
Introduction to Ruby for YPetri / YNelson Users

July 12, 2016

For YPetri / YNelson (further only YPetri) users, basic Ruby syntax is necessary. This document is a Ruby
primer for YPetri users. This document should be used in the same way as YPetri tutorial (Introduction to
YPetri) – that is, get an irb session running, and type all the examples in by yourself. Line output is shown
after #=>.You might also wish to install YPetri by by typing "gem install y_petri" from your command line.

If you happen to be well familiar with Ruby, you do not need to read this document at all. Otherwise,
this document is not a replacement for a Ruby textbook. For more thorough introduction to the language, I
recommend the document http://www.rubyist.net/∼slagell/ruby/index.html, or a Ruby textbook.

Variables and constants
In Ruby, everything1 is an object . Objects can be assigned to variables or constants. Ruby constants must always
start with capital letter. Variables starting with small letter are local variables. (Other types of variables are
instance variables, class variables and global constants; this is not important at the moment.)

alpha = 1 #=> 1
beta = [1, 2] #=> [1, 2]
Gamma = { x: 1, y: 2, z: 3 } #=> {:x=>1, :y=>2, :z=>3}

You can check this using defined? operator:

defined? alpha #=> "local-variable"
defined? Gamma #=> "constant"

Code lines and comments
Comments are denoted by # sign. Anything on the line following the # sign is ignored:

puts "Hello world!" # this line prints the words "Hello world!"

Ruby lines can be written with or without semicolons:

a = "with";
b = "without"
puts [a, b].join " or "

Semicolon is compulsory only when two or more logical lines are crammed together like this:

a = "Hello"; b = "world!"; puts a + ’ ’ + b
1Almost everything. Non-objects include eg. variables or argument fields.

1

http://www.rubyist.net/~slagell/ruby/index.html

Methods
Different classes respond to different methods, and respond to them differently:

beta.size #=> 2
Gamma.size #=> 3
Gamma.keys #=> [:x, :y, :z]
Gamma.values #=> [1, 2, 3]
beta.keys #=> NoMethodError: undefined method ‘keys’ for [1, 2]:Array

Methods can be defined by def keyword:

def average(a, b)
(a + b).to_f / 2

end #=> :average
average(2, 3) #=> 2.5

In the code example above, ’to_f’ method performs conversion of an integer into a floating point number, which
is not important.

Classes
Every object belongs to some class (object type):

alpha.class #=> Fixnum
beta.class #=> Array
Gamma.class #=> Hash

New classes can be defined with class keyword. The methods defined inside the class will become the instance
methods of that class:

class Dog
def speak!
puts "Bow wow!"

end
end #=> :speak!
Spot = Dog.new #=> #<Dog:0x9c214ac>
Spot.speak! #=> Bow wow!
class Cat
def speak!
puts "Meow!"

end
end #=> :speak!
Lisa = Cat.new #=> #<Cat:0x98efb80>
Lisa.speak! #=> Meow

These two classes now represent respectively dogs and cats in your irb session. In the code above, you could
notice ’new’ method, used to create instances from the defined classes, and ’puts’ method, used to simply print
characters on the screen.

2

Strings, Symbols, Arrays and Hashes
For YPetri users, it will be especially necessary to learn more about strings, symbols, arrays, hashes, and how
to define and read closures (aka. anonymous functions). Strings and symbols are among the most basic Ruby
objects, while arrays and hashes are important in understanding argument passing to methods and closures.
Understanding argument passing and closure writing is essential in using YPetri DSL.

Strings
A string is simply a sequence of characters, which can be defined using single or double quotes (’ or "):

my_string = ’Hello world!’ #=> "Hello world!"
my_string.class #=> String

Strings are mutable (can be changed):

my_string.object_id #=> 81571950
7.times do my_string.chop! end #=> 7
my_string #=> "Hello"
my_string.object_id #=> 81571950
my_string.chop! #=> “Hell”
my_string.object_id #=> 81571950

Above, you can newly notice times method, do ... end block, and chop! method that removes the last
character from my_string 7 times, until only "Hello" remains. But the important thing is that as object_id
method shows, my_string is still the same object (same object id), although the contents is changed.

my_string <‌< "o Spot!" #=> "Hello Spot!"
my_string.object_id #=> 81571950

Again, <‌< operator changed the contents, but the object id remained the same.

