// Protocol Buffers - Google’s data interchange format // Copyright 2008 Google Inc. All rights reserved. // code.google.com/p/protobuf/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. // // The messages in this file describe the definitions found in .proto files. // A valid .proto file can be translated directly to a FileDescriptorProto // without any other information (e.g. without reading its imports).

package google.protobuf; option java_package = “com.google.protobuf”; option java_outer_classname = “DescriptorProtos”;

// descriptor.proto must be optimized for speed because reflection-based // algorithms don’t work during bootstrapping. option optimize_for = SPEED;

// The protocol compiler can output a FileDescriptorSet containing the .proto // files it parses. message FileDescriptorSet {

repeated FileDescriptorProto file = 1;

}

// Describes a complete .proto file. message FileDescriptorProto {

optional string name = 1;       // file name, relative to root of source tree
optional string package = 2;    // e.g. "foo", "foo.bar", etc.

// Names of files imported by this file.
repeated string dependency = 3;
// Indexes of the public imported files in the dependency list above.
repeated int32 public_dependency = 10;
// Indexes of the weak imported files in the dependency list.
// For Google-internal migration only. Do not use.
repeated int32 weak_dependency = 11;

// All top-level definitions in this file.
repeated DescriptorProto message_type = 4;
repeated EnumDescriptorProto enum_type = 5;
repeated ServiceDescriptorProto service = 6;
repeated FieldDescriptorProto extension = 7;

optional FileOptions options = 8;

// This field contains optional information about the original source code.
// You may safely remove this entire field whithout harming runtime
// functionality of the descriptors -- the information is needed only by
// development tools.
optional SourceCodeInfo source_code_info = 9;

}

// Describes a message type. message DescriptorProto {

optional string name = 1;

repeated FieldDescriptorProto field = 2;
repeated FieldDescriptorProto extension = 6;

repeated DescriptorProto nested_type = 3;
repeated EnumDescriptorProto enum_type = 4;

message ExtensionRange {
  optional int32 start = 1;
  optional int32 end = 2;
}
repeated ExtensionRange extension_range = 5;

optional MessageOptions options = 7;

}

// Describes a field within a message. message FieldDescriptorProto {

enum Type {
  // 0 is reserved for errors.
  // Order is weird for historical reasons.
  TYPE_DOUBLE         = 1;
  TYPE_FLOAT          = 2;
  // Not ZigZag encoded.  Negative numbers take 10 bytes.  Use TYPE_SINT64 if
  // negative values are likely.
  TYPE_INT64          = 3;
  TYPE_UINT64         = 4;
  // Not ZigZag encoded.  Negative numbers take 10 bytes.  Use TYPE_SINT32 if
  // negative values are likely.
  TYPE_INT32          = 5;
  TYPE_FIXED64        = 6;
  TYPE_FIXED32        = 7;
  TYPE_BOOL           = 8;
  TYPE_STRING         = 9;
  TYPE_GROUP          = 10;  // Tag-delimited aggregate.
  TYPE_MESSAGE        = 11;  // Length-delimited aggregate.

  // New in version 2.
  TYPE_BYTES          = 12;
  TYPE_UINT32         = 13;
  TYPE_ENUM           = 14;
  TYPE_SFIXED32       = 15;
  TYPE_SFIXED64       = 16;
  TYPE_SINT32         = 17;  // Uses ZigZag encoding.
  TYPE_SINT64         = 18;  // Uses ZigZag encoding.
};

enum Label {
  // 0 is reserved for errors
  LABEL_OPTIONAL      = 1;
  LABEL_REQUIRED      = 2;
  LABEL_REPEATED      = 3;
  // TODO(sanjay): Should we add LABEL_MAP?
};

optional string name = 1;
optional int32 number = 3;
optional Label label = 4;

// If type_name is set, this need not be set.  If both this and type_name
// are set, this must be either TYPE_ENUM or TYPE_MESSAGE.
optional Type type = 5;

// For message and enum types, this is the name of the type.  If the name
// starts with a '.', it is fully-qualified.  Otherwise, C++-like scoping
// rules are used to find the type (i.e. first the nested types within this
// message are searched, then within the parent, on up to the root
// namespace).
optional string type_name = 6;

