
1

Yosys Application Note 011:
Interactive Design Investigation

Cli�ord Wolf

Original Version December 2013

Abstract—Yosys [1] can be a great environment for building custom
synthesis �ows. It can also be an excellent tool for teaching and
learning Verilog based RTL synthesis. In both applications it is of
great importance to be able to analyze the designs it produces easily.

This Yosys application note covers the generation of circuit
diagrams with the Yosys show command, the selection of interesting
parts of the circuit using the select command, and brie�y discusses
advanced investigation commands for evaluating circuits and solving
SAT problems.

I. Installation and Prereqisites

This Application Note is based on the Yosys [1] GIT Rev.

2b90ba1 from 2013-12-08. The README �le covers how to install

Yosys. The show command requires a working installation of

GraphViz [2] and [3] for generating the actual circuit diagrams.

II. Overview

This application note is structured as follows:

Sec. III introduces the show command and explains the symbols

used in the circuit diagrams generated by it.

Sec. IV introduces additional commands used to navigate in

the design, select portions of the design, and print additional

information on the elements in the design that are not contained

in the circuit diagrams.

Sec. V introduces commands to evaluate the design and solve SAT

problems within the design.

Sec. VI concludes the document and summarizes the key points.

III. Introduction to the show command

The show command generates a circuit diagram for the design

in its current state. Various options can be used to change the

appearance of the circuit diagram, set the name and format for the

output �le, and so forth. When called without any special options,

it saves the circuit diagram in a temporary �le and launches xdot
to display the diagram. Subsequent calls to show re-use the xdot
instance (if still running).

1 $ cat example.ys
2 read_verilog example.v
3 show -pause
4 proc
5 show -pause
6 opt
7 show -pause
8

9 $ cat example.v
10 module example(input clk, a, b, c,
11 output reg [1:0] y);
12 always @(posedge clk)
13 if (c)
14 y <= c ? a + b : 2’d0;
15 endmodule

Figure 1. Yosys script with show commands and example design

A. A simple circuit

Fig. 1 shows a simple synthesis script and a Verilog �le that

demonstrate the usage of show in a simple setting. Note that show
is called with the -pause option, that halts execution of the Yosys

script until the user presses the Enter key. The show -pause
command also allows the user to enter an interactive shell to further

investigate the circuit before continuing synthesis.

So this script, when executed, will show the design after each of

the three synthesis commands. The generated circuit diagrams are

shown in Fig. 2.

The �rst diagram (from top to bottom) shows the design directly

after being read by the Verilog front-end. Input and output ports

are displayed as octagonal shapes. Cells are displayed as rectangles

with inputs on the left and outputs on the right side. The cell labels

are two lines long: The �rst line contains a unique identi�er for the

cell and the second line contains the cell type. Internal cell types are

pre�xed with a dollar sign. The Yosys manual contains a chapter

on the internal cell library used in Yosys.

Constants are shown as ellipses with the constant value as label.

The syntax <bit_width>’<bits> is used for for constants

that are not 32-bit wide and/or contain bits that are not 0 or 1

(i.e. x or z). Ordinary 32-bit constants are written using decimal

numbers.

Single-bit signals are shown as thin arrows pointing from the

driver to the load. Signals that are multiple bits wide are shown as

think arrows.

Finally processes are shown in boxes with round corners. Pro-

cesses are Yosys’ internal representation of the decision-trees and

synchronization events modelled in a Verilog always-block. The

label reads PROC followed by a unique identi�er in the �rst line

and contains the source code location of the original always-block

in the 2nd line. Note how the multiplexer from the ?:-expression

a
A

B
$2

$add Y

b

c

A

B

S

$3
$mux Y

PROC $1
example.v:3

clk

y

2'00

a
A

B
$2
$add Y

b

c

A

B

S

$3
$mux Y

BUF

clk CLK

D
$7
$dff Q

yA

B

S

$5
$mux Y

2'00

BUF $0\y[1:0]

a
A

B
$2
$add Y

b

c

A

B

S

$5
$mux Y

clk CLK

D
$7
$dff Q

y

Figure 2. Output of the three show commands from Fig. 1



2

is represented as a $mux cell but the multiplexer from the if-

statement is yet still hidden within the process.

The proc command transforms the process from the �rst dia-

gram into a multiplexer and a d-type �ip-�ip, which brings us to

the 2nd diagram.

The Rhombus shape to the right is a dangling wire. (Wire nodes

are only shown if they are dangling or have “public” names, for

example names assigned from the Verilog input.) Also note that

the design now contains two instances of a BUF-node. This are

artefacts left behind by the proc-command. It is quite usual to see

such artefacts after calling commands that perform changes in the

design, as most commands only care about doing the transformation

in the least complicated way, not about cleaning up after them. The

next call to clean (or opt, which includes clean as one of its

operations) will clean up this artefacts. This operation is so common

in Yosys scripts that it can simply be abbreviated with the ;; token,

which doubles as separator for commands. Unless one wants to

speci�cally analyze this artefacts left behind some operations, it is

therefore recommended to always call clean before calling show.