Symbols
Unlike strings, symbols are immutable – they never change. They are written with colon (:):

:Spot.class #=> Symbol

Arrays
As seen earlier, they can be defined with square brackets []. Square brackets are also used to address the array
elements, counting from 0.

my_array = [Spot, Lisa] #=> [#<Dog:0x9c214ac>, #<Cat:0x98efb80>]
my_array[0] #=> #<Dog:0x9c214ac>

Negative numbers can be used to address the elements from the end of the array:

my_array[-1] #=> #<Cat:0x98efb80>
my_array[-2] #=> #<Dog:0x9c214ac>

3

Hashes
As for hashes, there are two ways of defining them. The first way uses Ruby rocket (=>):

h1 = { Spot => "dog", Lisa => "cat" }
#=> {#<Dog:0x9c214ac>=>"dog", #<Cat:0x98efb80>=>"cat"}
h1[Lisa] #=> "cat"
h1[Spot] #=> "dog"

The second way is possible only when the keys are symbols. It is done by shifting the colon to the right side of
the symbol:

h2 = { dog: Spot, cat: Lisa }
#=> {:dog=>#<Dog:0x9c214ac>, :cat=>#<Cat:0x98efb80>}
h2[:dog] #=> #<Dog:0x9c214ac>

Code blocks and Closures
Code blocks, or simply blocks, are pieces of code enclosed by do / end pair, or by curly brackets {}. Code blocks
can be passed to methods:

[1, 2, 3, 4].map { |n| n + 3 } #=> [4, 5, 6, 7]
my_array.each do |member| member.speak! end
#=> Bow wow! Meow!

In the first case, ’map’ method was passed a block specifying addition of 3. In the second case, ’each’ method was
passed a block calling speak! method on the array elements. Please note the pipe, or vertical line charecters (
|), that delimit the block arguments (both blocks above happen to have only one argument). Code blocks can
be understood as anonymous functions – a way of specifying an operation, when one does not want to write a
method for it. Their semantics corresponds to lambda calculus.

Return values
Code blocks (and actually, all Ruby statements) have return value. With code blocks, the return value will
typically be the last statement:

[1, 2, 3, 4].map { |v|
v + 3 # this value will be ignored
v - 1 # last value of the block will be returned

}
#=> [0, 1, 2, 3]

Closures
A block packaged for future use is called a closure. Ruby closures come in two flavors: proc and lambda. They
are created by passing a block to the proc / lambda keyword:

my_proc = proc do |organism| organism.speak! end
#=> #<Proc:0x952674c@(irb):136>
my_lambda = lambda do |organism| organism.speak! end
#=> #<Proc:0x942faf0@(irb):137 (lambda)>

4

Once defined, they can be reused in code. Notice the ampersand (&) indicating block reuse:

my_array.each &my_proc #=> Bow wow! Meow!
my_array.each &my_lambda #=> Bow wow! Meow!

Closures can also be called alone, a little bit like methods:

my_proc.call(Spot) #=> Bow wow!
my_lambda.call(Lisa) #=> Meow!

Instead of call keyword, you can just use dot before the parenthesis to call closures:

my_proc.(Lisa) #=> Meow!
my_lambda.(Spot) #=> Bow wow!

Differences between proc and lambda closures are minor. For YNelson users, the most noticeable difference will
be, that proc less finicky about its arguments than lambda:

my_proc.(Lisa, "garbage") #=> Meow!
my_lambda.(Lisa, "garbage")
#=> ArgumentError: wrong number of arguments (2 for 1)

Finally, let us notice the alternative syntax for defining lambdas:

my_lambda = lambda do |animal| animal.speak! end
my_lambda = lambda { |animal| animal.speak! }
my_lambda = -> animal do animal.speak! end
my_lambda = -> animal { animal.speak! }

All of the four above statements define exactly the same thing.

