
HDLRuby user manual

Lovic Gauthier

Contents
1 About HDLRuby 2

2 Compiling HDLRuby descriptions 3
2.1 Using the HDLRuby compiler . 3
2.2 Using HDLRuby within Ruby . 4
2.3 Handling the low-level HDLRuby representation 5

3 HDLRuby programming guide 5
3.1 Introduction . 5
3.2 How does HDLRuby work . 13
3.3 Naming rules . 13
3.4 Systems and signals . 14

3.4.1 Declaring an empty system 14
3.4.2 Declaring a system with an interface 14
3.4.3 Structural description in a system 15
3.4.4 Scope in a system . 17
3.4.5 Behavioral description in a system. 19

3.5 Events . 23
3.6 Statements . 23

3.6.1 Transmit statement . 24
3.6.2 Control statements . 24
3.6.3 helsif . 25

3.7 Types . 26
3.7.1 Type construction . 26
3.7.2 Type definition . 27
3.7.3 Type compatibility and conversion 27

3.8 Expressions . 28
3.8.1 Immediate values . 28
3.8.2 References . 29
3.8.3 Expression operators . 30

3.9 Functions . 36
3.9.1 HDLRuby functions . 36
3.9.2 Ruby functions . 37

3.10 Time . 39

1

3.10.1 Time values . 39
3.10.2 Time behaviors and time statements 39
3.10.3 Parallel and sequential execution 40

3.11 High-level programming features 40
3.11.1 Using Ruby in HDLRuby 40
3.11.2 Generic programming . 40
3.11.3 Inheritance . 42
3.11.4 Opening a system . 45
3.11.5 Opening an instance . 45
3.11.6 Opening a single signal, or the totality of the signals . . . 46
3.11.7 Predicate and access methods 46
3.11.8 Global signals . 47
3.11.9 Defining and executing Ruby methods within HDLRuby

constructs . 48
3.11.10Dynamic description . 50

3.12 Extending HDLRuby . 50
3.12.1 Extending HDLRuby constructs globally 51
3.12.2 Extending HDLRuby constructs locally 51
3.12.3 Modifying the generation behavior 52

4 Standard library 53
4.1 Channel . 53
4.2 Clocks . 53
4.3 Counters . 54
4.4 Pipeline . 54

5 Development 54

6 Contributing 54

7 License 54

1 About HDLRuby

HDLRuby is a library for describing and simulating digital electronic systems.

Warning:

• This is very preliminary work which may (will) change a lot before we
release a stable version.

• It is highly recommended to have both basic knowledge of the Ruby
language and hardware description languages before using HDLRuby.

2

2 Compiling HDLRuby descriptions

2.1 Using the HDLRuby compiler

‘hdrcc.rb’ is the HDLRuby compiler. It takes as input a HDLRuby file, checks it,
and can produce as output a Verilog HDL or a YAML low-level descriptions of a
HW components.

Usage:

hdrcc.rb [options] <input hdr file> [<output file>]

Where:

• options is a list of options
• <input hdr file> is the initial file to compile (mandatory)
• <output file> is the output file

Options
-y, --yaml Output in YAML format
-v, --verilog Output in Verlog HDL format
-s, --syntax Output the Ruby syntax tree
-d, --directory Specify the base directory for loading the HDLRuby files
-D, --debug Set the HDLRuby debug mode
-t, --top system Specify the top system describing the circuit to compile
-p, --param x,y,z Specify the generic parameters
-h, --help Show the help message

Notice:

• If no top system is given, it is automatically looked for from the input file.
• If no option is given, simply checks the input file.
• If no output file is given, the result is given through the standard output.

Examples:

• Compile system named adder from adder.hdr input file and generate
adder.yaml low-level YAML description:

hdrcc.rb --yaml --top adder adder.hdr adder.yaml

• Compile adder.hdr input file and generate adder.v low-level Verilog HDL
description:

hdrcc.rb --verilog adder.hdr adder.v

• Check the validity of adder.hrd input file:

hdrcc.rb adder.hdr

3

• Compile system adder whose bit width is generic from adder_gen.hdr
input file to a 16-bit circuit whose low-level Verilog HDL description is
dumped to the standard output:

hdrcc -v -t adder --param 16 adder_gen.hdr

• Compile system multer with inputs and output bit width is generic from
multer_gen.hdr input file to a 16x16->32 bit cicruit whose low-level
YAML description is saved to output file multer_gen.yaml

hdrcc -y -t multer -p 16,16,32 multer_gen.hdr multer_gen.yaml

2.2 Using HDLRuby within Ruby

You can also use HDLRuby in a Ruby program by loading HDLRuby.rb in your
Ruby file:

require 'HDLRuby'

Then, you can set up Ruby for supporting high-level description of hardware
components. This is done by adding the following line of code:

configure_high

After this statement, standard HDLRuby code can be written. In order to
produce HW descriptions from this code a low-level hardware must then be
generated from an instance of an HW module (system in HDLRuby). For
example, assuming system ‘circuitT’ has been described in your Ruby program,
an instance named ‘circuitI’ can be declared as follows:

circuitT :circuitI

From there a low-level description of the circuit is generated using the to_low
methods as follows (in the following code, this description is assigned to Ruby
variable ‘circuitL’):

circuitL = circuitI.to_low

This low-level description can then be converted to a YAML format using
‘to_yaml’ or to a Verilog HDL format using ‘to_verilog’ as follows:

circuitY = circuitL.to_yaml
circuitV = circuitL.to_verilog

In the above examples, ‘cricuitY’ and ‘cricuitV’ are Ruby variables referring to
the strings containing the respective YAML and Verilog HDL code.

4

2.3 Handling the low-level HDLRuby representation

You can include HDLRuby::Low for gaining access to the classes used for low-level
description of hardware components.

include HDLRuby::Low

It is then possible to load a low-level representation of hardware as follows, where
stream is a stream containing the representation.

hardwares = HDLRuby::from_yaml(stream)

For instance, you can load the sample description of an 8-bit adder as follows:

adder = HDLRuby::from_yaml(File.read("#{$:[0]}/HDLRuby/low_samples/adder.yaml"))

Note:

• A HDLRuby::Low description of hardware can only be built through stan-
dard Ruby class constructors, and does not include any validity check of
the resulting hardware.

3 HDLRuby programming guide

HDLRuby has been designed to bring the high flexibility of the Ruby language
to hardware descriptions while ensuring that they remain synthesizable. In this
context, all the abstractions provided by HDLRuby are in the way of describing
hardware, but not in its execution model, this latter being RTL by construction.

The second specificity of HDLRuby is that it supports natively all the features
of the Ruby language.

Notes:

• It is still possible to extend HDLRuby to support hardware descriptions
of higher level than RTL, please refer to section Extending HDLRuby for
more details.

• In this document, HDLRuby constructs will often be compared to their
Verilog HDL or VHDL equivalents for simpler explanations.

3.1 Introduction

This introduction gives a glimpse of the possibilities of the language. However, we
do recommend to consult the section about the high-level programming features
to have a more complete view of the advanced possibilities of this language.

At first glance, HDLRuby is similar to any other HDL languages (like Verilog
HDL or VHDL), for instance the following code describes a simple D-FF:

5

system :dff do
bit.input :clk, :rst, :d
bit.output :q

par(clk.posedge) do
q <= d & ~rst

end
end

As it can be seen in the code above, system is the keyword used for describing
a digital circuit. This keyword is an equivalent of the Verilog HDL module.
In such a system, signals are declared using a <type>.<direction> construct
where type is the data type of the signal (e.g., bit as in the code above) and
direction indicates if the signal is an input, an output, an inout or an inner one;
and executable blocks (similar to always block of Verilog HDL) are described
using the par keyword when they are parallel and seq when they are sequential
(i.e, with respectively non-blocking and blocking assignments).

The code describing a dff given above is not much different from its equivalent
in other HDL. However, HDLRuby provides several features for achieving a
higher productivity when describing hardware. We will now describe a few of
them.

