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Introduction
This document is a hands-on guide to YPetri, YNelson and Nelson nets, which in turn rely on Ruby language.
It is not assumed you are familiar with Ruby, you can follow this guide even if you never heard about it (but
you will have to install it). You more than likely never heard about Nelson nets. Nelson net is a novel concept
of Petri nets crossed with Ted Nelson’s ZZ structures. Do not worry about them: just follow the guide and
you will learn everything in time. The text of this guide lets you know when new keywords and are introduced.
When mentioned for the first time, Ruby keywords and terms are highlighted in red, Petri net terms in green,
and YPetri / YNelson keywords and terms in blue throughout this document.

YNelson serves to specify and simulate Nelson nets, a derivative of functional Petri nets that live in ZZ
space. (You don’t need to worry about ZZ space yet.) YPetri serves to specify and simulate Petri nets. Petri
nets are one of the basic formalisms in systems simulation. I designed YPetri and YNelson because I needed
to specify biochemical systems and I believed a Ruby DSL would be ideal for that task. Use of Petri nets for
specifying biochemical systems is reviewed eg. in Bos [2008] and Koch [2015]. YPetri provides a universal
Petri net abstraction similar, but not identical with hybrid functional Petri net (HFPN) introduced by Matsuno
et al. [2011]. YPetri / YNelson serve equally well not just for biochemical systems, but for arbitrary dynamical
systems.

Finally, please forgive me for taking your time with this guide. If you want to seriously work with complicated
Petri Nets, no tool can avoid taking you through the process of learning the language and the tool’s interface.
Visual Petri net modelling tools are nice for simple tasks, such as drawing arcs between places and transitions, but
you need text anyway to write the mathematical functions that govern firing of transitions. YPetri / YNelson
are all textual without commiting the sin of introducing a new programming language. They are implemented as
internal domain-specific languages (DSL) using Ruby as a host language. You can run them interactively from
Ruby interpreter (irb). In this way, you can freely use the host language to automate your interaction with Petri
nets.

YPetri / YNelson are publicly available as y_petri and y_nelson gem gems (gem = Ruby library). YNelson
depends on YPetri and Yzz gems, which in turn depend on our YSupport gem. Splitting the more general
concerns to multiple gem is a desirable feature – separation of concerns is a maxim of good software engineering.
I also separated dealing with physical units in your models out into SY gem (sy).

Using This Guide, or “The Hard Way Is Easier”
The phrase above is borrowed from the textbook by Zed Shaw named “Learn Ruby the Hard Way” (highly
recommended, hyperlink here). Apart from being a great shark-jumper, Zed is a great teacher familiar with
many programming languages, and I will borrow his teaching method here. Citing Zed, “The title says it’s the
hard way... but actually it’s not.” It’s only “hard” because of the way people used to teach things. YNelson
is a language. To learn it and see its usefulness, you will still need to do the incredibly simple things that all
language learners do:
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1. Go through each example.

2. Type each sample code exactly.

3. Make it run.

That’s it. This might feel very difficult at first, but stick with it. It seems stupidly obvious, but if you have
a problem installing YPetri and YNelson, running irb and typing, you will have a problem learning. If you go
through this document without actually doing the exercises, you might as well just not even read it. Do not
skip and do not skim. By typing each example exactly, you will be training your brain to focus on the details of
what you are doing, as you are doing it. While you do these examples, typing each one in, you will be making
mistakes. It’s inevitable; humans do make mistakes. By doing so, you will train yourself to notice mistakes and
other problems. Do not copy-paste. Type each code sample in, manually. The point is to train your hands, your
brain, and your mind in how to read, write and see Ruby and YNelson code. If you skip, skim and copy-paste,
you are cheating yourself out of the effectiveness of this guide.

Prerequisites
Firstly, you will need a working installation of Ruby 2.3 or later on your computer. Once this condition is
met, basic YNelson installation is as simple as typing “gem install y_nelson” in the command prompt. This
will install most other dependencies, including YPetri. However, YPetri has other dependencies (gnuplot gem,
graphviz gem), whose installation may pose challenges. Once YNelson is installed, run irb command interpreter,
and type:

require ’y_nelson’; include YNelson

This will augment your irb command session with interactive YNelson command interface (YNelson DSL CI).
You may also choose to work only with YPetri alone, in which case the require line is:

require ’y_petri’; include YPetri

You have to re-run irb from the scratch, and re-type ’require’ and ’include’ statements before each of the
usage examples written below. The nucleotide metabolism model in Example 3 is not realiscit (its kinetics is not
precise). If something in this guide does not work, please do not hesitate to notify me, I will appreciate your
feedback.