In this script we directly call opt as next step, which �nally

leads us to the 3rd diagram in Fig. 2. Here we see that the opt
command not only has removed the artifacts left behind by proc,

but also determined correctly that it can remove the �rst $mux cell

without changing the behavior of the circuit.

B. Break-out boxes for signal vectors

As has been indicated by the last example, Yosys is can manage

signal vectors (aka. multi-bit wires or buses) as native objects. This

provides great advantages when analyzing circuits that operate on

wide integers. But it also introduces some additional complexity

a

0:0 - 1:1

1:1 - 0:0

1:0 - 3:2

1:0 - 1:0b
c

1:0 - 3:2

1:0 - 1:0d

e 1:0 - 3:2

1:0 - 1:0

f

x

y

A $2
$neg Y 3:0 - 7:4

A $1
$not Y

3:2 - 1:0

1:0 - 3:2

3:0 - 11:8

Figure 3. Output of yosys -p ’proc; opt; show’ splice.v

1 module splice_demo(a, b, c, d, e, f, x, y);
2

3 input [1:0] a, b, c, d, e, f;
4 output [1:0] x = {a[0], a[1]};
5

6 output [11:0] y;
7 assign {y[11:4], y[1:0], y[3:2]} =
8 {a, b, -{c, d}, ~{e, f}};
9

10 endmodule

Figure 4. splice.v

a

A

B

Y

$g0
NOR  

A

Y
$g2

NOT  

b A

Y
$g1

NOT  

y

1:1 - 0:0

1:1 - 0:0

0:0 - 0:0

A

B

Y

$g3
NOR  

A

B

Y

$g4
NOR  

$n4

$n5

$n6_1

a

A

B
$g0
NOR Y

A $g2
NOT Y

b

A $g1
NOT Y

y[0]

y[1]

A

B
$g4
NOR Y

A

B
$g3
NOR Y

Figure 5. E�ects of splitnets command and of providing a cell library.

(The circuit is a half-adder built from simple CMOS gates.)

when the individual bits of of a signal vector are accessed. The

example show in Fig. 3 and 4 demonstrates how such circuits are

visualized by the show command.

The key elements in understanding this circuit

diagram are of course the boxes with round corners

and rows labeled <MSB_LEFT>:<LSB_LEFT> –
<MSB_RIGHT>:<LSB_RIGHT>. Each of this boxes has

one signal per row on one side and a common signal for all rows

on the other side. The <MSB>:<LSB> tuples specify which bits

of the signals are broken out and connected. So the top row of the

box connecting the signals a and x indicates that the bit 0 (i.e. the

range 0:0) from signal a is connected to bit 1 (i.e. the range 1:1) of

signal x.

Lines connecting such boxes together and lines connecting such

boxes to cell ports have a slightly di�erent look to emphasise that

they are not actual signal wires but a necessity of the graphical

representation. This distinction seems like a technicality, until one

wants to debug a problem related to the way Yosys internally

represents signal vectors, for example when writing custom Yosys

commands.

C. Gate level netlists

Finally Fig. 5 shows two common pitfalls when working with

designs mapped to a cell library. The top �gure has two problems:

First Yosys did not have access to the cell library when this diagram

was generated, resulting in all cell ports defaulting to being inputs.

This is why all ports are drawn on the left side the cells are



3

awkwardly arranged in a large column. Secondly the two-bit vector

y requires breakout-boxes for its individual bits, resulting in an

unnecessary complex diagram.

For the 2nd diagram Yosys has been given a description of the

cell library as Verilog �le containing blackbox modules. There are

two ways to load cell descriptions into Yosys: First the Verilog �le

for the cell library can be passed directly to the show command

using the -lib <filename> option. Secondly it is possible to

load cell libraries into the design with the read_verilog -lib
<filename> command. The 2nd method has the great advantage

that the library only needs to be loaded once and can then be used

in all subsequent calls to the show command.

In addition to that, the 2nd diagram was generated after

splitnet -ports was run on the design. This command splits

all signal vectors into individual signal bits, which is often desirable

when looking at gate-level circuits. The -ports option is required

to also split module ports. Per default the command only operates

on interior signals.

D. Miscellaneous notes

Per default the show command outputs a temporary dot �le and

launches xdot to display it. The options -format, -viewer
and -prefix can be used to change format, viewer and �lename

pre�x. Note that the pdf and ps format are the only formats that

support plotting multiple modules in one run.

In densely connected circuits it is sometimes hard to keep track

of the individual signal wires. For this cases it can be useful to

call show with the -colors <integer> argument, which

randomly assigns colors to the nets. The integer (> 0) is used as seed

value for the random color assignments. Sometimes it is necessary

it try some values to �nd an assignment of colors that looks good.

The command help show prints a complete listing of all

options supported by the show command.

IV. Navigating the design

Plotting circuit diagrams for entire modules in the design brings

us only helps in simple cases. For complex modules the generated

circuit diagrams are just stupidly big and are no help at all. In such

cases one �rst has to select the relevant portions of the circuit.

In addition to what to display one also needs to carefully decide

when to display it, with respect to the synthesis �ow. In general it

is a good idea to troubleshoot a circuit in the earliest state in which

a problem can be reproduced. So if, for example, the internal state

before calling the techmap command already fails to verify, it is

better to troubleshoot the coarse-grain version of the circuit before

techmap than the gate-level circuit after techmap.