First, several syntactic sugars exist that allow shorter code, for instance the
following code is strictly equivalent to the previous description of dff:

system :dff do
input :clk, :rst, :d
output :q

(q <= d & ~rst).at(clk.posedge)
end

Furthermore, generic parameters can be used for anything in HDLRuby. For
instance, the following code describes an 8-bit register without any parameteri-
zation:

system :reg8 do
input :clk, :rst
[7..0].input :d
[7..0].output :q

(q <= d & [~rst]*8).at(clk.posedge)
end

But it is also possible to describe a register of arbitrary size as follows, where n
is the parameter giving the number of bits of the register:

6

system :regn do |n|
input :clk, :rst
[n-1..0].input :d
[n-1..0].output :q

(q <= d & [~rst]*n).at(clk.posedge)
end

Or, even further, it is possible to describe a register of arbitrary type (not only
bit vectors) as follows:

system :reg do |typ|
input :clk, :rst
typ.input :d
typ.output :q

(q <= d & [~rst]*typ.width).at(clk.posedge)
end

//: # (# Now let’s generate the register //: #) (declarations.) //: #
(make_reg(:dff) { bit }) //: # (make_reg(:reg8){ bit[7..0] }) //: #
(make_reg(:regn){ |n| bit[n-1..0] }) //: # (make_reg(:reg) { |typ| typ }) //: #
(“‘) //: # ()

Wait. . . I have just realized: a D-FF without any inverted output does not look
very serious. So let us extend the existing dff to provide an inverted output.
There are basically three ways for doing this. First, inheritance can be used: a
new system is built inheriting from dff as it is done in the following code.

system :dff_full, dff do
output :qb
qb <= ~q

end

The second possibility is to modify dff afterward. In HDLRuby, this achieved
using the open method as it is done the following code:

dff.open do
output :qb
qb <= ~q

end

The third possibility is to modify directly a single instance of dff which require
an inverted output, using again the open method, as in the following code:

Declare dff0 as an instance of dff
dff :dff0

Modify it
dff0.open do

7

output :qb
qb <= ~q

end

In this later case, only dff0 will have an inverted output, the other instances of
dff will not change.

Now assuming we opted for the first solution, we have now dff_full, a highly
advanced D-FF with such unique features as an inverted output. So we would
like to use it in other designs, for example a shift register of n bits. Such a system
will include a generic number of dff_full instances, and can be described as
follows making use of the native Ruby method each_cons for connecting them
together:

system :shifter do |n|
input :clk, :rst
input :i0
output :o0, :o0b

Instantiating n D-FF
[n].dff_full :dffIs

Connect the clock and the reset.
dffIs.each { |ff| ff.clk <= clk ; ff.rst <= rst }

Interconnect them as a shift register
dffIs[0..-1].each_cons(2) { |ff0,ff1| ff1.d <= ff0.q }

Connects the input and output of the circuit
dffIs[0].d <= i0
o0 <= dffIs[-1].q
o0b <= dffIs[-1].qb

end

As it can be seen in the above examples, in HDLRuby, any construct is an object
and therefore include methods. For instance, declaring a signal of a given type
and direction (input, output or inout) is done as follows, so that direction is
actually a method of the type, and the signal names are actually the arguments
of this method (symbols or string are supported.)

<type>.<direction> <list of symbols representing the signal>

Of course, if you do not need to use the specific component dff_full you can
describe a shift register more simply as follows:

system :shifter do |n|
input :clk, :rst
input :i0
output :o0

8

[n].inner :sh

par (clk.posedge) do
hif(rst) { sh <= 0 }
helse { sh <= [sh[n-2..0], i0] }

end

o0 <= sh[n-1]
end

Now, let us assume you what to design a circuit that performs a sum of products
of several inputs with constant coefficients. For the case of 4 16-bit signed inputs
and given coefficient as 3, 4, 5 and 6. The corresponding basic code could be as
follows:

system :sumprod_16_3456 do
signed[16].input :i0, :i1, :i2, :i3
signed[16].output :o

o <= i0*3 + i1*4 + i2*5 + i3*6
end

The description above is straight forward, but it would be necessary to rewrite
it if another circuit with different bit width or coefficients is to be designed.
Moreover, if the number of coefficient is large an error in the expression will be
easy to make and hard to find. A better approach would be to use a generic
description of such a circuit as follows:

system :sumprod do |typ,coefs|
typ[coefs.size].input ins
typ.output :o

o <= coefs.each_with_index.reduce(_0) do
|sum,(coef,i)|

sum + ins[i]*coef
end

end

In the code above, there are two generic parameters, typ that indicates the
data type of the circuit and coefs that is assumed to be an array of coefficients.
Since the number of inputs depends on the number of provided coefficients, it is
declared as an array of width bit signed whose size is equal to the number of
coefficients.

The description of the sum of product maybe more difficult to understand for
people not familiar with the Ruby language. The each_with_index method
iterates over the coefficients adding their index as iteration variable, the resulting
operation (i.e., the iteration loop) is then modified by the reduce method that
accumulates the code passed as arguments. This code, starting by |sum,coef,i|

9

simply performs the addition of the current accumulation result (sum) with the
product of the current coefficient (coef) and input (ins[i], where i is the
index) in the iteration. The argument _0 initializes the sum to 0.

While slightly longer than the previous description, this description allows to
declare a circuit implementing a sum of product with any bit width and any
number of coefficients. For instance, the following code describes a signed 32-bit
sum of product with 16 coefficients (actually just random numbers here).

sumprod [:my_circuit],
signed[32],
[3,78,43,246, 3,67,1,8,
47,82,99,13, 5,77,2,4]

As seen in the code above, when passing generic argument for instantiating a
generic system, the name of the instance is put between brackets for avoiding
confusion.

While description sumprod is already usable in a wide range of cases, it still uses
the standard addition and multiplication. However, there are cases where specific
components are to be used for these operations, either for sake of performance,
compliance with constraints, or because functionally different operations are
required (e.g., saturated computations). This can be solved by using functions
implementing such computation in place of operators, for example as follows:

system :sumprod_func do |typ,coefs|
typ[coefs.size].input ins
typ.output :o

o <= coefs.each_with_index.reduce(_0) do
|sum,(coef,i)|

add(sum, mult(ins[i]*coef))
end

end

Where add and mult are functions implementing the required specific operations.
HDLRuby functions are similar to Verilog HDL ones. In our example, an addition
that saturates at 1000 could be described as follows:

function :add do |x,y|
inner :res
seq do

res <= x + y
(res <= 1000).hif(res > 1000)

end
end

With HDLRuby functions, the result of the last statement in the return value,
in this case that will be the value of res. The code above is also an example of
the usage of the postfixed if statement, it an equivalent of the following code:

10

hif(res>1000) { res <= 1000 }

With functions, it is enough to change their content to obtained a new kind of
circuit without change the main code. This approach suffers for two drawbacks
though: first, the level of saturation is hardcoded in the function, second, it would
be preferable to be able to select the function to execute instead of modifying
its code. For the first problem a simple approach is to add an argument to the
function given the saturation level. Such an add function would therefore be as
follows:

function :add do |max, x, y|
inner :res
seq do

res <= x + y
(res <= max).hif(res > max)

end
end

It would however be necessary to add this argument when invoking the function,
e.g., add(1000,sum,mult(...)). While this argument is relevant for addition
with saturation, it is not for the other kind of addition operations, and hence,
the code of sumprod is not general any longer.

HDLRuby provides two ways to address such issues. First, it is possible to pass
code as argument. In the case of sumprod it would then be enough to add two
arguments that perform the required addition and multipliction. The example is
bellow:

system :sumprod_proc do |add,mult,typ,coefs|
typ[coefs.size].input ins
typ.output :o

o <= coefs.each_with_index.reduce(_0) do
|sum,(coef,i)|

add.(sum, mult.(ins[i]*coef))
end

end

Note:

• With HDLRuby, when some code is passed as argument, it is invoked using
the .() operator, and not simple parenthesis like functions.

Assuming the addition with saturation is now implemented by a function named
add_sat and a multiplication with saturation is implemented by a function
named mult_sat (with similar arguments), a circuit implementing a signed
16-bit sum of product saturating at 1000 with 16 coefficients could be described
as follows:

sumprod_proc(

11

proc { |x,y| add_sat(1000,x,y) },
proc { |x,y| mult_sat(1000,x,y) },
signed[64],
[3,78,43,246, 3,67,1,8,
47,82,99,13, 5,77,2,4]).(:my_circuit)

As seen in the example above, a piece of code is passed as argument using the
proc keyword.

A second possible approach provided by HDLRuby is to declare a new data type
with redefined addition and multiplication operators. For the case of a 16-bit
saturated addition and multiplication the following generic data type can be
defined (for signed computations):

signed[16].typedef(:sat16_1000)

sat16_1000.define_operator(:+) do |x,y|
[16].inner :res
seq do

res <= x + y
(res <= 1000).hif(res > 1000)

end
end

In the code above, the first line define the new type sat16_1000 to be 16-bit
signed and the remaining overloads (redefines) the + operator for this type (the
same should be done for the * operator). Then, the initial version of sumprod
can be used with this type to achieve saturated computations as follows:

sumprod(sat16_1000,
[3,78,43,246, 3,67,1,8,
47,82,99,13, 5,77,2,4]).(:my_circuit)

It is also possible to declare a generic type. For instance a generic signed type
with saturation can be declared as follows:

typedef :sat do |width, max|
signed[width]

end

sat.define_operator(:+) do |width,max, x,y|
[width].inner :res
seq do

res <= x + y
(res <= max).hif(res > max)

end
end

Note:

12

• The generic parameters have also to be declared for the operator redefini-
tions.

