Object model of YPetri and Y Nelson

July 12, 2016

YPetri and YNelson

YPetri is a Ruby library (gem) for specification and simulation of Petri nets. YNelson is a gem for specification
and simulation of A is a cross between a Petri net, and a . For formal
definition of the ZZ structure, see Dattolo and Luccio [2009]. Apart from YPetri providing Petri nets, YNelson
has another dependency: Yzz gem that provides ZZ structures. At the moment, YNelson presents almost the
same interface (up to minor extensions) as YPetri and this document is applicable to both.

You should also take a look at the tutorial, Introduction_to_YPetri and_ YNelson. Unlike the tutorial, which
focuses on giving the basic usage examples, this document attempts somewhat more exhaustive description of
YPetri object model. For YPetri / YNelson, you need to have Ruby 2.3 or newer installed on your computer.
Afterwards, you can install both gems and their dependencies by typing gem install y_nelson in your command
prompt. (YPetri and its dependencies will install automatically.)

Functional Petri nets

Petri nets were described by C. A. Petri in the middle of 20th century. A Petri net can be used to represent
various “wiring diagrams” — production lines, railway networks, electronic circuits, computer architectures, parallel
execution diagrams, or chemical systems. In fact, Petri himself has designed Petri nets with chemical systems in
mind.

A Petri net consists of , , and . Places are typically drawn as circles, transitions as
rectangles. Places and transitions are connected by arcs, drawn as lines or arrows. Places may contain
The amount of tokens in a place(s) is called . When a transition operates (), tokens are added to or
removed from its connected places. of a Petri net is fully expressed by the places’ marking.

Classical Petri nets are . In timeless Petri nets, firing of a transition is a discrete event, whose exact
timing is not specified. Instead, conditions are specified, under which the transition is allowed or prohibited to fire
(or). Typically, transitions are enabled when their input arcs have sufficient amount of tokens
left. However, different firing conditions may be specified. Timeless Petri nets are used to study concurrency —
race conditions, network congestions, state reachability etc. Interaction with timeless Petri nets is called

In , it is specified when (or how rapidly) firing of the transitions occurs. Timed nets are thus
not interactive and can be autonomously in time. Timed Petri nets actually represent a wiring diagram
of a dynamic system. Under certain conditions, a set of differential equations (DE) describing the system can be
extracted from this wiring diagram. Execution of a such Petri net is equivalent to numeric integration of its DE
system.YPetri object model

Brief hands-on demonstration of the interface can be found in the document Introduction to YNelson. The
purpose of this chapter is to describe the Petri net object model of YPetri gem in more detail.

Aspects of YPetri

YPetri has two main mutually intertwined concerns:

1. To provide active object model of Petri nets.

2. To provide simulation for the dynamic systems expressed as Petri nets.
Correspondingly, YPetri has 2 aspects catering to its 2 concerns:

1. Petri net aspect.

2. Simulation aspect.

Major classes of the Petri net aspect are Place, Transition and Net. Places have their own marking attribute,
transitions know their connectivity, their functions, and they can be triggered to fire and modify marking of their
connected places. Net is basically a specialized collection of places and transitions.

Simulation aspect is catered for by Simulation class, representing a simulation run, and Core class repre-
senting a simulator — a machine that runs the calculations needed to perform the simulation steps.

Workspace (World class, where places, transitions and nets live), and manipulator (Agent class that represents
and assists the user) are straddled across both aspects of YPetri.

Place class

YPetri: :Place class represents Petri net places. It includes NameMagic and is normally used as a parametrized
subclass (PS) depending on YPetri::World. The key attribute of a place is its marking (variable @marking).
Interface related to marking is:

o #m, alias #value — getter of @marking instance variable.

e #marking — convenience method that acts as @marking getter without arguments, but can be used to define
guards if block is supplied to it.

e #marking= alias #value=, alias #m= — setter of @marking.
e #add and #subtract that change the value of @marking.

e #default_marking, #default_marking= — getter and setter of place’s default marking (@default_marking
variable).

e #has_default_marking? —informs whether the place has default marking defined (6has_default_marking
variable).

e #reset_marking — sets @marking to the default value.