Note: It is generally recommended to verify the internal state of

a design by writing it to a Verilog �le using write_verilog
-noexpr and using the simulation models from simlib.v
and simcells.v from the Yosys data directory (as printed by

yosys-config --datdir).

A. Interactive Navigation

Once the right state within the synthesis �ow for debugging the

circuit has been identi�ed, it is recommended to simply add the

shell command to the matching place in the synthesis script.

This command will stop the synthesis at the speci�ed moment and

go to shell mode, where the user can interactively enter commands.

For most cases, the shell will start with the whole design

selected (i.e. when the synthesis script does not already narrow

the selection). The command ls can now be used to create a list

1 yosys> ls
2

3 1 modules:
4 example
5

6 yosys> cd example
7

8 yosys [example]> ls
9

10 7 wires:
11 $0\y[1:0]
12 $add$example.v:5$2_Y
13 a
14 b
15 c
16 clk
17 y
18

19 3 cells:
20 $add$example.v:5$2
21 $procdff$7
22 $procmux$5

Figure 6. Demonstration of ls and cd using example.v from Fig. 1

of all modules. The command cd can be used to switch to one of

the modules (type cd .. to switch back). Now the ls command

lists the objects within that module. Fig. 6 demonstrates this using

the design from Fig. 1.

There is a thing to note in Fig. 6: We can see that the cell names

from Fig. 2 are just abbreviations of the actual cell names, namely

the part after the last dollar-sign. Most auto-generated names (the

ones starting with a dollar sign) are rather long and contains some

additional information on the origin of the named object. But in

most cases those names can simply be abbreviated using the last

part.

Usually all interactive work is done with one module selected

using the cd command. But it is also possible to work from the

design-context (cd ..). In this case all object names must be

pre�xed with <module_name>/. For example a*/b* would

refer to all objects whose names start with b from all modules

whose names start with a.

The dump command can be used to print all information about

an object. For example dump $2 will print Fig. 7. This can for

example be useful to determine the names of nets connected to cells,

as the net-names are usually suppressed in the circuit diagram if

1 attribute \src "example.v:5"
2 cell $add $add$example.v:5$2
3 parameter \A_SIGNED 0
4 parameter \A_WIDTH 1
5 parameter \B_SIGNED 0
6 parameter \B_WIDTH 1
7 parameter \Y_WIDTH 2
8 connect \A \a
9 connect \B \b

10 connect \Y $add$example.v:5$2_Y
11 end

Figure 7. Output of dump $2 using the design from Fig. 1 and Fig. 2



4

a
A

B
$2
$add Y

b

$2_Y

Figure 8. Output of show after select $2 or select t:$add (see

also Fig. 2)

they are auto-generated.

For the remainder of this document we will assume that the

commands are run from module-context and not design-context.

B. Working with selections

When a module is selected using the cd command, all commands

(with a few exceptions, such as the read_* and write_*
commands) operate only on the selected module. This can also

be useful for synthesis scripts where di�erent synthesis strategies

should be applied to di�erent modules in the design.

But for most interactive work we want to further narrow the set

of selected objects. This can be done using the select command.

For example, if the command select $2 is executed, a subse-

quent show command will yield the diagram shown in Fig. 8. Note

that the nets are now displayed in ellipses. This indicates that they

are not selected, but only shown because the diagram contains a cell

that is connected to the net. This of course makes no di�erence for

the circuit that is shown, but it can be a useful information when

manipulating selections.

Objects can not only be selected by their name but also by other

properties. For example select t:$add will select all cells of

type $add. In this case this is also yields the diagram shown in

Fig. 8.

The output of help select contains a complete syntax ref-

erence for matching di�erent properties.

Many commands can operate on explicit selections. For ex-

ample the command dump t:$add will print information on

all $add cells in the active module. Whenever a command has

[selection] as last argument in its usage help, this means that

it will use the engine behind the select command to evaluate

additional arguments and use the resulting selection instead of the

selection created by the last select command.

1 module foobaraddsub(a, b, c, d, fa, fs, ba, bs);
2 input [7:0] a, b, c, d;
3 output [7:0] fa, fs, ba, bs;
4 assign fa = a + (* foo *) b;
5 assign fs = a - (* foo *) b;
6 assign ba = c + (* bar *) d;
7 assign bs = c - (* bar *) d;
8 endmodule

Figure 9. Test module for operations on selections

1 module sumprod(a, b, c, sum, prod);
2

3 input [7:0] a, b, c;
4 output [7:0] sum, prod;
5

6 {* sumstuff *}
7 assign sum = a + b + c;
8 {* *}
9

10 assign prod = a * b * c;
11

12 endmodule

Figure 10. Another test module for operations on selections

Normally the select command overwrites a previous selection.

The commands select -add and select -del can be used

to add or remove objects from the current selection.

The command select -clear can be used to reset the

selection to the default, which is a complete selection of everything

in the current module.