With this generic type, the circuit can be declared as follows:

sumprod(sat(16,1000),
[3,78,43,246, 3,67,1,8,
47,82,99,13, 5,77,2,4]).(:my_circuit)

3.2 How does HDLRuby work

Contrary to descriptions in high-level HDL like SystemVerilog, VHDL or SystemC,
HDLRuby descriptions are not software-like description of hardware, but are
programs meant to produce hardware descriptions. In other words, while the
execution of a common HDL code will result in some simulation of the described
hardware, the execution of HDLRuby code will result in some low-level hardware
description. This low-level description is synthesizable, and can also be simulated
like any standard hardware description. This decoupling of the representation
of the hardware from the point of view of the user (HDLRuby), and the actual
hardware description (HDLRuby::Low) makes it possible to provide the user
with any advanced software features without jeopardizing the synthesizability of
the actual hardware description.

For that purpose, each construct in HDLRuby is not a direct description of
some hardware construct, but a program which generates the corresponding
description. For example, let us consider the following line of code of HDLRuby
describing the connection between signal a and signal b:

a <= b

Its execution will produce the actual hardware description of this connection
as an object of the HDLRuby::Low library — in this case an instance of the
HDLRuby::Low::Connection class. Concretely, a HDLRuby system is described
by a Ruby block, and the instantiation of this system is actually performed by
executing this block. The actual synthesizable description of this hardware is
the execution result of this instantiation.

From there, we will describe into more details each construct of HDLRuby.

3.3 Naming rules

Several constructs in HDLRuby are referred to by name, e.g., systems and
signals. When such constructs are declared, their names are to be specified by
Ruby symbols starting with a lower case. For example, :hello is a valid name
declaration, but :Hello is not.

13

After being declared, the construct can be referred to by using the name directly
(i.e., without the : of Ruby symbols). For example, if a construct has been
declared with :hello as name, it will be afterward referred by hello.

3.4 Systems and signals

A system represents a digital system and corresponds to a Verilog HDL module.
A system has an interface comprising input, output, and inout signals, and
includes of structural and behavioral descriptions.

A signal represents a state in a system. It has a data type and a value, the
latter varying with time. Similarly to VHDL, HDLRuby signals can be viewed
as abstractions of both wires and registers in a digital circuit. As a general rule,
a signal whose value is explicitly set all the time models a wire, otherwise it
models a register.

3.4.1 Declaring an empty system

A system is declared using the keyword system. It must be given a Ruby symbol
for name and a block that describe its content. For instance, the following code
describes an empty system named box:

system(:box) {}

Notes:

• Since this is Ruby code, the body can also be delimited by the do and end
Ruby keywords (in which case the parentheses can be omitted) as follows:

system :box do
end

• Names in HDLRuby are natively stored as Ruby symbols, but strings can
also be used, e.g., system("box") {} is also valid.

3.4.2 Declaring a system with an interface

The interface of a system can be described anywhere in its body, but it is
recommended to do it at its beginning. This is done by declaring input, output
or inout signals of given data types as follows:

<data type>.<direction> <list of colon-preceded names>

For example, declaring a 1-bit input signal named clk can be declared as follows:

bit.input :clk

Now, since bit is the default data type in HDLRuby, it can be omitted as follows:

14

input :clk

The following is a more complete example: it is the code of a system describing
an 8-bit data, 16-bit address memory whose interface includes a 1-bit input clock
(clk), a 1-bit signal for selecting reading or writing access (rwb), a 16-bit address
input (addr) and an 8-bit data inout — the remaining of the code describes the
content and the behavior of the memory.

system :mem8_16 do
input :clk, :rwb
[15..0].input :addr
[7..0].inout :data

bit[7..0][2**16].inner :content

par(clk.posedge) do
hif(rwb) { data <= content[addr] }
helse { content[addr] <= data }

end
end

3.4.3 Structural description in a system

In a system, structural descriptions consist of subsystems and interconnections
among them.

A subsystem is obtained by instantiating an existing system as follows, where
<system name> is the name of the system to instantiate (without any colon):

<system name> :<instance name>

For example, system mem8_16 declared in the previous section can be instantiated
as follows:

mem8_16 :mem8_16I

It is also possible to declare multiple instances of a same system at time as
follows:

<system name> [list of colon-separated instance names]

For example, the following code declares two instances of system mem8_16:

mem8_16 [:mem8_16I0, :mem8_16I1]

Interconnecting instances may require internal signals in the system. Such signals
are declared using the inner direction. For example, the following code declares
a 1-bit inner signal named w1 and a 2-bit inner signal named w2:

inner :w1
[1..0].inner :w2

15

A connection between signals is done using the arrow operator <= as follows:

<destination> <= <source>

The <destination> must be a reference to a signal, and the <source> can be
any expression.

For example the following code, connects signal w1 to signal ready and signal
clk to the first bit of signal w2:

ready <= w1
w2[0] <= clk

As another example, the following code connects to the second bit of w2 the
output of an AND operation between clk and rst as follows:

w2[1] <= clk & rst

The signals of an instance can be connected through the arrow operator too,
provided they are properly referred to. One way to refer them is to use the dot
operator . on the instance as follows:

<instance name>.<signal name>

For example, the following code connects signal clk of instance mem8_16I to
signal clk of the current system:

mem8_16I.clk <= clk

It is also possible to connect multiple signals of an instance using the call operator
.() as follows, where each target can be any expression:

<intance name>.(<signal name0>: <target0>, ...)

For example, the following code connects signals clk and rst of instance
mem8_16I to signals clk and rst of the current system. As seen in this ex-
ample, this method allows partial connection since the address and the data
buses are not connected yet.

mem8_16I.(clk: clk, rst: rst)

This last connection method can be used directly while declaring an instance.
For example, mem8_16I could have been declared and connected to clk and rst
as follows:

mem8_16(:mem8_16I).(clk: clk, rst: rest)

To summarize this section, here is a structural description of a 16-bit memory
made of two 8-bit memories (or equivalent) sharing the same address bus, and
using respectively the lower and the higher 8-bits of the data bus:

system :mem16_16 do
input :clk, :rwb
[15..0].input :addr
[15..0].inout :data

16

mem8_16(:memL).(clk: clk, rwb: rwb, addr: addr, data: data[7..0])
mem8_16(:memH).(clk: clk, rwb: rwb, addr: addr, data: data[15..8])

end

And here is an equivalent code using the arrow operator:

system :mem16_16 do
input :clk, :rwb
[15..0].input :addr
[15..0].inout :data

mem8_16 [:memL, :memH]

memL.clk <= clk
memL.rwb <= rwb
memL.addr <= addr
memL.data <= data[7..0]

memH.clk <= clk
memH.rwb <= rwb
memH.addr <= addr
memH.data <= data[15..8]

end

3.4.4 Scope in a system

3.4.4.1 General scopes

The signals of the interface of signals are accessible from anywhere in a HDLRuby
description. This is not the case for inner signals and instances: they are
accessible only within the scope they are declared in.

A scope is a region of the code where locally declared objects are accessible.
Each system has its own scope that cannot be accessible from other part of an
HDLRuby description. For example in the following code, signals d and qb as
well as instance dffI cannot be accessed from outside system div2:

system :div2 do
input :clk
output :q

inner :d, :qb
d <= qb

dff_full(:dffI).(clk: clk, d: d, q: q, qb: qb)

17

For robustness or, readability purpose, it is possible to add inner scope inside
existing scope using the sub keyword as follows:

sub do
<code>

end

For example, in the code bellow, signal sig is not accessible from outside the
additional inner scope of system sys

system :sys do
...
sub

inner :sig
<sig is accessible here>

end
<sig is not accessible from here>

end

It is also possible to add an inner scope within another inner scope as follows:

system :sys do
...
sub

inner :sig0
<sig0 is accessible here>
sub

inner :sig1
<sig0 and sig1 are accessible here>

end
<sig1 is not accessible here>

end
<neither sig0 nor sig1 are accessible here>

end

Within a same scope it is not possible to declared multiple signals or instances
with a same name. However, it is possible to declare a signal or an instance with
a name identical to one previously declared outside the scope: the inner-most
declaration will be used.

3.4.4.2 Named scopes

It is possible to declare a scope with a name as follows:

sub :<name> do
<code>

end

Where:

18

• <name> is the name of the scope.
• <code> is the code within the scope.

Contrary to the case of scopes without name, signals and instances declared
within a named scope can be accessed outside using this name as reference. For
example in the code bellow signal sig declared within scope named scop is
accessed outside it using scop.sig:

sub :scop do
inner :sig
...

end
...
scop.sig <= ...

