
Making Ruby?Making Ruby?
ゆるふわRuby生活

Nobuyoshi Nakada / 中田伸悦
Salseforce.com / Heroku

Powered by Rabbit 2.2.2 and COZMIXNG

Self-introduction

Fulltime Ruby Committer @
Salesforce.com / Heroku

(2011~)

So called Matz team

Matz

Nobu

Ko1

日常/Daily

デバッグ/Debugging

新機能/New features

バグ/Bug making

家事・育児/Housekeeping etc

About Ruby development

Repository

Issues

Developers’ meeting

Repository

Subversion
svn+ssh://svn@ci.ruby-lang.org/ruby
https://svn.ruby-lang.org/cgi-bin/viewvc.cgi/

Git mirror
https://github.com/ruby/ruby

Why not Git?

ruby is older than Git

moving to git needs some works

hash is not clear as revision
number

Windows is not supported
officially

Not enough advantage

Issues

Redmine
https://bugs.ruby-lang.org/projects/ruby-trunk/issues

Mailing List
ruby-core@ruby-lang.org (en)

ruby-dev@ruby-lang.org (ja)

Developers’ meeting

Once per month

In Tokyo (usually)
in Kyoto 2016/9

Taking inventory of bug tickets

How to build Ruby (from tarball)

Similar to other OSS

configure

+

make

Out-of-Place build

Various configure options

Virtual machines
Linux, Windows, …

GNU Makefile to build at once
https://github.com/nobu/build-files/blob/master/Ruby.mk

Various configure options

Many build directories by combination

--enable-shared

--with-arch

optflags

etc

How to Build Ruby (from repo)

subversion / git(mirror)

autoconf

bison

gperf

ruby

To build Ruby, you need Ruby

Ruby

BASERUBY

pre-installed ruby

MINIRUBY

ruby made during the build

BASERUBY

Ruby (maybe old) to generate source
files

parse.y → parse.c, …

defs/id.def → id.h, id.c

insns.def → vm.inc, insns.inc,
…

etc…

MINIRUBY

To generate Makefiles for extension
libraries, and others

MINIRUBY’s feature

No dynamic loading
↓

Runnable alone

No LD_LIBRARY_PATH

Convenient for debugging

MINIRUBY’s limitation

Feature can be also a limitation

Unable to load extension
libraries

b/c restriction of Windows DLL

can’t share exts with normal ruby

built-in encodings only

ASCII-8BIT, US-ASCII, UTF-8

for -K option: EUC-JP, Shift_JIS

Building encodings

To generate Makefile by erb
no details

Similar to exts but bit simpler

Building extension libraries

execute extconf.rb files under
ext and gems directories

Dir.glob("{ext,gems}/**/extconf.rb") do |file|
 load(file)
end

generate dedicated Makefile
(exts.mk)

Parallel build (~2.4)

building miniruby ⇒ parallel
(w/ GNU make)

building extension libraries ⇒
parallel

each extconf.rb ⇒ sequential
⇒ making exts.mk is slow

Parallel build (2.5)

run each directories underneath
ext and gems

no dependencies each other

depends on the parent only

composite each exts.mk files
⇒ faster configuration

Problem

No headers and libraries are
installed at build

C headers provided by ruby
ruby.h, etc

library files provided by ruby
libruby.so, etc

Solution

Mimic global variables used in
mkmf.rb by trace_var

$extmk

$ruby

trace_var

Hook changes of a global variable

 trace_var(symbol, cmd) -> nil
 trace_var(symbol) {|val| block } -> nil

Controls tracing of assignments to global variables. The parameter symbol
identifies the variable (as either a string name or a symbol identifier).
cmd (which may be a string or a Proc object) or block is executed
whenever the variable is assigned. The block or Proc object receives the
variable's new value as a parameter. Also see Kernel::untrace_var.

 trace_var :$_, proc {|v| puts "$_ is now '#{v}'" }
 $_ = "hello"
 $_ = ' there'

produces:

 $_ is now 'hello'
 $_ is now ' there'

$extmk

Flag to handle bundled exts in mkmf.rb

set source directory from build
directory

set built extension directory

chain $ruby hook

$ruby

Path to ruby to run

set up RbConfig configurations

set $ruby path

?

Bug Report

[ruby-list:50578]

w/o local variable

p = 2
p (-1.3).abs #=> 1.3

w/ local variable

p = 2
p (-1.3).abs #=> -1.3

Exactly Not-A-Bug

Ancient Spec
at least 1.1

Just-size bug

“Demon Castle parse.y” by mame

“Monstrous” lex_state

But not so hard

NOT SO
HARD?

-w option

$ ruby -w -e 'p=2; p (-1.3).abs'
-e:1: warning: don't put space
 before argument parentheses

parser_yylex()

the lexical analysis

case '(':
 // ...
 else if (lex_state == (EXPR_END|EXPR_LABEL) && space_seen) {
 rb_warning0("don't put space before argument parentheses");
 }
 // ...
 SET_LEX_STATE(EXPR_BEG|EXPR_LABEL);

What’s space_seen?

a space was seen just before the
current token?

p (-1.3).abs
^------------!Here!

lex_state

state of lexer

(EXPR_END|EXPR_LABEL) …

What’s EXPR_END?

Able to end an expression

just after right paren of method

just after method name w/o paren

just after method arg w/o paren

…

What’s EXPR_LABEL?

Able to place a label

just after left paren of method

just after method name w/o paren

just after method arg w/o paren

In parse_ident()

parse an identifier starts with a
lower letter (local variable / method)

ident = tokenize_ident(parser, last_state);
if (!IS_lex_state_for(last_state, EXPR_DOT|EXPR_FNAME) &&
 (result == tIDENTIFIER) && /* not EXPR_FNAME, not attrasgn */
 lvar_defined(ident)) {
 SET_LEX_STATE(EXPR_END|EXPR_LABEL);
}

What’s lvar_defined(ident)?

Prediction to tell “whether the name
referred as ident (p here) is
 defined as a local variable in the
current scope”

Rules

W/o variable

primary : tLPAREN_ARG

W/ variable

paren_args : '(' opt_call_args rparen

How to Fix?

Remove the condition by lvar_defined

I consider it a bug, but…

?

literal symbol by intern

compile.c (iseq_compile_each0):
literal symbol should not be
affected by redefinition of
String#intern method.

vm_insnhelper.c (rb_vm_str_intern):
intern a string into a
symbol directly.

literal symbol by intern

:"#{foo}"

[Feature #13812]

Refinements can’t affect string
interpolation

Difference

Conversion is explicitly visible or
not

New Features

No eye-catcher in 2.5

Such as &. in 2.3

“Unicode case” in 2.4

Approved

rescue inside do/end

Array#append, prepend

Hash#transform_keys

Kernel#yield_self

…

Rejected

neko ^..^ operator (in Perl6)

User-defined operator

Under Discussion

Method extraction operator
Kernel#method -> Method instance

Rightward assignment

Write Ruby

Wouldn’t you write New Ruby?

Powered by Rabbit 2.2.2 and COZMIXNG