Passing arguments
Earlier, we have defined method average, expecting two arguments. If wrong number of arguments is supplied,
ArgumentError will ensue:

average(3, 5) #=> 4
average(3, 5, 8) #=> ArgumentError: wrong number of arguments (3 for 2)

Obviously, this is not a very nice behavior when it comes to averages. It is a general situation, that when
calling more advanced methods, we need to modify their behavior, or pass more complicated structures to them.
This is seen eg. with YNelson::Transition constructors, and will be further encountered in YCell and YChem
DSLs. Furthermore, YNelson users have to be able to write their own closures, because that is how functions
of functional transitions are specified. In other words, YNelson users have to master argument passing
from both user and programmer side. There is no way around this. With functional Petri nets, one cannot
avoid writing functions. It is possible to avoid using YNelson, but it is not possible to avoid learning to write
functions. Every simulator of functional Petri nets brings with itself some sort of function language, which one
has to learn. With YNelson, this is the language of Ruby closures.

5

Optional arguments
Arguments with prescribed default value are optional. Let us write an improved average method that can accept
either 2 or 3 arguments:

def average(a, b, c=nil)
If c argument was not given, it will default to nil
if c == nil then
(a + b).to_f / 2

else
(a + b + c).to_f / 3

end
end #=> :average
average(3, 5) #=> 4
average(3, 5, 8) #=> 5.333333333333333
average(1, 2, 3, 4) #=> ArgumentError: wrong number of arguments (4 for 3)

The default value for c argument is prescribed using single equals sign (=). Apart from that, you can notice
if ... then ... else ... end statement, which needs no explanation, equality test (double equals sign, ==), used
to test whether c contains :pochi symbol (indicating missing value), and comment character (octothorpe aka.
sharp, #). Comment character # causes all characters until the end of the line to be ignored by Ruby. All code
lines, exception the obvious ones, should have comments.

Variable-length argument lists
We will now improve our average method, so that it can calculate averages of any number of arguments. For
this, we will use asterisk (*) syntactic modifier, also known as splash. The asterisk will cause a method to
collect the arguments into an array. Let’s try it out first:

def examine_arguments(x, *aa)
puts "x is a #{x.class}."
puts "aa is #{aa.class} of #{aa.size} elements."

end #=> :examine_arguments

Method examine arguments takes one normal argument (x), and collects the rest of the arguments into an array
(aa), thanks to the splash modifier. (Apart from that, you can notice string interpolation using #{ ... }
notation in the above code.) Then it prints the class of x, class of aa (which should be an array), and the number
of elements after x.

examine_arguments(1)
#=> x is a Fixnum.

aa is Array of 0 elements.
nil

examine_arguments(:hello, nil, 3, 5, "a string")
#=> x is a Symbol.

aa is Array of 4 elements.
nil

With this, we can go on to define our improved average method:

def average(*aa)
aa.reduce(:+).to_f / aa.size

end #=> :average
average 3, 5, 7, 11 #=> 6.5

6

You can also newly notice reduce(:+) method, used to calculate the sum of the aa array. To also practice
closures, let us define a lambda doing the same as the average method above:

avg = lambda { |*aa| aa.reduce(:+).to_f / aa.size }
#=> #<Proc:0x9dbd220@(irb):208 (lambda)>
avg.(11, 7, 5, 3) #=> 6.5

Named arguments
The main purpose of named arguments is to make the interface (or DSL) easier to remember, and the code
easier to read. Easy-to-read code is a crucial requirement for scalable development. In Ruby methods, named
arguments can be specified as hash pairs in the method call:

def density(x: 1, y: 1, z: 1, weight: 1)
weight.to_f / (x * y * z)

end #=> :density
density(x: 2, y: 2, z: 2, weight: 10) #=> 1.25

The above method calculates mean density of boxes of certain height, width, length and weight. Double splash
(**) can be used to collect all the options in a hash. Let’s use it to define a closure that does exactly the same
thing as the method density we have just defined, in a slightly different way:

dens_closure = -> **nn do
nn[:weight].to_f / (nn[:x] * nn[:y] * nn[:z]) end

#=> #<Proc:0x9a5d60c@(irb):241 (lambda)>
dens_closure.(x: 2, y: 2, z: 2, weight: 10) #=> 1.25

Above, note the alternative syntax for lambdas: -> arg do ... end is the same as lambda do |arg| ...
end. Having hereby introduced the named arguments, let us notice hash-collecting behavior for square bracket (
[]) array constructor syntax.