3.4.5 Behavioral description in a system.

In a system, parallel behavioral descriptions are declared using the par keyword,
and sequential behavioral descriptions are declared using the seq keyword. They
are the equivalent of the Verilog HDL always blocks.

A behavior is made of a list of events (the sensitivity list) upon which it is
activated, and a list of statements. A behavior is declared as follows:

par <list of events> do
<list of statements>

end

In addition, it is possible to declare inner signals within an execution block.
While such signals will be physically linked to the system, they are only accessible
within the block they are declared into. This permits a tighter scope for signals,
which improves the readability of the code and make it possible to declare several
signals with identical names provided their respective scopes are different.

An event represents a specific change of state of a signal. For example, a rising
edge of a clock signal named clk will be represented by event clk.posedge. In
HDLRuby, events are obtained directly from expressions using the following
methods: posedge for rising edge, negedge for falling edge, and edge for any
edge. Events are described in more detail in section Events.

When one of the events of the sensitivity list of a behavior occurs, the behavior
is executed, i.e., each of its statements is executed in sequence. A statement
can represent a data transmission to a signal, a control flow, a nested execution
block or the declaration of an inner signal (as stated earlier). Statements are
described in more detail in section statements. In this section, we focus on the
transmission statements and the block statements.

A transmission statement is declared using the arrow operator <= as follows:

19

<destination> <= <source>

The <destination> must be a reference to a signal, and the <source> can be
any expression. A transmission has therefore exactly the same structure as a
connection. However, its execution model is different: whereas a connection is
continuously executed, a transmission is only executed during the execution of
its block.

A block comprises a list of statements. It is used for adding hierarchy within
a behavior. Blocks can be either parallel or sequential, i.e., their transmission
statements are respectively non-blocking or blocking. By default, a top block is
created when declaring a behavior, and it inherits from its execution mode. For
example, with the following code, the top block of the behavior is sequential.

system :with_sequential_behavior do
seq do

<list of statements>
end

end

It is possible to declare new blocks within an existing block. For declaring a sub
block with the same execution mode as the upper one, the keyword sub is used.
For example, the following code declare a sub block within a sequential block,
with the same execution mode:

system :with_sequential_behavior do
seq do

<list of statements>
sub do

<list of statements>
end

end
end

A sub block can also have a different execution mode if it is declared using
seq, that will force sequential execution mode, and par that will force parallel
execution mode. For example in the following code, a parallel sub block is
declared within a sequential one:

system :with_sequential_behavior do
seq do

<list of statements>
par do

<list of statements>
end

end
end

Sub blocks have their own scope so that it is possible to declare signals without
colliding with existing ones. For example it is possible to declare three different

20

inner signals all called sig as follows:

...
par(<sensibility list>) do

inner :sig
...
sub do

inner :sig
...
sub do

inner :sig
...

end
end
...

end

To summarize this section, here is a behavioral description of a 16-bit shift
register with asynchronous reset (hif and helse are keywords used for specifying
hardware if and else control statements).

system :shift16 do
input :clk, :rst, :din
output :dout

[15..0].inner :reg

dout <= reg[15] # The output is the last bit of the register.

par(clk.posedge) do
hif(rst) { reg <= 0 }
helse do

reg[0] <= din
reg[15..1] <= reg[14..0]

end
end

end

In the example above, the order of the transmission statements is of no conse-
quence. This is not the case for the following example, that implements the same
register using a sequential block. In this second example, putting statement
reg[0] <= din in the last place would have lead to an invalid functionality for
a shift register.

system :shift16 do
input :clk, :rst, :din
output :dout

21

[15..0].inner :reg

dout <= reg[15] # The output is the last bit of the register.

par(clk.posedge) do
hif(rst) { reg <= 0 }
helse seq do

reg[0] <= din
reg <= reg[14..0]

end
end

end

Note:

• helse seq ensures that the block of the hardware else is in sequential
mode.

• hif(rst) could also have been set to sequential mode as follows:

hif rst, seq do
reg <= 0

end

• Parallel mode can be set the same way using par.

Finally, it often happens that a behavior contains only one statement. In such a
case, the description can be shortened using the at operator as follows:

(statement).at(<list of events>)

For example the following two code samples are equivalent:

par(clk.posedge) do
a <= b+1

end

(a <= b+1).at(clk.posedge)

For sake of consistency, this operator can also be applied on block statements
as follows, but it is probably less readable than the standard declaration of
behaviors:

(seq do
a <= b+1
c <= d+2

end).at(clk.posedge)

22

3.5 Events

Each behavior of a system is associated with a list of events, called sensibility
list, that specifies when the behavior is to be executed. An event is associated
with a signal and represents the instants when the signal reaches a given state.

There are three kinds of event: positive edge events represent the instants when
their corresponding signals vary from 0 to 1, negative edge events represent
the instants when their corresponding signals vary from 1 to 0 and the change
events represent the instants when their corresponding signals vary. Events are
declared directly from the signals, using the posedge operator for positive edge,
the negedge operator for negative edge, and the change operator for change.
For example the following code declares 3 behaviors activated respectively on
the positive edge, the negative edge and any change of the clk signal.

inner :clk

par(clk.posedge) do
...
end

par(clk.negedge) do
...
end

par(clk.change) do
...
end

Note: - The change keyword can be omitted.

3.6 Statements

Statements are the basic elements of a behavioral description. They are regrouped
in blocks that specify their execution mode (parallel or sequential). There are
four kinds of statements: the transmit statement that computes expressions and
send the result to the target signals, the control statement that changes the
execution flow of the behavior, the block statement (described earlier) and the
inner signal declaration.

Note:

• There is actually a fifth type of statement, the time statement. It will be
discussed in section Time.

23

3.6.1 Transmit statement

A transmit statement is declared using the arrow operator <= within a behavior.
Its right value is the expression to compute and its left value is a reference to
the target signals (or parts of signals), i.e., the signals (or part of signals) that
receive the computation result.

For example following code transmits the value 3 to signal s0 and the sum of
the values of signals i0 and i1 to the first four bits of signal s1:

s0 <= 3
s1[3..0] <= i0 + i1

The comportment of a transmit statement depends on the execution mode of
the enclosing block:

• If the mode is parallel, the target signals are updated when all the state-
ments of the current block are processed.

• If the mode is sequential, the target signals are updated immediately after
the right value of the statement is computed.

3.6.2 Control statements

There are only two possible control statements: the hardware if hif and the
hardware case hcase.

3.6.2.1 hif

The hif construct is made of a condition and a block that is executed if and
only if the condition is met. It is declared as follows, where the condition can be
any expression:

hif <condition> do
<block contents>

end

3.6.2.2 hcase

The hcase construct is made of an expression and a list of value-block pairs.
A block is executed when the corresponding value is equal to the value of the
expression of the hcase. This construct is declared as follows:

hcase <expression>
hwhen <value 0> do

<block contents 0>
end
hwhen <value 1> do

24

<block contents 1>
end
...

3.6.2.3 helse

It is possible to add a block that is executed when the condition of an hif is
not met, or when no case matches the expression of a hcase, using the helse
keyword as follows:

<hif or hcase construct>
helse do

<block contents>
end

3.6.3 helsif

In addition to helse it is possible to set additional conditions to an hif using
the helsif keyword as follows:

hif <condition 0> do
<block contents 0>

end
helsif <condition 1> do

<block contents 1>
end
...

3.6.3.1 About loops

HDLRuby does not include any hardware construct for describing loops. This
might look poor compared to the other HDL, but it is important to understand
that the current synthesis tools do not really synthesize hardware from such
loops but instead preprocess them (e.g., unroll them) to synthesizable loopless
hardware. In HDLRuby, such features are natively supported by the Ruby loop
constructs (for, while, and so on), but also by advanced Ruby constructs like
the enumerators (each, times, and so on).

Notes:

• HDLRuby being based on Ruby, it is highly recommended to avoid for or
while constructs and to use enumerators instead.

• The Ruby if and case statements can also be used, but they do not rep-
resent nay hardware. Actually, they are executed when the corresponding
system is instantiated. For example, the following code will display Hello

25

world! when the described system is instantiated, provided the generic
parameter param is not nil.

system :say_hello do |param = nil|
if param != nil then

puts "Hello world!"
end

end

3.7 Types

Each signal and expression is associated with a data type which describes the
kind of value it can represent. In HDLRuby, the data types represent basically
bit vectors associated with the way they should be interpreted, i.e., as bit strings,
unsigned values, signed values, or hierarchical contents.

