Galaaz Manual
How to tightly couple Ruby and R in GraalVM
Rodrigo Botafogo

2019
Contents
1 Introduction
1.1 What does Galaaz mean
2 System Compatibility
3 Dependencies
4 Installation
5 Usage
6 Accessing R from Ruby
7 gKnitting a Document
7.1 gKnit and R markdown
7.2 The Yaml header
7.3 R Markdown formatting
7.4 Headers e e
7.5 Lists e e
7.6 Rchunks
7.7 R Graphics with ggplot
7.8 Ruby chunks
7.9 Inline Ruby code
7.9.1 The ‘outputs’ function L L
7.9.2 HTML Output from Ruby Chunks
7.10 Including Ruby filesin a chunk
7.11 Documenting Gemso
7.12 Converting to PDF
7.13 Template based documents generation
8 Accessing R variables
9 Basic Data Types
9.1 Vector e e e e e
9.1.1 Combining Vectors
9.1.2 Vector Arithmetic
9.1.3 Vector Indexing
9.1.4 Extracting Native Ruby Types from a Vector
9.2 Matrix e e e
9.2.1 Indexing a Matrix
9.3 List . . . e e
9.3.1 List Indexing
9.4 Data Frame e e

10
10
10
10
11
13
14
14
15
16
18
20
20

21

1 INTRODUCTION

9.4.1 Data Frame Indexing Lo 29

10 Writing Expressions in Galaaz 31
10.1 Expressions from operators Lo 31
10.2 Expressions with R methods 32
10.3 Evaluating an Expression 0 32

11 Manipulating Data 33
11.1 Filtering rows with Filter oo oL 33
11.2 Logical Operators. 34
11.3 Filtering with NA (Not Available) 35
11.4 Arrange Rows with arrange 35
11.5 Selecting columns 36
11.6 Add variables to a dataframe with ‘mutate’ 37
11.7 Summarising data 38
12 Using Data Table 39
13 Graphics in Galaaz 41
14 Coding with Tidyverse 43
14.1 Writing a function that applies to different data sets 44
14.2 Different expressions oL L 45
14.3 Different input variables o 47
14.4 Different input and output variable L. 48
14.5 Capturing multiple variables L L 0oL 49
14.6 Why does R require NSE and Galaaz doesnot? 50
14.7 Advanced dplyr features L 50

15 Contributing 52
References 52

1 Introduction

Galaaz is a system for tightly coupling Ruby and R. Ruby is a powerful language, with a large
community, a very large set of libraries and great for web development. However, it lacks libraries
for data science, statistics, scientific plotting and machine learning. On the other hand, R is
considered one of the most powerful languages for solving all of the above problems. Maybe the
strongest competitor to R is Python with libraries such as NumPy, Panda, SciPy, SciKit-Learn
and a couple more.

With Galaaz we do not intend to re-implement any of the scientific libraries in R, we allow for
very tight coupling between the two languages to the point that the Ruby developer does not
need to know that there is an R engine running.

According to Wikipedia “Ruby is a dynamic, interpreted, reflective, object-oriented, general-
purpose programming language. It was designed and developed in the mid-1990s by Yuki-
hiro”Matz" Matsumoto in Japan." It reached high popularity with the development of Ruby on
Rails (RoR) by David Heinemeier Hansson. RoR is a web application framework first released
around 2005. It makes extensive use of Ruby’s metaprogramming features. With RoR, Ruby
became very popular. According to Ruby’s Tiobe index it peeked in popularity around 2008,

https://www.tiobe.com/tiobe-index/ruby/

1 INTRODUCTION

then declined until 2015 when it started picking up again. At the time of this writing (November
2018), the Tiobe index puts Ruby in 16th position as most popular language.

Python, a language similar to Ruby, ranks 4th in the index. Java, C and C++ take the first
three positions. Ruby is often criticized for its focus on web applications. But Ruby can do
much more than just web applications. Yet, for scientific computing, Ruby lags way behind
Python and R. Python has Django framework for web, NumPy for numerical arrays, Pandas
for data analysis. R is a free software environment for statistical computing and graphics with
thousands of libraries for data analysis.

Until recently, there was no real perspective for Ruby to bridge this gap. Implementing a
complete scientific computing infrastructure would take too long. Enters Oracle’s GraalVM:

GraalVM is a universal virtual machine for running applications written in JavaScript,
Python 3, Ruby, R, JVM-based languages like Java, Scala, Kotlin, and LLVM-based
languages such as C and C++.

GraalVM removes the isolation between programming languages and enables inter-
operability in a shared runtime. It can run either standalone or in the context of
OpenJDK, Node.js, Oracle Database, or MySQL.

GraalVM allows you to write polyglot applications with a seamless way to pass values
from one language to another. With GraalVM there is no copying or marshaling
necessary as it is with other polyglot systems. This lets you achieve high performance
when language boundaries are crossed. Most of the time there is no additional cost
for crossing a language boundary at all.

Often developers have to make uncomfortable compromises that require them to
rewrite their software in other languages. For example:

e That library is not available in my language. I need to rewrite it.

e That language would be the perfect fit for my problem, but we cannot run it in
our environment.

e That problem is already solved in my language, but the language is too slow.

With GraalVM we aim to allow developers to freely choose the right language for
the task at hand without making compromises.

As stated above, GraalVM is a universal virtual machine that allows Ruby and R (and other
languages) to run on the same environment. GraalVM allows polyglot applications to seamlessly
interact with one another and pass values from one language to the other. Although a great
idea, GraalVM still requires application writers to know several languages. To eliminate that
requirement, we built Galaaz, a gem for Ruby, to tightly couple Ruby and R and allow those
languages to interact in a way that the user will be unaware of such interaction. In other words,
a Ruby programmer will be able to use all the capabilities of R without knowing the R syntax.

Library wrapping is a usual way of bringing features from one language into another. To improve
performance, Python often wraps more efficient C libraries. For the Python developer, the
existence of such C libraries is hidden. The problem with library wrapping is that for any new
library, there is the need to handcraft a new wrapper.

Galaaz, instead of wrapping a single C or R library, wraps the whole R language in Ruby. Doing
so, all thousands of R libraries are available immediately to Ruby developers without any new
wrapping effort.

https://github.com/markets/awesome-ruby
https://www.graalvm.org/

1.1 What does Galaaz mean 5 USAGE

1.1 What does Galaaz mean

Galaaz is the Portuguese name for “Galahad”. From Wikipedia:

Sir Galahad (sometimes referred to as Galeas or Galath),

in Arthurian legend, is a knight of King Arthur's Round Table and one

of the three achievers of the Holy Grail. He is the illegitimate son

of Sir Lancelot and Elaine of Corbenic, and is renowned for his

gallantry and purity as the most perfect of all knights. Emerging quite
late in the medieval Arthurian tradition, Sir Galahad first appears in the
Lancelot-Grail cycle, and his story is taken up in later works such as

the Post-Vulgate Cycle and Sir Thomas Malory's Le Morte d'Arthur.

His name should not be mistaken with Galehaut, a different knight from
Arthurian legend.

2 System Compatibility

e Oracle Linux 7

e Ubuntu 18.04 LTS

e Ubuntu 16.04 LTS

e Fedora 28

o macOS 10.14 (Mojave)

« macOS 10.13 (High Sierra)

3 Dependencies

o TruffleRuby
o FastR

4 Installation

Install GrallVM (http://www.graalvm.org/)

Install Ruby (gu install Ruby)

Install FastR (gu install R)

o Install rake if you want to run the specs and examples (gem install rake)

5 Usage

o Interactive shell: use ‘gstudio’ on the command line

gstudio

vec = R.c(1, 2, 3, 4)
puts vec

[1] 1 2 3 4

e Run all specs

http://www.graalvm.org/

6 ACCESSING R FROM RUBY

galaaz specs:all
o Run graphics slideshow (80+ graphics)
galaaz sthda:all
e Run labs from Introduction to Statistical Learning with R
galaaz islr:all
e See all available examples
galaaz -T

Shows a list with all available executalbe tasks. To execute a task, substitute the ‘rake’ word in
the list with ‘galaaz’ For instance, the following line shows up after ‘galaaz -T’

rake master_ list:scatter_ plot # scatter_plot from:....
execute

galaaz master_ list:scatter_ plot

6 Accessing R from Ruby

One of the nice aspects of Galaaz on GraalVM, is that variables and functions defined in R, can
be easily accessed from Ruby. For instance, to access the ‘mtcars’ data frame from R in Ruby,
we use the “:mtcar’ symbol preceded by the ‘~" operator, thus ‘~:r_ vec’ retrieves the value of the
‘mtcars’ variable.

puts ~:mtcars

mpg cyl disp hp drat wt qgsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 O 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 O 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 O 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 O 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 156.84 0 O 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 O 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 O 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 O 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 O 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 O 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 O O 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 O O 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 O 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 O 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 O 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 O 3 1
Dodge Challenger 156.5 8 318.0 150 2.76 3.520 16.87 0 O 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 O O 3 2

6 ACCESSING R FROM RUBY

Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 O 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 O 3 2
Fiat X1-9 27.3 4 7T79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

To access an R function from Ruby, the R function needs to be preceeded by ‘R. scoping. Bellow
we see and example of creating a R::Vector by calling the ‘c’ R function

puts vec = R.c(1.0, 2.0, 3.0, 4.0)

[1] 1 2 3 4

Note that ‘vec’ is an object of type R::Vector:

puts vec.class

R::Vector

Every object created by a call to an R function will be of a type that inherits from R::Object.
In R, there is also a function ‘class’. In order to access that function we can call method ‘rclass’
in the R::Object:

puts vec.rclass

[1] "numeric"

When working with R::Object(s), it is possible to use the ¢’ operator to pipe operations. When
using ‘', the object to which the ¢’ is applied becomes the first argument of the corresponding R
function. For instance, function ‘c’ in R, can be used to concatenate two vectors or more vectors
(in R, there are no scalar values, scalars are converted to vectors of size 1. Within Galaaz, scalar
parameter is converted to a size one vector):

puts R.c(vec, 10, 20, 30)

[1] 1 2 3 4 10 20 30

)

The call above to the ‘c’ function can also be done using “’ notation:

puts vec.c(10, 20, 30)

[1] 1 2 3 4 10 20 30

We will talk about vector indexing in a latter section. But notice here that indexing an R::Vector
will return another R::Vector:

puts vec[1]

[1] 1

Sometimes we want to index an R::Object and get back a Ruby object that is not wrapped in
an R::Object, but the native Ruby object. For this, we can index the R object with the ‘>>’
operator:

puts vec >> 0
puts vec >> 2

7 GKNITTING A DOCUMENT

1.0
3.0

It is also possible to call an R function with named arguments, by creating the function in
Galaaz with named parameters. For instance, here is an example of creating a ‘list’ with named
elements:

puts R.list(first_name: "Rodrigo", last_name: "Botafogo")

$first_name
[1] "Rodrigo"
#i#

$last_name

[1] "Botafogo"

Many R functions receive another function as argument. For instance, method ‘map’ applies
a function to every element of a vector. With Galaaz, it is possible to pass a Proc, Method
or Lambda in place of the expected R function. In this next example, we will add 2 to every
element of our previously created vector:

puts vec.map { Ix| x + 2 }

[1]
[1]
[1]
[1]

[o) I &2 BTSN OV

7 gKnitting a Document

This manual has been formatted usign gKnit. gKnit uses Knitr and R markdown to knit a
document in Ruby or R and output it in any of the available formats for R markdown. gKnit
runs atop of GraalVM, and Galaaz. In gKnit, Ruby variables are persisted between chunks,
making it an ideal solution for literate programming. Also, since it is based on Galaaz, Ruby
chunks can have access to R variables and Polyglot Programming with Ruby and R is quite
natural.

The idea of “literate programming” was first introduced by Donald Knuth in the 1980’s (Knuth
1984). The main intention of this approach was to develop software interspersing macro snippets,
traditional source code, and a natural language such as English in a document that could be
compiled into executable code and at the same time easily read by a human developer. According
to Knuth “The practitioner of literate programming can be regarded as an essayist, whose main
concern is with exposition and excellence of style.”

The idea of literate programming evolved into the idea of reproducible research, in which all
the data, software code, documentation, graphics etc. needed to reproduce the research and its
reports could be included in a single document or set of documents that when distributed to
peers could be rerun generating the same output and reports.