// For extensions, this is the name of the type being extended.  It is
// resolved in the same manner as type_name.
optional string extendee = 2;

// For numeric types, contains the original text representation of the value.
// For booleans, "true" or "false".
// For strings, contains the default text contents (not escaped in any way).
// For bytes, contains the C escaped value.  All bytes >= 128 are escaped.
// TODO(kenton):  Base-64 encode?
optional string default_value = 7;

optional FieldOptions options = 8;

}

// Describes an enum type. message EnumDescriptorProto {

optional string name = 1;

repeated EnumValueDescriptorProto value = 2;

optional EnumOptions options = 3;

}

// Describes a value within an enum. message EnumValueDescriptorProto {

optional string name = 1;
optional int32 number = 2;

optional EnumValueOptions options = 3;

}

// Describes a service. message ServiceDescriptorProto {

optional string name = 1;
repeated MethodDescriptorProto method = 2;

optional ServiceOptions options = 3;

}

// Describes a method of a service. message MethodDescriptorProto {

optional string name = 1;

// Input and output type names.  These are resolved in the same way as
// FieldDescriptorProto.type_name, but must refer to a message type.
optional string input_type = 2;
optional string output_type = 3;

optional MethodOptions options = 4;

}

// =================================================================== // Options

// Each of the definitions above may have “options” attached. These are // just annotations which may cause code to be generated slightly differently // or may contain hints for code that manipulates protocol messages. // // Clients may define custom options as extensions of the *Options messages. // These extensions may not yet be known at parsing time, so the parser cannot // store the values in them. Instead it stores them in a field in the *Options // message called uninterpreted_option. This field must have the same name // across all *Options messages. We then use this field to populate the // extensions when we build a descriptor, at which point all protos have been // parsed and so all extensions are known. // // Extension numbers for custom options may be chosen as follows: // * For options which will only be used within a single application or // organization, or for experimental options, use field numbers 50000 // through 99999. It is up to you to ensure that you do not use the // same number for multiple options. // * For options which will be published and used publicly by multiple // independent entities, e-mail protobuf-global-extension-registry@google.com // to reserve extension numbers. Simply provide your project name (e.g. // Object-C plugin) and your porject website (if available) – there’s no need // to explain how you intend to use them. Usually you only need one extension // number. You can declare multiple options with only one extension number by // putting them in a sub-message. See the Custom Options section of the docs // for examples: // code.google.com/apis/protocolbuffers/docs/proto.html#options // If this turns out to be popular, a web service will be set up // to automatically assign option numbers.

message FileOptions {

// Sets the Java package where classes generated from this .proto will be
// placed.  By default, the proto package is used, but this is often
// inappropriate because proto packages do not normally start with backwards
// domain names.
optional string java_package = 1;

// If set, all the classes from the .proto file are wrapped in a single
// outer class with the given name.  This applies to both Proto1
// (equivalent to the old "--one_java_file" option) and Proto2 (where
// a .proto always translates to a single class, but you may want to
// explicitly choose the class name).
optional string java_outer_classname = 8;

// If set true, then the Java code generator will generate a separate .java
// file for each top-level message, enum, and service defined in the .proto
// file.  Thus, these types will *not* be nested inside the outer class
// named by java_outer_classname.  However, the outer class will still be
// generated to contain the file's getDescriptor() method as well as any
// top-level extensions defined in the file.
optional bool java_multiple_files = 10 [default=false];

// If set true, then the Java code generator will generate equals() and
// hashCode() methods for all messages defined in the .proto file. This is
// purely a speed optimization, as the AbstractMessage base class includes
// reflection-based implementations of these methods.
optional bool java_generate_equals_and_hash = 20 [default=false];

// Generated classes can be optimized for speed or code size.
enum OptimizeMode {
  SPEED = 1;        // Generate complete code for parsing, serialization,
                    // etc.
  CODE_SIZE = 2;    // Use ReflectionOps to implement these methods.
  LITE_RUNTIME = 3; // Generate code using MessageLite and the lite runtime.
}
optional OptimizeMode optimize_for = 9 [default=SPEED];