3.7.1 Type construction

There are five basic types, bit, signed, unsigned, integer and float that
represent respectively single bit logical values, single bit unsigned values, single
bit signed values, Ruby integer values and Ruby floating point values (double
precision). The first three types are HW and support four-valued logic, whereas
the two last ones are SW (but are compatible with HW) and only support
boolean logic. Ruby integers can represent any element of Z (the mathematical
integers), and have for that purpose a variable bit-width.

The other types are built from them using a combination of the two following
type operators.

The vector operator [] is used for building types representing vectors of
single or multiple other types. A vector whose elements have all the same type
are declared as follows:

<type>[<range>]

The <range> of a vector type indicates the position of the starting and ending
bits relatively to the radix point. If the position of the starting bit is on the left
side of the range, the vector is big endian, otherwise it is little endian. Negative
values in a range are also possible and indicate positions bellow the radix point.
For example the following code describes a big endian fixed point type with 8
bits above the radix point and 4 bits bellow:

bit[7..-4]

A n..0 range can also be abbreviated to n+1. For instance the two following
types are identical:

26

bit[7..0]
bit[8]

A vector of multiple types, also called tuple, is declared as follows:

[<type 0>, <type 1>, ...]

For example the following code declares the type of the vectors made of a 8-bit
logical, a 16-bit signed and a 16-bit unsigned values:

[bit[8], signed[16], unsigned[16]]

The structure opertor {} is used for building hierarchical types made of
named subtypes. This operator is used as follows:

{ <name 0>: <type 0>, <name 1>: <type 1>, ... }

For instance, the following code declares a hierarchical type with an 8-bit sub
type named header and a 24-bit sub type named data:

{ header: bit[7..0], data: bit[23..0] }

3.7.2 Type definition

It is possible to give names to type constructs using the typedef keywords as
follows:

<type construct>.typedef :<name>

For example the followings gives the name char to a 8-bit vector:

[7..0].typedef :char

After this statement, char can be used like any other type. For example, the
following code sample declares a new input signal sig whose type is char:

char.input :sig

3.7.3 Type compatibility and conversion

HDLRuby is strongly typed which means that when two types are not compatible
together, operations, connection or transmission between two expressions of these
types are not permitted. The compatibility rules between two types are the
followings:

1. The basic types are not compatible with one another.

2. Two vector types are compatible if and only if they have the same range
and the same subtype (i.e., the type of their elements).

3. Hierarchical types are compatible if and only if they have the same subtypes
names and each subtype of same name are compatible together.

27

The type an expression can be converted to one with another type using a
conversion operator. Please refer to section Conversion operators for more
details about such an operator.

Note:

• For the unambiguous cases, conversion operators will be implicitly added,
please refer to section Implicit conversions for more details.

3.8 Expressions

Expressions are any construct that represents a value associated with a type.
They include immediate values, reference to signals and operations among other
expressions using expression operators.

3.8.1 Immediate values

The immediate values of HDLRuby can represent vectors of bit, unsigned
and signed, and integer or floating point numbers. They are prefixed by a _
character and include a header that indicates the vector type and the base used
for representing the value, followed by a numeral representing the value. The bit
width of a value is obtained by default from the width of the numeral, but it is
also possible to enforce it in the header.

The vector type specifiers are the followings:

• b: bit type, can be omitted,

• u: unsigned type,

• s: signed type, the last figure is sign extended if required by the binary,
octal and hexadecimal bases, but not for the decimal base.

The base specifiers are the followings:

• b: binary, can be omitted,

• o: octal,

• d: decimal,

• h: hexadecimal.

For example, all the following immediate values represent an 8-bit 100 (either in
unsigned or signed representation):

_bb01100100
_b8b1100100
_b01100100
_01100100

28

_u8d100
_s8d100
_uh64
_s8o144

Notes:

• Ruby immediate values can also be used, their bit width is automatically
adjusted to match the data type of the expression they are used in. Please
notice this adjusting may change the value of the immediate, for example
the following code will actually set sig to 4 instead of 100:

[3..0].inner :sig
sig <= 100

3.8.2 References

References are expressions used to designate signals, or a part of signals.

The most simple reference is simply the name of a signal. It designates the signal
corresponding to this name in the current scope. For instance, in the following
code, inner signal sig0 is declared, and therefore the name sig0 becomes a
reference to designate this signal.

Declaration of signal sig0.
inner :sig0

Access to signal sig0 using a name reference.
sig0 <= 0

For designating a signal of another system, or a sub signal in a hierarchical
signal, you can use the . operator as follows:

<parent name>.<signal name>

For example, in the following code, input signal d of system instance dff0 is
connected to sub signal sub0 of hierarchical signal sig.

system :dff do
input :clk, :rst, :d
output :q

par(clk.posedge) { q <= d & ~rst }
end

system :my_system do
input :clk, :rst
{ sub0: bit, sub1: bit}.inner :sig

29

dff(:dff0).(clk: clk, rst: rst)
dff0.d <= sig.sub0
...

end

3.8.3 Expression operators

The following table gives a summary of the operators available in HDLRuby.
More details are given for each group of operator in the subsequent sections.

Assignment operators (left-most operator of a statement):

symbol description
:<= connection, if outside behavior
:<= transmission, if inside behavior

Arithmetic operators:

symbol description
:+ addition
:- subtraction
:* multiplication
:/ division
:% modulo
:** power
:+@ positive sign
:-@ negation

Comparison operators:

symbol description
:== equality
:!= difference
:> greater than
:< smaller than
:>= greater or equal
:<= smaller or equal

Logic and shift operators:

30

symbol description
:& bitwise / logical and
:
:~ bitwise / logical not
:mux multiplex
:<< / :ls left shift
:>> / :rs right shift
:lr left rotate
:rr right rotate

Conversion operators:

symbol description
:to_bit cast to bit vector
:to_unsigned cast to unsigned vector
:to_signed cast to signed vector
:to_big cast to big endian
:to_little cast to little endian
:reverse reverse the bit order
:ljust increase width from the left, preserves the sign
:rjust increase width from the right, preserves the sign
:zext zero extension, converts to unsigned if signed
:sext sign extension, converts to sign

Selection /concatenation operators:

symbol description
:[] sub vector selection
:@[] concatenation operator
:. field selection

Notes:

• The operator precedence is the one of Ruby.

• Ruby does not allow to override the &&, the || and the ?: operators so that
they are not present in HDLRuby. Instead of the ?: operator, HDLRuby
provides the more general multiplex operator mux. However, HDLRuby
does not provides any replacement for the && and the || operators, please
refer to section Logic operators for a justification about this issue.

31

3.8.3.1 Assignment operators

The assignment operators can be used with any type. They are actually the
connection and the transmission operators, both being represented by <=.

Note:

• The first operator of a statement is necessarily an assignment operator,
while the other occurrences of <= represent the usual less than or equal
to operators.

3.8.3.2 Arithmetic operators

The arithmetic operators can only be used on vectors of bit, unsigned or
signed values, integer or float values. These operators are +, -, *, % and the
unary arithmetic operators are - and +. They have the same meaning as their
Ruby equivalents.

3.8.3.3 Comparison operators

Comparison operators are the operators whose result is either true or false. In
HDLRuby, true and false are represented by respectively bit value 1 and bit
value 0. This operators are ==, !=, <, >, <=, >= . They have the same meaning
as their Ruby equivalents.

Notes:

• The <, >, <= and >= operators can only be used on vectors of bit, unsigned
or signed values, integer or float values.

• When compared, values of type different from vector of signed and from
float are considered as vectors of unsigned.

3.8.3.4 Logic and shift operators

In HDLRuby, the logic operators are all bitwise. For performing boolean compu-
tations it is necessary to use single bit values. The bitwise logic binary operators
are &, |, and ˆ, and the unary one is ~. They have the same meaning as their
Ruby equivalents.

Note: there is two reasons why there is no boolean operators

1. Ruby language does not support redefinition of the boolean operators

2. In Ruby, each value which is not false nor nil is considered to be true.
This is perfectly relevant for software, but not for hardware where the
basic data types are bit vectors. Hence, it seemed preferable to support
boolean computation for one-bit values only, which can be done through
bitwise operations.

32

The shift operators are << and >> and have the same meaning as their Ruby
equivalent. They do not change the bit width, and preserve the sign for signed
values.

The rotation operators are rl and rr for respectively left and right bit rotations.
Like the shifts, they do not change the bit width and preserve the sign for the
signed values. However, since such operators do not exist in Ruby, they are
actually used like methods as follows:

<expression>.rl(<other expression>)
<expression>.rr(<other expression>)

For example, for rotating left signal sig 3 times, the following code can be used:

sig.rl(3)

It is possible to perform other kinds of shifts or rotations using the selection and
the concatenation operators. Please refer to section Concatenation and selection
operators for more details about these operators.