The R community has put a great deal of effort in reproducible research. In 2002, Sweave was
introduced and it allowed mixing R code with Latex generating high quality PDF documents. A
Sweave document could include code, the results of executing the code, graphics and text such
that it contained the whole narrative to reproduce the research. In 2012, Knitr, developed by
Yihui Xie from RStudio was released to replace Sweave and to consolidate in one single package
the many extensions and add-on packages that were necessary for Sweave.

7 GKNITTING A DOCUMENT

With Knitr, R markdown was also developed, an extension to the Markdown format. With R
markdown and Knitr it is possible to generate reports in a multitude of formats such as HTML,
markdown, Latex, PDF, dvi, etc. R markdown also allows the use of multiple programming
languages such as R, Ruby, Python, etc. in the same document.

In R markdown, text is interspersed with code chunks that can be executed and both the code
and its results can become part of the final report. Although R markdown allows multiple
programming languages in the same document, only R and Python (with the reticulate package)
can persist variables between chunks. For other languages, such as Ruby, every chunk will start
a new process and thus all data is lost between chunks, unless it is somehow stored in a data file
that is read by the next chunk.

Being able to persist data between chunks is critical for literate programming otherwise the flow
of the narrative is lost by all the effort of having to save data and then reload it. Although this
might, at first, seem like a small nuisance, not being able to persist data between chunks is a
major issue. For example, let’s take a look at the following simple example in which we want
to show how to create a list and the use it. Let’s first assume that data cannot be persisted
between chunks. In the next chunk we create a list, then we would need to save it to file, but to
save it, we need somehow to marshal the data into a binary format:

1st = R.1list(a: 1, b: 2, c: 3)
lst.saveRDS("1lst.rds")

then, on the next chunk, where variable ‘Ist’ is used, we need to read back it’s value

lst = R.readRDS("lst.rds")
puts 1lst

$a
[1] 1
#it

$b

[1] 2
#it

$c
[1] 3

Now, any single code has dozens of variables that we might want to use and reuse between
chunks. Clearly, such an approach becomes quickly unmanageable. Probably, because of this
problem, it is very rare to see any R markdown document in the Ruby community.

When variables can be used accross chunks, then no overhead is needed:

lst = R.list(a: 1, b: 2, c: 3)
any other code can be added here

puts 1lst

$a
[1] 1
#i#t

$b

[1] 2
#i#

$c
[1] 3

7.1 gKnit and R markdown 7 GKNITTING A DOCUMENT

In the Python community, the same effort to have code and text in an integrated environment
started around the first decade of 2000. In 2006 iPython 0.7.2 was released. In 2014, Fernando
Pérez, spun off project Jupyter from iPython creating a web-based interactive computation
environment. Jupyter can now be used with many languages, including Ruby with the iruby
gem (https://github.com/SciRuby/iruby). In order to have multiple languages in a Jupyter
notebook the SoS kernel was developed (https://vatlab.github.io/sos-docs/).

7.1 gKnit and R markdown

gKnit is based on knitr and R markdown and can knit a document written both in Ruby
and/or R and output it in any of the available formats of R markdown. gKnit allows ruby
developers to do literate programming and reproducible research by allowing them to have in a
single document, text and code.

In gKnit, Ruby variables are persisted between chunks, making it an ideal solution for literate
programming in this language. Also, since it is based on Galaaz, Ruby chunks can have access
to R variables and Polyglot Programming with Ruby and R is quite natural.

This is not a blog post on R markdown, and the interested user is directed to the following
links for detailed information on its capabilities and use.

o https://rmarkdown.rstudio.com/ or
o https://bookdown.org/yihui/rmarkdown/

In this post, we will describe just the main aspects of R markdown, so the user can start
gKnitting Ruby and R documents quickly.

7.2 The Yaml header

An R markdown document should start with a Yaml header and be stored in a file with ‘Rmd’
extension. This document has the following header for gKitting an HTML document.

title: "How to do reproducible research in Ruby with gKnit"
author:

- "Rodrigo Botafogo"

- "Daniel Mossé - University of Pittsburgh"
tags: [Tech, Data Science, Ruby, R, GraalVM]
date: "20/02/2019"
output:

html_document:
self _contained: true
keep_md: true
pdf_document:
includes:
in_header: ["../../sty/galaaz.sty"]
number_sections: yes

For more information on the options in the Yaml header, check here.

https://github.com/SciRuby/iruby
https://vatlab.github.io/sos-docs/
https://rmarkdown.rstudio.com/
https://bookdown.org/yihui/rmarkdown/
https://bookdown.org/yihui/rmarkdown/html-document.html

7.3 R Markdown formatting 7 GKNITTING A DOCUMENT

7.3 R Markdown formatting

Document formatting can be done with simple markups such as:

7.4 Headers
Header 1
Header 2

Header 3

7.5 Lists

Unordered lists:

* Ttem 1

* Ttem 2
+ Item 2a
+ Item 2b

Ordered Lists

1. Item 1

2. Item 2

3. Item 3
+ Item 3a
+ Item 3b

For more R markdown formatting go to https://rmarkdown.rstudio.com/authoring basics.html.

7.6 R chunks

Running and executing Ruby and R code is actually what really interests us is this blog.
Inserting a code chunk is done by adding code in a block delimited by three back ticks followed
by an open curly brace (‘{’) followed with the engine name (r, ruby, rb, include, ...), an any
optional chunk_ label and options, as shown bellow:

{engine_name [chunk_label], [chunk_options]}

for instance, let’s add an R chunk to the document labeled ‘first_r_ chunk’ This is a very simple
code just to create a variable and print it out, as follows:

{r first_r_chunk}
vec <- c(1, 2, 3)
print(vec)

If this block is added to an R markdown document and gKnitted the result will be:

vec <- c(1, 2, 3)
print(vec)

10

https://rmarkdown.rstudio.com/authoring_basics.html

7.7 R Graphics with ggplot 7 GKNITTING A DOCUMENT

[1] 1 2 3

Now let’s say that we want to do some analysis in the code, but just print the result and not
the code itself. For this, we need to add the option ‘echo = FALSE’.

***{r second_r_chunk, echo = FALSE}
vec2 <- c(10, 20, 30)

vec3d <- vec * vec?2

print(vec3)

Here is how this block will show up in the document. Observe that the code is not shown and
we only see the execution result in a white box

[1] 10 40 90
A description of the available chunk options can be found in https://yihui.name/knitr/.

Let’s add another R chunk with a function definition. In this example, a vector ‘r_vec’ is created
and a new function ‘reduce_sum’ is defined. The chunk specification is

~ s~

{r data_creation}
r vec <- c(1, 2, 3, 4, b)

reduce_sum <- function(...) {
Reduce(sum, as.list(...))

and this is how it will look like once executed. From now on, to be concise in the presentation
we will not show chunk definitions any longer.

r vec <- c(1, 2, 3, 4, b5)

reduce_sum <- function(...) {
Reduce(sum, as.list(...))

}

We can, possibly in another chunk, access the vector and call the function as follows:

print (r_vec)

[1] 1 2345

print(reduce_sum(r_vec))

[1]1 15

7.7 R Graphics with ggplot

In the following chunk, we create a bubble chart in R using ggplot and include it in this document.
Note that there is no directive in the code to include the image, this occurs automatically. The
‘mpg’ dataframe is natively available to R and to Galaaz as well.

For the reader not knowledgeable of ggplot, ggplot is a graphics library based on “the grammar
of graphics” (Wilkinson 2005). The idea of the grammar of graphics is to build a graphics by

11

https://yihui.name/knitr/

7.7 R Graphics with ggplot 7 GKNITTING A DOCUMENT

adding layers to the plot. More information can be found in https://towardsdatascience.com/
a-comprehensive-guide-to-the-grammar-of-graphics-for-effective-visualization-of-multi-dimensional- 1f92b4ed414

In the plot bellow the ‘mpg’ dataset from base R is used. “The data concerns city-cycle fuel
consumption in miles per gallon, to be predicted in terms of 3 multivalued discrete and 5
continuous attributes.” (Quinlan, 1993)

First, the ‘mpg’ dataset if filtered to extract only cars from the following manumactures: Audi,
Ford, Honda, and Hyundai and stored in the ‘mpg_ select’ variable. Then, the selected dataframe
is passed to the ggplot function specifying in the aesthetic method (aes) that ‘displacement’
(disp) should be plotted in the ‘x’ axis and ‘city mileage’ should be on the ‘y’ axis. In the ‘labs’
layer we pass the ‘title’ and ‘subtitle’ for the plot. To the basic plot ‘g’, geom_ jitter is added,
that plots cars from the same manufactures with the same color (col=manufactures) and the
size of the car point equal its high way consumption (size = hwy). Finally, a last layer is plotter

containing a linear regression line (method = “lm”) for every manufacturer.
load package and data

library(ggplot2)

Message:

Registered S3 methods overwritten by 'ggplot2':

method from

[.quosures rlang

Cc.quosures rlang

print.quosures rlang

data(mpg, package="ggplot2")
mpg_select <- mpg[mpg$manufacturer %iny% c("audi", "ford", "honda", "hyundai"),]

Scatterplot
theme_set (theme_bw()) # pre-set the bw theme.
g <- ggplot(mpg_select, aes(displ, cty)) +
labs(subtitle="mpg: Displacement vs City Mileage",
title="Bubble chart")

g + geom_jitter(aes(col=manufacturer, size=hwy)) +
geom_smooth(aes(col=manufacturer), method="1m", se=F)

12

https://towardsdatascience.com/a-comprehensive-guide-to-the-grammar-of-graphics-for-effective-visualization-of-multi-dimensional-1f92b4ed4149
https://towardsdatascience.com/a-comprehensive-guide-to-the-grammar-of-graphics-for-effective-visualization-of-multi-dimensional-1f92b4ed4149

7.8 Ruby chunks 7 GKNITTING A DOCUMENT

LIvyy

Bubble chart

mpg: Displacement vs City Mileage

® =20
@ =
@ :o
@ =
manufacturer
wenee gudi
~e— ford

—a— honda

7.8 Ruby chunks

Including a Ruby chunk is just as easy as including an R chunk in the document: just change
the name of the engine to ‘ruby’. It is also possible to pass chunk options to the Ruby engine;
however, this version does not accept all the options that are available to R chunks. Future
versions will add those options.

{ruby first_ruby_chunk}

In this example, the ruby chunk is called ‘first_ ruby_ chunk’ One important aspect of chunk
labels is that they cannot be duplicated. If a chunk label is duplicated, gKnit will stop with an
error.

In the following chunk, variable ‘a’, ‘b’ and ‘c’ are standard Ruby variables and ‘vec’ and ‘vec2’
are two vectors created by calling the ‘c’ method on the R module.

In Galaaz, the R module allows us to access R functions transparently. The ‘¢’ function in R, is
a function that concatenates its arguments making a vector.

It should be clear that there is no requirement in gknit to call or use any R functions. gKnit
will knit standard Ruby code, or even general text without any code.

a=1[1, 2, 3]
= "US$ 250.000"
c = "The 'outputs' function"

vec = R.c(1, 2, 3)
vec2 = R.c(10, 20, 30)

13

7.9 Inline Ruby code 7 GKNITTING A DOCUMENT

In the next block, variables ‘a’, ‘vec’ and ‘vec2’ are used and printed.

puts a
puts vec * vec2

1
2
3
[1] 10 40 90

Note that ‘a’ is a standard Ruby Array and ‘vec’ and ‘vec2’ are vectors that behave accordingly,
where multiplication works as expected.

7.9 Inline Ruby code

When using a Ruby chunk, the code and the output are formatted in blocks as seen above. This
formatting is not always desired. Sometimes, we want to have the results of the Ruby evaluation
included in the middle of a phrase. gKnit allows adding inline Ruby code with the ‘rb’ engine.
The following chunk specification will create and inline Ruby text:

This is some text with inline Ruby accessing variable 'b' which has value:
*>"{rb puts b}

and is followed by some other text!

This is some text with inline Ruby accessing variable ‘b’ which has value: US$ 250.000 and is
followed by some other text!

Note that it is important not to add any new line before of after the code block if we want
everything to be in only one line, resulting in the following sentence with inline Ruby code.

7.9.1 The ‘outputs’ function

He have previously used the standard ‘puts’ method in Ruby chunks in order produce output.
The result of a ‘puts’, as seen in all previous chunks that use it, is formatted inside a white box
that follows the code block. Many times however, we would like to do some processing in the
Ruby chunk and have the result of this processing generate and output that is “included” in the
document as if we had typed it in R markdown document.

For example, suppose we want to create a new heading in our document, but the heading phrase
is the result of some code processing: maybe it’s the first line of a file we are going to read.
Method ‘outputs’ adds its output as if typed in the R markdown document.

