B-Lang

Bluespec Compiler (BSC)
User Guide

Revision: 3 February 2022

Copyright (©) 2000 — January 2020: Bluespec, Inc.
January 2020 onwards: various open-source contributors

Bluespec Compiler User Guide

Trademarks and copyrights

Verilog is a trademark of IEEE (the Institute of Electrical and Electronics Engineers). The Verilog
standard is copyrighted, owned and maintained by IEEE.

VHDL is a trademark of IEEE (the Institute of Electrical and Electronics Engineers). The VHDL
standard is copyrighted, owned and maintained by IEEE.

SystemVerilog is a trademark of IEEE. The SystemVerilog standard is owned and maintained by
IEEE.

SystemC is a trademark of IEEE. The SystemC standard is owned and maintained by IEEE.

Bluespec is a trademark of Bluespec, Inc.

Bluespec Compiler User Guide

Contents
Table of Contents 3
1 Getting Started 6
1.1 Imtroduction e e 6
1.2 Imstalling BSC e 6
1.2.1 Download the software Lo 6
1.2.2 System Requirements 6
1.2.3 Inmstall the software L 6
1.3 Components of BSC Release L 6
1.4 Utilities o o e e 7
1.5 Quick Start 7
2 Designing with Bluespec 7
2.1 Components of a BSV Design 7
2.2 Overview of the BSC process 8
2.3 Help . . o o e 9
2.4 Compile 9
241 CompilingaFile o 9
2.4.2 Importing other packages L Lo 10
2.4.3 Specifying modules for code generation 0oL 10
2.4.4 Understanding separate compilation 0L 11
2.4.5 Interfacing to foreign modules and functionso L. 12
2.5 Link ..o 12
2.5.1 Linking with Bluesim 13
2.5.2 Creating a SystemC Model Instead of a Bluesim Executable 15
2.5.3 Linking with Verilog L 17
2.6 Simulate 20
3 BSC flags 20
3.1 Common compile and linking flags 0oL 20
3.2 Controlling default flag values 22
3.3 Verilog back-end L 22
3.4 Bluesim back-end 23
3.5 Resource scheduling (all back ends) Lo Lo L 24
3.6 Setting the path L 24
3.7 Miscellaneous flags 25
3.8 Run-time systemo 26

Bluespec Compiler User Guide

3.9 Automatic recompilation 27
3.10 Compiler transformations L L 27
3.11 Compiler optimizations 28
3.12 BSV debugging flags 28
3.13 Understanding the schedule oo 31
314 C/CH+flags . . . o o o 32

4 Compiler messages 33
4.1 Warnings and Errors Lo e 33
4.1.1 Type-checking Errors 33

4.1.2 Elaboration Messages e 34

4.1.3 Scheduling Messages e 35

4.1.4 Path Messages e 37

4.2 Other messages o oo e 38
4.2.1 Compilation progress e 38

4.2.2 Scheduling information L oL oo 39

5 Verilog back end 41
5.1 Bluespec to Verilog mapping L oo 42
5.1.1 Imterfaces and Ports 42

5.1.2 Stateelements 44

5.1.3 Rules and related signals oo 45

5.1.4 Othersignals 46

5.2 Verilog header comment L L L 49

6 Bluesim back end 50
6.1 Bluesim tool flow 50
6.2 Cycle-accuracy between Bluesim and Verilog simulation 51
6.3 Bluesim simulation flags o 52
6.4 Interactive simulation L 53
6.4.1 Command scripts for Bluesim L. 58

6.5 Value change dump (VCD) output 59
6.6 Bluesim multiple clock domain support Lo 59

A Environment variables 60
A1 Imstallation 60
A2 Options e 60
A3 C/CH+variables 60
A4 Make variables 61

Bluespec Compiler

User Guide

B Bluetcl Reference

B.1 Invoking Bluetcl
B.2 Packages and namespaces

B.3 Customizing Bluetel

B.4 Package command reference

B.4.1 Conventions
B.4.2 Bluetel.o o000
B43 Bluesim
B.4.4 InstSynth
B.5 Bluetcl Scriptso oL
B.5.1 expandPorts

Index

Commands by Namespace

Bluespec Compiler User Guide

1 Getting Started

1.1 Introduction

This document explains the mechanics and logistics of compiling, simulating, and analyzing a Blue-
spec SystemVerilog (BSV) specification with the Bluespec Compiler (BSC) and Bluetcl, a collection
of Tcl extensions, scripts, and packages providing BSC-specific features to Tcl. A Bluetcl reference
is provided in Appendix B.

For information on how to design and write specifications in the Bluespec SystemVerilog environ-
ment, please refer to the Bluespec System Verilog Reference Guide, BSV by Example guide, and other
tutorials provided by Bluespec Inc or the B-Lang organization.

BSC is free and open-source software (FOSS) administered by the B-Lang organization and available
on GitHub at: https://github.com/B-Lang-org/bsc

1.2 Installing BSC

1.2.1 Download the software

TBD

1.2.2 System Requirements

TBD

1.2.3 Install the software

TBD

1.3 Components of BSC Release

BSC is released with the following components:

e BSC compiler: The compiler takes BSV syntax and generates a hardware description, for
either Verilog or Bluesim.

e BSC library packages: BSC is shipped with a set of libraries which provide common and useful
programming idioms and hardware structures.

e Verilog library modules: Several primitive BSV elements, such as FIFOs and registers, are
expressed as Verilog primitives.

e Bluesim: a cycle simulator for BSV designs.

e Bluetcl: a collection of Tcl extensions, scripts, and packages providing BSC-specific features
to Tcl.

Also included is documentation, such as this User Guide.

e User Guide: This manual which explains how to run BSC, what flags are available, and how
to read the tool output.

e Libraries Reference Guide: A reference that fully describes the libraries that are released with
BSC.

https://github.com/B-Lang-org/bsc

Bluespec Compiler User Guide

1.4 Utilities

BSV editing modes are provided for the editors emacs, vim, and jedit. The files are in subdirectories
in the $BLUESPEC_HOME/util directory. Each directory contains a README file with installation
instructions for the editor.

The $BLUESPEC_HOME/util directory also contains an GNU enscript .st file for printing Bluespec
SystemVerilog language files. A README file in the directory contains instructions for installation
and use.

1.5 Quick Start

From the command line, you can invoke the Bluespec compiler with:

’ bsc arguments

2 Designing with Bluespec

2.1 Components of a BSV Design

A BSV program consists of one or more outermost constructs called packages. All BSV code is
assumed to be inside a package. Furthermore, BSC and other tools assume that there is one package
per file, and they use the package name to derive the file name. For example, a package called Foo
is assumed to be located in the file Foo.bsv.

The design may also include Verilog modules, VHDL modules, and C functions. Additional files
will be generated by BSC as a result of the compile, link, and simulation steps. Some files are only
generated for a particular back end (Bluesim or Verilog), others are used by both back ends. The
following table lists the different file types and their roles.