C. Operations on selections

The select command is actually much more powerful than it

might seem on the �rst glimpse. When it is called with multiple

arguments, each argument is evaluated and pushed separately on a

stack. After all arguments have been processed it simply creates the

union of all elements on the stack. So the following command will

select all $add cells and all objects with the foo attribute set:

select t:$add a:foo

(Try this with the design shown in Fig. 9. Use the select
-list command to list the current selection.)

In many cases simply adding more and more stu� to the selection

is an ine�ective way of selecting the interesting part of the design.

Special arguments can be used to combine the elements on the stack.

For example the %i arguments pops the last two elements from the

stack, intersects them, and pushes the result back on the stack. So

the following command will select all $add cells that have the foo
attribute set:

a
A

B
$1
$add Y

b

$1_Y

$1_Y
A

B
$2
$add Y

c

sum

Figure 11. Output of show a:sumstuff on Fig. 10



5

a
A

B
$1
$add Y

b

c

A

B
$2
$add Y sum

Figure 12. Output of show a:sumstuff %x on Fig. 10

select t:$add a:foo %i

The listing in Fig. 10 uses the Yosys non-standard {* ... *}
syntax to set the attribute sumstuff on all cells generated by

the �rst assign statement. (This works on arbitrary large blocks of

Verilog code an can be used to mark portions of code for analysis.)

Selecting a:sumstuff in this module will yield the circuit

diagram shown in Fig. 11. As only the cells themselves are selected,

but not the temporary wire $1_Y, the two adders are shown as

two disjunct parts. This can be very useful for global signals like

clock and reset signals: just unselect them using a command such

as select -del clk rst and each cell using them will get

its own net label.

In this case however we would like to see the cells connected

properly. This can be achieved using the %x action, that broadens

the selection, i.e. for each selected wire it selects all cells connected

to the wire and vice versa. So show a:sumstuff %x yields

the diagram shown in Fig. 12.

D. Selecting logic cones

Fig. 12 shows what is called the input cone of sum, i.e. all cells

and signals that are used to generate the signal sum. The %ci
action can be used to select the input cones of all object in the top

selection in the stack maintained by the select command.

As the %x action, this commands broadens the selection by one

“step”. But this time the operation only works against the direction

of data �ow. That means, wires only select cells via output ports

and cells only select wires via input ports.

Fig. 13 show the sequence of diagrams generated by the following

commands:

show prod
show prod %ci
show prod %ci %ci
show prod %ci %ci %ci

When selecting many levels of logic, repeating %ci over and

over again can be a bit dull. So there is a shortcut for that: the

number of iterations can be appended to the action. So for example

the action %ci3 is identical to performing the %ci action three

times.

The action %ci* performs the %ci action over and over again

until it has no e�ect anymore.

In most cases there are certain cell types and/or ports that should

not be considered for the %ci action, or we only want to follow

certain cell types and/or ports. This can be achieved using additional

patterns that can be appended to the %ci action.

Lets consider the design from Fig. 14. It serves no purpose other

than being a non-trivial circuit for demonstrating some of the

prod

prod

$3_Y
A

B
$4
$mul Y

c

c

A

B
$4
$mul Y prod

$3_Y

c

A

B
$4
$mul Y prod

a
A

B
$3
$mul Y

b

Figure 13. Objects selected by select prod %ci...

advanced Yosys features. We synthesize the circuit using proc;
opt; memory; opt and change to the memdemo module with

cd memdemo. If we type show now we see the diagram shown

in Fig. 15.

But maybe we are only interested in the tree of multiplexers that

select the output value. In order to get there, we would start by just

showing the output signal and its immediate predecessors:

1 module memdemo(clk, d, y);
2

3 input clk;
4 input [3:0] d;
5 output reg [3:0] y;
6

7 integer i;
8 reg [1:0] s1, s2;
9 reg [3:0] mem [0:3];

10

11 always @(posedge clk) begin
12 for (i = 0; i < 4; i = i+1)
13 mem[i] <= mem[(i+1) % 4] + mem[(i+2) % 4];
14 { s2, s1 } = d ? { s1, s2 } ^ d : 4’b0;
15 mem[s1] <= d;
16 y <= mem[s2];
17 end
18

19 endmodule

Figure 14. Demo circuit for demonstrating some advanced Yosys features



6

clk

CLK

D
$66
$dff Q

CLK

D
$68
$dff Q

CLK

D
$70
$dff Q

CLK

D
$72
$dff Q

CLK

D
$59
$dff Q

CLK

D
$63
$dff Q

CLK

D
$64
$dff Q

d

A

B

S

$147
$mux Y

A

B

S

$177
$mux Y

A

B

S

$207
$mux Y

A

B

S

$237
$mux Y

A $39
$reduce_bool Y

A

B
$38
$xor Y

mem[0]

A

B
$34
$add Y

A

B
$37
$add Y

A

B

S

$113
$mux Y

mem[1]

A

B
$28
$add Y

mem[2]

A

B
$31
$add Y

A

B

S

$116
$mux Y

mem[3]

s1

1:0 - 3:2

1:0 - 1:0

s2

y

A

B

S

$110
$mux Y

1:1 - 0:0

0:0 - 0:0

0:0 - 0:0

1'1

A

B
$145
$and Y

1'1

A

B
$175
$and Y

1'1

A

B
$205
$and Y

1'1

A

B
$235
$and Y

2'00 A

B
$143
$eq Y

2'01 A

B
$173
$eq Y

2'10 A

B
$203
$eq Y

2'11 A

B
$233
$eq Y

A

B

S

$40
$mux Y

4'0000

3:2 - 1:0

1:0 - 1:0

Figure 15. Complete circuit diagram for the design shown in Fig. 14

show y %ci2

From this we would learn that y is driven by a $dff cell,

that y is connected to the output port Q, that the clk signal goes

into the CLK input port of the cell, and that the data comes from

a auto-generated wire into the input D of the �ip-�op cell.

