +
R.scale_fill_manual(name: 'Mileage',

labels: R.c('Above Average', 'Below Average'),
values: R.c('above': '#00ba38', 'below': '#f8766d')) +

R.labs(subtitle: "Normalised mileage from 'mtcars'",
title: "Diverging Bars") +

R.coord_flip

8

2.2 R Markdown formatting 2 GKNITTING A DOCUMENT

2.2.8 Inline Ruby code

When using a Ruby chunk, the code and the output are formatted in blocks as seen above. This formatting
is not always desired. Sometimes, we want to have the results of the Ruby evaluation included in the
middle of a phrase. gKnit allows adding inline Ruby code with the ‘rb’ engine. The following chunk
specification will create and inline Ruby text:

This is some text with inline Ruby accessing variable 'b' which has value:
```{rb puts b}
```
and is followed by some other text!

This is some text with inline Ruby accessing variable ‘b’ which has value: US$ 250.000 and is followed by
some other text!

Note that it is important not to add any new line before of after the code block if we want everything to
be in only one line, resulting in the following sentence with inline Ruby code.

2.2.9 The ‘outputs’ function

He have previously used the standard ‘puts’ method in Ruby chunks in order produce output. The result
of a ‘puts’, as seen in all previous chunks that use it, is formatted inside a white box that follows the
code block. Many times however, we would like to do some processing in the Ruby chunk and have the
result of this processing generate and output that is “included” in the document as if we had typed it in
R markdown document.

For example, suppose we want to create a new heading in our document, but the heading phrase is the
result of some code processing: maybe it’s the first line of a file we are going to read. Method ‘outputs’
adds its output as if typed in the R markdown document.

9

2.2 R Markdown formatting 2 GKNITTING A DOCUMENT

Take now a look at variable ‘c’ (it was defined in a previous block above) as ‘c = “The ’outputs’ function”.
“The ’outputs’ function” is actually the name of this section and it was created using the ’outputs’ function
inside a Ruby chunk.

The ruby chunk to generate this heading is:

```{ruby heading}
outputs "### #{c}"
```

The three ‘###’ is the way we add a Heading 3 in R markdown.

2.2.10 HTML Output from Ruby Chunks

We’ve just seen the use of method ‘outputs’ to add text to the the R markdown document. This
technique can also be used to add HTML code to the document. In R markdown, any html code typed
directly in the document will be properly rendered.
Here, for instance, is a table definition in HTML and its output in the document:

<table style="width:100%">
<tr>

<th>Firstname</th>
<th>Lastname</th>
<th>Age</th>

</tr>
<tr>

<td>Jill</td>
<td>Smith</td>
<td>50</td>

</tr>
<tr>

<td>Eve</td>
<td>Jackson</td>
<td>94</td>

</tr>
</table>

<th>Firstname</th>
<th>Lastname</th>
<th>Age</th>

<td>Jill</td>
<td>Smith</td>
<td>50</td>

<td>Eve</td>
<td>Jackson</td>
<td>94</td>

But manually creating HTML output is not always easy or desirable, specially if we intend the document
to be rendered in other formats, for example, as Latex. Also, The above table looks ugly. The ‘kableExtra’
library is a great library for creating beautiful tables. Take a look at https://cran.r-project.org/web/
packages/kableExtra/vignettes/awesome_table_in_html.html

In the next chunk, we output the ‘mtcars’ dataframe from R in a nicely formatted table. Note that we
retrieve the mtcars dataframe by using ‘~:mtcars’.
R.install_and_loads('kableExtra')
outputs (~:mtcars).kable.kable_styling

10

https://cran.r-project.org/web/packages/kableExtra/vignettes/awesome_table_in_html.html
https://cran.r-project.org/web/packages/kableExtra/vignettes/awesome_table_in_html.html

2.2 R Markdown formatting 2 GKNITTING A DOCUMENT

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

2.2.11 Including Ruby files in a chunk

R is a language that was created to be easy and fast for statisticians to use. As far as I know, it was not
a language to be used for developing large systems. Of course, there are large systems and libraries in R,
but the focus of the language is for developing statistical models and distribute that to peers.

Ruby on the other hand, is a language for large software development. Systems written in Ruby will have
dozens, hundreds or even thousands of files. To document a large system with literate programming, we
cannot expect the developer to add all the files in a single ‘.Rmd’ file. gKnit provides the ‘include’ chunk
engine to include a Ruby file as if it had being typed in the ‘.Rmd’ file.