Example I: Basics
This example is a gentle introduction to Petri net terminology, YNelson DSL terminology, and Ruby syntax. The
most basic capability that YNelson offers, is that of user-driven token game. We will thus create a small Petri
net containing 2 places and play token game with it.

Places
Type:

A = Place( marking: 2 )

Syntactically, this will call method ’Place’ of YNelson DSL and assign its return value to the constant A. In this
case, the method is called with a single argument , marking. The return value is an object , which is an instance of
YNelson::Place class. We say that YNelson::Place class represents the concept of Petri net places in YNelson
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domain model. (’Place’ method is called a constructor of YNelson::Place, which is not important.) This newly
created Petri net place has now been assigned to A. On the screen, you will see the output, which is simply the
name of the place – A. In the following text, screen output will always be written immediately under the code
sample, preceded by sherocket (#=>):

B = Place( marking: 5 ) #=> B

In the above, we have so far defined 2 Petri net places (named A, B). You can check them by typing:

places() #=> [A, B]
A.name() #=> :A

These have automatically become part of a default Petri net instance (of YNelson::Net class; object id may
vary):

net() #=> #<Net: name: Top, 2 places, 0 transitions>

Of course, you have full power of Ruby at your disposal. To eg. list only place names as strings, you can use
standard Ruby methods:

places.map( &:name ) #=> [:A, :B]

Here, Ruby map method transforms the array of places to the array of their names. The advantage of internal
DSLs is, that one retains full power of the language, augmented with human-friendly, domain-specific commands.
GUI systems generally sandbox the user inside their interface, with no way to overcome its limitations. But let
us go on. You can notice that the marking of A, B is one we gave them upon their creation:

places.map( &:marking ) #=> [2, 5]

In classical Petri nets, marking is understood as the number of tokens in each place, which is always integer. In
this case, A contains 2 tokens, while B contains 5 tokens. Tokens can represent anything: molecules, parts in the
production line, trains in the railway network...

Transitions
The behavior of a Petri net is defined by transitions. Each transition defines a single operation: Adding /
subtracting some amount of tokens to / from some places. Transition operation can often be expressed by
stoichiometry – pairs of places with a corresponding number of tokens to add / subtract when the transition
fires. For example, let us define:

A2B = Transition( stoichiometry: { A: -1, B: 1 } )
#=> A2B

Stoichiometry of this transition is given by the hash { A: -1, B: 1 }. This hash is available from A2B via ’s’
method:

A2B.s() #=> {:A=>-1, :B=>1}

Keys of this hash are place names, values are stoichiometry coefficients. (’Stoichiometry’ is a word known from
the domain of chemistry, but ’stoicheion’ means simply ’element’ in Greek, so there is no problem with using it
in the domain of general Petri nets.) To see the stoichiometry coefficients of A2B as an array, type:

A2B.stoichiometry() #=> [-1, 1]
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Simply, A2B subtracts 1 token from A, and adds 1 token to B. This can represent conversion of A to B. In classical
Petri nets, the arrows connecting places and transitions are called arcs. (The term was borrowed from graph
theory.) For example, at this moment, our Petri net would contain one arc going from A to A2B, and one arc
going from A2B to B. In YNelson domain model, ’arcs’ are not first-class citizens. The word is understood simply
as a synonym for transitions’ connectivity – the list of places connected to each transition:

A2B.arcs() #=> [A, B]

The transition A2B is timeless:

A2B.timeless?() #=> true

’Timeless’ means that the transition’s firing is not defined in time – it can fire anytime, as long as it is enabled .
Classical Petri nets are timeless. In classical Petri nets, a transition is enabled whenever its downstream arcs
allow it to happen. Downstream arcs, or codomain of a transition (these two are synonyms) are those places,
whose marking can be directly affected by the transition’s firing. In this case, both A and B is affected:

A2B.downstream_arcs() #=> [A, B]
A2B.codomain() #=> [A, B]

Since A2B subtracts tokens from A, it will be enabled so long, as there are any tokens left in A.