// Sets the Go package where structs generated from this .proto will be
// placed.  There is no default.
optional string go_package = 11;

// Should generic services be generated in each language?  "Generic" services
// are not specific to any particular RPC system.  They are generated by the
// main code generators in each language (without additional plugins).
// Generic services were the only kind of service generation supported by
// early versions of proto2.
//
// Generic services are now considered deprecated in favor of using plugins
// that generate code specific to your particular RPC system.  Therefore,
// these default to false.  Old code which depends on generic services should
// explicitly set them to true.
optional bool cc_generic_services = 16 [default=false];
optional bool java_generic_services = 17 [default=false];
optional bool py_generic_services = 18 [default=false];

// The parser stores options it doesn't recognize here. See above.
repeated UninterpretedOption uninterpreted_option = 999;

// Clients can define custom options in extensions of this message. See above.
extensions 1000 to max;

}

message MessageOptions {

// Set true to use the old proto1 MessageSet wire format for extensions.
// This is provided for backwards-compatibility with the MessageSet wire
// format.  You should not use this for any other reason:  It's less
// efficient, has fewer features, and is more complicated.
//
// The message must be defined exactly as follows:
//   message Foo {
//     option message_set_wire_format = true;
//     extensions 4 to max;
//   }
// Note that the message cannot have any defined fields; MessageSets only
// have extensions.
//
// All extensions of your type must be singular messages; e.g. they cannot
// be int32s, enums, or repeated messages.
//
// Because this is an option, the above two restrictions are not enforced by
// the protocol compiler.
optional bool message_set_wire_format = 1 [default=false];

// Disables the generation of the standard "descriptor()" accessor, which can
// conflict with a field of the same name.  This is meant to make migration
// from proto1 easier; new code should avoid fields named "descriptor".
optional bool no_standard_descriptor_accessor = 2 [default=false];

// The parser stores options it doesn't recognize here. See above.
repeated UninterpretedOption uninterpreted_option = 999;

// Clients can define custom options in extensions of this message. See above.
extensions 1000 to max;

}

message FieldOptions {

// The ctype option instructs the C++ code generator to use a different
// representation of the field than it normally would.  See the specific
// options below.  This option is not yet implemented in the open source
// release -- sorry, we'll try to include it in a future version!
optional CType ctype = 1 [default = STRING];
enum CType {
  // Default mode.
  STRING = 0;

  CORD = 1;

  STRING_PIECE = 2;
}
// The packed option can be enabled for repeated primitive fields to enable
// a more efficient representation on the wire. Rather than repeatedly
// writing the tag and type for each element, the entire array is encoded as
// a single length-delimited blob.
optional bool packed = 2;

// Should this field be parsed lazily?  Lazy applies only to message-type
// fields.  It means that when the outer message is initially parsed, the
// inner message's contents will not be parsed but instead stored in encoded
// form.  The inner message will actually be parsed when it is first accessed.
//
// This is only a hint.  Implementations are free to choose whether to use
// eager or lazy parsing regardless of the value of this option.  However,
// setting this option true suggests that the protocol author believes that
// using lazy parsing on this field is worth the additional bookkeeping
// overhead typically needed to implement it.
//
// This option does not affect the public interface of any generated code;
// all method signatures remain the same.  Furthermore, thread-safety of the
// interface is not affected by this option; const methods remain safe to
// call from multiple threads concurrently, while non-const methods continue
// to require exclusive access.
//
//
// Note that implementations may choose not to check required fields within
// a lazy sub-message.  That is, calling IsInitialized() on the outher message
// may return true even if the inner message has missing required fields.
// This is necessary because otherwise the inner message would have to be
// parsed in order to perform the check, defeating the purpose of lazy
// parsing.  An implementation which chooses not to check required fields
// must be consistent about it.  That is, for any particular sub-message, the
// implementation must either *always* check its required fields, or *never*
// check its required fields, regardless of whether or not the message has
// been parsed.
optional bool lazy = 5 [default=false];

