<!doctype html> <html lang=“en”>

<head>
        <meta charset="utf-8">

        <title>reveal.js - Math Plugin</title>

        <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">

        <link rel="stylesheet" href="../../css/reveal.css">
        <link rel="stylesheet" href="../../css/theme/night.css" id="theme">
</head>

<body>

        <div class="reveal">

                <div class="slides">

                        <section>
                                <h2>reveal.js Math Plugin</h2>
                                <p>A thin wrapper for MathJax</p>
                        </section>

                        <section>
                                <h3>The Lorenz Equations</h3>

                                \[\begin{aligned}
                                \dot{x} &amp; = \sigma(y-x) \\
                                \dot{y} &amp; = \rho x - y - xz \\
                                \dot{z} &amp; = -\beta z + xy
                                \end{aligned} \]
                        </section>

                        <section>
                                <h3>The Cauchy-Schwarz Inequality</h3>

                                <script type="math/tex; mode=display">
                                        \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
                                </script>
                        </section>

                        <section>
                                <h3>A Cross Product Formula</h3>

                                \[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
                                \mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
                                \frac{\partial X}{\partial u} &amp;  \frac{\partial Y}{\partial u} &amp; 0 \\
                                \frac{\partial X}{\partial v} &amp;  \frac{\partial Y}{\partial v} &amp; 0
                                \end{vmatrix}  \]
                        </section>

                        <section>
                                <h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>

                                \[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \]
                        </section>

                        <section>
                                <h3>An Identity of Ramanujan</h3>

                                \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
                                1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
                                {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
                        </section>

                        <section>
                                <h3>A Rogers-Ramanujan Identity</h3>

                                \[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
                                \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
                        </section>

                        <section>
                                <h3>Maxwell&#8217;s Equations</h3>

                                \[  \begin{aligned}
                                \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} &amp; = 4 \pi \rho \\
                                \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}} \\
                                \nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned}
                                \]
                        </section>

                        <section>
                                <section>
                                        <h3>The Lorenz Equations</h3>

                                        <div class="fragment">
                                                \[\begin{aligned}
                                                \dot{x} &amp; = \sigma(y-x) \\
                                                \dot{y} &amp; = \rho x - y - xz \\
                                                \dot{z} &amp; = -\beta z + xy
                                                \end{aligned} \]
                                        </div>
                                </section>

                                <section>
                                        <h3>The Cauchy-Schwarz Inequality</h3>

                                        <div class="fragment">
                                                \[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
                                        </div>
                                </section>

                                <section>
                                        <h3>A Cross Product Formula</h3>

                                        <div class="fragment">
                                                \[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
                                                \mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
                                                \frac{\partial X}{\partial u} &amp;  \frac{\partial Y}{\partial u} &amp; 0 \\
                                                \frac{\partial X}{\partial v} &amp;  \frac{\partial Y}{\partial v} &amp; 0
                                                \end{vmatrix}  \]
                                        </div>
                                </section>

                                <section>
                                        <h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>

                                        <div class="fragment">
                                                \[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \]
                                        </div>
                                </section>

                                <section>
                                        <h3>An Identity of Ramanujan</h3>

                                        <div class="fragment">
                                                \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
                                                1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
                                                {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
                                        </div>
                                </section>

                                <section>
                                        <h3>A Rogers-Ramanujan Identity</h3>

                                        <div class="fragment">
                                                \[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
                                                \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
                                        </div>
                                </section>

                                <section>
                                        <h3>Maxwell&#8217;s Equations</h3>

                                        <div class="fragment">
                                                \[  \begin{aligned}
                                                \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} &amp; = 4 \pi \rho \\
                                                \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}} \\
                                                \nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned}
                                                \]
                                        </div>
                                </section>
                        </section>

                </div>

        </div>

        <script src="../../lib/js/head.min.js"></script>
        <script src="../../js/reveal.js"></script>

        <script>

                Reveal.initialize({
                        history: true,
                        transition: 'linear',

                        math: {
                                // mathjax: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js',
                                config: 'TeX-AMS_HTML-full'
                        },

                        dependencies: [
                                { src: '../../lib/js/classList.js' },
                                { src: '../../plugin/math/math.js', async: true }
                        ]
                });

        </script>

</body>

</html>