File Types in a BSV Design

File Type Description Bluesim | Verilog
.bsv BSV source File Vv Vv

The .bo file is an intermediate file not viewed by the user

.bo Binary file containing code for the package | +/ vV

in an intermediate form

.ba Elaborated module file vV Vv
v Generated Verilog file vV
.h C++ header files Vv
.CXX Generated C++ source file v
.0 Compiled object files vV
.80 Compiled shared object files v

Bluespec Compiler User Guide

2.2 Overview of the BSC process

This section provides a brief overview of the stages of designing with BSC. Later sections contain
more detailed explanations of the compilation and linking processes. Refer to Section 3 for a complete
listing of the flags available for guiding the compiler.

Designing with BSC has three distinct stages. You can use the BSC command throughout each
stage of the process. Figure 1 illustrates the following steps in building a BSV design:
1. A designer writes a BSV program, including Verilog, VHDL, and C components as desired.

2. The BSV program is compiled into a Verilog or Bluesim specification. This step is comprised
of two distinct stages:

(a) pre-elaboration - parsing and type checking

(b) post-elaboration - code generation

3. The compilation output is either linked into a simulation environment or processed by a syn-
thesis tool.

bsv
High level description of
how toproduce the rules
for a design

high-level

-bi/bo Pre-elaboration
BSV files

Compiler 1

transhte rule
description into

-ba Post-elaboration
files
RY .ho
Verllog implementation Bluesim implementation

Figure 1: BSV compilation stages

We use the compilation stage to refer to the two steps, type checking and code generation, as
shown inside the dotted box in Figure 1. As the figure shows, the code generation specification
that is output by BSC is subject to a second run of the compiler to link it into a simulation or
synthesis environment. We refer to this as the linking stage, even though the same compiler is used
to perform the linking. BSC is required for linking Bluesim generated modules. For Verilog, the

Bluespec Compiler User Guide

generated modules can be handled as you would any other Verilog modules; they can be linked with
the Bluespec compiler or you can choose to use the generated Verilog files manually instead.

You can perform the above actions — compile, link, and simulate — directly from a Unix command
line.

Once you've generated the Verilog or Bluesim implementation, the design can be analyzed using
Bluetcl commands. BSC can also dump information during compilation and linking, via flags.

2.3 Help

For a summary of how to run BSC and a listing of all flags, type:

bsc -help

from a Unix command prompt. Compiler flags are documented here in Section 3.

2.4 Compile

There are two stages in compilation, type checking and code generation, executed by a single compile
command. The simplest compilation of a BSV design is to run only the first stage of the compiler,
generating the .bo files. Once the type check is complete, you have enough module information to
use Bluetcl to browse the contents of packages.

The second stage (code generation) generates an elaborated module file (.ba) and, when the target
is Verilog, a (.v) file. These generated files have the same name as the module they implement, not
the name of the package or file they come from.

To run the compiler through to code generation, a module must be marked for synthesis. The
recommended method is to use the synthesize attribute in the BSV code. You can also specify a
top module with the -g compiler flag. See Section 2.4.3 and the BSV Reference Guide for information
on synthesizable modules.

A package often imports other packages. BSC can automatically recompile imported packages, if
necessary, if the —u option is specified on the command line. Section 2.4.2 discusses importing pack-
ages. Section 2.4.4 contains a detailed explanation of techniques and considerations when compiling
a collection of BSV modules.

The compiler automatically runs through to code generation if no errors are encountered in the type
checking stage and a module is marked for synthesis. If errors are encountered in the type check
stage, the compiler will halt before generating the .bo file. In this case, Bluetcl cannot be used to
browse the packages, as it depends on these intermediate files. If errors are encountered in the second
stage, the .bo file will be created but the .ba file will not. In this case, Bluetcl cannot be used to
browse the modules of a design or the scheduling of rules and methods in a design. Library packages
provided with BSC can always be browsed with Bluetcl, since the .bo files for these packages are
always available.

To view scheduling graphs, the compiler flag —~sched-dot, described in Section 3.13, must be specified
for compilation. This flag generates the .dot files from which graphs can be generated.

2.4.1 Compiling a File

A BSYV source file is compiled from the command line with a command like this:

bsc [flags] Foo.bsv

Bluespec Compiler User Guide

where one or more compiler flags may be specified after the bsc command. Section 3.1 describes
compiling from the command line in more detail.

If the file imports packages defined in other sources, you will need to compile those other source files
first. BSC can be directed to automatically compile any imported files, if necessary, before compiling
the selected file, by providing the —u flag on the command line. The compiler compares the time
stamp on the .bo file to determine if the imported file has changed since the last compilation. When
you compile with -u, only changed files will be recompiled.

2.4.2 Importing other packages

To compile a package that imports another package, BSC needs the .bo file from the imported
package. One way to provide this file is to run the compiler on each imported file. Or direct
BSC, via the —u flag, to automatically determine which files are needed and recompile as necessary.
If the .bo file already exists, the compiler will only recompile if the file has changed since the last
compilation, as indicated by the imported file having a more recent date than the file being compiled.

For example, to compile a package Foo that imports another package Baz, BSC needs to examine
the file Baz.bo. If Baz is in the file Baz.bsv, then this file needs to be run through the compiler to
produce the necessary .bo file before the compiler can be invoked on Foo.bsv. If you use the —u flag
on the command line, the compiler will check to see if Baz.bo exists, and if it exists, it will check
the compilation date. The compiler will recompile the Baz file if necessary.

BSC is shipped with a set of library files providing common and useful hardware structures, such as
FIFO and UInt. They are described in the BSC Library Reference Guide. The source code for these
packages is already compiled and the .bo files are found in a library directory with the compiler
installation (in the same way that C header and object files are stored in standard include and
library directories). The compiler looks for these files in:

%/Libraries/

The BSC Libraries directory is automatically added to the search path by BSC, unless overridden
via flags.

If you are importing packages from other directories, the directories must be added to the search
path. The flags which modify the path are described in Section 3.6.

2.4.3 Specifying modules for code generation

A module can be selected for code generation either in the BSV code or at compile-time. The recom-
mended method is to mark the module for code generation in the BSV code, using the synthesize
attribute (see the BSV Reference Guide for more information on attributes). The alternative is, at
compile-time, to use the -g flag (Section 3.1), which instructs the compiler to generate code for a
particular module. The -g flag can be used multiple times within a compile command line to specify
multiple modules for code generation.

Whether the generated code will be Bluesim or Verilog depends on which back end has been selected,
by using the -verilog or -sim command line flag.

Not all modules written in BSV are synthesizable. To be synthesized the module must be of type
Module and not of any other module type that can be defined with ModuleCollect. A module is
synthesizable if its interface is a type whose methods and subinterfaces are all convertible to wires.

