
1

Yosys Application Note 012:
Converting Verilog to BTOR

Ahmed Irfan and Cli�ord Wolf

April 2015

Abstract—Verilog-2005 is a powerful Hardware Description Lan-
guage (HDL) that can be used to easily create complex designs from
small HDL code. BTOR [3] is a bit-precise word-level format for
model checking. It is a simple format and easy to parse. It allows
to model the model checking problem over the theory of bit-vectors
with one-dimensional arrays, thus enabling to model Verilog designs
with registers and memories. Yosys [1] is an Open-Source Verilog
synthesis tool that can be used to convert Verilog designs with simple
assertions to BTOR format.

I. Installation

Yosys written in C++ (using features from C++11) and is tested on

modern Linux. It should compile �ne on most UNIX systems with a

C++11 compiler. The README �le contains useful information on

building Yosys and its prerequisites.

Yosys is a large and feature-rich program with some dependen-

cies. For this work, we may deactivate other extra features such as

TCL and ABC support in the Makefile.

This Application Note is based on GIT Rev. 082550f from 2015-

04-04 of Yosys [1].

II. �ick Start

We assume that the Verilog design is synthesizable and we also

assume that the design does not have multi-dimensional memories.

As BTOR implicitly initializes registers to zero value and memories

stay uninitialized, we assume that the Verilog design does not

contain initial blocks. For more details about the BTOR format,

please refer to [3].

We provide a shell script verilog2btor.sh which can be

used to convert a Verilog design to BTOR. The script can be found

in the backends/btor directory. The following example shows

its usage:

verilog2btor.sh fsm.v fsm.btor test

Listing 1. Using verilog2btor script

The script verilog2btor.sh takes three parameters. In the

above example, the �rst parameter fsm.v is the input design, the

second parameter fsm.btor is the �le name of BTOR output, and

the third parameter test is the name of top module in the design.

To specify the properties (that need to be checked), we have two

options:

• We can use the Verilog assert statement in the procedural

block or module body of the Verilog design, as shown in

Listing 2. This is the preferred option.

• We can use a single-bit output wire, whose name starts with

safety. The value of this output wire needs to be driven

low when the property is met, i.e. the solver will try to �nd a

model that makes the safety pin go high. This is demonstrated

in Listing 3.

module test(input clk, input rst, output y);

reg [2:0] state;

always @(posedge clk) begin
if (rst || state == 3) begin
state <= 0;

end else begin
assert(state < 3);
state <= state + 1;

end
end

assign y = state[2];

assert property (y !== 1’b1);

endmodule

Listing 2. Specifying property in Verilog design with assert

module test(input clk, input rst,
output y, output safety1);

reg [2:0] state;

always @(posedge clk) begin
if (rst || state == 3)
state <= 0;

else
state <= state + 1;

end

assign y = state[2];

assign safety1 = !(y !== 1’b1);

endmodule

Listing 3. Specifying property in Verilog design with output wire

We can run Boolector [2] 1.4.11

on the generated BTOR �le:

$ boolector fsm.btor
unsat

Listing 4. Running boolector on BTOR �le

We can also use nuXmv [4], but on BTOR designs it does not

support memories yet. With the next release of nuXmv, we will be

also able to verify designs with memories.

III. Detailed Flow

Yosys is able to synthesize Verilog designs up to the gate level. We

are interested in keeping registers and memories when synthesizing

the design. For this purpose, we describe a customized Yosys

synthesis �ow, that is also provided by the verilog2btor.sh

1
Newer version of Boolector do not support sequential models. Boolector

1.4.1 can be built with picosat-951. Newer versions of picosat have an

incompatible API.

2

script. Listing 5 shows the Yosys commands that are executed by

verilog2btor.sh.

1 read_verilog -sv $1;
2 hierarchy -top $3; hierarchy -libdir $DIR;
3 hierarchy -check;
4 proc; opt;
5 opt_expr -mux_undef; opt;
6 rename -hide;;;
7 splice; opt;
8 memory_dff -wr_only; memory_collect;;
9 flatten;;

10 memory_unpack;
11 splitnets -driver;
12 setundef -zero -undriven;
13 opt;;;
14 write_btor $2;

Listing 5. Synthesis Flow for BTOR with memories

Here is short description of what is happening in the script line

by line:

1) Reading the input �le.

2) Setting the top module in the hierarchy and trying to read

automatically the �les which are given as include in the

�le read in �rst line.

3) Checking the design hierarchy.

4) Converting processes to multiplexers (muxs) and �ip-�ops.

5) Removing undef signals from muxs.

6) Hiding all signal names that are not used as module ports.

7) Explicit type conversion, by introducing slice and concat cells

in the circuit.

8) Converting write memories to synchronous memories, and

collecting the memories to multi-port memories.

9) Flattening the design to get only one module.

10) Separating read and write memories.

11) Splitting the signals that are partially assigned

12) Setting undef to zero value.