A2B.enabled?() #=> true

Token game
After A2B fires, the marking will change:

A2B.fire!() #=> nil
places.map( &:marking ) #=> [1, 6]
A2B.fire!() #=> nil
places.map( &:marking ) #=> [0, 7]

At this point, there are no tokens left in A and A2B becomes disabled :

A2B.enabled? #=> false

Attempt to fire a disabled transition raises an error (in Ruby, errors are friendly objects, who, like damsels in
distress, are meant to be rescued with a bonus outcome):

A2B.fire!
#=> YPetri::GuardError: Marking -1:Fixnum of A should not be negative!

Functional transitions and non-integer marking
So far, all the examples were compatible with classical Petri nets. But YNelson goes beyond – it represents
functional Petri nets, similar to Hybrid Functional Petri Net (HFPN) proposed by Matsuno et al. [2011], which I
already mentioned in the introductory part of this document. YNelson domain model is similar, but not identical
to HFPN. On the side of similarities, YNelson allows non-integer marking of places:

C = Place( marking: 7.77 ) #=> C

Here, you can notice that marking of places can be specified already upon initialization using ’:marking’ named
argument . Let us now define a timed transition, representing logarithmic decay of C with a rate constant of 0.05:
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C_decay = Transition( stoichiometry: { C: -1 }, rate: 0.05 )
#=> C_decay
C_decay.timed? #=> true

Here, in the transition constructor method, apart from ’stoichiometry:’ named argument, another named
argument, ’rate:’, is introduced. Under ’rate:’, it is possible to specify the transition’s function, which governs
its rate. Specifying a function in Ruby requires special syntax (called Ruby closures), based on lambda calculus.
Ruby closures are easy to learn. But for the moment, in C_decay transition, we are taking use of the convenience,
that allows us to pass a numeric value under ’rate:’ named argument, and have YNelson create default mass
action equation, using the supplied number as its rate constant. For C_decay stoichiometry, { C: -1 }, default
mass action will be logarithmic decay with rate constant 0.05. Naturally, when firing timed transitions, the time
interval (∆time) must be specified, for which the transition should be active:

C_decay.fire!( 1 ) #=> nil
C.marking #=> 7.3815
C_decay.fire! 1 #=> nil
C.marking #=> 7.012425
C_decay.fire!( 0.1 ) #=> nil
C.marking #=> 6.977362875000001
100.times do C_decay.fire! 1 end #=> 100
C.marking #=> 0.04130968078231133

The penultimate statement was a call of Ruby ’times’ method with the integer 100 as the receiver, which results
in 100 time repetition of the statement inside do ... end block . Instead of do ... end, it is possible to write
a block using curly braces { ... }:

100.times { C_decay.fire! 1 } #=> 100

This will cause another 100 time units of C_decay firing. This brings C marking down to almost zero:

C.marking #=> 0.00024457517215434527

Four transition types
Thus far, we have demonstrated transitions with stoichiometry, which were either timed or not timed (timeless).
Timed transitions are denoted by capital “T”, timeless transitions by small “t”. Similarly, stoichiometric transitions
are denoted by capital “S”, while transitions without stoichiometry (non-stoichiometric transitions) by small “s”.
Together, this gives 4 basic types of transitions: TS, tS, Ts, and ts.

The user can ask the type of a transition by calling the type method:

A2B.type #=> :tS

Or investigate the type with inquirer methods:

A2B.t? #=> true
A2B.T? #=> false
A2B.s? #=> false
A2B.S? #=> true
A2B.TS? #=> false
A2B.tS? #=> true
A2B.Ts? #=> false
A2B.ts? #=> false
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Assignment transitions
In YNelson, there is one more transition type: an assignment transition, denoted by “A”. Assignment transitions
do not add or subtract tokens from their target, but completely replace the codomain marking with their output.
(Again, in YNelson transitions, domain and codomain mean respectively upstream and downstream places.)
Transitions other than A transitions can be collectively called non-assignment transitions, denoted by small
“a”. Note that assignment action is already achievable with plain ts transitions (by subtracting away the
previous codomain marking), so A transitions are not strictly needed – their separate existence is just a syntactic
convenience.