Take now a look at variable ‘c’ (it was defined in a previous block above) as ‘c = “The ’outputs’
function”. “The ’outputs’ function” is actually the name of this section and it was created using
the ’outputs’ function inside a Ruby chunk.

The ruby chunk to generate this heading is:

{ruby heading}
outputs "### #{c}"

The three ‘##7#’ is the way we add a Heading 3 in R markdown.

14

7.9 Inline Ruby code 7 GKNITTING A DOCUMENT

7.9.2 HTML Output from Ruby Chunks

We’ve just seen the use of method ‘outputs’ to add text to the the R markdown document.
This technique can also be used to add HTML code to the document. In R markdown, any
html code typed directly in the document will be properly rendered.

Here, for instance, is a table definition in HT'ML and its output in the document:

<table style="width:100%">
<tr>
<th>Firstname</th>
<th>Lastname</th>
<th>Age</th>
</tr>
<tr>
<td>Jill</td>
<td>Smith</td>
<td>50</td>
</tr>
<tr>
<td>Eve</td>
<td>Jackson</td>
<td>94</td>
</tr>
</table>

<th>Firstname</th>
<th>Lastname</th>
<th>Age</th>

<td>Jill</td>
<td>Smith</td>
<td>50</td>

<td>Eve</td>
<td>Jackson</td>
<td>94</td>

But manually creating HTML output is not always easy or desirable, specially if we intend the
document to be rendered in other formats, for example, as Latex. Also, The above table looks
ugly. The ‘kableExtra’ library is a great library for creating beautiful tables. Take a look at https:
//cran.r-project.org/web /packages/kableExtra/vignettes/awesome__table_in_html.html

In the next chunk, we output the ‘mtcars’ dataframe from R in a nicely formatted table. Note
that we retrieve the mtcars dataframe by using ‘~:mtcars’.

R.install_and_loads('kableExtra')
outputs (~:mtcars).kable.kable_styling

15

https://cran.r-project.org/web/packages/kableExtra/vignettes/awesome_table_in_html.html
https://cran.r-project.org/web/packages/kableExtra/vignettes/awesome_table_in_html.html

7.10 Including Ruby files in a chunk 7 GKNITTING A DOCUMENT

mpg disp | hp | drat wt | qgsec | vs | am | gear | carb
Mazda RX4 21.0 160.0 | 110 | 3.90 | 2.620 | 16.46
Mazda RX4 Wag 21.0 160.0 | 110 | 3.90 | 2.875 | 17.02
Datsun 710 22.8 108.0 | 93 | 3.85 | 2.320 | 18.61
Hornet 4 Drive 21.4 258.0 | 110 | 3.08 | 3.215 | 19.44
Hornet Sportabout | 18.7 360.0 | 175 | 3.15 | 3.440 | 17.02
Valiant 18.1 225.0 | 105 | 2.76 | 3.460 | 20.22
Duster 360 14.3 360.0 | 245 | 3.21 | 3.570 | 15.84
Merc 240D 24.4 146.7 | 62 | 3.69 | 3.190 | 20.00
Merc 230 22.8 140.8 | 95 | 3.92 | 3.150 | 22.90
Merc 280 19.2 167.6 | 123 | 3.92 | 3.440 | 18.30
Merc 280C 17.8 167.6 | 123 | 3.92 | 3.440 | 18.90
Merc 450SE 16.4 275.8 | 180 | 3.07 | 4.070 | 17.40
Merc 450SL 17.3 275.8 | 180 | 3.07 | 3.730 | 17.60
Merc 450SLC 15.2 275.8 | 180 | 3.07 | 3.780 | 18.00

Cadillac Fleetwood 10.4 472.0 | 205 | 2.93 | 5.250 | 17.98

Lincoln Continental | 10.4 460.0 | 215 | 3.00 | 5.424 | 17.82

Chrysler Imperial 14.7 440.0 | 230 | 3.23 | 5.345 | 17.42

¢
,noocnooypuxukooooooooypgypwoooooooooooocncnuk%ooc»oocn%o:cnﬁi
= OO ORION OO MFHERERIONONOONOIO|FEFEEREO =IO RO O
el Rl Rl Bl Bl B Bl K=l K =) K =) K] Nl RN N B Heoll Heol Heol Hen) Heol el Hen) Hen) Hen) Heol Neo) Neo) Nenl el -l Y I
| O O O O OV i | QO Q| QO QO QO I i | QO | QO Qo Q| Qo I i i | | QO WO Qo x| x|
N[OOI NN N DN AW W W R AN BN]]

Fiat 128 324 78.7 | 66 | 4.08 | 2.200 | 19.47
Honda Civic 30.4 75.7 | 52| 4.93 | 1.615 | 18.52
Toyota Corolla 33.9 71.1 | 65| 4.22 | 1.835 | 19.90
Toyota Corona 21.5 120.1 | 97 | 3.70 | 2.465 | 20.01
Dodge Challenger 15.5 318.0 | 150 | 2.76 | 3.520 | 16.87
AMC Javelin 15.2 304.0 | 150 | 3.15 | 3.435 | 17.30
Camaro 728 13.3 350.0 | 245 | 3.73 | 3.840 | 15.41
Pontiac Firebird 19.2 400.0 | 175 | 3.08 | 3.845 | 17.05
Fiat X1-9 27.3 79.0 | 66 | 4.08 | 1.935 | 18.90
Porsche 914-2 26.0 120.3 | 91 | 4.43 | 2.140 | 16.70
Lotus Europa 30.4 95.1 | 113 | 3.77 | 1.513 | 16.90
Ford Pantera L 15.8 351.0 | 264 | 4.22 | 3.170 | 14.50
Ferrari Dino 19.7 145.0 | 175 | 3.62 | 2.770 | 15.50
Maserati Bora 15.0 301.0 | 335 | 3.54 | 3.570 | 14.60
Volvo 142E 21.4 121.0 | 109 | 4.11 | 2.780 | 18.60

7.10 Including Ruby files in a chunk

R is a language that was created to be easy and fast for statisticians to use. As far as I know, it
was not a language to be used for developing large systems. Of course, there are large systems
and libraries in R, but the focus of the language is for developing statistical models and distribute
that to peers.

Ruby on the other hand, is a language for large software development. Systems written in Ruby
will have dozens, hundreds or even thousands of files. To document a large system with literate
programming, we cannot expect the developer to add all the files in a single ‘Rmd’ file. gKnit
provides the ‘include’ chunk engine to include a Ruby file as if it had being typed in the ‘Rmd’
file.

To include a file, the following chunk should be created, where is the name of the file to be
included and where the extension, if it is ‘rb’, does not need to be added. If the ‘relative’ option
is not included, then it is treated as TRUE. When ‘relative’ is true, ruby’s ‘require_ relative’

16

7.10 Including Ruby files in a chunk 7 GKNITTING A DOCUMENT

semantics is used to load the file, when false, Ruby’s $LOAD_ PATH is searched to find the file
and it is 'require’d.

“~~{include <filename>, relative = <TRUE/FALSE>}

Bellow we include file ‘model.rb’, which is in the same directory of this blog.

This code uses R ‘caret’ package to split a dataset in a train and test sets. The ‘caret’ package
is a very important a useful package for doing Data Analysis, it has hundreds of functions for
all steps of the Data Analysis workflow. To use ‘caret’ just to split a dataset is like using the
proverbial cannon to kill the fly. We use it here only to show that integrating Ruby and R and
using even a very complex package as ‘caret’ is trivial with Galaaz.

A word of advice: the ‘caret’ package has lots of dependencies and installing it in a Linux system
is a time consuming operation. Method ‘R.install__and_ loads’ will install the package if it is not
already installed and can take a while.

**~{include model}

require 'galaaz'

Loads the R 'caret' package. If not present, installs it
R.install_and_loads 'caret'

class Model
attr_reader :data

attr_reader :test
attr_reader :train

* H

def initialize(data, percent_train:, seed: 123)

R.set__seed(seed)

@data = data

@percent_train = percent_train
Oseed = seed

end

H H

def partition(field)

train_index =
R.createDataPartition(@data.send(field), p: @percet_train,
list: false, times: 1)
@train = @datal[train_index, :alll

17

7.11 Documenting Gems

7 GKNITTING A DOCUMENT

@test = @datal[-train_index, :all]

end
end
mtcars = ~:mtcars
model = Model.new(mtcars, percent_train: 0.8)
model.partition(:mpg)
puts model.train.head
puts model.test.head
mpg cyl disp hp drat wt
Mazda RX4 21.0 6 160.0 110 3.90 2.620
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875
Valiant 18.1 6 225.0 105 2.76 3.460
Merc 280 19.2 6 167.6 123 3.92 3.440
Merc 280C 17.8 6 167.6 123 3.92 3.440
Merc 4508E 16.4 8 275.8 180 3.07 4.070
mpg cyl disp hp drat
Datsun 710 22.8 4 108.0 93 3.85 2
Hornet 4 Drive 21.4 6 258.0 110 3.08 3
Hornet Sportabout 18.7 8 360.0 175 3.15 3
Duster 360 14.3 8 360.0 245 3.21 3
Merc 240D 24.4 4 146.7 62 3.69 3
Merc 230 22.8 4 140.8 95 3.92 3

7.11 Documenting Gems

gs
16.
17.
20.
18.
18.
17.

wt

.320
.215
.440
.570
.190
.150

ec vs am gear carb
46 O 4
02
22
30
90
40

)
O o0 o0 o Rr R
RN RRN
X N NN

o

gsec
18.61
19.44
17.02
15.84
20.00
22.90

Vs am gear carb
1 4

= = O O
O O O O O -
oW ww
N NN - -

gKnit also allows developers to document and load files that are not in the same directory of

the “‘Rmd’ file.

Here is an example of loading the ‘find.rb’ file from TruffleRuby. In this example, relative is set
to FALSE, so Ruby will look for the file in its $LOAD_PATH, and the user does not need to no

it’s directory.

>~ {include find, relative = FALSE}

frozen_string literal: true

#

find.rb: the Find module for processing all files under a given directory.
#

#

The +Find+ module supports the top-down traversal of a set of file paths.
#

For example, to total the size of all files under your home directory,

ignoring anything in a "dot" directory (e.g. $HOME/.ssh):

#

require 'find'

#

total_size = 0

18

7.11 Documenting Gems

7 GKNITTING A DOCUMENT

H OH HF OH OH OH H H OH H HF H R

Find.find (ENV["HOME"]) do |pathl|

if FileTest.directory?(path)

if File.basename(path) [0] == 7.
Find.prune # Don't look any further into this directory.

else
next
end
else

total_size += FileTest.size(path)

end

end

module Find

#

Calls the associated block with the name of every file and directory listed
as arguments, then recursively on their subdirectories, and so on.

#

Returns an enumerator if no block is given.

#

See the +Find+ module documentation for an example.

#

def find(*paths, ignore_error: true) # :yield: path

block_given? or return enum_for(__method__, *paths, ignore_error: ignore_error)
fs_encoding = Encoding.find("filesystem")

paths.collect!{|d| raise Errno::ENOENT, d unless File.exist?(d); d.dupl}.each do |pathl|

path = path.to_path if path.respond_to? :to_path
enc = path.encoding == Encoding::US_ASCII 7 fs_encoding : path.encoding

ps = [pathl
while file = ps.shift
catch(:prune) do
yield file.dup.taint
begin
s = File.lstat(file)

rescue Errno::ENOENT, Errno
raise unless ignore_error

next

end

if s.directory? then
begin

: :EACCES, Errno::ENOTDIR, Errno::ELOOP, Errno::ENAMETO

fs = Dir.children(file, encoding: enc)
rescue Errno::ENOENT, Errno::EACCES, Errno::ENOTDIR, Errno::ELOOP, Errno::ENAME'
raise unless ignore_error

next
end
fs.sort!
fs.reverse_each {|f|

f = File.join(file, f)

19

7.12 Converting to PDF 7 GKNITTING A DOCUMENT

ps.unshift f.untaint
}
end
end
end
end
nil
end

Skips the current file or directory, restarting the loop with the next
entry. If the current file is a directory, that directory will not be
recursively entered. Meaningful only within the block associated with
Find::find.

See the +Find+ module documentation for an example.