3.8.3.5 Conversion operators

The conversion operators are used to change the type of an expression. There
are two kinds of such operators: the type pun that do not change the raw value
of the expression and the type cast that changes the raw value.

The type puns include to_bit, to_unsigned and to_signed that convert ex-
pressions of any type type to vectors of respectively bit, unsigned and signed
elements. For example, the following code converts an expression of hierarchical
type to an 8-bit signed vector:

[up: signed[3..0], down: unsigned[3..0]].inner :sig
sig.to_bit <= b01010011

The type casts change both the type and the value and are used to adjust
the width of the types. They can only be applied to vectors of bit, signed
or unsinged and can only increase the bit width (bit width can be truncated
using the selection operator, please refer to the next section). These operators
comprise the bit width conversions: ljust, rjust, zext and sext; they also
comprise the bit endianness conversions: to_big, to_little and reverse.

More precisely, the bit width conversions operate as follows:

• ljust and rjust increase the size from respectively the left or the right
side of the bit vector. They take as argument the width of the new type
and the value (0 or 1) of the bits to add. For example the following code
increases the size of sig0 to 12 bits by adding 1 on the right:

[7..0].inner :sig0
[11..0].inner :sig1

33

sig0 <= 25
sig1 <= sig0.ljust(12,1)

• zext increases the size by adding several 0 bits on the most significant
bit side, this side depending on the endianness of the expression. This
conversion takes as argument the width of the resulting type. For example,
the following code increases the size of sig0 to 12 bits by adding 0 on the
left:

signed[7..0].inner :sig0
[11..0].inner :sig1
sig0 <= -120
sig1 <= sig0.zext(12)

• sext increases the size by duplicating the most significant bit, the side
of the extension depending on the endianness of the expression. This
conversion takes as argument the width of the resulting type. For example,
the following code increases the size of sig0 to 12 bits by adding 1 on the
right:

signed[0..7].inner :sig0
[0..11].inner :sig1
sig0 <= -120
sig1 <= sig0.sext(12)

Finally, the bit endianness conversions operate as follows:

• to_big ensures the type of the converted expression is big endian. If the
initial expression is already big endian, it is left as is, otherwise its bits are
reversed.

• to_little ensures the type of the converted expression is little endian. If
the initial expression is already little endian, it is left as is, otherwise its
bits are reversed.

• reverse always reverses the bit order of the expression.

3.8.3.6 Concatenation and selection operators

Concatenation and selection are done using the [] operator as follows:

• when this operator takes as arguments several expressions, it concatenates
them. For example, the following code concatenates sig0 to sig1:

[3..0].inner :sig0
[7..0].inner :sig1
[11..0].inner :sig2
sig0 <= 5
sig1 <= 6
sig2 <= [sig0, sig1]

34

• when this operator is applied to an expression of bit, unsigned or signed
vector type while taking as argument a range, it selects the bits corre-
sponding to this range. If only one bit is to select, the offset of this bit
can be used instead. For example, the following code selects bits from 3 to
1 of sig0 and bit 4 of sig1:

[7..0].inner :sig0
[7..0].inner :sig1
[3..0].inner :sig2
bit.inner :sig3
sig0 <= 5
sig1 <= 6
sig2 <= sig0[3..1]
sig3 <= sig1[4]

3.8.3.7 Implicit conversions

When there is no ambiguity with bit vector types of same endianness, HDLRuby
will automatically insert conversion operators when two types are not compatible
with one another. The cases where such implicit conversions are applied are
summarized in the following tables where:

• operator is the operator in use
• result width is the width of the result’s type
• result base is the base type of the result’s type
• S is the shortest operand
• L is the longest operand
• S operand type is the base type of the shortest operand
• L operand type is the base type of the longest operand
• operand conversion is the conversions added to make the operands com-

patible.
• w is the width of the operands after conversion
• lw is the width of the left operand’s type before conversion
• rw is the width of the right operand’s type before conversion

Additive and logical operators:

operator result’s width
<= (assign) w (error is raised if L.width < R.width)
+, - w+1
&, |, ˆ w
== 1
< 1
> 1
<= (comp.) 1
>= 1

35

S operand base L operand base result base operand conversion
bit bit bit S.zext(L.width)
bit unsigned unsigned S.zext(L.width).to_unsigned
bit signed signed S.zext(max(S.width+1,L.width).to_signed
unsigned bit unsigned S.zext(L.width), L.to_unsigned
unsigned unsigned unsigned S.zext(L.width)
unsigned signed signed S.zext(max(S.width+1,L.width).to_signed
signed bit signed S.sext(L.width+1), L.zext(L.width+1).to_signed
signed unsigned signed S.sext(L.width+1), L.zext(L.width+1).to_signed
signed signed signed S.sext(L.width)

Multiplicative operators:

operator result width
* lw * rw
/ lw
% rw

rw
<< / ls lw
>> / rs lw
lr lw
rr lw

S operand base L operand base result base operand conversion
bit bit bit
bit unsigned unsigned S.to_unsigned
bit signed signed S.zext(S.width+1).to_signed
unsigned bit unsigned L.to_unsigned
unsigned unsigned unsigned
unsigned signed signed S.zext(S.width).to_signed
signed bit signed L.zext(L.width+1).to_signed
signed unsigned signed L.zext(L.width+1).to_signed
signed signed signed

3.9 Functions

3.9.1 HDLRuby functions

Similarly to Verilog HDL, HDLRuby provides function constructs for reusing
code. HDLRuby functions are declared as follows:

36

function :<function name> do |<arguments>|
<code>
end

Where:

• function name is the name of the function.
• arguments is the list of arguments of the function.
• code is the code of the function.

Notes:

• Functions have their own scope, so that any declaration within a function
is local. It is also forbidden to declare interface signals (input, output or
inout) within a function.

• Similarly to Ruby proc objects, the last statement of a function’s code
serves as return value. For instance the following function returns 1 (in
this example the function does not have any argument):

function :one { 1 }

• Functions can accept any kind of object as argument, including variadic
arguments or blocks of code as shown bellow with a function which apply
the code passed as argument to all the variadic arguments of args:

function :apply do |*args, &code|
args.each { |arg| code.call(args) }

end

Such a function can be used for example for connecting a signal to a set
of other signals as follows (where sig is connected to x, y and z): ruby
apply(x,y,z) { |v| v <= sig }

A function can be invoked anywhere in the code using its name and passing its
argument between parentheses as follows:

<function name>(<list of values>)

3.9.2 Ruby functions

HDLRuby functions are useful for reusing code, but they cannot interact with
the code they are called in. For example, it is not possible to add interface
signals through a function nor to modify a control statement (e.g., hif) with
them. These high-level generic operations can however be performed using the
functions of the Ruby language declared as follows:

def <function name>(<arguments>)
<code>

end

37

Where:

• is the name of the function.
• is the list of arguments of the function.
• is the code of the function.

These functions are called the same way HDLRuby functions are called, but
this operation actually pastes the code of the function as is within the code.
Moreover, these function do not have any scope so that any inner signal or
instance declared within them will actually added to the object they are invoked
in.

For example, the following function will add input in0 to any system where it is
invoked:

def add_in0
input :in0

end

This function can be used as follows:

system :sys do
...
add_in0
...

end

As another example, following function will add an alternative code that generates
a reset to a condition statement (hif or hcase):

def too_bad
helse { $rst <= 1 }

end

This function can be used as follows:

system :sys do
...
par do

hif(sig == 1) do
...

end
too_bad

end
end

Ruby functions can be compared to the macros of the C languages: they have
more flexible since they actually edit the code they are invoked in, but are also
dangerous to use. In general, it is not recommended to use them, unless when
designing a library of generic code for HDLRuby.

38

3.10 Time

3.10.1 Time values

In HDLRuby, time values can be created using the time operators: s for seconds,
ms for millisecond, us for microsecond, ns for nano second, ps for pico second
and fs for femto second. For example, the followings are all indicating one
second of time:

1.s
1000.ms
1000000.us
1000000000.ns
1000000000000.ps
1000000000000000.fs

3.10.2 Time behaviors and time statements

Similarly to the other HDL, HDLRuby provides specific statements that models
the advance of time. These statements are not synthesizable and are used for
simulating the environment of a hardware component. For sake of clarity, such
statements are only allowed in explicitly non-synthesizable behavior declared
using the timed keyword as follows.

timed do
<statements>

end

A time behavior do not have any sensitivity list but it can include any statement
supported by a standard behavior in addition to the time statements. There are
two kinds of such statements:

• The wait statements: such a statement blocks the execution of the behavior
for the amount of time given in argument. For example the following code
waits 10ns before proceeding:

wait(10.ns)

This statement can also be abbreviated using the ! operator as follows:

!10.ns

• The repeat statements: such a statement takes as argument a time value
and a block. The execution of the block is repeated until the delay given by
the time value argument expires. For example, the following code executes
repeatedly the inversion of the clk signal every 10 nanoseconds for 10
seconds (i.e., it simulates a clock signal for 10 seconds):

39

repeat(10.s) do
!10.ns
clk <= ~clk

end

3.10.3 Parallel and sequential execution

Time behaviors are by default sequential but they can include both parallel and
sequential blocks. The execution semantic is the following:

• A sequential block in a time behavior is executed sequentially.