One way to construct assignment transitions is by setting :assignment named argument to true:

A_to_42 = Transition codomain: A, assignment: lambda { 42 }
#=> A_to_42

Firing this transition results in marking of A being set to 42:

A_to_42.fire! #=> nil
A.marking #=> 42

Assignment transitions are of special type A:

A_to_42.type #=> :A
A_to_42.A? #=> true
A_to_42.a? #=> false

Example II: Convenience
So far, to avoid confusing you, I used fairly conservative syntax. YNelson can do better than that. For conve-
nience, many long keywords have short aliases. Frequently used syntactic constructs usually have shorter way of
expressing the same.

As you have seen, in YNelson one often uses transition constructors. Thus far, we have seen only one construc-
tor method for transitions: Transition(). Transition() method accepts several different named arguments
(:domain, :codomain, :stoichiometry :assignment, :rate, :action, :name...) and depending on their values,
returns a YNelson::Transition class object of required type and properties.

Using long keywords in the constructor method makes the YNelson code easy to read. But for the cases where
trading readability for brevity is desirable, such as when you are playing with YNelson inside irb session, you
will appreciate convenience. Actually, we already used syntactic shorthands in the earlier examples. We didn’t
type :

Transition( name: "A2B",
codomain: [A, B],
stoichiometry: [-1, 1] )

A2B = transition( :A2B )

Instead, we just typed

A2B = Transition( stoichiometry: { A: -1, B: 1 } )

Just so you know, the above shorthand is not easy to program in Ruby. When designing YNelson, I took a lot
of pain for your convenience. Even shorter way to express the same would be:

A2B = Transition s: { A: -1, B: 1 }
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The above is a very simple timeless transition that just takes one token from A and puts it into B. (Constructor
convenience is even more powerful for complex transitions.) Start a new irb session and type:

require ’y_nelson’
include YNelson
A = Place default_marking: 5

Constantly typing default_marking is tiresome. Shorter way to say the same is by using the alias m! of the
same:

B = Place m!: 5
C = Place m!: 1
D = Place m!: 1

Let’s check the net’s marking vector now:

places.map &:marking #=> [5, 5, 1, 1]

If you typed everything correctly, you should see the above result. Shorter way to ask for the same information
is:

net.marking #=> "A: 5, B: 5, C: 1, D: 1"

Even shorter way to ask is:

net.m #=> [5, 5, 1, 1]

Now let’s define the transition we want:

B2A = Transition( stoichiometry: { B: -1, A: 1 },
domain: [C, D],
rate: lambda { |x, y| ( x * y ) ** 0.5 } )

To prove that it works, let’s fire it for 0.1 time units:

B2A.fire! 0.1 #=> nil
net.m #=> [5.1, 4.9, 1, 1]

Can we express its constructor more concisely? The answer is yes. B2A is a TS transition (check B2A.type to
make sure it is true), and for TS transitions, TS() convenience constructor is available. With TS() constructor,
the definition of B2A would be much shorter:

B2A = TS domain: [C, D], A: 1, B: -1 do |x, y| ( x * y ) ** 0.5 end

Note the do ... end part in the above line: Using lambda syntax, it defines the rate function of the transition.
Another convenience constructor worth mentioning is AT() for assignment transition. Earlier, we defined:

A_to_42 = Transition codomain: A, assignment: lambda { 42 }

Using AT() constructor, we can shorten this to:

A_to_42 = AT A do 42 end

In short, syntactic shorthands can save a lot of typing. If you still miss some syntactic shorthand, feel free to
define it on your own. For example, let us define a custom method named Foo that acts as a constructor of places
with default marking.
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def Foo( m )
Place( default_marking: m )

end

After this, you can define places with default marking with even less typing:

X = Foo 42
Y = Foo 43

Example III: YNelson::Simulation
So far, we have been defining Petri nets and playing the token game using #fire! method, let us now simulate a
Petri net inside YNelson::Simulation. Restart your irb session as described in the Prerequisites chapter. We
will now define 2 places. Since we are going to use TimedSimulation, the marking owned by YNelson::Place
instances is irrelevant. We just need to specify the initial state eg. by specifying the default marking of the
places:

require ’y_nelson’
include YNelson
A = Place m!: 0.5
B = Place m!: 0.5

Now let us define a transition corresponding to pumping A out of the system at a constant rate 0.005 per time
unit.