As we are not interested in the clock signal we add an additional

pattern to the %ci action, that tells it to only follow ports Q and

D of $dff cells:

show y %ci2:+$dff[Q,D]

To add a pattern we add a colon followed by the pattern to the

%ci action. The pattern it self starts with - or +, indicating if

it is an include or exclude pattern, followed by an optional comma

separated list of cell types, followed by an optional comma separated

list of port names in square brackets.

Since we know that the only cell considered in this case is a

$dff cell, we could as well only specify the port names:

show y %ci2:+[Q,D]

Or we could decide to tell the %ci action to not follow the CLK
input:

show y %ci2:-[CLK]

Next we would investigate the next logic level by adding another

%ci2 to the command:

mem[0]

A

B

S

$113
$mux Y

mem[1]

mem[2]
A

B

S

$116
$mux Y

mem[3]

y

$0\s2[1:0] [1]

A

B

S

$110
$mux Y

CLK

D
$64
$dff Q

$0\s2[1:0] [0]

$0\s2[1:0] [0]

clk

Figure 16. Output of show y %ci2:+$dff[Q,D]
%ci*:-$mux[S]:-$dff

show y %ci2:-[CLK] %ci2

From this we would learn that the next cell is a $mux cell and we

would add additional pattern to narrow the selection on the path

we are interested. In the end we would end up with a command

such as

show y %ci2:+$dff[Q,D] %ci*:-$mux[S]:-$dff

in which the �rst %ci jumps over the initial d-type �ip-�op and

the 2nd action selects the entire input cone without going over

multiplexer select inputs and �ip-�op cells. The diagram produces

by this command is shown in Fig. 16.

Similar to %ci exists an action %co to select output cones that

accepts the same syntax for pattern and repetition. The %x action

mentioned previously also accepts this advanced syntax.

This actions for traversing the circuit graph, combined with the

actions for boolean operations such as intersection (%i) and di�er-

ence (%d) are powerful tools for extracting the relevant portions of

the circuit under investigation.

See help select for a complete list of actions available in

selections.

E. Storing and recalling selections

The current selection can be stored in memory with the command

select -set <name>. It can later be recalled using select
@<name>. In fact, the @<name> expression pushes the stored

selection on the stack maintained by the select command. So

for example

select @foo @bar %i

will select the intersection between the stored selections foo and

bar.

In larger investigation e�orts it is highly recommended to main-

tain a script that sets up relevant selections, so they can easily be

recalled, for example when Yosys needs to be re-run after a design

or source code change.

The history command can be used to list all recent interactive

commands. This feature can be useful for creating such a script from

the commands used in an interactive session.



7

V. Advanced investigation techniqes

When working with very large modules, it is often not enough

to just select the interesting part of the module. Instead it can be

useful to extract the interesting part of the circuit into a separate

module. This can for example be useful if one wants to run a series

of synthesis commands on the critical part of the module and wants

to carefully read all the debug output created by the commands

in order to spot a problem. This kind of troubleshooting is much

easier if the circuit under investigation is encapsulated in a separate

module.

Fig. 17 shows how the submod command can be used to split

the circuit from Fig. 14 and 15 into its components. The -name
option is used to specify the name of the new module and also the

name of the new cell in the current module.

A. Evaluation of combinatorial circuits

The eval command can be used to evaluate combinatorial

circuits. For example (see Fig. 17 for the circuit diagram of

selstage):

yosys [selstage]> eval -set s2,s1 4’b1001 -set d 4’hc -show n2 -show n1

9. Executing EVAL pass (evaluate the circuit given an input).
Full command line: eval -set s2,s1 4’b1001 -set d 4’hc -show n2 -show n1
Eval result: \n2 = 2’10.
Eval result: \n1 = 2’10.

So the -set option is used to set input values and the -show
option is used to specify the nets to evaluate. If no -show option

is speci�ed, all selected output ports are used per default.

If a necessary input value is not given, an error is produced. The

option -set-undef can be used to instead set all unspeci�ed

input nets to undef (x).