// Is this field deprecated?
// Depending on the target platform, this can emit Deprecated annotations
// for accessors, or it will be completely ignored; in the very least, this
// is a formalization for deprecating fields.
optional bool deprecated = 3 [default=false];

// EXPERIMENTAL.  DO NOT USE.
// For "map" fields, the name of the field in the enclosed type that
// is the key for this map.  For example, suppose we have:
//   message Item {
//     required string name = 1;
//     required string value = 2;
//   }
//   message Config {
//     repeated Item items = 1 [experimental_map_key="name"];
//   }
// In this situation, the map key for Item will be set to "name".
// TODO: Fully-implement this, then remove the "experimental_" prefix.
optional string experimental_map_key = 9;

// For Google-internal migration only. Do not use.
optional bool weak = 10 [default=false];

// The parser stores options it doesn't recognize here. See above.
repeated UninterpretedOption uninterpreted_option = 999;

// Clients can define custom options in extensions of this message. See above.
extensions 1000 to max;

}

message EnumOptions {

// Set this option to false to disallow mapping different tag names to a same
// value.
optional bool allow_alias = 2 [default=true];

// The parser stores options it doesn't recognize here. See above.
repeated UninterpretedOption uninterpreted_option = 999;

// Clients can define custom options in extensions of this message. See above.
extensions 1000 to max;

}

message EnumValueOptions {

// The parser stores options it doesn't recognize here. See above.
repeated UninterpretedOption uninterpreted_option = 999;

// Clients can define custom options in extensions of this message. See above.
extensions 1000 to max;

}

message ServiceOptions {

// Note:  Field numbers 1 through 32 are reserved for Google's internal RPC
//   framework.  We apologize for hoarding these numbers to ourselves, but
//   we were already using them long before we decided to release Protocol
//   Buffers.

// The parser stores options it doesn't recognize here. See above.
repeated UninterpretedOption uninterpreted_option = 999;

// Clients can define custom options in extensions of this message. See above.
extensions 1000 to max;

}

message MethodOptions {

// Note:  Field numbers 1 through 32 are reserved for Google's internal RPC
//   framework.  We apologize for hoarding these numbers to ourselves, but
//   we were already using them long before we decided to release Protocol
//   Buffers.

// The parser stores options it doesn't recognize here. See above.
repeated UninterpretedOption uninterpreted_option = 999;

// Clients can define custom options in extensions of this message. See above.
extensions 1000 to max;

}

// A message representing a option the parser does not recognize. This only // appears in options protos created by the compiler::Parser class. // DescriptorPool resolves these when building Descriptor objects. Therefore, // options protos in descriptor objects (e.g. returned by Descriptor::options(), // or produced by Descriptor::CopyTo()) will never have UninterpretedOptions // in them. message UninterpretedOption {

// The name of the uninterpreted option.  Each string represents a segment in
// a dot-separated name.  is_extension is true iff a segment represents an
// extension (denoted with parentheses in options specs in .proto files).
// E.g.,{ ["foo", false], ["bar.baz", true], ["qux", false] } represents
// "foo.(bar.baz).qux".
message NamePart {
  required string name_part = 1;
  required bool is_extension = 2;
}
repeated NamePart name = 2;

// The value of the uninterpreted option, in whatever type the tokenizer
// identified it as during parsing. Exactly one of these should be set.
optional string identifier_value = 3;
optional uint64 positive_int_value = 4;
optional int64 negative_int_value = 5;
optional double double_value = 6;
optional bytes string_value = 7;
optional string aggregate_value = 8;

}

// =================================================================== // Optional source code info

// Encapsulates information about the original source file from which a // FileDescriptorProto was generated. message SourceCodeInfo {