Another important group of methods are those related to the place’s connectivity — arcs. They are defined in the
YPetri::Place: :Arcs mixin included by YPetri: :Place. In Petri net diagrams, arcs are the lines that connect
places and transitions. In YPetri, there is no real “arc” object. For places, #arcs method simply returns the
connected transitions, and vice versa, for transitions, #arcs method returns connected places. Overview of the
most important Place instance methods inherited from the Arcs mixin is here:

e #upstream_arcs, alias #upstream_transitions — getter of Qupstream_arcs.
e #downstream_arcs, alias #downstream_transitions — getter of @downstream_arcs.

e #arcs — a union of upstream transitions and downstream transitions.

e #aa — names of the connected transitions.

e #iprecedents — precedents in the spreadsheet sense. Places whose marking directly influences firing of the
upstream transitions of this place.

e #dependents — dependents in the spreadsheet sense. Places whose marking is changed by firing of the
downstream transitions of this place.

For the remaining methods, see the class documentation. Place can also have guards, statements that validate
the marking and limit it to only certain values. At the moment, guards are not fully handled by the Simulation
class.

Transition class

YPetri::Transition class represents Petri net transitions. They are “functional” in the sense that they may
have mathematical functions attached to them, that govern their firing according to the current marking of
the Petri net places. (Term “functional” has also been used in other meanings in conjunction with Petri
nets.) YPetri::Transition class utilizes NameMagic mixin. YPetri::Transition class is normally used as
a parametrized subclass (PS) depending on YPetri::World. The most prominent attribute of a Transition
instance is its function. There are 4 basic types of transitions in YPetri:

e ts — timeless nonstoichiometric
e tS — timeless stoichiometric
e Ts — timed nonstoichiometric
e TS — timed stoichiometric
They arise by combining 2 basic qualities:
o timedness
e stoichiometricity

You can find more information in the documentation of YPetri: :Transition class.

Net class

YPetri: :Net class represents functional Petri nets. It includes NameMagic and is normally used as a PS depending
on YPetri::World. It is basically a specialized collection of Place instances and Transition instances. A
transition may only be included in a net if all the places connected to it belong to the same net. Net instances
own 2 parametrized subclasses:

e #State — getter of @State, a PS of YPetri: :Net::State

e #Simulation — getter of @Simulation, a PS of YPetri::Simulation.
Important instance methods include:

e #include_place — adds a place to the net

e #include_transition — adds a transition to the net

e #texclude_place — removes a place from the net

#exclude_transition — removes a transition from the net

#include_net alias #merge! — includes another net in this net

#exclude_net — removes the elements of another net from this net

#<< — includes an element in the net

#+ — returns a new net containing the union of the operands’ elements

#- — returns a new net containing the elements of the receiver minus the operand
#functional? — inquirer whether the net is functional

#timed? — inquirer whether the net is timed

#simulation — constructor of a new simulation of this net

A Net instance has its own state, and can be asked about place marking, transiton flux etc. It is also capable
of drawing a diagram with Graphviz, using #visualize method. For full listing of methods, see the class
documentation.

World class

YPetri: :World is the space where places, transitions and nets live. Originally, this class was named Workspace,
but World is shorter. Owns PS of Place, Transition and Net, stored respectively in @Place, @Transition and
@Net instance variables. Their instances can be constructed with:

#Place — constructor of instances of Place PS.
#Transition — constructor of instances of Transition PS.

#Net constructor — constructor of instances of Net PS.

World assets are divided into two mixins: YPetri: :World: :PetriNetAspect and YPetri: :World: :SimulationAspect.
Important instance methods of PetriNetAspect are:

#place — Place PS instance finder.

#transition — Transition PS instance finder.

#net — Net PS instance finder.

#places — returns all Place PS instances.
#transitions — returns all Transition PS instances.

#nets — returns all Net PS instances.

Important instance methods of SimulationAspect are:

#new_simulation — constructor of simulations.
#simulation — Simulation instance finder.

#simulations — getter of @simulations, a hash of simulation instances and their settings.

World instance has also 3 instance variables useful for simulations, @clamp_collections, @initial_marking_collections
and @simulation_settings_collections. Each simulation requires an initial marking collection, a clamp col-

lection, and a hash of simulation settings. In a world, these collections / settings can be named and stored in

the above mentioned instance variables for later use in simulations. See the class documentation for more details

and the accessor methods of these instance variables.