A method is convertible to wires if it meets the following conditions:

e its argument types are convertible to wires which means either

10

Bluespec Compiler User Guide

— it is in the Bits class OR

— it is a function whose argument and return type are convertible to wires
e its return type is Action OR
e its return type is a value or ActionValue where either

— the value is convertible to bits (i.e. in the Bits class) OR

— the field is an exported clock or reset.

A module to be synthesized is allowed to have non-interface inputs, such as clocks and resets.
Parameters to the module are allowed if they are convertible to bits.

Clock and Reset subinterfaces are convertible to wires.

If none of the modules are marked for synthesis, the compiler will not generate a hardware description
(a Verilog .v file or a Bluesim .ba file).

2.4.4 Understanding separate compilation

BSC has two main stages; first it converts BSV modules into a collection of states and rules, and
then it converts the rule-representation into a hardware description.

When compiling a collection of BSV modules, it is up to the user to decide which of these modules
should be compiled to hardware separately, and which should be subsumed into the parent module.
By default, all hierarchy is flattened into one top-level module in the final hardware description,
but the user can specify modules which should stay in the hierarchy and have separate hardware
descriptions.

What happens when a module m1 instantiates another module m2? If the submodule m2 is provided
as a BSV description, that description will need to be compiled into a set of rules and then those
rules combined with the rules for m1 to be converted, by the code generation stage, into a hardware
description.

If m2 is provided as a hardware description (that is, implemented in a Verilog file or in Bluesim
header and object files), then the hardware description for m1 will contain an instantiation of m2.
The implementation of m2 is kept in its own file. For the Verilog back end, this produces a m1.v
file with a Verilog module m1 which instantiates m2 by name and connects to its ports but doesn’t
contain the implementation of m2. Both implementation files, m1.v and m2.v, must be provided to
the simulation or synthesis tools.

Even if m2 is provided as a BSV description, the user can decide to generate a separate hardware
description for the module. This is done by putting the synthesize attribute in the BSV description
or using the -g flag, indicating that the module should be synthesized as a separate module, apart
from the instantiating module.

The implementation in a .bo reflects whether hardware was generated for a module. If a hardware
description was generated for a module, then the implementation in the .bo will be merely a pointer
to the location of that description (be it .v or .o). If hardware was not generated for the module,
then an entirely BSV representation will be stored in the .bo file.

Thus, a single .bsv file can be compiled in different ways to produce very different .bo files. When
the compiler is generating hardware for another BSV file that imports this package, it will need to
read in the information in the .bo file. How it is compiled depends on the flags used. Therefore,
compiling the new file will be affected by how the imported file was compiled earlier! It is important,
therefore, to remove these automatically generated files before beginning a new compilation project,
especially if a different module hierarchy is desired.

11

Bluespec Compiler User Guide

For example, if a user were to generate Verilog for a module mkFoo just for testing purposes, the
Foo.bo would encapsulate into its own description the information that a Verilog module had been
generated for module mkFoo. If the user then wanted to generate Verilog for a larger design, which
included this module, but wanted the larger design to be compiled into one, hierarchy-free Verilog
module, then the .bo file would have to be deleted so that a new version could be created that only
contained the state-and-rules description of the module.

2.4.5 Interfacing to foreign modules and functions

Foreign modules and functions can be included as part of a BSV model. A designer can specify
that the implementation of a particular BSV module is provided as either a Verilog module or a C
function.

Importing Verilog modules

Using the import "BVI" syntax, a designer can specify that the implementation of a particular
BSV module is an RTL (Verilog or VHDL) module, as described in the BSV Reference Guide. The
module is treated exactly as if it were originally written in BSV and then converted to hardware by
the compiler, but instead of the . v file being generated by the compiler, it was supplied independently
of any BSV code. It may have been written by hand or supplied by a vendor as an IP, etc. The files
for these modules need to be linked in to the simulation. This process is described in Section 2.5.1
for Bluesim simulations and 2.5.3 for Verilog simulations.

Several primitive BSV elements, such as FIFOs and register files, are expressed this way — as Verilog
primitives. When simulating or synthesizing a design generated with the Verilog back end, you will
need to include the appropriate hardware descriptions for these primitives. Verilog descriptions for
BSC’s primitive elements can be found in:

${BLUESPECDIR}/Verilog/

Note: We attempt to be sure that the Bluesim and Verilog models simulate identically. Simulations
using 4-state (X and Z) logic, user supplied Verilog, or other unsupported or nonstandard parts are
never guaranteed to match.

Importing C functions

Using the importBDPI syntax, the user can specify that the implementation of a BSV function is
provided as a C function. The same implementation can be used when simulating with Bluesim or
with Verilog. In Bluesim, the imported functions are called directly. In Verilog, the functions are
accessed via the Verilog VPI or the SystemVerilog DPI . The compilation and linking procedures
for these backends are described in Sections 2.5.1 for Bluesim simulations, and 2.5.3 for Verilog
simulations.

2.5 Link

The compiled hardware description must be linked into a simulation environment before you can
simulate the project. The result of the linking stage is a binary which, when executed, simulates
a module. BSC is required for linking Bluesim generated modules and can be used to link Verilog
modules as well. To link from the command line, use the bsc command along with the appropriate
flags, as described in Section 3.1.

12

Bluespec Compiler User Guide

2.5.1 Linking with Bluesim

For the Bluesim back end, linking means incorporating a set of Bluesim object files that implement
BSV modules into a Bluesim simulation environment. See Section 6 for a description of this envi-
ronment. Bluesim is specified by using the -sim flag. In an installation of BSC, the files for this
simulation environment are stored with the other Bluesim files at: ${BLUESPECDIR}/Bluesim/.

Specifically, the linking stage generates a C++ object for each elaborated module. For each module,
it generates module..h and module.cxx files which are compiled to a .o file. The C++ compiler
to use is determined from the CXX environment variable (the default is c++) and any flags spec-
ified in CXXFLAGS or BSC_CXXFLAGS are added to the command line. Also generated are the files
model_topmodule.h and model_topmodule.cxx which are the top level that combines the individual
modules into a single model, implementing a global schedule computed by combining the schedules
from all the individual modules in the design. Once compiled to .o files, these objects are linked
with the Bluesim library files to produce an .so shared object file. This shared object file can be
dynamically loaded into Bluetcl using the sim load command. For convenience, a wrapper script is
generated along with the .so file which automates loading and execution of the simulation model.

If you want to see all the CAN_FIRE and WILL_FIRE signals, you must specify the -keep-fires flag
(described in Section 3.12) when compiling and linking with Bluesim.

The typical command to link BSV files to generate Bluesim executables is:

’bsc -sim -e -keep-fires mkFoo

Imported Verilog modules in Bluesim

Using the import "BVI" syntax, a designer can specify that the implementation of a particular BSV
module is a Verilog module. The module is treated exactly as if it were originally written in BSV,
but was converted to hardware by the compiler.