Hash-collecting behavior of square brackets
In more complicated method argument structures, it can be advantageous to take use of the hash-collecting by
square brackets. It is normal for curly braces to create hashes:

h = { x: 2, y: 3, z: 4 } #=> {:x=>2, :y=>3, :z=>4}
h.class #=> Hash

However, square brackets, that generally create arrays, are also able to collect hashes just like the argument fields
with named arguments:

a0 = [1, 2, 3] #=> [1, 2, 3]
a0.class #=> Array
a1 = [1, 2, 3, x: 2, y: 3, z: 4] #=> [1, 2, 3, {:x=>2, :y=>3, :z=>4}]
a1.class #=> Array
a1.map &:class #=> [Fixnum, Fixnum, Fixnum, Hash]
a1[-1] #=> {:x=>2, :y=>3, :z=>4}

In other words, if there are any trailing key/value pairs inside square brackets, they will be collected into a
hash, which will become the last element of the array. This possibility to mix ordered elements with key/value
pairs is used eg. in YCell enzyme constructor method.

7

Arity
Every closure and every method has arity, which is basically the number of input arguments. (Closures with
0 arguments are nullary, with 1 argument unary, with 2 arguments binary, with 3 arguments ternary etc. –
therefrom arity.)

doubler = lambda { |a| a * 2 } #=> #<Proc:0xa19b5b8@(irb):1 (lambda)>
doubler.call(3) #=> 6
doubler.arity #=> 1
adder = -> p, q { p + q } #=> #<Proc:0xa27d940@(irb):6 (lambda)>
adder.call(5, 6) #=> 11
adder.arity #=> 2
scaler = -> number, p, q { number * (q.to_f / p) }
#=> #<Proc:0xa2825e4@(irb):7 (lambda)>
scaler.call(10, 2, 5) #=> 25.0
scaler.arity #=> 3
constant_function = -> { 42 } #=> #<Proc:0xa2825e4@(irb):7 (lambda)>
constant_function.call #=> 42
constant_function.arity #=> 0

Closures / methods with variable length arguments indicate this by reporting negative arity:

summation = -> *array { array.reduce(:+) }
#=> #<Proc:0xa296ddc@(irb):9 (lambda)>
summation.call(1, 2, 3, 4) #=> 10
summation.arity #=> -1
array_scale = -> *a, coeff { a.map { |e| e * coeff } }
#=> #<Proc:0xa2a9edc@(irb):12 (lambda)>
array_scale.call(1, 2, 3, 4, 7) #=> [7, 14, 21, 28]
array_scale.arity #=> -2

Return value
The last statement in a closure or method becomes the return value. In methods and lambda-type closures,
return statement can also be used explicitly:

divider = -> u, v {
if v == 0 then
return :division_by_zero # explicit return

end
u.to_f / v # implicit return - last statement

} #=> #<Proc:0xa21e878@(irb):15 (lambda)>
divider.call(15, 3) #=> 5.0
divider.call(15, 0) #=> :division_by_zero
experimental_closure = proc {

42 # ignored
41 # returned

} #=> #<Proc:0xa249460@(irb):28>
experimental_closure.call #=> 41
experimental_lambda = lambda {

1 # ignored
return 3 # returned

8

7 # never executed
} #=> #<Proc:0xa3200dc@(irb):38 (lambda)>

experimental_lambda.call #=> 3

Return value arity
It is possible to return more than one value2. For example:

mult_table = -> number {
[1, 2, 3, 4, 5].map { |e| e * number }

} #=> #<Proc:0xa36a0d8@(irb):55 (lambda)>

This closure returns 5 values. We can receive them by using a simultaneous assignment statement:

by_one, by_two, by_three, by_four, by_five = mult_table.call(7) #=> [7, 14, 21, 28, 35]
by_one #=> 7
by_two #=> 14
by_five #=> 35