The -table option can be used to create a truth table. For

example:

yosys [selstage]> eval -set-undef -set d[3:1] 0 -table s1,d[0]

10. Executing EVAL pass (evaluate the circuit given an input).
Full command line: eval -set-undef -set d[3:1] 0 -table s1,d[0]

\s1 \d [0] | \n1 \n2
---- ------ | ---- ----
2’00 1’0 | 2’00 2’00
2’00 1’1 | 2’xx 2’00
2’01 1’0 | 2’00 2’00
2’01 1’1 | 2’xx 2’01
2’10 1’0 | 2’00 2’00
2’10 1’1 | 2’xx 2’10
2’11 1’0 | 2’00 2’00
2’11 1’1 | 2’xx 2’11

Assumed undef (x) value for the following signals: \s2

Note that the eval command (as well as the sat command

discussed in the next sections) does only operate on �attened

modules. It can not analyze signals that are passed through design

hierarchy levels. So the flatten command must be used on

modules that instantiate other modules before this commands can

be applied.

B. Solving combinatorial SAT problems

Often the opposite of the eval command is needed, i.e. the

circuits output is given and we want to �nd the matching input

signals. For small circuits with only a few input bits this can be

accomplished by trying all possible input combinations, as it is

done by the eval -table command. For larger circuits however,

Yosys provides the sat command that uses a SAT [4] solver [5] to

solve this kind of problems.

clk

CLK

D
$59
$dff Q

CLK

D
$63
$dff Q

clk

mem[0]

mem[1]

mem[2]

mem[3]

n1

outstage
outstage y

clk

d

n1

scramble
scramble

mem[0]

mem[1]

mem[2]

mem[3]

d

d

s1

s2

selstage
selstage

n1

n2 mem[0]

mem[1]

mem[2]

mem[3]

s1 s2

y

memdemo

clk

CLK

D
$66
$dff Q

CLK

D
$68
$dff Q

CLK

D
$70
$dff Q

CLK

D
$72
$dff Q

d

A

B

S

$147
$mux Y

A

B

S

$177
$mux Y

A

B

S

$207
$mux Y

A

B

S

$237
$mux Y

mem[0]

A

B
$34
$add Y

A

B
$37
$add Y

mem[1]

A

B
$28
$add Y

mem[2]

A

B
$31
$add Y

mem[3]

n1

A

B
$143
$eq Y

A

B
$173
$eq Y

A

B
$203
$eq Y

A

B
$233
$eq Y

1'1

A

B
$145
$and Y

1'1

A

B
$175
$and Y

1'1

A

B
$205
$and Y

1'1

A

B
$235
$and Y

2'00

2'01

2'10

2'11

scramble

clk

CLK

D
$64
$dff Q

mem[0]

A

B

S

$113
$mux Y

mem[1]

mem[2]

A

B

S

$116
$mux Ymem[3]

n1

1:1 - 0:0

0:0 - 0:0

0:0 - 0:0

y
A

B

S

$110
$mux Y

outstage

d A $39
$reduce_bool Y

A

B
$38
$xor Y

n1

n2
s1

1:0 - 3:2

1:0 - 1:0
s2

A

B

S

$40
$mux Y

4'0000

3:2 - 1:0

1:0 - 1:0

selstage

1 select -set outstage y %ci2:+$dff[Q,D] %ci*:-$mux[S]:-$dff
2 select -set selstage y %ci2:+$dff[Q,D] %ci*:-$dff @outstage %d
3 select -set scramble mem* %ci2 %ci*:-$dff mem* %d @selstage %d
4 submod -name scramble @scramble
5 submod -name outstage @outstage
6 submod -name selstage @selstage

Figure 17. The circuit from Fig. 14 and 15 broken up using submod

The sat command works very similar to the eval command.

The main di�erence is that it is now also possible to set output

values and �nd the corresponding input values. For Example:

yosys [selstage]> sat -show s1,s2,d -set s1 s2 -set n2,n1 4’b1001

11. Executing SAT pass (solving SAT problems in the circuit).
Full command line: sat -show s1,s2,d -set s1 s2 -set n2,n1 4’b1001

Setting up SAT problem:
Import set-constraint: \s1 = \s2
Import set-constraint: { \n2 \n1 } = 4’1001
Final constraint equation: { \n2 \n1 \s1 } = { 4’1001 \s2 }
Imported 3 cells to SAT database.
Import show expression: { \s1 \s2 \d }



8

Solving problem with 81 variables and 207 clauses..
SAT solving finished - model found:

Signal Name Dec Hex Bin
-------------------- ---------- ---------- ---------------
\d 9 9 1001
\s1 0 0 00
\s2 0 0 00

Note that the sat command supports signal names in both

arguments to the -set option. In the above example we used -set
s1 s2 to constraint s1 and s2 to be equal. When more complex

constraints are needed, a wrapper circuit must be constructed that

checks the constraints and signals if the constraint was met using

an extra output port, which then can be forced to a value using

the -set option. (Such a circuit that contains the circuit under

test plus additional constraint checking circuitry is called a miter
circuit.)

Fig. 18 shows a miter circuit that is supposed to be used as a

prime number test. If ok is 1 for all input values a and b for a

given p, then p is prime, or at least that is the idea.

The Yosys shell session shown in Fig. 19 demonstrates that SAT

solvers can even �nd the unexpected solutions to a problem: Using

integer over�ow there actually is a way of “factorizing” 31. The

clean solution would of course be to perform the test in 32 bits,

for example by replacing p != a*b in the miter with p !=
{16’d0,a}*b, or by using a temporary variable for the 32 bit

product a*b. But as 31 �ts well into 8 bits (and as the purpose

of this document is to show o� Yosys features) we can also simply

force the upper 8 bits of a and b to zero for the sat call, as is

done in the second command in Fig. 19 (line 31).