Bluesim does not currently support importing Verilog modules directly. If a Bluesim back end is
used to generate code for this system, then a Bluesim model of the Verilog module needs to be
supplied in place of the Verilog description. Such a model would need to be compiled from a BSV
description and used conditionally, depending on the backend. The environment functions genC and
genVerilog (as defined in the BSV Reference Guide) can be used to determine when to compile
this code.

For example, you might have a design, mkDUT, which instantiates a submodule mkSubMod, which is a
pre-existing Verilog file that you want to use when generating Verilog:

module mkDUT (...);
SubIFC submod <- mkSubMod;

endmodule

You would write an import "BVI" statement:

import "BVI" module mkSubMod (SubIFC); ... endmodule

But this won’t work for a Bluesim simulation - Bluesim expects a .ba file for mkSubMod.

The way to write one BSV file for both Verilog and Bluesim is to change mkSubMod to be a wrapper,
which conditionally uses a Verilog import or a BSV-written implementation, depending on the
backend:

13

Bluespec Compiler User Guide

module mkSubMod (SubIFC);
SubIFC _i <- if (genVerilog)
mkSubMod_verilog
else
mkSubMod_bluesim;
return _i;
endmodule

// note that the import has a different name
import "BVI" mkSubMod =
module mkSubMod_verilog (SubIFC); ... endmodule

// an implementation of mkSubMod in BSV
module mkSubMod_bluesim (Sublfc);

endmodule

This code will import Verilog when compiled to Verilog and it will use the native BSV implementation
otherwise (when compiling to Bluesim).

Imported C functions in Bluesim

Using the importBDPI syntax, the user can specify that the implementation of a BSV functions
is provided as a C function. When compiling a BSV file containing an import-BDPI statement,
an elaboration file (.ba) is generated for the import, containing information about the imported
function. When linking, the user will specify the elaboration files for all imported functions in
addition to the elaboration files for all modules in the design. This provides the BSC with information
on how to link to the foreign function. In addition to this link information, the user will have to
provide access to the foreign function itself, either as a C source file (.c), an object file (. o), or from
a library (.a).

When user provided .c files are to be compiled and linked, the C compiler to be used is given by
the CC environment variable and the flags by the CFLAGS and BSC_CFLAGS variables. The default
compiler is cc. If the extension on the file is not .c, but .cxx, .cpp or .cc, the C++ compiler will
be used instead. The default C++ compiler is c++, but the compiler invocation can be controlled
with the CXX, CXXFLAGS and BSC_CXXFLAGS environment variables.

Arguments can also be passed through bsc directly to the C compiler, C++ compiler and linker
using the -Xc, -Xc++ and -XI options, respectively.

As an example, let’s say that the user has a module mkDUT and a testbench mkTB in the file DUT.bsv.
The testbench uses the foreign C function compute_vector to compute an input/output pair for
testing the design. Let’s assume that the source code for this C function is in a file called vectors.c.
The command-line and compiler output for compiling and linking this system would look as follows:

14

Bluespec Compiler User Guide

bsc -u -sim DUT.bsv

checking package dependencies

compiling DUT.bsv

Foreign import file created: compute_vector.ba
code generation for mkDUT starts

Elaborated Bluesim module file created: mkDUT.ba
code generation for mkTB starts

Elaborated Bluesim module file created: mkTB.ba

bsc -sim -e mkTB -o bsim mkTB.ba mkDUT.ba compute_vector.ba vectors.c
Bluesim object created: mkTB.{h,o}

Bluesim object created: mkDUT.{h,o}

Bluesim object created: model_mkTB.{h,o}

User object created: vectors.o

Simulation shared library created: bsim.so

Simulation executable created: bsim

An elaboration file is created for the foreign name of the function, not the BSV name that the
function is imported as. In this example, compute_vector is the link name, so the elaboration file
is called compute_vector.ba.

In this example, the user provided a C source file, which bsc has compiled into an object (here,
vectors.o). If compilation of the C source file needs access to header files in non-default locations,
the user may specify the path to the header files with the -I flag (see Section 3.6).

If the user has a pre-compiled object file or library, that file can be specified on the link command-
line in place of the source file. In that situation, BSC does not need to compile an object file, as
follows:

bsc -sim -e mkTB -o bsim mkTB.ba mkDUT.ba compute_vector.ba vectors.o
Bluesim object created: mkTB.{h,o}

Bluesim object created: mkDUT.{h,o}

Bluesim object created: model_mkTB.{h,o}

Simulation shared library created: bsim.so

Simulation executable created: bsim

In both situations, the object file is finally linked with the Bluesim design to create a simulation
binary. If the foreign function uses any system libraries, or is itself a system function, then the
linking stage will need to include those libraries. From the command line, the user can specify
libraries to include with the -1 flag and can specify non-default paths to the libraries with the -L
flag (see Section 3.6).

2.5.2 Creating a SystemC Model Instead of a Bluesim Executable

Instead of linking .ba files into a Bluesim executable, the linking stage can be instructed to generate
a SystemC model by replacing the -sim flag with the -systemc flag. All other aspects of the linking
stage, including the use of environment variables, the object files created, and linking in external
libraries, are identical to the normal Bluesim tool flow.

When using the -systemc flag, the object files created to describe the design in C++ are not linked
into a Bluesim executable. Instead, some additional files are created to provide a SystemC interface
to the compiled model. These additional SystemC files use the name of the top-level module extended
with a _systemc suffix.

15

Bluespec Compiler User Guide

bsc -sim GCD.bsv
Elaborated Bluesim module file created: mkGCD.ba

bsc -systemc -e mkGCD mkGCD.ba

Bluesim object created: mkGCD.{h,o}
Bluesim object created: model_mkGCD.{h,o}
SystemC object created: mkGCD_systemc.{h,o}

Remember to define the SYSTEMC environment variable to point at your SystemC installation (See
Section A).

There are a few additional restrictions on models with which -systemc can be used. The top-level
interface of the model must not contain any combinational paths through the interface. For the same
reason, ActionValue methods and value methods with arguments are not allowed in the top-level
interface.

Additionally, value methods in the top-level interface must be free of scheduling constraints that
require them to execute after rules in the design. This means that directly registered interfaces are
the most suitable boundaries for SystemC model generation.

The SystemC model produced is a clocked, signal-level model. Single-bit ports use the C++ type
bool, and wider ports use the SystemC type sc_bv<N>. Subinterfaces (if any) are flattened into
the top-level interface. The names of ports obey the same naming conventions (and the same port-
naming attributes) as the Verilog backend (See Section 5.1).

The SystemC model interface is defined in the produced .h file, and the implementation of the model
is split among the various .o files produced. The SystemC model can be instantiated within a larger
SystemC design and linked with other SystemC objects to produce a final system executable, or it
can be used to cosimulate inside of a suitable Verilog or VHDL simulator.