Simulation class

While YPetri places have their own marking and the transitions make it possible to play the token game
interactively, for many reasons, it is desirable to be able to execute Petri nets automatically. YPetri: :Simulation
class represents such simulations. Simulation instances do not operate directly on the Petri nets from which
they were constructed. Instead, they form a representation (“mental image”) of the places and transitions of the
underlying net. Simulation instances do not change the state owned by the underlying net. Instead, they have
their own marking vector, which they modify using a chosen simulation method in the way that simulates firing
of the transitions. A simulation owns multiple parametrized subclasses:

e #Place — getter of @Place, a PS of Simulation: :PlaceRepresentation
e #Transition — getter of @Transition, a PS of Simulation::TransitionRepresentation

e #Places — getter of @Places, a PS of Simulation: :Places, representing a collection of place representa-
tions.

e #Transitions — getter of @Transitions, a PS of Simulation::Transitions, representing a collection of
place representations.

e #Elements — getter of @Places, a PS of Simulation: :Elements, representing a collection of element (either
place or transition) representations.

e #PlaceMapping — getter of @PlaceMapping, a PS of Simulation::PlaceMapping, a specialized Hash that
maps the simulation’s places to a set of some values.

e #InitialMarking — getter of @InitialMarking, a PS of Simulation::InitialMarking, which in turn is
a subclass of PlaceMapping.

e #MarkingClamps — getter of @MarkingClamps, a PS of Simulation::MarkingClamps, which in turn is a
subclass of PlaceMapping.

Simulation can be of two types: Timed or timeless. These two types are defined in two mixins, Simulation: : Timed
and Simulation::Timeless, with which the simulation instance is conditionally extended during its initializa-
tion, depending on its type. Simulation has a number of specialized instance methods defined in several mix-
ins located inside the Simulation namespace (Places::Access, Transitions::Access, Elements: :Access,
InitialMarking: :Access, MarkingClamps: : Access, MarkingVector: :Access). You can find their complete
listing in the class documentation. Some of the instance methods are:

e #ireset! — resets the simulation.

e #run! — runs the simulation.

e #run_upto — runs the simulation to a given time (same can be achieved by “run(upto: ...)7).
e #step! — steps the simulation.

e #settings — returns all the settings for this simulation.

e #core — simulator currently in use.

#recorder — recorder instance currently in use.
#tS_SM — stoichiometric matrix for tS transitions.
#TS_SM — stoichiometric matrix for TS transitions.

#dup — duplicate of the receiver simulation, with the possibility to change time and/or other simulation
settings.

Defined in Simulation: :Places: :Access:

#include_place? — inquirer whether the simulation includes a specified place.

#p — net’s place identified by the argument.

#Pp — net’s places, expects single array argument.

#pp — net’s places, arbitrary number of arguments. If called without arguments, returns all the net’s places.
#Free_pp, alias #free_Pp — net’s free places, single array argument.

#free_pp — net’s free places, arbitrary number of arguments. If called without arguments, returns all of
them.

#Clamped_pp, alias #clamped_Pp — net’s free places, single array argument.

#clamped_pp — net’s free places, arbitrary number of arguments. If called without arguments, returns all
of them.

Defined in Simulation: :Transitions: :Access:

#include_transition? — inquirer whether the simulation includes a specified place.
#t — net’s transition identified by the argument.

#Tt — net’s transitions, expects array argument.

#tt — net’s transitions, arbitrary number of arguments.

#ts_Tt, #tS_Tt, #Ts_Tt, #TS_Tt, #A_Tt etc. — net’s transitions of the specified type. As signified by
capitalized “Tt”, these methods expects a single array argument.

#ts_tt, #tS_tt, #Ts_tt, #TS_tt, #A_tt etc. — versions of tnet’s transitions of the specified type. As
signified by capitalized “Tt”, these methods expects a single array argument.

Defined in Simulation::Elements: :Access (word “element” simply stands for etiher place, or transition):

#include? — inquirer whether the simulation includes a specified place or transition.
#e — net’s element identified by the argument.
#Ee — net’s elements identified by a single array argument.

#ee — net’s elements, arbitrary number of arguments.

Defined in Simulation::InitialMarking: :Access:

#Initial_markings, alias #initial_Markings — initial markings of given free places, single array argu-
ment.

#initial_markings, alias #initial_marking — initial markings, arbitrary number of arguments identifying
free places.

e #Im — starting markings of an array of any (not just free) places, as they appear right after reset. Expects
a single array argument.

e #im — starting markings of any places, arbitrary number of arguments.
Defined in Simulation: :MarkingClamps: : Access:

e #Marking clamps, alias #marking_ Clamps — marking clamp values of given clamped places, single array
argument.

e #marking_ clamps — initial markings, arbitrary number of arguments.
e #marking_ clamp — expects a single clamped place, returns its marking clamp.
Defined in Simulation: :MarkingVector: :Access:

e #M_vector alias #m_Vector — marking of the selected places returned as a column vector. Expects a single
array argument.

