import “../math/trigonometry”; import “equirectangular”; import “geo”;
d3.geo.rotation = function(rotate) {
rotate = d3_geo_rotation(rotate[0] % 360 * d3_radians, rotate[1] * d3_radians, rotate.length > 2 ? rotate[2] * d3_radians : 0); function forward(coordinates) { coordinates = rotate(coordinates[0] * d3_radians, coordinates[1] * d3_radians); return coordinates[0] *= d3_degrees, coordinates[1] *= d3_degrees, coordinates; } forward.invert = function(coordinates) { coordinates = rotate.invert(coordinates[0] * d3_radians, coordinates[1] * d3_radians); return coordinates[0] *= d3_degrees, coordinates[1] *= d3_degrees, coordinates; }; return forward;
};
// Note: |δλ| must be < 2π function d3_geo_rotation(δλ, δφ, δγ) {
return δλ ? (δφ || δγ ? d3_geo_compose(d3_geo_rotationλ(δλ), d3_geo_rotationφγ(δφ, δγ)) : d3_geo_rotationλ(δλ)) : (δφ || δγ ? d3_geo_rotationφγ(δφ, δγ) : d3_geo_equirectangular);
}
function d3_geo_forwardRotationλ(δλ) {
return function(λ, φ) { return λ += δλ, [λ > π ? λ - 2 * π : λ < -π ? λ + 2 * π : λ, φ]; };
}
function d3_geo_rotationλ(δλ) {
var rotation = d3_geo_forwardRotationλ(δλ); rotation.invert = d3_geo_forwardRotationλ(-δλ); return rotation;
}
function d3_geo_rotationφγ(δφ, δγ) {
var cosδφ = Math.cos(δφ), sinδφ = Math.sin(δφ), cosδγ = Math.cos(δγ), sinδγ = Math.sin(δγ); function rotation(λ, φ) { var cosφ = Math.cos(φ), x = Math.cos(λ) * cosφ, y = Math.sin(λ) * cosφ, z = Math.sin(φ), k = z * cosδφ + x * sinδφ; return [ Math.atan2(y * cosδγ - k * sinδγ, x * cosδφ - z * sinδφ), d3_asin(k * cosδγ + y * sinδγ) ]; } rotation.invert = function(λ, φ) { var cosφ = Math.cos(φ), x = Math.cos(λ) * cosφ, y = Math.sin(λ) * cosφ, z = Math.sin(φ), k = z * cosδγ - y * sinδγ; return [ Math.atan2(y * cosδγ + z * sinδγ, x * cosδφ + k * sinδφ), d3_asin(k * cosδφ - x * sinδφ) ]; }; return rotation;
}