13) Final optimization pass.

14) Writing BTOR �le.

For detailed description of the commands mentioned above,

please refer to the Yosys documentation, or run yosys -h com-
mand_name.

The script presented earlier can be easily modi�ed to have a

BTOR �le that does not contain memories. This is done by removing

the line number 8 and 10, and introduces a new command memory
at line number 8. Listing 6 shows the modi�ed Yosys script �le:

read_verilog -sv $1;
hierarchy -top $3; hierarchy -libdir $DIR;
hierarchy -check;
proc; opt;
opt_expr -mux_undef; opt;
rename -hide;;;
splice; opt;
memory;;
flatten;;
splitnets -driver;
setundef -zero -undriven;
opt;;;
write_btor $2;

Listing 6. Synthesis Flow for BTOR without memories

IV. Example

Here is an example Verilog design that we want to convert to

BTOR:

module array(input clk);

reg [7:0] counter;
reg [7:0] mem [7:0];

always @(posedge clk) begin
counter <= counter + 8’d1;
mem[counter] <= counter;

end

assert property (!(counter > 8’d0) ||
mem[counter - 8’d1] == counter - 8’d1);

endmodule

Listing 7. Example - Verilog Design

The generated BTOR �le that contain memories, using the script

shown in Listing 5:

3

1 var 1 clk
2 array 8 3
3 var 8 $auto$rename.cc:150:execute$20
4 const 8 00000001
5 sub 8 3 4
6 slice 3 5 2 0
7 read 8 2 6
8 slice 3 3 2 0
9 add 8 3 4
10 const 8 00000000
11 ugt 1 3 10
12 not 1 11
13 const 8 11111111
14 slice 1 13 0 0
15 one 1
16 eq 1 1 15
17 and 1 16 14
18 write 8 3 2 8 3
19 acond 8 3 17 18 2
20 anext 8 3 2 19
21 eq 1 7 5
22 or 1 12 21
23 const 1 1
24 one 1
25 eq 1 23 24
26 cond 1 25 22 24
27 root 1 -26
28 cond 8 1 9 3
29 next 8 3 28

Listing 8. Example - Converted BTOR with memory

And the BTOR �le obtained by the script shown in Listing 6,

which expands the memory into individual elements:

1 var 1 clk
2 var 8 mem[0]
3 var 8 $auto$rename.cc:150:execute$20
4 slice 3 3 2 0
5 slice 1 4 0 0
6 not 1 5
7 slice 1 4 1 1
8 not 1 7
9 slice 1 4 2 2
10 not 1 9
11 and 1 8 10
12 and 1 6 11
13 cond 8 12 3 2
14 cond 8 1 13 2
15 next 8 2 14
16 const 8 00000001
17 add 8 3 16
18 const 8 00000000
19 ugt 1 3 18
20 not 1 19
21 var 8 mem[2]
22 and 1 7 10
23 and 1 6 22
24 cond 8 23 3 21
25 cond 8 1 24 21
26 next 8 21 25
27 sub 8 3 16
...

54 cond 1 53 50 52
55 root 1 -54
...

77 cond 8 76 3 44
78 cond 8 1 77 44
79 next 8 44 78

Listing 9. Example - Converted BTOR without memory

V. Limitations

BTOR does not support initialization of memories and registers,

i.e. they are implicitly initialized to value zero, so the initial block

for memories need to be removed when converting to BTOR. It

should also be kept in consideration that BTOR does not support

the x or z values of Verilog.

Another thing to bear in mind is that Yosys will convert multi-

dimensional memories to one-dimensional memories and address

decoders. Therefore out-of-bounds memory accesses can yield un-

expected results.

VI. Conclusion

Using the described �ow, we can use Yosys to generate word-level

veri�cation benchmarks with or without memories from Verilog

designs.

References

[1] Cli�ord Wolf. The Yosys Open SYnthesis Suite.

http://www.cli�ord.at/yosys/

[2] Robert Brummayer and Armin Biere, Boolector: An E�cient SMT Solver

for Bit-Vectors and Arrays

http://fmv.jku.at/boolector/

http://www.clifford.at/yosys/
http://fmv.jku.at/boolector/

4

[3] Robert Brummayer and Armin Biere and Florian Lonsing, BTOR: Bit-

Precise Modelling of Word-Level Problems for Model Checking

http://fmv.jku.at/papers/BrummayerBiereLonsing-BPR08.pdf

[4] Roberto Cavada and Alessandro Cimatti and Michele Dorigatti and

Alberto Griggio and Alessandro Mariotti and Andrea Micheli and Sergio

Mover and Marco Roveri and Stefano Tonetta, The nuXmv Symbolic

Model Checker

https://es-static.fbk.eu/tools/nuxmv/index.php

http://fmv.jku.at/papers/BrummayerBiereLonsing-BPR08.pdf
https://es-static.fbk.eu/tools/nuxmv/index.php