e #state — getter of the simulation’s state vector (@m_vector instance variable).
e #m_vector — marking of the selected places returned as a column vector, any number of arguments.
e #M, #m — array-returning varieties of #M_vector and #m.
e #p_M (alias #P_m), #p_m — hash-returning varieties of #M_vector and #m.
e #Pm, #pm — pretty printing varieties of #M_vector and #m.
Defined in Simulation: :Timed and Simulation::Timeless mixins:
e #timed? — inquirer whether the simulation is timed

e #Recorder — getter of @Recorder, a PS of Petri::Simulation: :Recorder, an object that performs sam-
pling and recording during simulation.

e #Core — getter of @Core, a PS of YPetri: :Core, a machine abstraction class.
Defined in Simulation::Timed mixin:
e #time — current simulation time
e #initial_time — initial time of the simulation
e #target_time — target time of the simulation (used when #run! is called without arguments)
e #time_range — range-returning alternative for #initial_time and #target_time.
e #step, #step= — getter and setter of the simulation step size
e #default_sampling — sampling period for the simulation
e #Fluxes — takes a single array of TS transitions and returns their fluxes under current marking.

e #fluxes, alias #flux — like #Fluxes, but takes an arbitrary number of arguments. If no arguments are
supplied, returns all of them.

o #T_fluxes (alias #t_Fluxes), #t_fluxes (alias #t_flux) —hash-returning varieties of #Fluxes and #fluxes.

e #pflux — pretty-printing variety of #t_flux.

The above list of methods is not exhaustive. For full list of methods and their documentation, see the documen-
tation of the Simulation class.

Simulation: :Recorder class
YPetri::Simulation: :Recorder is a class used exclusively as a PS dependent on YPetri::Simulation in-
stances. Its has tow key attributes:

1. #features — getter of @features, containing the feature set to be recorded. Its classisa PS of Net: :State: :Features.
It can be specified explicitly upon initialization or via #reset! method. By default, markings of the free
places are used.

2. #recording — getter of @recording, containing the recording itself. Its class is a PS of Net: :DataSet.

In the course of simulation, the recorder performs sampling: Upon occurence of certain events, it records the
feature set and stores it in the @recording object. For timed simulations, events are typically specified by
time (@next_time variable). Timeless simulations are not handled in the current version of YPetri, but it
can already be said that events will be specified as conditions defined on the marking vector (@next_event
variable). Recorder’s checking for whether the sampling condition is fulfilled is triggered by the :alert! message.
Recorder.new constructor takes the following named arguments:

e features: the feature set to record.

e recording: option to plug a pre-constructed dataset to the recorder.
In timed simulations, Recorder.new also accepts:

e sampling: sampling period

e next_time: the next sampling time
Important instance methods of Recorder are:

e #new_recording — constructs a new recording dependent on @features.

e #ireset! — resets @recording and optionally changes @features.

#alert! — recorder expects this message whenever the system state changes.

e #sample! — private method that performs sampling

Core class

YPetri: :Core class is the abstraction for the simulator machine. Originally, it was named Simulator, but Core
is shorter. When a Simulation instance wants to proceed in time to a next state, it relies on a Core instance
to perform the computation. Core was separated from Simulation for the purpose of facilitating future use of
different machines to run the simulation. At the moment, plain Ruby is used to compute the simulation steps.
Core instance is generally not directly controlled by the user. Core provides certain some basic interface, on
which its mixins defining the different simulation methods rely:

e #flux_vector — flux vector for the nets with only TS transitions.
e #flux_vector_TS — for mixed nets, returns flux vector for only TS transitions.

e #firing vector_tS — firing vector of tS transitions.

e #delta_tS — delta state caused by tS transitions.
e #delta_ts — delta state caused by ts transitions.
e #gradient — total system gradient for free places.
e #gradient_Ts — gradient contribution by Ts transitions.
e #gradient_TS — gradient contribution by TS transitions.
For the purpose of controlling the marking vector, Core provides 2 instance methods:
e #assignment_transitions_all_fire! — fires all A (assignment) transitions.

e #increment_marking_vector — expects a delta vector of the same size as the marking vector as its singe
argument, and increments the marking vector by it.