H oH H H H K H H

def prune
throw :prune
end

module_function :find, :prune
end

7.12 Converting to PDF

One of the beauties of knitr is that the same input can be converted to many different outputs.
One very useful format, is, of course, PDF. In order to converted an R markdown file to PDF
it is necessary to have LaTeX installed on the system. We will not explain here how to install
LaTeX as there are plenty of documents on the web showing how to proceed.

gKnit comes with a simple LaTeX style file for gknitting this blog as a PDF document. Here is
the Yaml header to generate this blog in PDF format instead of HTML:

title: "gKnit - Ruby and R Knitting with Galaaz in GraalVM"
author: "Rodrigo Botafogo"
tags: [Galaaz, Ruby, R, TruffleRuby, FastR, GraalVM, knitr, gknit]
date: "29 October 2018"
output:
pdf_document:
includes:
in_header: ["../../sty/galaaz.sty"]
number_sections: yes

7.13 Template based documents generation
When a document is converted to PDF it follows a certain convertion template. We’ve seen above

the use of ‘galaaz.sty’ as a basic template to generate a PDF document. Using the ‘gknit-draft’
app that comes with Galaaz, the same .Rmd file can be compiled to different looking PDF

20

8 ACCESSING R VARIABLES

documents. Galaaz automatically loads the ‘rticles’ R package that comes with templates for
the following journals with the respective template name:

e ACM articles: acm_ article

o ACS articles: acs_ article

o AEA journal submissions: aea_ article

e AGU journal submissions: 7777

e AMS articles: ams_article

e American Statistical Association: asa_ article

e Biometrics articles: biometrics article

e Bulletin de PAMQ journal submissions: amq_ article

e (CTeX documents: ctex

e Elsevier journal submissions: elsevier_ article

o IEEE Transaction journal submissions: ieee_ article

o JSS articles: jss_ article

e MDPI journal submissions: mdpi_ article

o Monthly Notices of the Royal Astronomical Society articles: mnras_ article
e NNRAS journal submissions: nmras_ article

e PeerJ articles: peerj_ article

e Royal Society Open Science journal submissions: rsos_ article

« Royal Statistical Society: rss_ article

e Sage journal submissions: sage_ article

e Springer journal submissions: springer_ article

o Statistics in Medicine journal submissions: sim_ article

o Copernicus Publications journal submissions: copernicus_ article
e The R Journal articles: rjournal_ article

o Frontiers articles: 777

e Taylor & Francis articles: 77?7

o Bulletin De ’AMQ: amq_ article

o PLOS journal: plos_ article

e Proceedings of the National Academy of Sciences of the USA: pnas_ article

In order to create a document with one of those templates, use the following command:

gknit-draft --filename <my_document> --template <template> --package <package>
—--create_dir

So, in order to create a template for writing an R Journal, use:

gknit-draft --filename my_r_article --template rjournal_article --package rticles
—-create_dir

8 Accessing R variables

Galaaz allows Ruby to access variables created in R. For example, the ‘mtcars’ data set is
available in R and can be accessed from Ruby by using the ‘tilda’ operator followed by the
symbol for the variable, in this case ‘:mtcar’ In the code bellow method ‘outputs’ is used to
output the ‘mtcars’ data set nicely formatted in HTML by use of the ‘kable’ and ‘kable_ styling’
functions. Method ‘outputs’ is only available when used with ‘gknit’.

outputs (~:mtcars).kable.kable_styling

21

9 BASIC DATA TYPES

mpg disp | hp | drat wt | qgsec | vs | am | gear | carb
Mazda RX4 21.0 160.0 | 110 | 3.90 | 2.620 | 16.46
Mazda RX4 Wag 21.0 160.0 | 110 | 3.90 | 2.875 | 17.02
Datsun 710 22.8 108.0 | 93 | 3.85 | 2.320 | 18.61
Hornet 4 Drive 21.4 258.0 | 110 | 3.08 | 3.215 | 19.44
Hornet Sportabout | 18.7 360.0 | 175 | 3.15 | 3.440 | 17.02
Valiant 18.1 225.0 | 105 | 2.76 | 3.460 | 20.22
Duster 360 14.3 360.0 | 245 | 3.21 | 3.570 | 15.84
Merc 240D 24.4 146.7 | 62 | 3.69 | 3.190 | 20.00
Merc 230 22.8 140.8 | 95 | 3.92 | 3.150 | 22.90
Merc 280 19.2 167.6 | 123 | 3.92 | 3.440 | 18.30
Merc 280C 17.8 167.6 | 123 | 3.92 | 3.440 | 18.90
Merc 450SE 16.4 275.8 | 180 | 3.07 | 4.070 | 17.40
Merc 450SL 17.3 275.8 | 180 | 3.07 | 3.730 | 17.60
Merc 450SLC 15.2 275.8 | 180 | 3.07 | 3.780 | 18.00

Cadillac Fleetwood 10.4 472.0 | 205 | 2.93 | 5.250 | 17.98

Lincoln Continental | 10.4 460.0 | 215 | 3.00 | 5.424 | 17.82

Chrysler Imperial 14.7 440.0 | 230 | 3.23 | 5.345 | 17.42

¢
%oocnoo»p»m»&oooooooo»p»p»p»:xoooooooooooocncnuk%mc»oocn%cncnti
= OO ORION OO MFHERERIONONOONOIO|FEFEEREO =IO RO O
el Rl Rl Bl Bl B Bl K=l K =) K =) K] Nl RN N B Heoll Heol Heol Hen) Heol el Hen) Hen) Hen) Heol Neo) Neo) Nenl el -l Y I
| O O O O OV i | QO Q| QO QO QO I i | QO | QO Qo Q| Qo I i i | | QO WO Qo x| x|
N[OOI NN N DN AW W W R AN BN]]

Fiat 128 324 78.7 | 66 | 4.08 | 2.200 | 19.47
Honda Civic 30.4 75.7 | 52| 4.93 | 1.615 | 18.52
Toyota Corolla 33.9 71.1 | 65| 4.22 | 1.835 | 19.90
Toyota Corona 21.5 120.1 | 97 | 3.70 | 2.465 | 20.01
Dodge Challenger 15.5 318.0 | 150 | 2.76 | 3.520 | 16.87
AMC Javelin 15.2 304.0 | 150 | 3.15 | 3.435 | 17.30
Camaro 728 13.3 350.0 | 245 | 3.73 | 3.840 | 15.41
Pontiac Firebird 19.2 400.0 | 175 | 3.08 | 3.845 | 17.05
Fiat X1-9 27.3 79.0 | 66 | 4.08 | 1.935 | 18.90
Porsche 914-2 26.0 120.3 | 91 | 4.43 | 2.140 | 16.70
Lotus Europa 30.4 95.1 | 113 | 3.77 | 1.513 | 16.90
Ford Pantera L 15.8 351.0 | 264 | 4.22 | 3.170 | 14.50
Ferrari Dino 19.7 145.0 | 175 | 3.62 | 2.770 | 15.50
Maserati Bora 15.0 301.0 | 335 | 3.54 | 3.570 | 14.60
Volvo 142E 21.4 121.0 | 109 | 4.11 | 2.780 | 18.60

9 Basic Data Types

9.1 Vector

Vectors can be thought of as contiguous cells containing data. Cells are accessed through
indexing operations such as x[5]. Galaaz has six basic (‘atomic’) vector types: logical, integer,
real, complex, string (or character) and raw. The modes and storage modes for the different
vector types are listed in the following table.

typeof mode storage.mode
logical logical logical
integer numeric integer
double numeric double
complex complex comples

22

9.1 Vector 9 BASIC DATA TYPES

typeof mode storage.mode
character character character
raw raw raw

Single numbers, such as 4.2, and strings, such as “four point two” are still vectors, of length 1;
there are no more basic types. Vectors with length zero are possible (and useful). String vectors
have mode and storage mode “character”. A single element of a character vector is often referred
to as a character string.

To create a vector the ‘¢’ (concatenate) method from the ‘R’ module should be used:

vec = R.c(1, 2, 3)
puts vec

[1] 1 2 3

Lets take a look at the type, mode and storage.mode of our vector vec. In order to print this
out, we are creating a data frame ‘df” and printing it out. A data frame, for those not familiar
with it, is basically a table. Here we create the data frame and add the column name by passing
named parameters for each column, such as ‘typeof:’, ‘mode:’ and ’storage_ mode;. You should
also note here that the double underscore is converted to a’. So, when printed ’'storage mode’
will actually print as ‘storage.mode’.

Data frames will later be more carefully described. In R, the method used to create a data
frame is ‘data.frame’, in Galaaz we use ‘data__ frame’.

df = R.data__frame(typeof: vec.typeof, mode: vec.mode, storage__mode: vec.storage__mode)
puts df

typeof mode storage.mode
1 integer numeric integer

If you want to create a vector with floating point numbers, then we need at least one of the
vector’s element to be a float, such as 1.0. R users should be careful, since in R a number like ‘1’
is converted to float and to have an integer the R developer will use ‘11’ Galaaz follows normal
Ruby rules and the number 1 is an integer and 1.0 is a float.

vec = R.c(1.0, 2, 3)
puts vec
[11 1 2 3

df = R.data__frame(typeof: vec.typeof, mode: vec.mode, storage__mode: vec.storage__mode)
outputs df.kable.kable_styling

typeof | mode storage.mode

double | numeric | double

In this next example we try to create a vector with a variable ‘hello’ that has not yet being
defined. This will raise an exception that is printed out. We get two return blocks, the first
with a message explaining what went wrong and the second with the full backtrace of the error.

vec = R.c(1, hello, 5)

Message:

23

9.1 Vector 9 BASIC DATA TYPES
undefined local variable or method “hello' for #<RC:0x3d8 @out_list=nil>:RC
Message:

/home/rbotafogo/desenv/galaaz/lib/util/exec_ruby.rb:103:in “get_binding'

##
##
##
##
#i#
##
#it
##
#Hit
##
##
##
##
##
##
#it
##

/home/rbotafogo/desenv/galaaz/lib/util/exec_ruby.rb:102:in “eval'
/home/rbotafogo/desenv/galaaz/lib/util/exec_ruby.rb:102:in ~exec_ruby'
/home/rbotafogo/desenv/galaaz/lib/gknit/knitr_engine.rb:650:in “block in initialize'
/home/rbotafogo/desenv/galaaz/1ib/R_interface/ruby_callback.rb:77:in ~call'
/home/rbotafogo/desenv/galaaz/1lib/R_interface/ruby_callback.rb:77:in ~callback'
(eval):3:in “function(...) {\n rb_method(...)'

unknown.r:1:in “in_dir'

unknown.r:1:in “block_exec'
/usr/local/lib/graalvm-ce-javal1-20.0.0/languages/R/library/knitr/R/block.R:92:in ~call_l
/usr/local/lib/graalvm-ce-javall-20.0.0/languages/R/library/knitr/R/block.R:6:in ~proces
/usr/local/lib/graalvm-ce-javal1-20.0.0/languages/R/library/knitr/R/block.R:3:in “<no so
unknown.r:1:in “withCallingHandlers'

unknown.r:1:in “process_file'

unknown.r:1:in “<no source>'

unknown.r:1:in “<no source>'

<REPL>:4:in ~<repl wrapper>'

<REPL>:1

Here is a vector with logical values

vec = R.c(true, true, false, false, true)
puts vec

##

(1] TRUE TRUE FALSE FALSE TRUE

9.1.1 Combining Vectors

The ‘¢’ functions used to create vectors can also be used to combine two vectors:

vecl = R.c(10.0, 20.0, 30.0)
vec2 = R.c(4.0, 5.0, 6.0)
vec = R.c(vecl, vec2)

puts vec

#it

[1] 10 2030 4 5 6

In galaaz, methods can be chainned (somewhat like the pipe operator in R %>%, but more
generic). In this next example, method ‘c’ is chainned after ‘vecl’. This also looks like ‘¢’ is a
method of the vector, but in reallity, this is actually closer to the pipe operator. When Galaaz
identifies that ‘c’ is not a method of ‘vec’ it actually tries to call ‘R.c’ with ‘vecl’ as the first
argument concatenated with all the other available arguments. The code bellow is automatically
converted to the code above.

vec

= vecl.c(vec2)

puts vec

##

[1] 10 2030 4 5 6

24

9.1 Vector 9 BASIC DATA TYPES

9.1.2 Vector Arithmetic

Arithmetic operations on vectors are performed element by element:

puts vecl + vec2

[1] 14 25 36

puts vecl * 5

[1] 50 100 150

When vectors have different length, a recycling rule is applied to the shorter vector:

vec3 = R.c(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)
puts vec4 = vecl + vec3

[1] 11 22 33 14 25 36 17 28 39

9.1.3 Vector Indexing

Vectors can be indexed by using the ‘[]” operator:

puts vec4[3]