// A Location identifies a piece of source code in a .proto file which
// corresponds to a particular definition.  This information is intended
// to be useful to IDEs, code indexers, documentation generators, and similar
// tools.
//
// For example, say we have a file like:
//   message Foo {
//     optional string foo = 1;
//   }
// Let's look at just the field definition:
//   optional string foo = 1;
//   ^       ^^     ^^  ^  ^^^
//   a       bc     de  f  ghi
// We have the following locations:
//   span   path               represents
//   [a,i)  [ 4, 0, 2, 0 ]     The whole field definition.
//   [a,b)  [ 4, 0, 2, 0, 4 ]  The label (optional).
//   [c,d)  [ 4, 0, 2, 0, 5 ]  The type (string).
//   [e,f)  [ 4, 0, 2, 0, 1 ]  The name (foo).
//   [g,h)  [ 4, 0, 2, 0, 3 ]  The number (1).
//
// Notes:
// - A location may refer to a repeated field itself (i.e. not to any
//   particular index within it).  This is used whenever a set of elements are
//   logically enclosed in a single code segment.  For example, an entire
//   extend block (possibly containing multiple extension definitions) will
//   have an outer location whose path refers to the "extensions" repeated
//   field without an index.
// - Multiple locations may have the same path.  This happens when a single
//   logical declaration is spread out across multiple places.  The most
//   obvious example is the "extend" block again -- there may be multiple
//   extend blocks in the same scope, each of which will have the same path.
// - A location's span is not always a subset of its parent's span.  For
//   example, the "extendee" of an extension declaration appears at the
//   beginning of the "extend" block and is shared by all extensions within
//   the block.
// - Just because a location's span is a subset of some other location's span
//   does not mean that it is a descendent.  For example, a "group" defines
//   both a type and a field in a single declaration.  Thus, the locations
//   corresponding to the type and field and their components will overlap.
// - Code which tries to interpret locations should probably be designed to
//   ignore those that it doesn't understand, as more types of locations could
//   be recorded in the future.
repeated Location location = 1;
message Location {
  // Identifies which part of the FileDescriptorProto was defined at this
  // location.
  //
  // Each element is a field number or an index.  They form a path from
  // the root FileDescriptorProto to the place where the definition.  For
  // example, this path:
  //   [ 4, 3, 2, 7, 1 ]
  // refers to:
  //   file.message_type(3)  // 4, 3
  //       .field(7)         // 2, 7
  //       .name()           // 1
  // This is because FileDescriptorProto.message_type has field number 4:
  //   repeated DescriptorProto message_type = 4;
  // and DescriptorProto.field has field number 2:
  //   repeated FieldDescriptorProto field = 2;
  // and FieldDescriptorProto.name has field number 1:
  //   optional string name = 1;
  //
  // Thus, the above path gives the location of a field name.  If we removed
  // the last element:
  //   [ 4, 3, 2, 7 ]
  // this path refers to the whole field declaration (from the beginning
  // of the label to the terminating semicolon).
  repeated int32 path = 1 [packed=true];

  // Always has exactly three or four elements: start line, start column,
  // end line (optional, otherwise assumed same as start line), end column.
  // These are packed into a single field for efficiency.  Note that line
  // and column numbers are zero-based -- typically you will want to add
  // 1 to each before displaying to a user.
  repeated int32 span = 2 [packed=true];

  // If this SourceCodeInfo represents a complete declaration, these are any
  // comments appearing before and after the declaration which appear to be
  // attached to the declaration.
  //
  // A series of line comments appearing on consecutive lines, with no other
  // tokens appearing on those lines, will be treated as a single comment.
  //
  // Only the comment content is provided; comment markers (e.g. //) are
  // stripped out.  For block comments, leading whitespace and an asterisk
  // will be stripped from the beginning of each line other than the first.
  // Newlines are included in the output.
  //
  // Examples:
  //
  //   optional int32 foo = 1;  // Comment attached to foo.
  //   // Comment attached to bar.
  //   optional int32 bar = 2;
  //
  //   optional string baz = 3;
  //   // Comment attached to baz.
  //   // Another line attached to baz.
  //
  //   // Comment attached to qux.
  //   //
  //   // Another line attached to qux.
  //   optional double qux = 4;
  //
  //   optional string corge = 5;
  //   /* Block comment attached
  //    * to corge.  Leading asterisks
  //    * will be removed. */
  //   /* Block comment attached to
  //    * grault. */
  //   optional int32 grault = 6;
  optional string leading_comments = 3;
  optional string trailing_comments = 4;
}

}