To include a file, the following chunk should be created, where is the name of the file to be included and
where the extension, if it is ‘.rb’, does not need to be added. If the ‘relative’ option is not included, then
it is treated as TRUE. When ‘relative’ is true, ruby’s ‘require_relative’ semantics is used to load the file,
when false, Ruby’s $LOAD_PATH is searched to find the file and it is ’require’d.

```{include <filename>, relative = <TRUE/FALSE>}
```

Bellow we include file ‘model.rb’, which is in the same directory of this blog.
This code uses R ‘caret’ package to split a dataset in a train and test sets. The ‘caret’ package is a very
important a useful package for doing Data Analysis, it has hundreds of functions for all steps of the Data
Analysis workflow. To use ‘caret’ just to split a dataset is like using the proverbial cannon to kill the

11

2.2 R Markdown formatting 2 GKNITTING A DOCUMENT

fly. We use it here only to show that integrating Ruby and R and using even a very complex package as
‘caret’ is trivial with Galaaz.

A word of advice: the ‘caret’ package has lots of dependencies and installing it in a Linux system is a
time consuming operation. Method ‘R.install_and_loads’ will install the package if it is not already
installed and can take a while.

```{include model}
```

require 'galaaz'

Loads the R 'caret' package. If not present, installs it
R.install_and_loads 'caret'

class Model

attr_reader :data
attr_reader :test
attr_reader :train

#==
#
#==

def initialize(data, percent_train:, seed: 123)

R.set__seed(seed)
@data = data
@percent_train = percent_train
@seed = seed

end

#==
#
#==

def partition(field)

train_index =
R.createDataPartition(@data.send(field), p: @percet_train,

list: false, times: 1)
@train = @data[train_index, :all]
@test = @data[-train_index, :all]

end

end
mtcars = ~:mtcars
model = Model.new(mtcars, percent_train: 0.8)
model.partition(:mpg)
puts model.train.head
puts model.test.head

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1

12

2.2 R Markdown formatting 2 GKNITTING A DOCUMENT

Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
mpg cyl disp hp drat wt qsec vs am gear carb
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2

2.2.12 Documenting Gems

gKnit also allows developers to document and load files that are not in the same directory of the ‘.Rmd’
file.

Here is an example of loading the ‘find.rb’ file from TruffleRuby. In this example, relative is set to FALSE,
so Ruby will look for the file in its $LOAD_PATH, and the user does not need to no it’s directory.

```{include find, relative = FALSE}
```

frozen_string_literal: true
#
find.rb: the Find module for processing all files under a given directory.
#

#
The +Find+ module supports the top-down traversal of a set of file paths.
#
For example, to total the size of all files under your home directory,
ignoring anything in a "dot" directory (e.g. $HOME/.ssh):
#
require 'find'
#
total_size = 0
#
Find.find(ENV["HOME"]) do |path|
if FileTest.directory?(path)
if File.basename(path)[0] == ?.
Find.prune # Don't look any further into this directory.
else
next
end
else
total_size += FileTest.size(path)
end
end
#
module Find

#
Calls the associated block with the name of every file and directory listed
as arguments, then recursively on their subdirectories, and so on.
#
Returns an enumerator if no block is given.
#
See the +Find+ module documentation for an example.
#

13

2.3 Converting to PDF 2 GKNITTING A DOCUMENT

def find(*paths, ignore_error: true) # :yield: path
block_given? or return enum_for(__method__, *paths, ignore_error: ignore_error)

fs_encoding = Encoding.find("filesystem")

paths.collect!{|d| raise Errno::ENOENT, d unless File.exist?(d); d.dup}.each do |path|
path = path.to_path if path.respond_to? :to_path
enc = path.encoding == Encoding::US_ASCII ? fs_encoding : path.encoding
ps = [path]
while file = ps.shift

catch(:prune) do
yield file.dup.taint
begin

s = File.lstat(file)
rescue Errno::ENOENT, Errno::EACCES, Errno::ENOTDIR, Errno::ELOOP, Errno::ENAMETOOLONG

raise unless ignore_error
next

end
if s.directory? then

begin
fs = Dir.children(file, encoding: enc)

rescue Errno::ENOENT, Errno::EACCES, Errno::ENOTDIR, Errno::ELOOP, Errno::ENAMETOOLONG
raise unless ignore_error
next