[1] 33

We can also index a vector with another vector. For example, in the code bellow, we take
elements 1, 3, 5, and 7 from vec3:

puts vec4[R.c(1, 3, 5, 7)]

[1] 11 33 25 17

Repeating an index and having indices out of order is valid code:
puts vec4[R.c(1, 3, 3, 1)]

[1] 11 33 33 11

It is also possible to index a vector with a negative number or negative vector. In these cases
the indexed values are not returned:

puts vec4[-3]
puts vec4[-R.c(1, 3, 5, 7)]

[1] 11 22 14 25 36 17 28 39
[1] 22 14 36 28 39

If an index is out of range, a missing value (NA) will be reported.

puts vec4[30]

[1] NA

It is also possible to index a vector by range:

puts vec4[(2..5)]

[1] 22 33 14 25

25

9.2 Matrix 9 BASIC DATA TYPES

Elements in a vector can be named using the ‘names’ attribute of a vector:

full_name = R.c("Rodrigo", "A", "Botafogo")
full _name.names = R.c("First", "Middle", "Last")
puts full_name

First Middle Last
"Rodrigo" "A" "Botafogo"
Or it can also be named by using the ‘¢’ function with named paramenters:

full_name = R.c(First: "Rodrigo", Middle: "A", Last: "Botafogo")
puts full_name

#Hit First Middle Last
"Rodrigo" "A" "Botafogo"

9.1.4 Extracting Native Ruby Types from a Vector

Vectors created with ‘R.c’ are of class R::Vector. You might have noticed that when indexing
a vector, a new vector is returned, even if this vector has one single element. In order to use
R::Vector with other ruby classes it might be necessary to extract the actual Ruby native type
from the vector. In order to do this extraction the ‘>>’ operator is used.

puts vecéd
puts vecd >> 0
puts vecd >> 4

[1] 11 22 33 14 25 36 17 28 39
11.0
25.0

Note that indexing with ‘>>’ starts at 0 and not at 1, also, we cannot do negative indexing.

9.2 Matrix

A matrix is a collection of elements organized as a two dimensional table. A matrix can be
created by the ‘matrix’ function:

mat = R.matrix(R.c(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0),

nrow: 3,
ncol: 3)
puts mat
[,1]1 [,21 [,3]

[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

Note that matrices data is organized by column first. It is possible to organize the matrix
memory by row first passing an extra argument to the ‘matrix’ function:

mat_row = R.matrix(R.c(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0),
nrow: 3,

26

9.2 Matrix 9 BASIC DATA TYPES

ncol: 3,
byrow: true)

puts mat_row

#it (,1] [,2]1 [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

9.2.1 Indexing a Matrix

A matrix can be indexed by [row, column)]:

puts mat_row([1, 1]
puts mat_row[2, 3]

[1] 1
[1] 6

It is possible to index an entire row or column with the ‘:all’ keyword

puts mat_rowl[1l, :all]
puts mat_row[:all, 2]

[1]1 1 2 3
[1] 2 5 8

Indexing with a vector is also possible for matrices. In the following example we want rows 1
and 3 and columns 2 and 3 building a 2 x 2 matrix.

puts mat_row[R.c(1, 3), R.c(2, 3)]

[,11 [,2]
[1,] 2 3
##H [2,] 8 9

Matrices can be combined with functions ‘rbind’:

puts mat_row.rbind(mat)

[,11 [,2]1 [,3]
[1,] 1 2
[2,]
[3,]
[4,]
[5,]
[6,]

and ‘cbind’:

W N = N
O 01 00 O
© 00 N © O W

puts mat_row.cbind(mat)

(,11 [,21 [,3] [,4] [,5] [,6]
[1,] 1 2 3 1 4 7
[2,] 4 5 6 2 5 8

27

9.3 List 9 BASIC DATA TYPES

[3,] 7 8 9 3 6 9

9.3 List

A list is a data structure that can contain sublists of different types, while vector and matrix
can only hold one type of element.

R.c(1.0, 2.0, 3.0)

strs = R.c("a", "b", "c", "d")

bool = R.c(true, true, false)

1st = R.list(nums: nums, strs: strs, bool: bool)
puts 1lst

nums

$nums

[1] 1 2 3

#i#t

$strs

[1] "a" "b" "c" "d"
##

$bool

[1] TRUE TRUE FALSE

Note that ‘Ist’ elements are named elements.

9.3.1 List Indexing

List indexing, also called slicing, is done using the ‘[]” operator and the ‘[[]]" operator. Let’s first
start with the ‘[]” operator. The list above has three sublist indexing with ‘[]” will return one of
the sublists.

puts 1lst[1]
$nums
[1]1 1 2 3

Note that when using ‘[]” a new list is returned. When using the double square bracket operator
the value returned is the actual element of the list in the given position and not a slice of the
original list

puts 1lst[[1]]
[1] 1 2 3

When elements are named, as dones with Ist, indexing can be done by name:

puts 1lst[['bool']]1[[1]1] >> O

true

In this example, first the ‘bool’ element of the list was extracted, not as a list, but as a vector,
then the first element of the vector was extracted (note that vectors also accept the ‘[[]]” operator)
and then the vector was indexed by its first element, extracting the native Ruby type.

28

9.4 Data Frame

9 BASIC DATA TYPES

9.4 Data Frame

A data frame is a table like structure in which each column has the same number of rows. Data
frames are the basic structure for storing data for data analysis. We have already seen a data
frame previously when we accessed variable ‘~:mtcars’. In order to create a data frame, function

'data___ frame’ is used:

df = R.data__frame(

year: R.c(2010, 2011, 2012),

income: R.c(1000.0, 1500.0, 2000.0))

puts df

year income

1 2010 1000
2 2011 1500
3 2012 2000

9.4.1 Data Frame Indexing

A data frame can be indexed the same way as a matrix, by using ‘[row, column]’, where row and
column can either be a numeric or the name of the row or column

puts (~:mtcars).head
puts (~:mtcars)[1, 2]

puts (~:mtcars) ['Datsun 710', 'mpg']

#i# mpg cyl disp
Mazda RX4 21.0 6 160
Mazda RX4 Wag 21.0 6 160
Datsun 710 22.8 4 108
Hornet 4 Drive 21.4 6 258
Hornet Sportabout 18.7 8 360
Valiant 18.1 6 225
[1] 6

[1] 22.8

Extracting a column from a data frame as a vector can be done by using the double square

bracket operator:

puts (~:mtcars) [['mpg']]

[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2
[15] 10.4 10.4 14.7 32.4 30.4 33.9 21.5 156.5 15.2 13.3 19.2 27.3 26.0 30.4
[29] 15.8 19.7 15.0 21.4

A data frame column can also be accessed as if it were an instance variable of the data frame:

puts (~:mtcars).mpg

[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2
[15] 10.4 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4
[29] 15.8 19.7 15.0 21.4

hp drat
110 3.90
110 3.90
93 3.85
110 3.08
175 3.15
105 2.76

29

W wwNNDN

wt

.620
.875
.320
.215
.440
.460

gsec vs am gear carb

16.
17.
18.
19.
17.
20.

46
02
61
44
02
22

0

, O L, B, O

O OO K1 =

4

W W w b

N R R DD

9.4 Data Frame 9 BASIC DATA TYPES

Slicing a data frame can be done by indexing it with a vector (we use ‘head’ to reduce the
output):

puts (~:mtcars) [R.c('mpg', 'hp')].head

#it mpg hp
Mazda RX4 21.0 110
Mazda RX4 Wag 21.0 110
Datsun 710 22.8 93
Hornet 4 Drive 21.4 110
Hornet Sportabout 18.7 175
Valiant 18.1 105

A row slice can be obtained by indexing by row and using the ‘:all’ keyword for the column:

puts (~:mtcars)[R.c('Datsun 710', 'Camaro Z28'), :all]

mpg cyl disp hp drat wt qgsec vs am gear carb
Datsun 710 22.8 4 108 93 3.85 2.32 18.61 1 1 4 1
Camaro Z28 13.3 8 350 245 3.73 3.84 15.41 0 O 3 4

Finally, a data frame can also be indexed with a logical vector. In this next example, the ‘am’
column of :mtcars is compared with 0 (with method ‘eq’). When ‘am’ is equal to 0 the car is
automatic. So, by doing ‘(~:mtcars).am.eq 0’ a logical vector is created with ‘true’ whenever
‘am’ is 0 and ‘false’ otherwise.

obtain a wvector with 'true' for cars with automatic transmission
automatic = (~:mtcars).am.eq O
puts automatic

[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[12] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE
[23] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Using this logical vector, the data frame is indexed, returning a new data frame in which all
cars have automatic transmission.

slice the data frame by using this vector
puts (~:mtcars) [automatic, :all]

mpg cyl disp hp drat wt qgsec vs am gear carb
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 O 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 O 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 O 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 O 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 O 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 O 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 O 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 O 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 O O 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 O 3 3
Merc 4508LC 15.2 8 275.8 180 3.07 3.780 18.00 0 O 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 O 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 O 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 O 3 4
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 O 3 1

30

10 WRITING EXPRESSIONS IN GALAAZ

Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 O O 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 O O 3 2
Camaro 728 13.3 8 350.0 245 3.73 3.840 15.41 O O 3 4

0 O 3 2

Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05

10 Writing Expressions in Galaaz

Galaaz extends Ruby to work with complex expressions, similar to R’s expressions build with
‘quote’ (base R) or ‘quo’ (tidyverse). Let’s take a look at some of those expressions.

10.1 Expressions from operators

The code bellow creates an expression summing two symbols
expl = :a + :b
puts expl

a + b

We can build any complex mathematical expression

exp2 = (:ta + :b) * 2.0 + :c **x 2 / :z
puts exp2

(a + b) * 2 + c"2L/z

It is also possible to use inequality operators in building expressions
exp3 = (:a + :b) >= :z
puts exp3

a + b >= z

Galaaz provides both symbolic representations for operators, such as (>, <, |=) as functional
notation for those operators such as (.gt, .ge, etc.). So the same expression written above can
also be written as

expd = (:a + :b).ge :z
puts exp4
a + b >= z

Two type of expression can only be created with the functional representation of the operators,
those are expressions involving ‘==, and ‘=" In order to write an expression involving ‘==" we
need to use the method ‘eq’ and for ‘=" we need the function ‘assign’

expb = (:a + :b).eq :z
puts expb

a + b == z

expb = :y.assign :a + :b
puts exp6

y <-a + b

31

10.2 Expressions with R methods 10 WRITING EXPRESSIONS IN GALAAZ

In general we think that using the functional notation is preferable to using the symbolic notation
as otherwise, we end up writing invalid expressions such as

exp_wrong = (:a + :b) == :z
puts exp_wrong

and it might be difficult to understand what is going on here. The problem lies with the fact
that when using ‘==’ we are comparing expression (:a + :b) to expression :z with ‘==" When
the comparison is executed, the system tries to evaluate :a, :b and :z, and those symbols at this
time are not bound to anything and we get a “object ‘a’ not found” message. If we only use
functional notation, this type of error will not occur.

10.2 Expressions with R methods

It is often necessary to create an expression that uses a method or function. For instance, in
mathematics, it’s quite natural to write an expressin such as y = sin(x). In this case, the ‘sin’
function is part of the expression and should not immediately executed. Now, let’s say that ‘x’
is an angle of 45° and we acttually want our expression to be y = 0.850.... When we want the
function to be part of the expression, we call the function preceeding it by the letter E, such as
‘E.sin(x)’

exp7 = :y.assign E.sin(:x)
puts exp7

y <- sin(x)

Expressions can also be written using *’ notation:
exp8 = :y.assign :x.sin
puts exp8

y <- sin(x)

When a function has multiple arguments, the first one can be used before the *:
exp9 = :x.c(:y)

puts exp9

c(x, y)

10.3 Evaluating an Expression

Expressions can be evaluated by calling function ‘eval’ with a binding. A binding can be provided
with a list:

exp = (ta + :b) * 2.0 + :c **x 2 / :z
puts exp.eval(R.list(a: 10, b: 20, c: 30, z: 40))

[1] 82.5

. with a data frame:
df = R.data__frame(
a: R.c(1, 2, 3),
b: R.c(10, 20, 30),
c: R.c(100, 200, 300),

32

11 MANIPULATING DATA

z: R.c(1000, 2000, 3000))
puts exp.eval(df)

[1] 32 64 96

11 Manipulating Data

One of the major benefits of Galaaz is to bring strong data manipulation to Ruby. The following
examples were extracted from Hardley’s “R for Data Science” (https://r4ds.had.co.nz/). This is a
highly recommended book for those not already familiar with the ‘tidyverse’ style of programming
in R. In the sections to follow, we will limit ourselves to convert the R code to Galaaz.