Or we can simply collect them in an array:

collection = mult_table.(3) #=> [3, 6, 9, 12, 15]

In YNelson, it sometimes becomes necessary to write closures with higher return arity (returning more than
one value). This is normally done by returning an array. Also, lambda return statement can be used to return
multiple values:

constant_vector = -> { return 1, 2, 3 }
#=> #<Proc:0xa3cb338@(irb):72 (lambda)>
x, y, z = constant_vector.call #=> [1, 2, 3]
x #=> 1
y #=> 2
z #=> 3

YSupport library
Finally, having introduced the basic Ruby syntax, let us mention YSupport gem (gem = published Ruby library),
that collects the assets (modules, classes, methods...) of general concern in use by YPetri/YNelson. Of these, a
particular mention goes to NameMagic, widely used in YPetri, YNelson and SY (physical units) libraries.

NameMagic

In software engineering, magic is a technical term for irregular side effects of language expressions. The problem
that NameMagic solves is, that objects (such as chemical species encoded in YNelson) are frequently named, and
naming them is an annoying chore. Consider a simple case:

2Technically, methods and closures always return exactly 1 object – multiple values are returned via a single array object. But
pragmatically, and especially with respect to YPetri, the notion of return value arity is useful.

9

class Student
attr_accessor :name
def initialize name: nil
@name = name

end
end

Now, to create named Student instances, one has to mention :name named argument in the constructor, and
frequently, the same name has to be mentioned twice, such as when assigning to constants or variables:

richard = Student.new(name: "Richard")
richard.name #=> "Richard"

In Ruby, we can notice that some objects have built-in capability to be named simply by constant assignment:

foo = Class.new
foo.name #=> nil
Car = foo
foo.name #=> "Car"

Magically, upon assigning Car = foo, the object referred to by the foo variable received an attribute name, with
value set to "Car". This standard behavior is termed constant magic. NameMagic mixin (part of YSupport)
extends this standard behavior to any chosen object, and also takes care of keeping the instance registry and
doing general naming related chores for its includers:

require ’y_support/name_magic’
class Chemical
include NameMagic

end
NaCl = Chemical.new
NaCl.name #=> "NaCl"

It might seem like a small thing, but in a big file full of complicated statements, it really matters whether you have
to write each time "NaCl = Chemical.new(name: NaCl)", or just "NaCl = Chemical.new". NameMagic is a
part of YSupport library accompanying YPetri and YNelson. You can install YSupport from the command line
by "gem install y_support".

Other essential concepts
There are a few more essential concepts of Ruby that YNelson users should be familiar with, such as namespaces
and parametrized subclassing. Code examples in this section are slightly more complicated, and also, they make
use of YSupport gem. Install YSupport by typing gem install y_support in your command line before studying
code examples in this section.

Namespaces
In Ruby, namespaces are known as modules (objects of Module class). These objects are containers for constants
and method definitions. For example, let us imagine that we want to define constants, classes and methods
related to the game of chess. We could simply define them in the command line, without any considerations, We
could do it directly, but that way, all of them would be defined in the root of Ruby namespace – on Object class.
The reason why this is not a good idea is the same as the reason why it is not a good idea to put all your files in
the root of your filesystem. Chess-related terms such as Field or Piece could collide with concepts from other
domains not related to chess. For that reason, we will collect all the chess-related assets into a single namespace:

10

module Chess
class Board < Array
SIZE = 8 # standard chessboard

class Field # chessboard field
attr_accessor :contents

end
def self.new # constructs 8 × 8 array of arrays
super(SIZE, Array.new(SIZE) { Field.new })

end
chessboard is defined here

end

Piece = Class.new # chess piece
Pawn = Class.new Piece # chess pawn
Knight = Class.new Piece # chess knight
Rook = Class.new Piece # chess rook
etc.

end

We then access the contents of the namespace in the way similar to the way we address the files in the filesystem:

Chess::Board # namespace Chess, constant Board
Chess::Piece # namespace Chess, constant Piece
Chess::Pawn # namespace Chess, constant Pawn
Chess::Board::SIZE # namespace Chess::Board, constant SIZE
Chess::Board::Field # namespace Chess::Board, constant Field
etc.