Division of Functionality Among Files

File Purpose
module. {cxx,h,0} Implementation of modules
model _topmodule.{cxx,h,o0} Implementation of the full design and schedule
topmodule_systemc.{cxx,h,0} | Top-level SystemC interface

The module.{cxx,h,o} files contain the implementations of the modules, each as its own C++ class.
The classes have methods corresponding to the rules and methods in the BSV source for the module
and member variables for many logic values used in the implementation of the module.

The model_topmodule.{cxx,h,o} files combine the individual modules into a single model, defined
as a C++ class. The class contains the scheduling logic which sequences rules and method calls and
enforces the scheduling constraints during rule execution. The scheduling functions are called only
through the simulation kernel, never directly from user code.

The topmodule_systemc.{cxx,h,o} files contain the top-level SystemC module for the system. This
module is an SC_.MODULE with ports for the module clocks and resets as well as for the signals
associated with each method in the top-level interface. Its constructor instantiates the implementa-
tion modules and initializes the simulation kernel. Its destructor shuts down the simulation kernel
and releases the implementation module instances. The SystemC module contains SC_.METHODs
which are sensitive to the module’s clocks and transfer data between the SystemC environment and
the implementation classes, translating between SystemC data types and BSV data types.

When linking the produced SystemC objects into a larger system, all of the .o files produced must
be linked in, as well the standard SystemC libraries and Bluesim kernel and primitive libraries.

16

Bluespec Compiler User Guide

c++ -I/usr/local/systemc-2.1/include -L/usr/local/systemc-2.1/lib-linux \
-I$BLUESPECDIR/Bluesim -L$BLUESPECDIR/Bluesim \
-0 gcd.exe mkGCD.o mkGCD_systemc.o model_mkGCD.o top.cxx TbGCD.cxx \
-lsystemc -lbskernel -lbsprim -lpthread

2.5.3 Linking with Verilog

For the Verilog back end, linking means invoking a Verilog compiler to create a simulator binary file
or a script to execute and run the simulation. Section 5 describes the Verilog output in more detail.
The Verilog simulator is specified by using the -vsim flag.

The -vsim flag (along with the equivalent BSC_VERILOG_SIM environment variable) governs which
Verilog simulator is employed; at present, natively supported choices for -vsim are cvc, cver,
isim. iverilog, modelsim, ncverilog, questa, vcs, vesi, verilator, veriwell, and xsim. If the
simulator is not specified bsc will attempt to detect one of the above simulators and use it.

When the argument to -vsim contains the slash character (/), then the argument is interpreted
as the name of a script to run to create the simulator binary. Indeed, the predefined simulator
names listed above refer to scripts in the BSC distribution; thus, -vsim vcs is equivalent to -vsim
$BLUESPECDIR/1ib/exec/bsc_build _vsim vcs. The simulator scripts distributed with BSC are
good starting points should the need to use an unsupported simulator arise.

In some cases, you may want to append additional flags to the Verilog simulator command that is
used to generate the simulator executable. The BSC_VSIM_FLAGS environment variable is used for
this purpose.

To add directories to the search path when linking Verilog designs, use the -vsearch flag, described
in Section 3.6. For example, adding the flag -vsearch +:verilog libs to the BSC command will
add the directory verilog_libs to the simulator search path (for simulators such as iverilog and
vcs/vesi). This is equivalent to adding -y <directory> to the Verilog compilation command.

The generated Verilog can be put into a larger Verilog design, or run through any existing Verilog
tools. BSC also provides a convenient way to link the generated Verilog into a simulation using a
top-level module (main.v) to provide a clock for the design. The BSC-provided main.v module in-
stantiates the top module and toggles the clock every five simulation time units. From the command
line the following command generates a simulation binary mkFoo.exe:

’bsc -verilog -e mkFoo -o mkFoo.exe

With this command the top level Verilog module main is taken from main.v. main.v provides a
clock and a reset, and instantiates mkFoo, which should provide an Empty interface. An executable
file, mkFoo.exe is created.

The default main.v allows two plusarg arguments to be used during simulation: +bscvcd and
+bsccycle. The argument +bscvcd generates a value change dump file (VCD) or a FSDB file;
+bsccycle prints a message each clock cycle. These are specified from the command line:

’ ./mkFoo.exe +bscvcd +bsccycle‘

BSC pre-processor macros

When linking with BSC Verilog files (including main.v), the following pre-processor macros can be
used to impact the behavior of the Verilog simulation. The -D flag, which defines macro values for
the ‘defines statements must be specified, as described in Section 3.7. These macros are specified
when you link the simulation executable, not during runtime.

17

Bluespec Compiler User Guide

BSC Verilog Macros

Name \ Description \ Example

BSV_ASSIGNMENT DELAY | Delays assignment at the start of | -D BSV_ASSIGNMENT_DELAY = #0
simulation.

BSV_TIMESCALE Sets the timescale of the simulation. | -D BSV_TIMESCALE = 1ns/1ps

BSV_NO_INITIAL_BLOCKS| Sets initial values to X at the start of | -D BSV_NO_INITIAL_BLOCKS
simulation.

BSV_FSDB Generates a FSDB file during simu- | -D BSV_FSDB
lation.

BSV_POSITIVE RESET Changes the sense of reset to as- | -D BSV_POSITIVE_RESET
serted hi from asserted low

BSV_ASYNC_RESET Use ASYNC reset for FIFO packages | -D BSV_ASYNC_RESET
and packages using Counter.v

BSV_RESET_FIFO_HEAD Allow reset on head element of FIFO | -D BSV_RESET_FIFO _HEAD

BSV_RESET_FIFO_ARRAY | Allow reset on array elements of | -D BSV_RESET_FIFO_ARRAY
FIFO

Imported Verilog functions in Verilog

When Verilog code is generated for a system that uses a Verilog-defined module, the generated code
contains an instantiation of this Verilog module with the assumption that the .v file containing
its definition is available somewhere. This file is needed if the full system is to be simulated or
synthesized (the linking stage). Note that VHDL modules can be used instead of Verilog modules if
your simulator supports mixed language simulation.

When simulating or synthesizing a design generated with the Verilog back end, you need to include
the Verilog descriptions for these primitives. The Verilog descriptions for BSC’s primitive elements
(FIFOs, registers, etc.) can be found in:

${BLUESPECDIR}/Verilog/

This directory also contains the file Bluespec.xcf, a Xilinx XCF constraint file to be used when
synthesizing with Xilinx.

Imported C functions in Verilog

In a BSV design compiled to Verilog, foreign functions are simulated using either the Verilog Proce-
dural Interface (VPI) or the SystemVerilog Direct Programming Interface (DPI). The default is to
use VPI, unless the —use-dpi flag is provided (see Section 3.3).

For VPI, the generated Verilog calls a user-defined system task anywhere the imported function
is needed. The system task is implemented as a C function which is a wrapper around the user’s
imported C function, to handle the VPI protocols.