For these examples, we will investigate the nycflights13 data set available on the package by the
same name. We use function ‘R.install _and_loads’ that checks if the library is available locally.
and if not, installs it. This data frame contains all 336,776 flights that departed from New York
City in 2013. The data comes from the US Bureau of Transportation Statistics.

Dplyr uses ‘tibbles’ in place of data frames; unfortunately, tibbles do not print yet properly in
Galaaz due to a bug in fastR. In order to print a tibble we need to convert it to a data frame
using the ’as_data__ frame’ method.

R.install_and_loads('nycflights13"')

R.library('dplyr')

flights = ~:flights
puts flights.head

A tibble: 6 x 19
#it year month day dep_time sched_dep_time dep_delay arr_time

#i# <int> <int> <int> <int> <int> <dbl> <int>

1 2013 1 1 517 515 2 830

2 2013 1 1 533 529 4 850

3 2013 1 1 542 540 2 923

4 2013 1 1 544 545 -1 1004

5 2013 1 1 554 600 -6 812

6 2013 1 1 554 558 -4 740

... with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
##t # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,

time_hour <dttm>

11.1 Filtering rows with Filter

In this example we filter the flights data set by giving to the filter function two expressions: the
first :month.eq 1

puts flights.filter((:month.eq 1), (:day.eq 1)).head

A tibble: 6 x 19
#Hit year month day dep_time sched_dep_time dep_delay arr_time
<int> <int> <int> <int> <int> <dbl> <int>

33

https://r4ds.had.co.nz/

11.2 Logical Operators 11 MANIPULATING DATA

1 2013 1 1 517 515 2 830

2 2013 1 1 533 529 4 850

3 2013 1 1 542 540 2 923

4 2013 1 1 544 545 -1 1004

5 2013 1 1 554 600 -6 812

6 2013 1 1 554 558 -4 740

##t # . with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,

##t # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,

#it # time_hour <dttm>

11.2 Logical Operators

All flights that departed in November of December
puts flights.filter((:month.eq 11) | (:month.eq 12)).head

A tibble: 6 x 19
#it year month day dep_time sched_dep_time dep_delay arr_time

#i# <int> <int> <int> <int> <int> <dbl> <int>

1 2013 11 1 5 2359 6 352

2 2013 11 1 35 2250 105 123

3 2013 11 1 455 500 -5 641

4 2013 11 1 539 545 -6 856

5 2013 11 1 542 545 -3 831

6 2013 11 1 549 600 -11 912

H#i# # . with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
#it # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,

time_hour <dttm>

The same as above, but using the ‘in’ operator. In R, it is possible to define many operators by
doing %%. The %in% operator checks if a value is in a vector. In order to use those operators
from Galaaz the ’._ ‘method is used, where the first argument is the operator’s symbol, in this
case’:in’ and the second argument is the vector:

puts flights.filter(:month._ :in, R.c(11, 12)) .head

A tibble: 6 x 19
year month day dep_time sched_dep_time dep_delay arr_time

#it <int> <int> <int> <int> <int> <dbl> <int>

1 2013 11 1 5 2359 6 352

2 2013 11 1 35 2250 105 123

3 2013 11 1 455 500 -5 641

4 2013 11 1 539 545 -6 856

5 2013 11 1 542 545 -3 831

6 2013 11 1 549 600 -11 912

. with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
##t # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
##t # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,

##t # time_hour <dttm>

34

11.3 Filtering with NA (Not Available) 11 MANIPULATING DATA

11.3 Filtering with NA (Not Available)

Let’s first create a ‘tibble’ with a Not Available value (R::NA). Tibbles are a modern version of
a data frame and operate very similarly to one. It differs in how it outputs the values and the
result of some subsetting operations that are more consistent than what is obtained from data
frame.

df = R.tibble(x: R.c(1, R::NA, 3))
puts df

A tibble: 3 x 1

#it X
<int>
#H# 1 1
2

3 3

Now filtering by :x > 1 shows all lines that satisfy this condition, where the row with R:NA
does not.

puts df .filter(:x > 1)

A tibble: 1 x 1

X
<int>
1 3

Y

To match an NA use method ’is na

puts df.filter((:x.is__na) | (:x > 1))

A tibble: 2 x 1

#it X
<int>
1

2 3

11.4 Arrange Rows with arrange

Arrange reorders the rows of a data frame by the given arguments.

puts flights.arrange(:year, :month, :day).head

A tibble: 6 x 19
year month day dep_time sched_dep_time dep_delay arr_time

<int> <int> <int> <int> <int> <dbl> <int>

1 2013 1 1 517 515 2 830

2 2013 1 1 533 529 4 850

3 2013 1 1 542 540 2 923

4 2013 1 1 544 545 -1 1004

5 2013 1 1 554 600 -6 812

6 2013 1 1 554 558 -4 740

. with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,

carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,

35

11.5 Selecting columns

11

MANIPULATING DATA

##

#

time_hour <dttm>

To arrange in descending order, use function ‘desc’

puts flights.arrange(:dep_delay.desc).head

A tibble:

##
#i#
##
#it
##
##
##
##
##
##
##
##

11.5 Selecting columns

H H H HF OO WD

6

year month
<int> <int>

2013
2013
2013
2013
2013
2013

~N O = O

4

x 19

day dep_time sched_dep_time dep_delay arr_time

<int>
9

15

10

20

22

10

<int>
641
1432
1121
1139
845
1100

. with 12 more variables:
carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,

time_hour <dttm>

<int>
900
1935
1635
1845
1600
1900

<dbl>
1301
1137
1126
1014
1005
960

<int>
1242
1607
1239
1457
1044
1342

sched_arr_time <int>, arr_delay <dbl>,

To select specific columns from a dataset we use function ‘select’:

puts flights.select(:year, :month, :day).head

A tibble:

##
##
##
##
##
##
##
#it

Ok WN -

6

year month
<int> <int>

2013
2013
2013
2013
2013
2013

N

x 3
day
<int>
1

1
1
1
1
1

It is also possible to select column in a given range

puts flights.select(:year.up_to :day).head

A tibble:

#it
##
#Hit
##
##
##
##
##

Select all columns that start with a given name sequence

puts flights.select(E.starts_with('arr')).head

A tibble:

DOk WN -

6

year month
<int> <int>

2013
2013
2013
2013
2013
2013

N T

6

x 3
day
<int>
1

1
1
1
1
1

X 2

36

11.6 Add variables to a dataframe with ‘mutate’ 11 MANIPULATING DATA

arr_time arr_delay

<int> <dbl>
1 830 11
2 850 20
3 923 33
4 1004 -18
5 812 -25
6 740 12

Other functions that can be used:
o ends_with(“xyz”): matches names that end with “xyz”.
 contains(“ijk”): matches names that contain “ijk”.

o matches(“(.)\1”): selects variables that match a regular expression. This one matches any
variables that contain repeated characters.

o num_range(“x”, (1..3)): matches x1, x2 and x3

A helper function that comes in handy when we just want to rearrange column order is
‘Everything’:

puts flights.select(:year, :month, :day, E.everything).head

A tibble: 6 x 19
year month day dep_time sched_dep_time dep_delay arr_time

<int> <int> <int> <int> <int> <dbl> <int>

1 2013 1 1 517 515 2 830

2 2013 1 1 533 529 4 850

3 2013 1 1 542 540 2 923

4 2013 1 1 544 545 -1 1004

5 2013 1 1 554 600 -6 812

6 2013 1 1 554 558 -4 740

... with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,

time_hour <dttm>

11.6 Add variables to a dataframe with ‘mutate’

flights_sm = flights.
select((:year.up_to :day),
E.ends_with('delay'),
:distance,
rair_time)

puts flights_sm.head

A tibble: 6 x 7

year month day dep_delay arr_delay distance air_time
<int> <int> <int> <dbl> <dbl> <dbl> <dbl>
1 2013 1 1 2 11 1400 227
2 2013 1 1 4 20 1416 227

37

11.7 Summarising data 11 MANIPULATING DATA

3 2013 1 1 2 33 1089 160
4 2013 1 1 -1 -18 1576 183
5 2013 1 1 -6 -25 762 116
6 2013 1 1 -4 12 719 150

flights_sm = flights_sm.
mutate(gain: :dep_delay - :arr_delay,
speed: :distance / :air_time * 60)
puts flights_sm.head

A tibble: 6 x 9

year month day dep_delay arr_delay distance air_time gain speed
<int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2013 1 1 2 11 1400 227 -9 370.
2 2013 1 1 4 20 1416 227 -16 374.
3 2013 1 1 2 33 1089 160 -31 408.
4 2013 1 1 -1 -18 1576 183 17 517.
5 2013 1 1 -6 -25 762 116 19 394.
6 2013 1 1 -4 12 719 150 -16 288.

11.7 Summarising data

Function ‘summarise’ calculates summaries for the data frame. When no ‘group_ by’ is used a
single value is obtained from the data frame:

puts flights.summarise(delay: E.mean(:dep_delay, na__rm: true))

A tibble: 1 x 1

delay
<dbl>
1 12.6

When a data frame is grouped with ‘group_ by’ summaries apply to the given group:

by_day = flights.group_by(:year, :month, :day)
puts by_day.summarise(delay: :dep_delay.mean(na__rm: true)).head

A tibble: 6 x 4
Groups: year, month [1]
#it year month day delay

* <int> <int> <int> <dbl>
1 2013 1 1 11.5
2 2013 1 2 13.9
3 2013 1 3 11.0
4 2013 1 4 8.95
5 2013 1 5 5.73
6 2013 1 6 7.15

Next we put many operations together by pipping them one after the other:
delays = flights.
group_by(:dest).
summarise (
count: E.n,

38

12 USING DATA TABLE

dist: :distance.mean(na__rm: true),
delay: :arr_delay.mean(na__rm: true)).
filter(:count > 20, :dest != "NHL")

puts delays.head

A tibble: 6 x 4
dest count dist delay
<chr> <int> <dbl> <dbl>

1 ABQ 254 1826 4.38
2 ACK 265 199 4.85
3 ALB 439 143 14.4
4 ATL 17215 757. 11.3
5 AUS 2439 1514. 6.02
6 AVL 275 584. 8.00

12 Using Data Table

R.library('data.table')
R.install and loads('curl')

input = "https://raw.githubusercontent.com/Rdatatable/data.table/master/vignettes/flightsl4
flights = R.fread(input)

puts flights

puts flights.dim

year month day dep_delay arr_delay carrier origin dest air_time
1: 2014 1 1 14 13 AA JFK LAX 359
#H 2: 2014 1 1 -3 13 AA JFK LAX 363
3: 2014 1 1 2 9 AA JFK LAX 351
#H 4: 2014 1 1 -8 -26 AA LGA PBI 157
#H# 5: 2014 1 1 2 1 AA JFK LAX 350
#H -

253312: 2014 10 31 1 -30 UA LGA IAH 201
253313: 2014 10 31 -5 -14 UA EWR IAH 189
253314: 2014 10 31 -8 16 MQ LGA RDU 83
253315: 2014 10 31 -4 15 MQ LGA DTW 75
253316: 2014 10 31 -5 1 MQ LGA SDF 110
#i#t distance hour

1: 2475 9

2: 2475 11

#H 3: 2475 19

#H# 4: 1035 7

5: 2475 13

#H# i

253312: 1416 14

253313: 1400 8

253314: 431 11

253315: 502 11

39

12 USING DATA TABLE

253316: 659 8
[1] 253316 11

data_table = R.data__table(
ID: R-C(“b”,”b” s IIbll,llaII s IIall,llcll) s

a: (1..6),
b: (7..12),
c: (13..18)

puts data_table
puts data_table.ID

#i# IDa b c
1: b1 7 13
2: b 2 8 14
3: b 3 9 15
4: a 4 10 16
5: a b 11 17
6: c 6 12 18

[1] llbll Ilbll llbll IIaII lla" "C"

subset rows in %
ans = flights[(:origin.eq "JFK") & (:month.eq 6)]
puts ans.head

Get the first two rows from flights.