Let us note that in the above example, Board, Piece, Pawn are merely constants of the namespace Chess. Simi-
larly, in YPetri, when talking about YPetri::Place, YPetri::Transition or YPetri::Net, it means constants
Place, Transition and Net belonging to the module YPetri and containing the relevant class objects. But each of
these classes is a namespace of its own, that can have constants defined on it. For example, YPetri::Simulation
has constants YPetri::Simulation::PlaceRepresentation and YPetri::Simulation::TransitionRepresentation,
representing copies of the net’s places and transitions when executed inside a Simulation instance.

Parametrized subclassing
One of the core techniques used in YNelson / YPetri domain model is parametrized subclassing. Literature on
the topic does exist, but the concept is best explained on examples:

require ’y_support/all’
class Human
include NameMagic # allows humans to be named easily

end

Humans generally live in settlements. Let us create class Village representing settlements.

class Village
include NameMagic # allows villages to be named easily

end

11

At this point, we are standing in front of the problem of making humans associated with their settlements. One
way to do it is to make each Human instance remember which settlement they belong to. This approach, which
you can certainly imagine well even without demonstration, is in common use. But we have a more powerful
approach at our disposal – subclassing. This is how we can define a subclass of humans living in London:

London = Village.new
class Londoner < Human # using < sign
def self.settlement; London end # let the class know its city

end
John = Londoner.new
John.class.settlement #=> London

To make it easier to ask humans about their settlement, let’s reopen class Human and delegate method #settlement
to the class:

class Human
def settlement; self.class.settlement end

end

Alternative syntax for subclassing is this:

Dublin = Village.new
Dubliner = Class.new Human do # Dubliner becomes a subclass of Human
def self.settlement; Dublin end

end
Finnegan = Dubliner.new
Finnegan.class.settlement #=> Dublin

Simply, each settlement has its own class of humans – its inhabitants. But since there are many settlements,
it is inconvenient to manually define the inhabitant class for each of them. We therefore make each village
automatically construct its own subclass of Human and parametrize it with settlement attribute. YSupport
supports parametrized subclassing with method #param_class, and makes it easy to construct a PS of Human
for each Village istance.

class Village # reopening the class defined earlier
def initialize # defining a constructor
param_class({ Human: Human }, with: { settlement: self })

end
end

Each village has now its own PS of Human.

Stockholm, Riga, Canberra = 3.times.map { Village.new }
Stockholm.Human # class of Stockholm citizens
Riga.Human # class of Riga citizens
Canberra.Human # class of Canberra citizens
Stockholm.Human == Riga.Human #=> false
Fred = Stockholm.Human.new # Stockholm citizen constructor
Fred.class.settlement #=> Stockholm

We say that PS of Human class depends on Village. The advantage is that instances of the PS of Human don’t
need to be explicitly told which village do they belong to, and have easy access to the assets of its owner Village
instance. The concept of parametrized subclassing is actually very simple.

12

Convenience methods
Convenience methods are methods in which the consistency of the behavior is traded for syntax sweetness.
Convenience methods may do entirely different things for different argument sets. For example, in YPetri,
Place#marking without arguments simply returns the place’s marking. But with arguments, it can be used to
define a guard:

require ’y_petri’ and include YPetri
A = Place marking: 42
A.marking # Returns the place’s marking
But with different arguments, same method can be used to
define a guard.
A.marking "must never be above 100" do |m| m <= 100 end
A.marking = 99 # no problem
A.marking #=> 99
A.marking = 101 # YPetri::GuardError is raised

Convenience methods are especially suited for non-reusable code, but their use may sometimes be efficient also
in reusable code.

13