Simulation method mixins take flux, gradient, delta etc., and based on them, compute the overall delta state,
change the marking vector and fire assignment transitions as defined by the simulation method, alerting the
recorder when the state changes. At the moment, simulation methods include:

e :euler — 1st order method for nets with only T (timed) transitions. Mixin: Core: :Timed: :Euler.
e :pseudo_euler — Euler method adaptation for nets with timeless transitions. Mixin: Core: :Timed: :PseudoEuler.
e :gillespie — For nets with only T transitions. Mixin: Core::Timed: :Gillespie.

e :runge_kutta — 5th order method for nets with only T transitions. Mixin: Core: :Timed: :RungeKutta.
(Not working at the moment!)

State class

The state of a Petri net is entirely given by marking of its places. Simulation instances maintain their own mark-
ing vector holding the net state, but the net instance also has it’s own state class, a PS of YPetri: :Net: :State <
Array. State class is thus commonly used as a PS dependent on a Net instance, whose array positions correspond
to the net’s places. This net is available as a public class method on the State PS:

e #net — returns the net on which this State PS depends.
Each such State PS in turn owns 2 dependent parametrized subclasses:

e #Feature — getter of @Feature, containing a PS of State: :Feature. When called with arguments, acts
as alias of #feature.

e #Features — getter of @Features, containing a PS of State: :Features. When called with a single array
argument, this message acts as a feature set constructor / validator.

Other public class methods include:

e #ifeature — @Feature instance identifier.

e #features — QFeatures instance constructor. (See the class documentation for its full description.)
Instance methods include:

e #to_record — given clamped places, it returns a Record instance containing the marking of the free places.
If no set of clamped places is supplied, it is considered empty.

e #marking — returns the marking of a single given place in this State instance.

e #markings — expects an arbitrary number of places, returns a plain array of their markings. If no arguments
are given, returns all of them.

Feature class

A feature defines a measurement which can be performed on a net in some state to extract the feature’s value.
In YPetri, Net::State: :Feature class is used as a PS dependent on a State PS (not on a State instance):

e #State — the State PS by which this Feature PS was parametrized.

In the present implementation, this class serves as a mother class for more specialized feature classes: Marking,
Firing, Flux, Gradient, Delta and Assignment. These are defined as Feature subclasses on the namespace of
Feature itself, but at the same time, a PS of each of them is owned by the Feature PS:

e #Marking, #Firing, #Flux, #Gradient, #Delta, #Assignment — these public class methods defined on a PS
of Feature returns the dependent parametrized subclasses for the classes of the same name (Feature: :Marking,
Feature: :Firing, etc.)

Instance methods are defined inside these specialized feature subclasses, such as:
e #extract_from — extracts the receiver feature from the target object, returning the feature’s value.
e #type — feature type

e #label — feature label (for use in graphics etc.)

Features class — feature set

A collection of features is called a feature set. Measurement performed for a particular feature set results in a
record. In YPetri, Net::State: :Features is a subclass of Array, representing an array of features. Originally,
it was named FeatureSet, but Features is shorter. It is used as a PS dependent on a State PS (not on a
State instance). It’s owning State PS can be accessed via #State class method. Such Features PS in turn
owns subclasses of Net: :State: :Features: :Record and Net: : Dataset, which can be accessed via #Record and
#Dataset class methods. Other class methods include:

e #Marking, #Firing, #Flux, #Assignment — constructors of a set of marking features, accepting single array
argument.

e #marking, #firing, #flux, #assignment — versions of the above constructors, that accept any number of
arguments, and return full corresponding feature sets if no arguments are given.

e #Gradient — constructor of a set of gradient features, accepting an array and an optional :transitions named
argument.

e #gradient — version of the above constructor accepting any number of ordered arguments, and returning
full gradient feature set if no ordered arguments are given.

e #Delta — constructor of a set of delta features, accepting an array and an optional :transitions named
argument.

e #delta — version of the above constructor accepting any number of ordered arguments, and returning full
delta feature set if no ordered arguments are given.

10

#[] — constructor that takes either an arbitrary number of ordered arguments, or a field of named arguments
(:marking, :firing, :gradient, :flux, :delta, :assignment), identifying a (possibly) mixed set of
features.

Furthermore, class method #new is tweaked to make the returned instances own a PS of Record and a PS of
DataSet doubly parametrized by the instance. Therefore, also instance methods include:

#Record — a PS of Features.Record PS parametrized by the Features instance.

#DataSet — a PS of Features.DataSet PS parametrized by the Features instance.

Other instance methods are:

#load — delegated to the Record PS owned by the instance.
#extract_from — extracts a feature set from the target object, returning a record.

#Record alias #load — constructs an instance from an array of values. The values must corresponds to the
receiver feature set.

#+, #- #* — addition, subtraction, Array-like multiplication for feature sets.
#labels — array of feature labels.