ans = flights[(1..2)]
puts ans

Sort flights first by column origin in ascending order, and then by dest in descending or

ans = flights[E.order(:origin, -(:dest))]
puts ans.head

year month day dep_delay arr_delay carrier origin dest air_time
1: 2014 6 1 -9 -5 AA JFK LAX 324
2: 2014 6 1 -10 -13 AA JFK LAX 329
3: 2014 6 1 18 -1 AA JFK LAX 326
4. 2014 6 1 -6 -16 AA JFK LAX 320
5: 2014 6 1 -4 -45 AA JFK LAX 326
6: 2014 6 1 -6 -23 AA JFK LAX 329
Hit distance hour
1: 2475 8
2: 2475 12
3: 2475 7
4: 2475 10
5: 2475 18
6: 2475 14
#it year month day dep_delay arr_delay carrier origin dest air_time
1: 2014 1 1 14 13 AA JFK LAX 359

40

13 GRAPHICS IN GALAAZ

2: 2014 1 1 -3 13 AA JFK LAX 363
distance hour
1: 2475 9
2: 2475 11

Select column(s) in j
select arr_delay column, but return it as a vector.

ans = flights[:all, :arr_delay]
puts ans.head

Select arr_delay column, but return as a data.table instead.

ans = flights[:all, :arr_delay.list]
puts ans.head

ans = flights[:all, E.list(:arr_delay, :dep_delay)]

[1] 13 13 9 -26 1 0
arr_delay

1: 13
2: 13
3: 9
4: -26
5: 1
6:

13 Graphics in Galaaz

Creating graphics in Galaaz is quite easy, as it can use all the power of ggplot2. There are many
resources in the web that teaches ggplot, so here we give a quick example of ggplot integration
with Ruby. We continue to use the :mtcars dataset and we will plot a diverging bar plot, showing
cars that have ‘above’ or ‘below’ gas consuption. Let’s first prepare the data frame with the
necessary data:

copy the R wariable :mtcars to the Ruby mtcars wvariable
mtcars = ~:mtcars

create a mew column 'car_mname' to store the car mames so that it can be
used for plotting. The 'rownames' of the data frame cannot be used as

data for plotting

mtcars.car_name = R.rownames(:mtcars)

compute normalized mpg and add 1t to a new column called mpg_=z

Note that the mean wvalue for mpg can be obtained by calling the 'mean’
function on the wvector 'mtcars.mpg'. The same with the standard

deviation 'sd'. The wvector is then rounded to two digits with 'round 2'
mtcars.mpg_z = ((mtcars.mpg - mtcars.mpg.mean)/mtcars.mpg.sd).round 2

create a new column 'mpg_type'. Function 'ifelse' is a vectorized function
that looks at every element of the mpg_z wvector and if the wvalue is below

41

13 GRAPHICS IN GALAAZ

0, returns 'below', otherwise returns 'above'
mtcars.mpg_type = (mtcars.mpg_z < 0).ifelse("below", "above")

order the mtcar data set by the mpg_z wvector from smaler to larger values
mtcars = mtcars[mtcars.mpg_z.order, :all]

convert the car_name column to a factor to retain sorted order in plot
mtcars.car_name = mtcars.car_name.factor levels: mtcars.car_name

let's look at the final data frame
puts mtcars.head

mpg cyl disp hp drat wt gsec vs am gear carb
Cadillac Fleetwood 10.4 8 472 205 2.93 5.250 17.98 0 O 3 4
Lincoln Continental 10.4 8 460 215 3.00 5.424 17.82 0 O 3 4
Camaro Z28 13.3 8 350 245 3.73 3.840 15.41 0 O 3 4
Duster 360 14.3 8 360 245 3.21 3.570 15.84 0 O 3 4
Chrysler Imperial 14.7 8 440 230 3.23 5.345 17.42 0 O 3 4
Maserati Bora 15.0 8 301 335 3.54 3.570 14.60 0 1 5 8
car_name mpg_z mpg_type
Cadillac Fleetwood Cadillac Fleetwood -1.61 below
Lincoln Continental Lincoln Continental -1.61 below
Camaro Z28 Camaro 728 -1.13 below
Duster 360 Duster 360 -0.96 below
Chrysler Imperial Chrysler Imperial -0.89 below
Maserati Bora Maserati Bora -0.84 below

Now, lets plot the diverging bar plot. When using gKnit, there is no need to call ‘R.awt’ to
create a plotting device, since gKnit does take care of it. Galaaz provides integration with ggplot.
The interested reader should check online for more information on ggplot, since it is outside the
scope of this manual describing how ggplot works. We give here but a brief description on how
this plot is generated.

geplot implements the ‘grammar of graphics’ In this approach, plots are build by adding layers
to the plot. On the first layer we describe what we want on the ‘x” and ‘y’ axis of the plot. In
this case, we have ‘car_name’ on the ‘x’ axis and ‘mpg_z’ on the ‘y’ axis. Then the type of
graph is specified by adding ‘geom_ bar’ (for a bar graph). We specify that our bars should be
filled using ‘mpg_ type’, which is either ‘above’ or ‘bellow’ giving then two colours for filling. On
the next layer we specify the labels for the graph, then we add the title and subtitle. Finally, in
a bar chart usually bars go on the vertical direction, but in this graph we want the bars to be
horizontally layed so we add ‘coord_ flip’.

require 'ggplot'

puts mtcars.ggplot(E.aes(x: :car_name, y: :mpg_z, label: :mpg _z)) +
R.geom_bar(E.aes(fill: :mpg_type), stat: 'identity', width: 0.5) +
R.scale_fill_manual (name: 'Mileage’,

labels: R.c('Above Average', 'Below Average'),
values: R.c('above': '#00ba38', 'below': '#f8766d4d')) +
R.labs(subtitle: "Normalised mileage from 'mtcars'",
title: "Diverging Bars") +
R.coord_f1lip

42

14 CODING WITH TIDYVERSE

Diverging Bars

Mormalised mileage from 'mtcars'

Toyota Corolla 4
Fiat 128 -

Lotus Europa o
Honda Civic

Fiat X1-9 <

Porsche 914-2 4
Merc 2400 -

Merc 230 4

Datsun 710+
Toyota Corona -
Volvo 142E -
Hornet 4 Drive 4
Mazda RX4 Waqg 4
Mazda RXd -
Ferrari Dino 4
Pontiac Firebird 4
Merc 280 4

Hornet Sportabout 4
Waliant -

Merc 280C 4

Merc 4505 -

Merc 4505E -

Ford Pantera L+
Dodge Challenger -
AMC Javélin

Merc 4505LC A
Maserati Bora -
Chrysler Imperial -
Duster 360 4

) Camaro Z28 4
Lincoln Continental 4
Cadillac Fleetwood 4

Mileage

. Above Average
. Below &verage

car_name

—
L]
— 4
[E8]

mpg_2

14 Coding with Tidyverse

In R, and when coding with ‘tidyverse’, arguments to a function are usually not referencially
transparent. That is, you can’t replace a value with a seemingly equivalent object that you’ve
defined elsewhere. To see the problem, let’s first define a data frame:

df = R.data__frame(x: (1..3), y: (3..1))
puts df

H#

H* H ®
H* H =
w N -
W N~ N
RN W<

and now, let’s look at this code:

my_var <- X
filter(df, my_var == 1)

It generates the following error: “object ‘x’ not found.

However, in Galaaz, arguments are referencially transparent as can be seen by the code bellow.
Note initally that ‘my_ var = :x’ will not give the error “object ‘x’ not found” since :x’ is treated
as an expression and assigned to my_ var. Then when doing (my_ var.eq 1), my_ var is a variable
that resolves to “:x’ and it becomes equivalent to (:x.eq 1) which is what we want.

my_var = :x

puts df.filter(my_var.eq 1)

43

14.1 Writing a function that applies to different data sets14 CODING WITH TIDYVERSE

#*t xy
113

As stated by Hardley

dplyr code is ambiguous. Depending on what variables are defined where, filter(df, x
==y) could be equivalent to any of:

df [df$x == df$y,]
df [df$x ==y,]

df [x == df$y,]
df[x ==y,]

In galaaz this ambiguity does not exist, filter(df, x.eq y) is not a valid expression as expressions
are build with symbols. In doing filter(df, :x.eq y) we are looking for elements of the ‘x’ column
that are equal to a previously defined y variable. Finally in filter(df, :x.eq :y) we are looking for
elements in which the ‘x’ column value is equal to the ‘y’ column value. This can be seen in the
following two chunks of code:

y=1

x =2

looking for values where the 'z' column ts equal to the '
puts df.filter(:x.eq :y)

y' column

#* Xy
122

looking for values where the 'z' column ts equal to the 'y' wariable
in this case, the number 1
puts df.filter(:x.eq y)

##

Xy
11 3

14.1 Writing a function that applies to different data sets

Let’s suppose that we want to write a function that receives as the first argument a data frame
and as second argument an expression that adds a column to the data frame that is equal to the
sum of elements in column ‘a’ plus ‘x’.

Here is the intended behaviour using the ‘mutate’ function of ‘dplyr’:

mutate(dfl, y = a + x)
mutate(df2, y = a + x)
mutate(df3, y = a + x)
mutate(df4, y = a + x)

The naive approach to writing an R function to solve this problem is:

mutate_y <- function(df) {
mutate(df, y = a + x)
}

Unfortunately, in R, this function can fail silently if one of the variables isn’t present in the data
frame, but is present in the global environment. We will not go through here how to solve this
problem in R.

44

14.2 Different expressions 14 CODING WITH TIDYVERSE

In Galaaz the method mutate_y bellow will work fine and will never fail silently.

def mutate_y(df)
df .mutate(:y.assign :a + :x)
end

Here we create a data frame that has only one column named ‘x’:

df1 = R.data__frame(x: (1..3))
puts dfil

#i# b4
11
2 2
3 3

Note that method mutate_y will fail independetly from the fact that variable ‘a’ is defined and
in the scope of the method. Variable ‘a’ has no relationship with the symbol “:a’ used in the
definition of ‘mutate_y’ above:

a =10

mutate_y(df1)

Message:

Error in mutate_impl(.data, dots)

Evaluation error: object 'a' not found.

In addition: Warning message:

In mutate_impl(.data, dots)

mismatched protect/unprotect (unprotect with empty protect stack) (RError)
Translated to internal error

14.2 Different expressions

Let’s move to the next problem as presented by Hardley where trying to write a function in R
that will receive two argumens, the first a variable and the second an expression is not trivial.
Bellow we create a data frame and we want to write a function that groups data by a variable
and summarises it by an expression:

set.seed(123)

df <- data.frame(
gl =c(l, 1, 2, 2, 2),
g2 =c(1, 2, 1, 2, 1),
a = sample(5),
b = sample(5)

as.data.frame (df)

gl g2ab
1 1 133
2 1 221
3 2 152
4 2 245
5 2 114

45

14.2 Different expressions 14 CODING WITH TIDYVERSE

d2 <- df %>%
group_by(gl) %>%
summarise(a = mean(a))

as.data.frame(d2)

gl a

1 1 2.500000

2 2 3.333333

d2 <- df %>%
group_by(g2) %>%
summarise(a = mean(a))

as.data.frame(d2)

##H g2 a
1 13
2 23

As shown by Hardley, one might expect this function to do the trick:

my_summarise <- function(df, group_var) {
daf %>%
group_by(group_var) %>%
summarise(a = mean(a))

my_summarise(df, g1)
#> Error: Column “group_wvar s unknown

In order to solve this problem, coding with dplyr requires the introduction of many new concepts
and functions such as ‘quo’, ‘quos’, ‘enquo’, ‘enquos’, ‘!I’ (bang bang), ‘!’ (triple bang). Again,
we’ll leave to Hardley the explanation on how to use all those functions.

Now, let’s try to implement the same function in galaaz. The next code block first prints the
‘df” data frame defined previously in R (to access an R variable from Galaaz, we use the tilda
operator ‘~’ applied to the R variable name as symbol, i.e., “:df’.

puts ~:df

gl g2
1
2
3
4
5

=D TN W
aOON - Wwo

4

We then create the ‘my_ summarize’ method and call it passing the R data frame and the group
by variable “:gl’:
def my_summarize(df, group_var)
df . group_by(group_var) .
summarize(a: :a.mean)
end

46

14.3 Different input variables 14 CODING WITH TIDYVERSE

puts my_summarize(:df, :gl)

A tibble: 2 x 2

gl a
<dbl> <dbl>
1 1 2.5

2 2 3.33

It works!!! Well, let’s make sure this was not just some coincidence

puts my_summarize(:df, :g2)

A tibble: 2 x 2

#i# g2 a
<dbl> <dbl>
1 1 3
2 2 3

Great, everything is fine! No magic, no new functions, no complexities, just normal, standard
Ruby code. If you've ever done NSE in R, this certainly feels much safer and easy to implement.