For DPI, the generated Verilog calls a function anywhere the imported function is needed. That
function is declared as an import-DPI function at the top of the file. In most cases, the declaration
imports the user’s C function directly, without a wrapper, because SystemVerilog’s DPI types closely
match BSV’s BDPI types. As a result, using DPI is likely more efficient than using VPI, though
some simulators may only support one. For polymorphic BDPI functions, the DPI and BDPI types
differ and so a wrapper is needed. BSC does not yet support generating the DPI wrapper.

The usual Verilog flow is that BSV modules are generated to Verilog files, which are linked together
into a simulation binary. The user has the option of doing the linking manually or by calling BSC.
Imported functions can be linked in either case.

18

Bluespec Compiler User Guide

As with the Bluesim flow, when compiling a BSV file containing an import-BDPI statement, an
elaboration file is generated for the import, containing information about the imported function.
However, with Verilog generation, a wrapper function may also be generated. For example, using
the scenario from the previous section but compiling to Verilog, and using VPI, the user would see
the following;:

bsc -u -verilog DUT.bsv

compiling DUT.bsv

Foreign import file created: compute_vector.ba

VPI wrapper files created: vpi_wrapper_compute_vector.{c,h}
code generation for mkDUT starts

Verilog file created: mkDUT.v

code generation for mkTB starts

Verlog file created: mkTB.v

The compilation of the import-BDPI statement has not only generated an elaboration file for the
input but has also generated the file vpi_wrapper_compute_vector.c (and associated header file).
This file contains both the wrapper function compute vector_calltf () as well as the registering
function for the wrapper, compute_vector_vpi_register(). The registering function is what tells
the Verilog simulator about the user-defined system task. Included in the comment at the top of
the file is information needed for linking manually.

When linking manually, this C file typically needs to be compiled to an object file (.o or .so) and
provided on the command line to the Verilog linker, along with the object files for the user’s function
(in this example, vectors.c). The Verilog linker also needs to be told about the registering function.
For some Verilog simulators, the registering function is named on the command-line. For other
simulators, a C object file must be created containing the array vpi_startup_array with pointers
to all of the registering functions (to be executed on start-up of the simulation). An example of this
start-up array is given in the comment at the top of the generated wrapper C files. Some simulators
require a table for imported system functions (as opposed to system tasks). The table is provided
in a file with .tab or .sft extension. The text to be put in these files is also given in the comment
at the top of the wrapper file. The text also appears later in the file with the tag “tab:” or “sft:”
prepended. A search for the appropriate tag (with a tool like grep) will extract the necessary lines
to create the table file.

Linking via BSC does all of this automatically:

bsc -verilog -e mkTB -o vsim mkTB.v mkDUT.v compute_vector.ba vectors.c
VPI registration array file created: vpi_startup_array.c

User object created: vectors.o

VPI object created: vpi_wrapper_compute_vector.o

VPI object created: vpi_startup_array.o

Verilog binary file created: vsim

To perform linking via BSC, the user provides on the command-line not only the Verilog files for
the design but also the foreign import files (.ba) for each imported function and the C source or
object files implementing the foreign functions. As shown in the above example, the linking process
will create the file vpi_startup_array.c, containing the registration array, and will compile it to
an object file. The linking process will then pass all of the VPI files along to the Verilog simulation
build script (see Section 2.5.3) which will create any necessary table files and invoke the Verilog
simulator with the proper command-line syntax for using VPI.

Using DPI is a simpler process. No separate registration files are needed because the imported
function is declared by a SystemVerilog import-DPI statement in the generated Verilog itself. And

19

Bluespec Compiler User Guide

for most import-BDPI functions, no wrappers are generated either. This makes manual linking
particularly easier, although linking via BSC is also possible using DPI. The Verilog simulation
build script will consult the BSC flags to determine whether imported functions are to be provided
to the simulator as DPI or VPI. It is therefore necessary to use the same flags for choosing DPI/VPI
during linking as were used during compilation.

If the foreign function uses any system libraries, or is itself a system function, then the Verilog
linking will need to include those libraries. As with the Bluesim flow, the user can specify to BSC
the libraries to include with the -1 flag and can specify non-default paths to the libraries with the
-L flag (see Section 3.6).

2.6 Simulate

The result of linking is a simulation executable.

You can generate a VCD file from either Bluesim or any of the supported Verilog simulators. When
simulating with Bluesim, use the -V flag. For Verilog simulators using the BSC-provided main.v
file, specify the +bscvcd flag during simulation.

To dump a FSDB file directly from a supported Verilog simulator using the BSC-provided main.v
file, you need to specify the +bscved flag during simulation and the -D BSV_FSDB flag during linking.
Note that not all simulators can generate an FSDB file. Additional command line arguments are
required, dependent on the simulator. Bluesim does not generate FSDB files at this time.

3 BSC flags

You can obtain an up-to-date listing of the available flags along with brief explanations by going to
a Unix command line and entering:

bsc -help

Most flags may be preceded by a -no to reverse their effect. Flags that appear later on the command
line override earlier ones.

The following flags make the compiler print more or less progress-report messages as it does its work:

-quiet be less talkative
-q same as —quiet

-verbose be more talkative
-v same as -verbose

The compiler has four levels of verbosity: quiet, normal, verbose, and extra verbose. The default is
normal verbosity and the above flags can be used to move up and down one step.

3.1 Common compile and linking flags

The following flags are the common flags used by the compiler.

20

Bluespec Compiler User Guide

-g module generate code for ‘module’ (requires -sim or -verilog)
-u check and recompile packages that are not up to date
-sim compile BSV generating Bluesim object

-verilog compile BSV generating Verilog file

-vsim simulator specify which Verilog simulator to use

—-e module top-level module for simulation

-0 name name of generated executable

-elab generate a .ba file after elaboration and scheduling

A BSV source file is compiled with a command like this:

bsc [flags] Foo.bsv ‘

where Foo.bsv is the top file in the design.

If no flags are provided, the compile stops after the type checking phase. To compile through code
generation, you must provide a flag indicating whether the target is Bluesim (-sim) or Verilog
(-verilog).

For example, to compile to code generation for Bluesim:

’ bsc -sim Foo.bsv ‘

or for Verilog:

’bsc -verilog Foo.bsv‘

As discussed in Section 2.4.3, when compiling to code generation a module must be specified, using
either the synthesize attribute in the BSV code, or the —-g flag at compile time. From the command
line, multiple modules can be specified for code generation at the same time.

For example:

bsc -sim -g mkFoo -g mkBaz Foo.bsv

Linking requires a second call to the compiler, as described in Section 2.5. When linking you must
specify the top-level module with the —-e flag. The name following the flag must be the name of a
BSV module and only one module can be specified. You must also specify the back end with either
the -sim or -verilog flag.

For example, to link for Bluesim:

’bsc -sim -e mkFoo‘

or for Verilog:

’bsc -verilog -e mkFoo‘

The -vsim flag (along with the equivalent BSC_VERILOG_SIM environment variable) governs which
Verilog simulator is employed. The natively supported choices for -vsim are cve, cver, isim.
iverilog, modelsim, ncverilog, questa, vcs, vesi, verilator, veriwell, and xsim. If a simula-
tor is not specified bsc will attempt to detect one of the above simulators and use it.