A_pump = Transition s: { A: -1 }, rate: proc { 0.005 }

Here, proc { 0.005 } is a closure, that defines the rate function. Closure proc { 0.005 } ensures fixed rate
0.005 per time unit regardless of the marking of A. You can notice that this closure expects no arguments and
always outputs 0.005 as its return value. It is the simplest possible way to write a constant function. For
comparison,

B_decay = Transition s: { B: -1 }, rate: 0.05

will behind the scenes automatically create a slightly more complicated mass action closure, which is logarithmic
decay of B in this case. (You should remember this from Example I.) Now we have created a net of 2 places
and 2 transitions:

net
#=> #<Net: name: Top, 2 places, 2 transitions>

We can execute this Petri net as a Simulation object simply by typing:

run! #=> 60

At this point, run! creates and executes a Simulation instance. The return value is the simulation instance
itself (see the inspect string above), which by now has already finished execution and holds the simulation results.
This simulation instance is accessible via simulation method.

simulation
#=> #<Simulation: time: 60, pp: 2, tt: 2, oid: 75530290>

The simulation does not affect the net. The simulation instance works with its own “mental image” of the net,
therefore the marking owned by YNelson::Place instances does not change:
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net.marking #=> "A: 0.5, B: 0.5"

In a general case, it would be necessary to specify the simulation settings (step size, sampling rate, simulation
time etc.) before running the simulation. Since we have not specified any, default settings were used:

simulation.settings
#=> {:method=>:basic, :guarded=>false, :step=>0.1, :sampling=>5, :time=>0..60}

We can see sampling done by the simulation by typing:

print_recording
#=> :A :B

----------------
0.5000 0.5000
0.4750 0.3892
0.4500 0.3029
0.4250 0.2357
0.4000 0.1835
0.3750 0.1428
0.3500 0.1111
0.3250 0.0865
0.3000 0.0673
0.2750 0.0524
0.2500 0.0408
0.2250 0.0317
0.2000 0.0247
nil

Indeed, A is decreasing at a constant rate, while B undergoes logarithmic decay. In a graphical desktop, we can
plot a graph (requires gnuplot gem):

recording.plot # plots a graph

Previous command plots the default feature set, which is marking of the places. We can investigate also features
of the recording (gradient or delta of places, firing or flux of the transitions...):

recording.gradient.plot
recording.flux.plot
recording.delta( delta_time: 0.1 ).plot

The last feature set – delta – requires delta_time named argument to extrapolate the changes (deltas) of the
places in the given delta time. As for firing, a feature of tS transitions, the plot would show nothing here, as
there ar no tS transitions here.

Example IV: A real system.
A highly simplified cell-biological pathway. Let’s first define some assumptions. Type in the following commands
(output not shown):

require ’y_nelson’
include YNelson
Pieces_per_microM = 100_000
set_step 10
set_sampling 30
set_target_time 30 * 60
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Let’s define places corresponding to chemical species first (note that :m! is a synonym for :default_marking)

AMP = Place m!: 8695.0
ADP = Place m!: 6521.0
ATP = Place m!: 3152.0
DeoxyCytidine = Place m!: 5.0
DeoxyCTP = Place m!: 20.0
DeoxyGMP = Place m!: 20.0
UMP_UDP_pool = Place m!: 2737.0
DeoxyUMP_DeoxyUDP_pool = Place m!: 10.0
DeoxyTMP = Place m!: 50.0
DeoxyTDP_DeoxyTTP_pool = Place m!: 100.0
Thymidine = Place m!: 10.0

All the places above have their marking in micromolars. The enzyme places below will have their marking in
molecules per cell:

TK1 = Place m!: 100_000 / Pieces_per_microM
TYMS = Place m!: 100_000 / Pieces_per_microM
RNR = Place m!: 100_000 / Pieces_per_microM
TMPK = Place m!: 100_000 / Pieces_per_microM

Enzyme molecular weights:

TK1_kDa = 24.8
TYMS_kDa = 66.0
RNR_kDa = 140.0
TMPK_kDa = 50.0

Enzyme specific activities (in micromolar / minute / mg ):

TK1_a = 5.40
TYMS_a = 3.80
RNR_a = 1.00
TMPK_a = 0.83

Some species are kept fixed (as simulation-level clamps):

clamp AMP: 8695.0, ADP: 6521.0, ATP: 3152.0
clamp DeoxyCytidine: 0.5, DeoxyCTP: 1.0, DeoxyGMP: 1.0
clamp Thymidine: 0.5
clamp UMP_UDP_pool: 2737.0