• A parallel block in a time behavior is executed in semi-parallel fashion as
follows:

1. Statements are grouped in sequence until a time statement is met.

2. The grouped sequence are executed in parallel.

3. The time statement is executed.

4. The subsequent statements are processed the same way.

3.11 High-level programming features

3.11.1 Using Ruby in HDLRuby

Since HDLRuby is pure Ruby code, the constructs of Ruby can be freely used
without any compatibility issue. Moreover, this Ruby code will not interfere
with the synthesizability of the design. It is then possible to define Ruby classes,
methods or modules whose execution generates constructs of HDLRuby.

3.11.2 Generic programming

3.11.2.1 Declaring

Systems can be declared with generic parameters. For that purpose, the param-
eters must be given as follows:

system :<system name> do |<list of generic parameters>|
...

end

For example, the following code describes an empty system with two generic
parameters named respectively a and b:

system(:nothing) { |a,b| }

40

The generic parameters can be anything: values, data types, systems, Ruby
variables, and so on. For example, the following system uses generic argument t
as a type for an input signal, generic argument w as a bit range for an output
signal and generic argument s as a system used for creating instance sI whose
input and output signals i and o are connected respectively to signals isig and
osig.

system :something do |t,w,s|
t.input isig
[w].output osig

s :sI.(i: isig, o: osig)
end

It is also possible to use a variable number of generic parameters using the
variadic operator * like in the following example. In this examples, args is an
array containing an indefinite number of parameters.

system(:variadic) { |*args| }

3.11.2.2 Specializing

A generic system is specialized by invoking its name and passing as argument
the values corresponding to the generic arguments as follows:

<system name>(<generic argument value's list>)

If less values are provided than the number of generic arguments, the system is
partially specialized.

A specialized system can be used for inheritance. For example, assuming system
sys has 2 generic arguments, it can be specialized and used for building system
subsys as follows:

system :subsys, sys(1,2) do
...

end

This way of inheriting can only be done with fully specialized systems though.
For partially specialized systems, include must be used instead. For example,
if sys specialized with only one value, can be used in generic subsys_gen as
follows:

system :subsys_gen do |param|
include sys(1,param)
...

end

Note:

41

• In the example above, generic parameter param of sybsys_gen is used for
specializing system sys.

3.11.2.3 Instantiating

When instantiating a system, the values of its generic parameters must be
provided after the name of the new instance as follows:

<system name>(<generic argument value's list>).(:<instance name>)

If some arguments are omitted, an exception will be raised even if the arguments
are not actually used in the system’s body.

For example, in the previous section, system nothing did not used the generic
arguments, but the following instantiation is invalid:

nothing(1).(:nothingI)

However the following is valid since a value is provided for each generic argument.

nothing(1,2).(:nothingI)

The validity of the generic value itself is checked when the body of the system is
executed for generating the content of the instance. For the user’s point of view,
this happens at instantiation time, just like the check of the number of generic
parameters’ values. For example, the following instantiation of previous system
something will raise an exception since the first generic value is not a type:

something(1,7..0).(:somethingI)

However, the following is valid:

something(bit,7..0).(:somethingI)

3.11.3 Inheritance

3.11.3.1 Basics

In HDLRuby, a system can inherit from the content of one or several other parent
systems using the include command as follows: include <list of systems>.
Such an include can be put anywhere in the body of a system, but the resulting
content will be accessible only after this command.

For example, the following code describes first a simple D-FF, and then use it to
described a FF with an additional reversed output (qb):

system :dff do
input :clk, :rst, :d
output :q

par(clk.posedge) { q <= d & ~rst }

42

end

system :dff_full do
output :qb

include dff

qb <= ~q
end

It is also possible to declare inheritance in a more object oriented fashion by
listing the parents of a system just after declaring its name as follows:

system :<new system name>, <list of parent systems> do
<additional system code>

end

For example, the following code is another to describe dff_full:

system :dff_full, dff do
output :qb

qb <= ~q
end

Note:

• As a matter of implementation, HDLRuby systems can be seen as set of
methods used for accessing various constructs (signals, instances). Hence
inheritance in HDLRuby is actually closer the Ruby mixin mechanism than
to a true software inheritance.

3.11.3.2 About inner signals and system instances

By default, inner signals and instances of a parent system are not accessible by
its child systems. They can be made accessible using the export keyword as
follows: export <symbol 0>, <symbol 1>, For example the following
code exports signals clk and rst and instance dff0 of system exporter so that
they can be accessed in child system importer.

system :exporter do
input :d
inner :clk, :rst

dff(:dff0).(clk: clk, rst: rst, d: d)

export :clk, :rst, :dff0
end

43

system :importer, exporter do
input :clk0, :rst0
output :q

clk <= clk0
rst <= rst0
dff0.q <= q

end

Note: - export takes as arguments the symbols (or the strings) representing the
name of the components to export and not a reference to them. For instance,
the following code is invalid:

system :exporter do
input :d
inner :clk, :rst

dff(:dff0).(clk: clk, rst: rst, d: d)

export clk, rst, dff0
end

3.11.3.3 Conflicts when inheriting

Signals and instances cannot be overridden, this is also the case for signals
and instances accessible through inheritance. For example the following code is
invalid since rst has already been defined in dff:

system :dff_bad, dff do
input :rst

end

Conflicts among several inherited systems can be avoided by renaming the signals
and instances that collide with one another as shown in the next section.

3.11.3.4 Shadowed signals and instances

It is possible in HDLRuby to declare a signal or an instance whose name is
identical to one used in one of the included systems. In such a case, the
corresponding construct of the included system is still present, but is not directly
accessible even if exported, they are said to be shadowed.

In order to access to the shadowed signals or instances, a system must be
reinterpreted as the relevant parent system using the as operator as follows:
as(system).

For example, in the following code signal db of system dff_db is shadowed by
signal db of system dff_shadow, but is accessed using the as operator.

44

system :dff_db do
input :clk,:rst,:d
inner :db
output :q

db <= ~d
(q <= d & ~rst).at(clk.posedge)

end

system :dff_shadow, dff_db do
output :qb, :db

db <= ~d
qb <= as(dff_db).db

end

3.11.4 Opening a system

It is possible to pursue the definition of a system after it has been declared using
the open methods as follows:

<system>.open do
<additional system description>

end

For example dff, a system describing a D-FF, can be modified to have an
inverted output as follows:

dff.open do
output :qb

qb <= ~q
end

3.11.5 Opening an instance

When there is a modification to apply to an instance, it is sometimes preferable
to modify this sole instance rather than declaring a all new system to derivate the
instance from. For that purpose it is possible to open an instance for modification
as follows:

<instance name>.open do
<additional description for the instance>

end

For example, an instance of the previous dff system can be extended with an
inverted output as follows:

45

system :some_system do
...
dff :dff0
dff0.open do

output :qb
qb <= ~q

end
...

end

3.11.6 Opening a single signal, or the totality of the signals

Contrary to systems and instances, signals dot not have any inner structure. Its
however sometimes useful to add features to them (cf. hooks). Again, this is
done using the open method as follows where signal sig is opened:

sig.open do
<some code>

end

It is also possible to modify the totality of the signals of the design as follows:

signal.open do
<some code>

end

3.11.7 Predicate and access methods

In order to get information about the current state of the hardware description
HDLRuby provides the following predicates:

predicate name predicate type predicate meaning
is_block? bit tells if in execution

block
is_par? bit tells if current parallel

block is parallel
is_seq? bit tells if current parallel

block is sequential
is_clocked? bit tells if current behavior

is clocked (activated on
a sole rising or falling
edge of a signal)

cur_block block gets the current block
cur_behavior behavior gets the current

behavior

46

predicate name predicate type predicate meaning
cur_system system gets the current system
one_up block/system gets the upper

construct (block or
system)

last_one any last declared construct

Several enumerators are also provided for accessing the internals of the current
construct (in the current state):

enumerator name accessed elements
each_input input signals of the current system
each_output output signals of the current system
each_inout inout signals of the current system
each_behavior behaviors of the current system
each_event events of the current behavior
each_block blocks of the current behavior
each_statement statements of the current block
each_inner inner signals of the current block (or

system if not within a block)

3.11.8 Global signals

HDLRuby allows to declare global signals the same way system’s signals are
declared, but outside the scope of any system. After being declared, these signals
are accessible directly from within any hardware construct.