When using Bluetcl (or applications built on Bluetcl) to analyze a compiled design, a .ba file is
required (for each module in the design). To generate this file when compiling add the -elab flag
to the compile command.

21

Bluespec Compiler User Guide

3.2 Controlling default flag values

The environment variable BSC_OPTIONS enables the user to set default flag values to be used each
time the compiler is called. If set, the value of BSC_OPTIONS is automatically prepended to the
compiler option values typed on the bsc command line. This avoids the need to set specified flag
values each time the compiler is called.

For instance, in order to control the default value of the -p (path) option, the BSC_OPTIONS envi-
ronment variable could be set as follows:

BSC Environment for csh/tcsh
setenv BSC_OPTIONS "-p .:./MyLib:+"

BSC Environment for bash/ksh
export BSC_OPTIONS="-p .:./MyLib:+"

Once set, BSC would now search for packages in the ./MyLib directory before looking in the default
library areas. Note that since the compiler recognizes multiple uses of the same flag on the command
line, the user can use the -p flag along with the BSC_OPTIONS environment variable to control the
search path. For example, if in addition to the BSC_OPTIONS set above the user enters the following
bsc command, :

’ bsc -verilog -p ./MyLib2:+ Foo.bsv‘

the compiler would now use the path

[/myLib2:.:./MyLib:+

which is a prepending of the —p command line value to the value set by the BSC_OPTIONS environment
variable.

3.3 Verilog back-end

The following additional flags are available when using the Verilog back end.

-remove-unused-modules remove unconnected modules from the Verilog
-v95 generate strict Verilog 95 code
-unspecified-to val remaining unspecified values are set to:
’X’, 207, :17’ ’Z’, or A’
-remove-dollar remove dollar signs from Verilog identifiers
-Xv arg pass argument to the Verilog link process
-verilog-filter cmd invoke a command to post-process the generated Verilog
-use-dpi use DPI instead of VPI in generated Verilog

The -remove-unused-modules flag will remove from the generated Verilog any modules which are
not connected to an output. This has has the effect of removing redundant or unused modules,
which would also be done by synthesis tools. This option should be used on modules undergoing
synthesis, and not be used for testbench modules.

The -v95 flag restricts the Verilog output to pure Verilog-95. By default, the Verilog output uses
features which are not in the Verilog-95 standard. These features include passing module parameters
by name and use of the $signed system task for formatting $display output. When the -v95 flag

22

Bluespec Compiler User Guide

is turned on, uses of these features are removed, but comments are left in the Verilog indicating the
parameter names or system tasks which were removed.

The —unspecified-to val flag defines the value which any remaining unspecified values should be
tied to. The valid set of values are: X, 0, 1, Z, or A, where the first four correspond to the Verilog
value, and A corresponds to a vector of alternating ones and zeros. The default value is A. The choice
of value is used by both the Verilog and Bluesim back ends. However, since Bluesim is a two-value
simulator, it does not support the values X and Z. For final synthesis runs, the use of X (or 0) is
strongly suggested to give the best synthesis results.

The -remove-dollar flag causes identifiers in Verilog output to substitute underscores instead of
dollar signs to separate instance names from port names. If this substitution causes a name collision,
the underscore is suffixed with a number until a non-colliding name is found.

The -Xv flag passes the specified string argument to the Verilog link process. Only one argument
can be passed with each -Xv flag. If you want to pass multiple arguments, then the flag must be
specified multiple times, once for each argument.

The -verilog-filter flag invokes a command to process the Verilog file generated by the compiler.
The command can be a Unix command or script; it must take a single argument, the name of the
Verilog file. The flag can be used multiple times; the filters are applied in the order they are given
on the command line.

The -use-dpi flag controls whether imported C functions in source designs are implemented in
Verilog using the Verilog Procedural Interface (VPI) or the SystemVerilog Direct Programming
Interface (DPI) . The flag must be consistently used during both the compilation and linking steps.
During compilation, the flag controls how imported C calls appear in the generated Verilog; during
linking, the flag controls how the C functions are provided to the simulator. By default, this flag is
off and VPI is used.

3.4 Bluesim back-end

The following flags are available when using the Bluesim back end.

-parallel-sim-link jobs specify the # of simultaneous jobs when linking Bluesim
-systemc generate a SystemC model

During the Bluesim linking process, the compiler generates C++ source files (.cxx and .h files) and
then runs the C++ compiler on each one. By default, these compilations are performed serially. In
some cases, the C++ compiler may take time to compile a file. In that case, it would be helpful to
compile other files in parallel to reduce the total compilation time. The -parallel-sim-link flag
directs the process to proceed in parallel, up to jobs number of simultaneous compilations.

The default value of jobs is 1, in which case the compilation occurs in serial. Only values greater
than 1 will allow parallel compilations.

When compilation occurs in parallel, it is controlled by a Makefile, described in Appendix A.4. When
the verbose (-v) flag is used to compile, you will now see the command for the make excecution.
The commands for compiling each object will still be shown as well. Since the compilations are
happening in parallel, the messages will be interspersed with each other and will not show up in
serial order (Section 4.2.1).

The -systemc flag instructs the linking stage to generate a SystemC model instead of a Bluesim
executable (Section 2.5.2). When using this flag, the object files created to describe the design in
C++ are not linked into a Bluesim exectuable. Instead, some additional files are created to provide
a SystemC interface to the compiled model. These additional SystemC files use the name of the
top-level module extended with a _systemc suffix.

23

Bluespec Compiler User Guide

3.5 Resource scheduling (all back ends)

The following flags are available to direct resource scheduling;:

-resource-off fail on insufficient resources
-resource-simple reschedule on insufficient resources

Resource scheduling for a particular interface method involves finding all rules that call that method.
A single method name can refer to multiple ports in the hardware — for example, a double-ported
RAM can have two read ports, but a design in BSV can use the name read and it will rely on the
compiler to determine which port is being used. If the number of rules that use read is two or less,
then there is no problem; each rule is connected to its own port and there is never any contention.
If the number of rules vying for a method is more than the number of copies of that method, then
a problem exists.

If -resource-off is specified, the compiler will give up and tell the user that resource scheduling
is not possible. This is the default behavior. The straightforward way to proceed is by adding
logic that explicitly arbitrates between the competing rules (choosing the more important one to fire
depending on the situation).

The alternative way to resolve a resource conflict is to block competing rules until the number of
rules vying for a method is less than the number of available ports for that method. This behavior
can be turned on with the -resource-simple flag. The compiler selects rules to block from the
competing rules arbitrarily (and may change its selection when different compilation flags or compiler
versions are used), so this flag is not recommended for a completed design, but automatic resource
arbitration can be useful when experimenting.