#reduce_features — expects an argument identifying a set of features that is a subset of the receiver
feature set, and returns that feature subset.

#Marking, #Firing, #Flux, #Assignment — selectors of a subset of the receiver feature set, accepting single
array argument.

#marking, #firing, #flux, #assignment — versions of the above selectors, that accept any number of
arguments, and return full corresponding subsets if no arguments given.

#Gradient, #Delta, #gradient, #delta — selectors analogical to the above mentioned, but also accepting
an optional named argument :transitions qualifying the features to select.

Furthermore, :Record message is overloaded in such way, that when sent with an argument, it acts as an alias
of #load record constructor.

Record class

A record is basically an array, that remembers the features to which its values correspond. Net::State: :Features
class is typically used as doubly parametrized PS, dependent firstly on a Features PS, and then on its particular
instance. The owning feature set is accessible via #features class and instance method. Other class methods
include:

#load — constructs a record from a given collection of values.

Other instance methods include:

#dump — converts the record to a plain array, with optional :precision named argument.
#print — pretty prints the record with feature names.
#fetch — returns a feature.

#state — constructs a state, using the receiver record, and a set of complementary marking clamps supplied
in the argument.

11

: :Record

#reconstruct — reconstructs a simulation from the receiver record.

#Marking, #Firing, #Flux, #Assignment — selects the values of the specified feature subsets from the
receiver record. Expects a single array-type argument.

#marking, #firing, #flux, #assignment — the versions of the above methods accepting any number of
feature-identifying arguments.

#Gradient, #Delta, #gradient, #delta — selectors analogical to the above mentioned, but also accepting
an optional named argument :transitions qualifying the features to select.

#euclidean_distance — takes another record of the same feature set as an argument and computes the
Fuclidean distance to it.

DataSet class

YPetri::Net::DataSet represents a sequence of records sampled from the underlying net using certain feature
set. It is a subclass of Hash, whose keys represent sampling events, and whose values are plain arrays, from which
corresponding Record instances can be fully reconstructed (via Record.load method). It is typically used as
doubly parametrized PS, dependent firstly on a Features PS, and then on its particular instance. The owning
feature set is accessible via #features class and instance method. Other class methods include:

#events — alias for Hash#keys — dataset keys represent sampling events.
#reduce_features — selects certain columns (features) of a dataset.

#timed? — inquirer whether the dataset is timed

#record — reconstructs the Record instance corresponding to the given event.
#floor — the nearest event smaller or equal to the argument.

#ceiling — the nearest event greater or equal than the argument.

#records — returns an array of Record instances revived from the receiver’s values.
#reconstruct — recreates the simulation at the given event.

#interpolate — interpolates the recording at the given point (event). Return value is the Record class
instance.

#resample — resamples the recording.
#distance — computes the distance to another dataset.
#series — returns the data series for the specified features.

#reduce_features — reduces the dataset into another dataset with a different set of features. Reduction
to a subset of features is always possible. Reduction to a set of features that is not a subset of the receiver’s
set of features is only possible if the former can be inferred from the latter. Generally, this is the case if
net state can be reconstructed from a receiver’s record. From this net state, the desired new feature set is
then extracted.

#Marking, #Firing, #Flux, #Assignment — selects the values of the specified feature subsets from the
receiver record. Expects a single array-type argument.

12

e #marking, #firing, #flux, #assignment — the versions of the above methods accepting any number of
feature-identifying arguments.

e #Gradient, #Delta, #gradient, #delta — selectors analogical to the above mentioned, but also accepting
an optional named argument :transitions qualifying the features to select.

e #to_csv — outputs the dataset in the CSV format.

e #plot — plots the dataset.

Agent class

YPetri::Agent / YNelson: :Agent are dumb agents that represent and assist the user. Originally, this class was
named Manipulator, but Agent is shorter. Agent does provide textual user interface, but it does not completely
encapsulate YPetri (YNelson) interface. Rather, it defines a number of top-level DSL commands (methods)
available upon calling ’include YPetri’ / ’include YNelson’. Agent is not a part of the core object model
of YPetri / YNelson, and it is hotter than other parts of YPetri / YNelson. For basic use, see the tutorial
(“Introduction to YNelson”). For detailed description of Agent’s assets, see the class documentation.

References
Antonina Dattolo and Flaminia L Luccio. A formal description of zz-structures. In

1st Workshop on New Forms of Xanalogical Storage and Function. CEUR, volume 508,
pages 7-11, 2009.

13