The -prove option used in this example works similar to -set,

but tries to �nd a case in which the two arguments are not equal.

If such a case is not found, the property is proven to hold for all

inputs that satisfy the other constraints.

It might be worth noting, that SAT solvers are not particularly

e�cient at factorizing large numbers. But if a small factorization

problem occurs as part of a larger circuit problem, the Yosys SAT

solver is perfectly capable of solving it.

C. Solving sequential SAT problems

The SAT solver functionality in Yosys can not only be used

to solve combinatorial problems, but can also solve sequential

problems. Let’s consider the entire memdemo module from Fig. 14

and suppose we want to know which sequence of input values for

d will cause the output y to produce the sequence 1, 2, 3 from any

initial state. Fig. 20 show the solution to this question, as produced

by the following command:

sat -seq 6 -show y -show d -set-init-undef \
-max_undef -set-at 4 y 1 -set-at 5 y 2 -set-at 6 y 3

The -seq 6 option instructs the sat command to solve a

sequential problem in 6 time steps. (Experiments with lower number

of steps have show that at least 3 cycles are necessary to bring the

circuit in a state from which the sequence 1, 2, 3 can be produced.)

1 module primetest(p, a, b, ok);
2 input [15:0] p, a, b;
3 output ok = p != a*b || a == 1 || b == 1;
4 endmodule

Figure 18. A simple miter circuit for testing if a number is prime. But it

has a problem (see main text and Fig. 19).

The -set-init-undef option tells the sat command to

initialize all registers to the undef (x) state. The way the x state is

treated in Verilog will ensure that the solution will work for any

initial state.

The -max_undef option instructs the sat command to �nd a

solution with a maximum number of undefs. This way we can see

clearly which inputs bits are relevant to the solution.

Finally the three -set-at options add constraints for the y
signal to play the 1, 2, 3 sequence, starting with time step 4.

It is not surprising that the solution sets d = 0 in the �rst step,

as this is the only way of setting the s1 and s2 registers to a

known value. The input values for the other steps are a bit harder

to work out manually, but the SAT solver �nds the correct solution

in an instant.

There is much more to write about the sat command. For

example, there is a set of options that can be used to performs

sequential proofs using temporal induction [6]. The command help
sat can be used to print a list of all options with short descriptions

of their functions.

VI. Conclusion

Yosys provides a wide range of functions to analyze and inves-

tigate designs. For many cases it is su�cient to simply display

circuit diagrams, maybe use some additional commands to narrow

the scope of the circuit diagrams to the interesting parts of the

circuit. But some cases require more than that. For this applications

Yosys provides commands that can be used to further inspect the

behavior of the circuit, either by evaluating which output values are

generated from certain input values (eval) or by evaluation which

input values and initial conditions can result in a certain behavior

at the outputs (sat). The SAT command can even be used to prove

(or disprove) theorems regarding the circuit, in more advanced cases

with the additional help of a miter circuit.

This features can be powerful tools for the circuit designer using

Yosys as a utility for building circuits and the software developer

using Yosys as a framework for new algorithms alike.

References

[1] Cli�ord Wolf. The Yosys Open SYnthesis Suite. http://www.cli�ord.at/

yosys/

[2] Graphviz - Graph Visualization Software. http://www.graphviz.org/

[3] xdot.py - an interactive viewer for graphs written in Graphviz’s dot

language. https://github.com/jrfonseca/xdot.py

[4] Circuit satis�ability problem on Wikipedia http://en.wikipedia.org/wiki/

Circuit_satis�ability

[5] MiniSat: a minimalistic open-source SAT solver. http://minisat.se/

[6] Niklas Een and Niklas Sörensson (2003). Temporal Induction by Incre-

mental SAT Solving. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.4.8161

http://www.clifford.at/yosys/
http://www.clifford.at/yosys/
http://www.graphviz.org/
https://github.com/jrfonseca/xdot.py
http://en.wikipedia.org/wiki/Circuit_satisfiability
http://en.wikipedia.org/wiki/Circuit_satisfiability
http://minisat.se/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.8161
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.8161


9

1 yosys [primetest]> sat -prove ok 1 -set p 31
2

3 8. Executing SAT pass (solving SAT problems in the circuit).
4 Full command line: sat -prove ok 1 -set p 31
5

6 Setting up SAT problem:
7 Import set-constraint: \p = 16’0000000000011111
8 Final constraint equation: \p = 16’0000000000011111
9 Imported 6 cells to SAT database.

