class Statsample::TimeSeries::Arima::KF::LogLikelihood
Attributes
aic[R]
Gives AIC(Akaike Information Criterion) www.scss.tcd.ie/Rozenn.Dahyot/ST7005/13AICBIC.pdf
log_likelihood[R]
Gives log likelihood value of an ARMA(p, q) process on given parameters
sigma[R]
Gives sigma value of an ARMA(p,q) process on given parameters
Public Class Methods
new(params, timeseries, p, q)
click to toggle source
# File lib/statsample-timeseries/arima/likelihood.rb, line 17 def initialize(params, timeseries, p, q) @params = params @timeseries = timeseries.to_a @p = p @q = q ll end
Public Instance Methods
ll()
click to toggle source
Log likelihood link function.¶ ↑
iteratively minimized by simplex algorithm via KalmanFilter.ks
Not meant to be used directly. Will make it private later.
# File lib/statsample-timeseries/arima/likelihood.rb, line 28 def ll params, timeseries = @params, @timeseries p, q = @p, @q phi = [] theta = [] phi = params[0...p] if p > 0 theta = params[(p)...(p + q)] if q > 0 [phi, theta].each do |v| if v.size>0 and v.map(&:abs).inject(:+) > 1 return end end m = [p, q].max h = Matrix.column_vector(Array.new(m,0)) m.times do |i| h[i,0] = phi[i] if i< p h[i,0] = h[i,0] + theta[i] if i < q end t = Matrix.zero(m) #set_column is available in utility.rb t = t.set_column(0, phi) if m > 1 t[0...(m-1), 1...m] = Matrix.I(m-1) #chances of extra constant 0 values as unbalanced column, so: t = Matrix.columns(t.column_vectors) end g = Matrix[[1]] a_t = Matrix.column_vector(Array.new(m,0)) n = timeseries.size z = Matrix.row_vector(Array.new(m,0)) z[0,0] = 1 p_t = Matrix.I(m) v_t, f_t = Array.new(n,0), Array.new(n, 0) n.times do |i| v_t[i] = (z * a_t).map { |x| timeseries[i] - x }[0,0] f_t[i] = (z * p_t * (z.transpose)).map { |x| x + 1 }[0,0] k_t = ((t * p_t * z.transpose) + h).map { |x| x.quo f_t[i] } a_t = (t * a_t) + (k_t * v_t[i]) l_t = t - k_t * z j_t = h - k_t p_t = (t * p_t * (l_t.transpose)) + (h * (j_t.transpose)) end pot = v_t.map(&:square).zip(f_t).map { |x,y| x / y}.inject(:+) sigma_2 = pot.to_f / n.to_f f_t_log_sum = f_t.map { |x| Math.log(x) }.inject(:+) @log_likelihood = -0.5 * (n*Math.log(2*Math::PI) + n*Math.log(sigma_2) + f_t_log_sum + n) @sigma = sigma_2 @aic = -(2 * @log_likelihood - 2*(p+q+1)) #puts ("ll = #{-ll}") return @log_likelihood end
to_s()
click to toggle source
# File lib/statsample-timeseries/arima/likelihood.rb, line 92 def to_s sprintf("LogLikelihood(p = %d, q = %d) on params: [%s]", @p, @q, @params.join(', ')) end