In order to ease the design of standardized libraries, the following global signals
are defined by default:

signal name signal type signal function
$reset bit global reset
$resetb bit global reset complement
$clk bit global clock
$err bit used to indicate if an error occurred
$errno bit[7..0] indicates the error number

Note:

• When not used, the global signals are discarded.

47

3.11.9 Defining and executing Ruby methods within HDLRuby con-
structs

Like with any Ruby program it is possible to define and execute methods
anywhere in HDLRuby using the standard Ruby syntax. When defined, a
method is attached to the enclosing HDLRuby construct. For instance, when
defining a method when declaring a system, it will be usable within this system,
while when defining a method outside any construct, it will be usable everywhere
in the HDLRuby description.

A method can include HDLRuby code in which case the resulting hardware
is appended to the current construct. For example the following code adds a
connection between sig0 and sig1 in system sys0, and transmission between
sig0 and sig1 in the behavior of sys1.

def some_arrow
sig1 <= sig0

end

system :sys0 do
input :sig0
output :sig1

some_arrow
end

system :sys1 do
input :sig0, :clk
output :sig1

par(clk.posedge) do
some_arrow

end
end

Warning:

• In the above example, the semantic of some_arrow changes depending on
where it is invoked from: within a system, it is a connection, within a
behavior it is a transmission.

• Using Ruby methods for describing hardware might lead to weak code, for
example the in following code, the method declares in0 as input signal.
Hence, while used in sys0 no problems happens, an exception will be raised
for sys1 because a signal in0 is already declare, and will also be raised for
sys2 because it is not possible to declare an input from within a behavior.

def in_decl

48

input :in0
end

system :sys0 do
in_decl

end

system :sys1 do
input :in0
in_decl

end

system :sys2 do
par do

in_decl
end

end

Like any other Ruby method, methods defined in HDLRuby support variadic
arguments, named arguments and block arguments. For example, the following
method can be used to connects a driver to multiple signals:

def mconnect(driver, *signals)
signals.each do |signal|

signal <= driver
end

end

system :sys0 do
input :i0
input :o0, :o1, :o2, :o3

mconnect(i0,o0,o1,o2,o3)
end

While requiring care, properly designed method can be very useful for clean code
reuse. For example the following method allows to start the execution of a block
after a given number of cycles:

def after(cycles,rst = $rst, &code)
sub do

inner :count
hif rst == 1 do

count <= 0
end
helse do

hif count < cycles do
count <= count + 1

49

end
helse do

instance_eval(&code)
end

end
end

end

In the code above:

• the default initialization of rst to $rst allows to reset the counter even if
no such signal it provided as argument.

• sub ensures that the count signal do not conflict with another signal with
the same name.

• the instance_eval keyword is a standard Ruby method that executes the
block passed as argument in context.

The following is an example that switches a LED on after 1000000 clock cycles
using the previously defined after ruby method:

system :led_after do
output :led
input :clk

par(clk.posedge) do
(led <= 0).hif($rst)
after(100000) { led <= 1 }

end
end

Note:

• Ruby’s closure still applies in HDLRuby, hence, the block sent to after
can use the signals and instances of the current block. Moreover, the signal
declared in this method will not collide with them.

3.11.10 Dynamic description

When describing a system, it is possible to disconnect or to completely undefine
a signal or an instance.

3.12 Extending HDLRuby

Like any Ruby classes, the constructs of HDLRuby can be dynamically extended.
If it is not recommended to change their internal structure, it is possible to add
methods to them for extension.

50

3.12.1 Extending HDLRuby constructs globally

By gobal extension of hardware constructs we actually mean the classical exten-
sion of Ruby classes by monkey patching the corresponding class. For example,
it is possible to add a methods giving the number of signals in the interface of a
system instance as follows:

class SystemI
def interface_size

return each_input.size + each_output.size + each_inout.size
end

end

From there, the method interface_size can be used on any system instance
as follows: <system instance>.interface_size.

The following table gives the class of each construct of HDLRuby.

construct class
data type Type
system SystemT
scope Scope
system instance SystemI
signal Signal
connection Connection
par/seq Behavior
timed TimeBehavior
event Event
par/seq/sub Block
transmit Transmit
hif If
hcase Case

3.12.2 Extending HDLRuby constructs locally

By local extension of a hardware construct, we mean that while the construct
will be changed, all the other constructs will remain unchanged. This is achieved
like in Ruby by accessing the eigen class using the singleton_class method,
and extending it using the class_eval method. For example, with the following
code, only system dff will respond to method interface_size:

dff.singleton_class.class_eval do
def interface_size

return each_input.size + each_output.size + each_inout.size
end

end

51

It is also possible to extend locally an instance using the same methods. For
example, with the following code, only instance dff0 will respond to method
interface_size:

dff :dff0

dff0.singleton_class.class_eval do
def interface_size

return each_input.size + each_output.size + each_inout.size
end

end

Finally, it is possible to extend locally all the instances of a system using method
singleton_instance in place of method singleton_class. For example, with
the following code, all the instances of system dff will respond to method
interface_size:

dff.singleton_instance.class_eval do
def interface_size

return each_input.size + each_output.size + each_inout.size
end

end

3.12.3 Modifying the generation behavior

The main purpose of allowing global and local extensions for hardware constructs
is to give the user the possibility implements its own synthesis methods. For
example, one may want to implement some algorithm for a given kind of system.
For that purpose, the user can define an abstract system (without any hardware
content), that holds the specific algorithm as follows:

system(:my_base) {}

my_base.singleton_instance.class_eval do
def my_generation

<some code>
end

end

Then, when this system named my_base is included into another system, this lat-
ter will inherit from the algorithms implemented inside method my_generation
as shown in the following code:

system :some_system, my_base do
<some system description>

end

52

However, when generation the low-level description of this system, code similar
to the following will have to be written for applying my_generation:

some_system :instance0
instance0.my_generation
low = instance0.to_low

This can be avoided by redefining the to_low method as follows:

system(:my_base) {}

my_base.singleton_instance.class_eval do
def my_generation

<some code>
end

alias :_to_low :to_low
def to_low

my_generation
_to_low

end
end

This way, calling directly to_low will automatically use my_generation.

4 Standard library

The standard libraries are included into the module Std. They can be loaded as
follows, where <library name> is the name of the library:

require 'std/<library name>'

After the libraries are loaded, the module Std must be included as follows:

include HDLRuby::High::Std

4.1 Channel

This library provides a unified interface to complex communication protocols. The
interface consists of channel objects that can be written or read for transmission.

4.2 Clocks

This library provides utilities for an easier handling of clock synchronizations.

53

4.3 Counters

This library provides various construct with implicit counters for implementing
synthesizable wait statements.

4.4 Pipeline

This library provides a construct for an easy description of pipeline architectures.

5 Development

After checking out the repo, run bin/setup to install dependencies. Then, run
rake test to run the tests. You can also run bin/console for an interactive
prompt that will allow you to experiment.

To install this gem onto your local machine, run bundle exec rake install.
To release a new version, update the version number in version.rb, and then
run bundle exec rake release, which will create a git tag for the version,
push git commits and tags, and push the .gem file to rubygems.org.

6 Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/Lovic
Gauthier/HDLRuby.

7 License

The gem is available as open source under the terms of the MIT License.

54

https://rubygems.org
http://opensource.org/licenses/MIT

	About HDLRuby
	Compiling HDLRuby descriptions
	Using the HDLRuby compiler
	Using HDLRuby within Ruby
	Handling the low-level HDLRuby representation

	HDLRuby programming guide
	Introduction
	How does HDLRuby work
	Naming rules
	Systems and signals
	Declaring an empty system
	Declaring a system with an interface
	Structural description in a system
	Scope in a system
	Behavioral description in a system.

	Events
	Statements
	Transmit statement
	Control statements
	helsif

	Types
	Type construction
	Type definition
	Type compatibility and conversion

	Expressions
	Immediate values
	References
	Expression operators

	Functions
	HDLRuby functions
	Ruby functions

	Time
	Time values
	Time behaviors and time statements
	Parallel and sequential execution

	High-level programming features
	Using Ruby in HDLRuby
	Generic programming
	Inheritance
	Opening a system
	Opening an instance
	Opening a single signal, or the totality of the signals
	Predicate and access methods
	Global signals
	Defining and executing Ruby methods within HDLRuby constructs
	Dynamic description

	Extending HDLRuby
	Extending HDLRuby constructs globally
	Extending HDLRuby constructs locally
	Modifying the generation behavior

	Standard library
	Channel
	Clocks
	Counters
	Pipeline

	Development
	Contributing
	License