Before defining transitions, let’s define some functions first:

Vmax_per_min_per_enz_molecule =
lambda { |spec_act_microM_per_min_per_mg, kDa|

spec_act_microM_per_min_per_mg * kDa }
Vmax_per_min =
lambda { |spec_act, kDa, enz_molecules_per_cell|

Vmax_per_min_per_enz_molecule.( spec_act, kDa ) *
enz_molecules_per_cell }

Vmax_per_s =
lambda { |spec_act, kDa, enz_mol_per_cell|
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Vmax_per_min.( spec_act, kDa, enz_mol_per_cell ) / 60 }
Km_reduced =
lambda { |km, ki_hash={}|

ki_hash.map { |c, ki| c / ki }.reduce( 1, :+ ) * km }
Occupancy =
lambda { |c, km, compet_inh_w_Ki_hash={}|

c / ( c + Km_reduced.( km, compet_inh_w_Ki_hash ) ) }
MM_with_inh_microM_per_second =
lambda { |c, spec_act, kDa, enz_mol_per_cell, km, ki_hash={}|

Vmax_per_s.( spec_act, kDa, enz_mol_per_cell ) *
Occupancy.( c, km, ki_hash ) }

MMi = MM_with_inh_microM_per_second

Michaelis constants:

TK1_Thymidine_Km = 5.0
TYMS_DeoxyUMP_Km = 2.0
RNR_UDP_Km = 1.0
DNA_creation_speed = 3_000_000_000 / ( 12 * 3600 )
TMPK_DeoxyTMP_Km = 12.0

And finally, let us define the transitions:

Transition name: :TK1_Thymidine_DeoxyTMP,
domain: [ Thymidine, TK1, DeoxyTDP_DeoxyTTP_pool, DeoxyCTP,

DeoxyCytidine, AMP, ADP, ATP ],
stoichiometry: { Thymidine: -1, DeoxyTMP: 1 },
rate: proc { |c, e, pool1, ci2, ci3, master1, master2, master3|

ci1 = pool1 * master3 / ( master2 + master3 )
MMi.( c, TK1_a, TK1_kDa, e, TK1_Thymidine_Km,

ci1 => 13.5, ci2 => 0.8, ci3 => 40.0 ) }
Transition name: :TYMS_DeoxyUMP_DeoxyTMP,

domain: [ DeoxyUMP_DeoxyUDP_pool, TYMS, AMP, ADP, ATP ],
stoichiometry: { DeoxyUMP_DeoxyUDP_pool: -1, DeoxyTMP: 1 },
rate: proc { |pool, e, mono, di, tri|

c = pool * di / ( mono + di )
MMi.( c, TYMS_a, TYMS_kDa, e, TYMS_DeoxyUMP_Km ) }

Transition name: :RNR_UDP_DeoxyUDP,
domain: [ UMP_UDP_pool, RNR, DeoxyUMP_DeoxyUDP_pool, AMP, ADP, ATP ],
stoichiometry: { UMP_UDP_pool: -1, DeoxyUMP_DeoxyUDP_pool: 1 },
rate: proc { |pool, e, mono, di, tri|

c = pool * di / ( mono + di )
MMi.( c, RNR_a, RNR_kDa, e, RNR_UDP_Km ) }

Transition name: :DNA_polymerase_consumption_of_DeoxyTTP,
stoichiometry: { DeoxyTDP_DeoxyTTP_pool: -1 },
rate: proc { DNA_creation_speed / 4 }

Transition name: :TMPK_DeoxyTMP_DeoxyTDP,
domain: [ DeoxyTMP, TMPK, DeoxyTDP_DeoxyTTP_pool, DeoxyGMP, AMP, ADP, ATP ],
stoichiometry: { DeoxyTMP: -1, TMPK: 0, DeoxyTDP_DeoxyTTP_pool: 1 },
rate: proc { |c, e, pool, ci4, mono, di, tri|

ci1 = di
ci2 = pool * di / ( di + tri )
ci3 = pool * tri / ( di + tri )
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MMi.( c, TMPK_a, TMPK_kDa, e, TMPK_DeoxyTMP_Km,
ci1 => 250.0, ci2 => 30.0, ci3 => 750, ci4 => 117 ) }

Transition name: :PhosphataseI,
stoichiometry: { DeoxyTMP: -1, Thymidine: 1 },
rate: 0.04

Transition name: :PhosphataseII,
stoichiometry: { DeoxyTDP_DeoxyTTP_pool: -1, DeoxyTMP: 1 },
rate: 0.01

The created net can be visualized by:

net.visualize

After executing the above command, you should see a file named y_petri_graph.png in your working directory.
The simulation should work.

run!