end
fs.sort!
fs.reverse_each {|f|

f = File.join(file, f)
ps.unshift f.untaint

}
end

end
end

end
nil

end

#
Skips the current file or directory, restarting the loop with the next
entry. If the current file is a directory, that directory will not be
recursively entered. Meaningful only within the block associated with
Find::find.
#
See the +Find+ module documentation for an example.
#
def prune

throw :prune
end

module_function :find, :prune
end

2.3 Converting to PDF

One of the beauties of knitr is that the same input can be converted to many different outputs. One very
useful format, is, of course, PDF. In order to converted an R markdown file to PDF it is necessary to
have LaTeX installed on the system. We will not explain here how to install LaTeX as there are plenty of

14

4 INSTALLING GKNIT

documents on the web showing how to proceed.

gKnit comes with a simple LaTeX style file for gknitting this blog as a PDF document. Here is the Yaml
header to generate this blog in PDF format instead of HTML:

title: "gKnit - Ruby and R Knitting with Galaaz in GraalVM"
author: "Rodrigo Botafogo"
tags: [Galaaz, Ruby, R, TruffleRuby, FastR, GraalVM, knitr, gknit]
date: "29 October 2018"
output:

pdf_document:
includes:

in_header: ["../../sty/galaaz.sty"]
number_sections: yes

3 Conclusion

In order to do reproducible research, one of the main basic tools needed is a systhem that allows “literate
programming” where text, code and possibly a set of files can be compiled onto a report that can be easily
distributed to peers. Peers should be able to use this same set of files to rerun the compilation by their own
obtaining the exact same original report. gKnit is such a system for Ruby and R. It uses R Markdown
to integrate text and code chunks, where code chunks can either be part of the R Markdwon file or be
imported from files in the system. Ideally, in reproducible research, all the files needed to rebuild a report
should be easilly packed together (in the same zipped directory) and distributed to peers for reexecution.

One of the promises of Oracle’s GraalVM is that users/developers will be able to use the best tool for
their task at hand, independently of the programming language the tool was written on. We developed
and implemented Galaaz atop the GraalVM and Truffle interop messages and the time and effort to wrap
Ruby over R - Galaaz - or to wrap Knitr with gKnit was a fraction of a fraction of a fraction (one man
effort for a couple of hours a day, for approximately six months) of the time require to implement the
original tools. Trying to reimplement all R packages in Ruby would require the same effort it is taking
Python to implement NumPy, Pandas and all supporting libraries and it is unlikely that this effort would
ever be done. GraalVM has allowed Ruby to profit “almost for free” from this huge set of libraries and
tools that make R one of the most used languages for data analysis and machine learning.

More interesting than wrapping the R libraries with Ruby, is that Ruby adds value to R, by allowing
developers to use powerful and modern constructs for code reuse that are not the strong points of R. As
shown in this blog, R and Ruby can easily communicate and R can be structured in classes and modules
in a way that greatly expands its power and readability.

4 Installing gKnit

4.1 Prerequisites

• GraalVM (>= rc8)
• TruffleRuby
• FastR

The following R packages will be automatically installed when necessary, but could be installed prior to
using gKnit if desired:

• ggplot2
• gridExtra
• knitr

15

4.2 Preparation 4 INSTALLING GKNIT

Installation of R packages requires a development environment and can be time consuming. In Linux, the
gnu compiler and tools should be enough. I am not sure what is needed on the Mac.

4.2 Preparation

• gem install galaaz

4.3 Usage

• gknit <filename>

References

Knuth, Donald E. 1984. “Literate Programming.” Comput. J. 27 (2). Oxford, UK: Oxford University
Press: 97–111. doi:10.1093/comjnl/27.2.97.

Wilkinson, Leland. 2005. The Grammar of Graphics (Statistics and Computing). Berlin, Heidelberg:
Springer-Verlag.

16

https://doi.org/10.1093/comjnl/27.2.97

	Introduction
	gKnitting a Document
	The Yaml header
	R Markdown formatting
	Headers
	Lists
	R chunks
	R Graphics with ggplot
	Ruby chunks
	Accessing R from Ruby
	Ruby Plotting
	Inline Ruby code
	The outputs function
	HTML Output from Ruby Chunks
	Including Ruby files in a chunk
	Documenting Gems

	Converting to PDF

	Conclusion
	Installing gKnit
	Prerequisites
	Preparation
	Usage

	References