14.3 Different input variables

In the previous section we’ve managed to get rid of all NSE formulation for a simple example,
but does this remain true for more complex examples, or will the Galaaz way prove inpractical
for more complex code?

)

In the next example Hardley proposes us to write a function that given an expression such as ‘a
or ‘a * b’, calculates three summaries. What we want a function that does the same as these R
statements:

summarise(df, mean = mean(a), sum = sum(a), n = n())
#> # A tibble: 1 x 3

#> mean sum n
#> <dbl> <int> <int>
#> 1 3 15 5

summarise(df, mean = mean(a * b), sum = sum(a * b), n = n())
#> # A tibble: 1 x 3

#> mean sum n
#> <dbl> <int> <int>
#> 1 9 45 5

Let’s try it in galaaz:
def my_summarise2(df, expr)
df . summarize(
mean: E.mean(expr),
sum: E.sum(expr),
n: E.n

)

end

puts my_summarise2((~:df), :a)

47

14.4

Different input and output variable

14 CODING WITH TIDYVERSE

puts
puts

##
#it
##
##
##

1

1

n \nll

my_summarise2((~:df),

mean sum n
3 1565

mean sum n
9 455

* :b)

Once again, there is no need to use any special theory or functions. The only point to be careful
about is the use of ‘E’ to build expressions from functions ‘mean’, ‘sum’ and ‘n’.

14.4 Different input and output variable

Now the next challenge presented by Hardley is to vary the name of the output variables based
on the received expression. So, if the input expression is ‘a’, we want our data frame columns to
be named ‘mean_a’ and ‘sum_ a’ Now, if the input expression is ‘b’, columns should be named
‘mean_ b’ and ‘sum_ b’

mutate(df, mean_a = mean(a), sum_a

#>
#>
#>
#>
#>
#>
#>
#>

#

H DS WO

A tibble: 5 x 6

sum(a))

b mean_a sum_a
<dbl> <int>

3

D= N

gl g2 a
<dbl> <dbl> <int> <int>

1 1 1

1 2 4

2 1 2

2 2 5

. with 1 more row

mutate(df, mean b = mean(b),

#>
#>
#>
#>
#>
#>
#>
#>

#

H S WD -

A tibble: 5 x 6

3

3
3
3

15
15
15
15

sum_b = sum(b))

b mean_b sum_b
<dbl> <int>

3

gl g2 a
<dbl> <dbl> <int> <int>

1 1 1

1 2 4

2 1 2

2 2 5

. with 1 more row

D= N

3

3
3
3

15
15
15
15

In order to solve this problem in R, Hardley needs to introduce some more new functions and
notations: ‘quo_name’ and the :=’ operator from package ‘rlang’

Here is our Ruby code:

def my_mutate(df, expr)

end

puts my_mutate((~:df),

mean_name = "mean_#{expr.to_s}"
sum_name = "sum_#{expr.to_s}"

df .mutate(mean_name => E.mean(expr),
sum_name => E.sum(expr))

48

14.5 Capturing multiple variables 14 CODING WITH TIDYVERSE

puts n\nn
puts my_mutate((~:df), :b)

gl g2 a b mean_a sum_a
1 1 133 3 15
#2 1 221 3 15
3 2 152 3 15
4 2 245 3 15
#5 2 114 3 15
##

gl g2 a b mean_b sum_b
1 1 133 3 15
#2 1 221 3 15
3 2 152 3 15
4 2 245 3 15
5 2 114 3 15

It really seems that “Non Standard Evaluation” is actually quite standard in Galaaz! But, you
might have noticed a small change in the way the arguments to the mutate method were called.
In a previous example we used df.summarise(mean: E.mean(:a), ...) where the column name
was followed by a ‘:” colom. In this example, we have df.mutate(mean_name => E.mean(expr),

..) and variable mean_ name is not followed by “:’ but by ‘=>" This is standard Ruby notation.

[explain. . . .]

14.5 Capturing multiple variables

Moving on with new complexities, Hardley proposes us to solve the problem in which the
summarise function will receive any number of grouping variables.

This again is quite standard Ruby. In order to receive an undefined number of paramenters the
paramenter is preceded by "*’:

def my_summarise3(df, *group_vars)
df . group_by (*group_vars) .
summarise(a: E.mean(:a))
end

puts my_summarise3((~:df), :gl, :g2)

A tibble: 4 x 3
Groups: gl [7]

#i# gl g2 a
<dbl> <dbl> <dbl>
1 1 1 3
2 1 2 2
3 2 1 3
4 2 2 4

49

14.6 Why does R require NSE and Galaaz does not? 14 CODING WITH TIDYVERSE

14.6 Why does R require NSE and Galaaz does not?

NSE introduces a number of new concepts, such as ‘quoting’, ‘quasiquotation’, ‘unquoting’ and
‘unquote-splicing’, while in Galaaz none of those concepts are needed. What gives?

R is an extremely flexible language and it has lazy evaluation of parameters. When in R a
function is called as ‘summarise(df, a = b)’, the summarise function receives the litteral ‘a = b’
parameter and can work with this as if it were a string. In R, it is not clear what a and b are,
they can be expressions or they can be variables, it is up to the function to decide what ‘a = b’
means.

In Ruby, there is no lazy evaluation of parameters and ‘a’ is always a variable and so is ‘b’
Variables assume their value as soon as they are used, so ‘x = a’ is immediately evaluate and
variable ‘x” will receive the value of variable ‘a’ as soon as the Ruby statement is executed. Ruby
also provides the notion of a symbol; “:a’ is a symbol and does not evaluate to anything. Galaaz
uses Ruby symbols to build expressions that are not bound to anything: ‘“:a.eq :b’ is clearly an
expression and has no relationship whatsoever with the statment ‘a = b’ By using symbols,
variables and expressions all the possible ambiguities that are found in R are eliminated in
Galaaz.

The main problem that remains, is that in R, functions are not clearly documented as what
type of input they are expecting, they might be expecting regular variables or they might be
expecting expressions and the R function will know how to deal with an input of the form ‘a =
b’, now for the Ruby developer it might not be immediately clear if it should call the function
passing the value ‘true’ if variable ‘a’ is equal to variable ‘b’ or if it should call the function
passing the expression ‘:a.eq :b’.

14.7 Advanced dplyr features

In the blog: Programming with dplyr by using dplyr (https://www.r-bloggers.com/
programming-with-dplyr-by-using-dplyr/) Inaki Ucar shows surprise that some R users are
trying to code in dplyr avoiding the use of NSE. For instance he says:

Take the example of seplyr. It stands for standard evaluation dplyr, and enables us
to program over dplyr without having “to bring in (or study) any deep-theory or
heavy-weight tools such as rlang/tidyeval”.

For me, there isn’t really any surprise that users are trying to avoid dplyr deep-theory. R users
frequently are not programmers and learning to code is already hard business, on top of that,
having to learn how to ‘quote’ or ‘enquo’ or ‘quos’ or ‘enquos’ is not necessarily a ‘piece of cake’.
So much so, that ‘tidyeval’ has some more advanced functions that instead of using quoted
expressions, uses strings as arguments.

In the following examples, we show the use of functions ‘group_ by_ at’, ‘summarise_at’ and
‘rename_at’ that receive strings as argument. The data frame used in ‘starwars’ that describes
features of characters in the Starwars movies:

puts (~:starwars).head

A tibble: 6 x 13
name height mass hair_color skin_color eye_color birth_year gender

#it <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr>
1 Luke~ 172 77 blond fair blue 19 male
2 C-3P0 167 75 <NA> gold yellow 112 <NA>

50

https://www.r-bloggers.com/programming-with-dplyr-by-using-dplyr/
https://www.r-bloggers.com/programming-with-dplyr-by-using-dplyr/

14.7 Advanced dplyr features 14 CODING WITH TIDYVERSE

3 R2-D2 96 32 <NA> white, bl~ red 33 <NA>

4 Dart~ 202 136 none white yellow 41.9 male

5 Leia~ 150 49 brown light brown 19 female

6 Owen-~ 178 120 brown, gr~ light blue 52 male

. with 5 more variables: homeworld <chr>, species <chr>, films <list>,
vehicles <list>, starships <list>

The grouped__mean function bellow will receive a grouping variable and calculate summaries for
the value_ variables given:

grouped_mean <- function(data, grouping_variables, value_variables) {
data %>%
group_by_at(grouping_variables) 7>7
mutate(count = n()) %>%
summarise_at (c(value_variables, "count"), mean, na.rm = TRUE) %>
rename_at(value_variables, funs(pasteO("mean_ ", .)))

3

gm = starwars %>%
grouped_mean("eye_color", c("mass", "birth_year"))

as.data.frame(gm)

#i#t eye_color mean_mass mean_birth_year count
1 black 76.28571 33.00000 10
2 blue 86.51667 67.06923 19
3 blue-gray 77.00000 57.00000 1
4 brown 66.09231 108.96429 21
5 dark NaN NaN 1
6 gold NaN NaN 1
7 green, yellow 159.00000 NaN 1
8 hazel 66.00000 34.50000 3
9 orange 282.33333 231.00000 8
10 pink NaN NaN 1
11 red 81.40000 33.66667 5
12 red, blue NaN NaN 1
13 unknown 31.50000 NaN 3
14 white 48.00000 NaN 1
15 yellow 81.11111 76.38000 11

The same code with Galaaz, becomes:

def grouped_mean(data, grouping_variables, value_variables)
data.
group_by_at (grouping_variables) .
mutate(count: E.n).

summarise_at (E.c(value_variables, "count"), ~:mean, na__rm: true).
rename_at(value_variables, E.funs(E.paste0O("mean_", value_variables)))
end
puts grouped_mean((~:starwars), "eye_color", E.c("mass", "birth_year"))

A tibble: 15 x 4
eye_color mean_mass mean_birth_year count

o1

15 CONTRIBUTING

<chr> <dbl> <dbl> <dbl>
1 black 76.3 33 10
2 blue 86.5 67.1 19
3 blue-gray 77 57 1
4 brown 66.1 109. 21
b5 dark NaN NaN 1
6 gold NaN NaN 1
7 green, yellow 159 NaN 1
8 hazel 66 34.5 3
O orange 282. 231 8
10 pink NaN NaN 1
11 red 81.4 33.7 5
12 red, blue NaN NaN 1
13 unknown 31.5 NaN 3
14 white 48 NaN 1
15 yellow 81.1 76.4 11

[TO BE CONTINUED...]

15 Contributing

o Fork it

o Create your feature branch (git checkout -b my-new-feature)
o Write Tests!

o Commit your changes (git commit -am ‘Add some feature’)
o Push to the branch (git push origin my-new-feature)

e Create new Pull Request

References

Knuth, Donald E. 1984. “Literate Programming.” Comput. J. 27 (2). Oxford, UK: Oxford
University Press: 97-111. doi:10.1093/comjnl/27.2.97.

Wilkinson, Leland. 2005. The Grammar of Graphics (Statistics and Computing). Berlin,
Heidelberg: Springer-Verlag.

52

https://doi.org/10.1093/comjnl/27.2.97

	Introduction
	What does Galaaz mean

	System Compatibility
	Dependencies
	Installation
	Usage
	Accessing R from Ruby
	gKnitting a Document
	gKnit and R markdown
	The Yaml header
	R Markdown formatting
	Headers
	Lists
	R chunks
	R Graphics with ggplot
	Ruby chunks
	Inline Ruby code
	The outputs function
	HTML Output from Ruby Chunks

	Including Ruby files in a chunk
	Documenting Gems
	Converting to PDF
	Template based documents generation

	Accessing R variables
	Basic Data Types
	Vector
	Combining Vectors
	Vector Arithmetic
	Vector Indexing
	Extracting Native Ruby Types from a Vector

	Matrix
	Indexing a Matrix

	List
	List Indexing

	Data Frame
	Data Frame Indexing

	Writing Expressions in Galaaz
	Expressions from operators
	Expressions with R methods
	Evaluating an Expression

	Manipulating Data
	Filtering rows with Filter
	Logical Operators
	Filtering with NA (Not Available)
	Arrange Rows with arrange
	Selecting columns
	Add variables to a dataframe with mutate
	Summarising data

	Using Data Table
	Graphics in Galaaz
	Coding with Tidyverse
	Writing a function that applies to different data sets
	Different expressions
	Different input variables
	Different input and output variable
	Capturing multiple variables
	Why does R require NSE and Galaaz does not?
	Advanced dplyr features

	Contributing
	References