10 Import proof-constraint: \ok = 1’1
11 Final proof equation: \ok = 1’1
12

13 Solving problem with 2790 variables and 8241 clauses..
14 SAT proof finished - model found: FAIL!
15

16 ______ ___ ___ _ _ _ _
17 (_____ \ / __) / __) (_) | | | |
18 _____) )___ ___ ___ _| |__ _| |__ _____ _| | _____ __| | |
19 | ____/ ___) _ \ / _ (_ __) (_ __|____ | | || ___ |/ _ |_|
20 | | | | | |_| | |_| || | | | / ___ | | || ____( (_| |_
21 |_| |_| \___/ \___/ |_| |_| \_____|_|\_)_____)\____|_|
22

23

24 Signal Name Dec Hex Bin
25 -------------------- ---------- ---------- ---------------------
26 \a 15029 3ab5 0011101010110101
27 \b 4099 1003 0001000000000011
28 \ok 0 0 0
29 \p 31 1f 0000000000011111
30

31 yosys [primetest]> sat -prove ok 1 -set p 31 -set a[15:8],b[15:8] 0
32

33 9. Executing SAT pass (solving SAT problems in the circuit).
34 Full command line: sat -prove ok 1 -set p 31 -set a[15:8],b[15:8] 0
35

36 Setting up SAT problem:
37 Import set-constraint: \p = 16’0000000000011111
38 Import set-constraint: { \a [15:8] \b [15:8] } = 16’0000000000000000
39 Final constraint equation: { \a [15:8] \b [15:8] \p } = { 16’0000000000000000 16’0000000000011111 }
40 Imported 6 cells to SAT database.
41 Import proof-constraint: \ok = 1’1
42 Final proof equation: \ok = 1’1
43

44 Solving problem with 2790 variables and 8257 clauses..
45 SAT proof finished - no model found: SUCCESS!
46

47 /$$$$$$ /$$$$$$$$ /$$$$$$$
48 /$$__ $$ | $$_____/ | $$__ $$
49 | $$ \ $$ | $$ | $$ \ $$
50 | $$ | $$ | $$$$$ | $$ | $$
51 | $$ | $$ | $$__/ | $$ | $$
52 | $$/$$ $$ | $$ | $$ | $$
53 | $$$$$$/ /$$| $$$$$$$$ /$$| $$$$$$$//$$
54 \____ $$$|__/|________/|__/|_______/|__/
55 \__/

Figure 19. Experiments with the miter circuit from Fig. 18. The �rst attempt of proving that 31 is prime failed because the SAT solver found a creative

way of factorizing 31 using integer over�ow.



10

1 yosys [memdemo]> sat -seq 6 -show y -show d -set-init-undef \
2 -max_undef -set-at 4 y 1 -set-at 5 y 2 -set-at 6 y 3
3

4 6. Executing SAT pass (solving SAT problems in the circuit).
5 Full command line: sat -seq 6 -show y -show d -set-init-undef
6 -max_undef -set-at 4 y 1 -set-at 5 y 2 -set-at 6 y 3
7

8 Setting up time step 1:
9 Final constraint equation: { } = { }

10 Imported 29 cells to SAT database.
11

12 Setting up time step 2:
13 Final constraint equation: { } = { }
14 Imported 29 cells to SAT database.
15

16 Setting up time step 3:
17 Final constraint equation: { } = { }
18 Imported 29 cells to SAT database.
19

20 Setting up time step 4:
21 Import set-constraint for timestep: \y = 4’0001
22 Final constraint equation: \y = 4’0001
23 Imported 29 cells to SAT database.
24

25 Setting up time step 5:
26 Import set-constraint for timestep: \y = 4’0010
27 Final constraint equation: \y = 4’0010
28 Imported 29 cells to SAT database.
29

30 Setting up time step 6:
31 Import set-constraint for timestep: \y = 4’0011
32 Final constraint equation: \y = 4’0011
33 Imported 29 cells to SAT database.
34

35 Setting up initial state:
36 Final constraint equation: { \y \s2 \s1 \mem[3] \mem[2] \mem[1]
37 \mem[0] } = 24’xxxxxxxxxxxxxxxxxxxxxxxx
38

39 Import show expression: \y
40 Import show expression: \d
41

42 Solving problem with 10322 variables and 27881 clauses..
43 SAT model found. maximizing number of undefs.
44 SAT solving finished - model found:
45

46 Time Signal Name Dec
Hex Bin

47 ---- -------------------- ---------- ---------- ---------------
48 init \mem[0] --

-- xxxx
49 init \mem[1] --

-- xxxx
50 init \mem[2] --

-- xxxx
51 init \mem[3] --

-- xxxx
52 init \s1 --

-- xx
53 init \s2 --

-- xx
54 init \y --

-- xxxx
55 ---- -------------------- ---------- ---------- ---------------
56 1 \d 0

0 0000
57 1 \y --

-- xxxx
58 ---- -------------------- ---------- ---------- ---------------
59 2 \d 1

1 0001
60 2 \y --

-- xxxx
61 ---- -------------------- ---------- ---------- ---------------
62 3 \d 2

2 0010
63 3 \y 0

0 0000
64 ---- -------------------- ---------- ---------- ---------------
65 4 \d 3

3 0011
66 4 \y 1

1 0001
67 ---- -------------------- ---------- ---------- ---------------
68 5 \d --

-- 001x
69 5 \y 2

2 0010
70 ---- -------------------- ---------- ---------- ---------------
71 6 \d --

-- xxxx
72 6 \y 3

3 0011

Figure 20. Solving a sequential SAT problem in the memdemo module from

Fig. 14.