State recording can be plotted by:

recording.plot

Flux of the transitions can be plotted by:

recording.flux.plot

Please note that although this system qualitatively represents part of the deoxynucleotide metabolism network,
its behavior is not realistic, because the available kinetic constants are not precise.

Example V: Using SY.
Here, we’ll take a look at using YNelson with SY metrology library. If you are experienced with biochemical
modeling, then you surely know how big pain the physical units are. Also, in Example III, you might have
noticed how much attention has been spent on units (in the assumptions, variable names, constant names...)
You could have noticed messy unit conversion formulas. The aim of SY is to take care of all this, to relieve the
modeler from the task of unit conversion, to clean up the model code, and let the modeler concentrate on the
real issue.

SY metrology library
SY is publicly available as a Ruby gem ’sy’. After installing it (gem install sy), type:

require ’sy’

Afterwards, your Numeric objects (that is, numbers) should respond to methods representing physical units:

1.m #=> #<±Magnitude: 1.m>
1.s #=> #<±Magnitude: 1.s>
1.kg.m.s(-2) #=> #<±Magnitude: 1.N>
1.cm + 1.mm #=> #<±Magnitude: 0.011.m>

The core of the trick is that instead of naked numbers, numbers become magnitudes (SY::Magnitude) of specified
physical quantities:
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1.m.quantity #=> #<Quantity:Length>
1.cm.min-¹.quantity #=> #<Quantity:Speed>

(You can type 1.cm.min(-1) if you find it difficult to type Unicode superscript characters "-¹".) Magnitudes
can be converted back to numbers with amount (alias to_f) method:

1.km.amount #=> 1000.0
1.cm.to_f #=> 0.01

Collaboration between SY and YNelson

In a fresh irb session, enter:

require ’sy’
require ’y_nelson’
include YNelson
A = Place m!: 3.mM
B = Place m!: 4.mM
A2B = Transition s: { A: -1, B: 1 }, rate: 0.05.s-¹
B_decay = Transition s: { B: -1 }, rate: 0.002.s-¹

We hereby specified marking and rate in physical units. Presently, YNelson is not able to simulate such nets,
but we can play token game with it:

net.m #=> [#<±Magnitude: 0.003.M>, #<±Magnitude: 0.004.M>]
A2B.fire! 1.s
B_decay.fire! 1.s
net.m #=> [#<±Magnitude: 0.00285.M>, #<±Magnitude: 0.00414.M>]

Let us fire the 2 defined transitions for 100 seconds:

100.times do
A2B.fire! 1.s
B_decay.fire! 1.s

end
net.m #=> [#<±Magnitude: 1.69e-05.M>, #<±Magnitude: 0.0058.M>]

Finally, let us inspect the resulting marking of A and B expressed in micromolars:

A.marking.in :µM #=> 16.873508277951963
B.marking.in :µM #=> 5797.976678013365

Example VI: Other simulation methods
At this moment, the default simulation method basic method. This method is also called is implicit Euler,
because when simulating timed nets, it implies first-order Euler method. For timed nets, YNelson provides
two other methods: Runge-Kutta 4th order method and Gillespie stochastic method. Demonstrating Gillespie
method:

require ’y_nelson’
include YNelson
A = Place m!: 10
B = Place m!: 10
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AB = Place m!: 0
AB_association = TS A: -1, B: -1, AB: 1, rate: 0.1
AB_dissociation = TS AB: -1, A: 1, B: 1, rate: 0.1
A2B = TS A: -1, B: 1, rate: 0.05
B2A = TS A: 1, B: -1, rate: 0.07
set_step 1
set_target_time 50
set_sampling 1
set_simulation_method :gillespie
run!
print_recording
plot_state

The state recording should show a random walk of the system state over the period of 50 time units.
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