3.6 Setting the path

-i dir override $BLUESPECDIR

-p path directory path (‘:’ sep.) for source and intermediate
files

-bdir dir output directory for .bo and .ba files

-simdir dir output directory for Bluesim intermediate files

-vdir dir output directory for .v files

-vsearch path search path (‘:’ sep.) for Verilog files

-info-dir dir output directory for informational files

-1 path include path for compiling foreign C/C++ source

-L path library path for linking foreign C/C++ objects

-1 library library to use when linking foreign C/C++ objects

-fdir dir working directory for relative file paths during elaboration

There are default locations where the compiler looks for source and and intermediate files. The
flags -1 and -p are available to override the default locations or to specify additional directories to
search in. See Section 2.4.2 for more information. The -i flag overrides the environment variable
BLUESPECDIR, which is used in the default value for the directory path of the -p flag. The -p
flag takes a path argument, which is a colon-delimited list of directories. This path is used to
find Bluespec source and intermediate files imported by the package being compiled (including the
standard prelude, and files included by the BSV preprocessor). The path can contain the character
%, representing the BLUESPECDIR directory, as well as +, representing the current path. The default
path is:

.:%/Libraries‘

24

Bluespec Compiler User Guide

The -bdir, -simdir, -vdir, and -info-dir flags specify where output files should be placed. The
default is the directory in which the input file(s) reside.

The -vsearch flag specifies the search path used when linking Verilog files. The -vsearch flag takes
a path argument in the same style of path specification as the -p flag, including the use of + and
%. Since this flag specifies where to look for the .v files, the path specified by the -vdir flag is
automatically added to the front of the —vsearch path.

The flags -I, -L, and -1 are used during the linking stage when foreign C functions are imported.
The -I and -L flags add to the path of where to find C header files and libraries, respectively. The
libraries to be used during linking are specified by the -1 flag.

The flag -fdir specifies where relative file paths will be based during elaboration, including calls to
openFile.

3.7 Miscellaneous flags

Here are some other flags recognized by the compiler:

-D macro define a macro for the BSV or Verilog preprocessor
-E run just the preprocessor, dumping result to stdout
-print-flags print flag values after command-line parsing
-steps n terminate elaboration after this many function

unfolding steps
-steps-max-intervals n terminate elaboration after this number of unfolding

messages

-steps-warn-interval n issue a warning each time this many unfolding steps are
executed

-reset-prefix name reset name or prefix for generated modules

-show-timestamps include timestamps in generated files

-show-version include compiler version in generated files

Preprocessor macros may be defined on the command line using the -D option. Two versions are
supported, a simple macro definition and an assignment of a string to a macro:

-D foo
-D size=148

Note that a space is required after the -D, and that no spaces are allowed in the macro names, values
or around the equals.

The -D option can also be used during the linking run of bsc to define macro values for ‘define
statements in the Verilog.

The settings that are being used by the compiler can be dumped with -print-flags.

Function definitions in BSV are purely compile-time entities. The compiler replaces all function calls
by their bodies and continually simplifies expressions. Function definitions may be recursive as long
as this substitution and simplification process terminates, but of course the compiler cannot pre-
dict whether it will terminate. The -steps, -steps-warn-interval and -steps-max-intervals
flags provide feedback and safety mechanisms for potentially infinite function unfoldings. The
-steps-warn-interval tells the compiler to issue a compilation warning every time that many
function unfolding steps are executed. This provides feedback to a designer that a particular design
requires an unusual amount of effort to elaborate. A designer may choose to terminate elabora-
tion and investigate whether there is a bug, infinite loop or an inefficient construct in a design

25

Bluespec Compiler User Guide

or they may choose to let elaboration proceed to see if additional time will result in elaboration
completing. The -steps-max-intervals flag is the safety mechanism. It prevents an unattended
compilation from consuming resources indefinitely by terminating elaboration after a certain num-
ber of function unfolding warnings. This means, for example, with the default values of 100000 for
-steps-warn-interval and 10 for -steps-max-intervals an infinite compilation will execute for
1000000 steps, issuing 9 unfolding warnings before terminating with an unfolding error message. The
-steps flag is a simpler version of this mechanism. It is equivalent to setting ~steps-warn-interval
to the argument of -steps and -steps-max-intervals to 1.

The default name for a reset in generated modules is RST_N. This can be changed with the ~-reset-prefix
<name> flag. For example, to set all reset names to RST_P use: -reset-prefix RST_P.

BSC attempts to be helpful by including identifying information in the files it generates. Specifically,
it records the compiler version and a timestamp of when the file was generated. This can interfere
with build systems where rebuilds are determined by the hash of the tool inputs. Recording the
timestamp causes a change on every build; avoiding that can significantly improve the effectiveness
of the build cache. The -no-show-timestamps flag directs BSC to not include the timestamp.
Removing the compiler version can help for files which have not otherwise changed between versions.
The -no-show-version flag directs BSC to not include the compiler version.

3.8 Run-time system

These flags are passed along to the Haskell compiler run-time system that is used to execute BSC.
Among the RTS flags available are:

-Hsize set the maximum heap size
-Ksize set the maximum stack size

As the compiler executes, it allocates its internal intermediate data structures in a heap memory
managed by its run-time system (RTS). When compiling a large BSV design, the compiler may run
out of heap space. If you encounter this, please rerun the compiler with a larger heap space, using
the flags:

bsc ... +RTS -H<size> -RTS ...

For example, to use a 1 gigabyte heap, you would enter:

[bsc ... +RTS -H1G -RTS ... |

Similarly, if you run out of stack space, you can increase the stack with the -K RTS flag. If a design
runs out of stack space, it is probably caught in an infinite loop. For large designs that involve many
recursive functions, it may be necessary to increase the stack size. If you run out of stack space,
first try increasing the stack to a reasonable size, such as 10 or 15 megabytes. If you still exhaust
the stack memory, try examining your design for infinite loops.

Any flags encapsulated between +RTS and -RTS are passed to the run-time system and are not
given to the compiler itself. In addition to -H and -K, various flags are available to control garbage
collection, memory usage, function unfolding, etc. However, the user should never need to use these
other flags.

26

Bluespec Compiler User Guide

3.9 Automatic recompilation

-u check and recompile packages that are not up to date
-show-compiles show recompilations

The -u flag implements a make-like functionality. If a needed .bo file is found to be older or non-
existent compared to the .bsv file, the latter is recompiled. Similarly, if a .bsv file has a modification
time that is more recent than that of any of its generated Verilog or Bluesim modules, the .bsv file
is recompiled.

The -show-compiles flag turns on the compiler output during recompilation of auxiliary files. It
can also be used as -no-show-compiles to suppress the compiler output.

For the purposes of comparing modification times, the intermediate files (.bo and .ba) are assumed
to be in the same directory as the .bsv source file. If no file is found there, the compiler then searches
in the directory specified by the -bdir flag (if used). The generated Verilog files and Bluesim files
are assumed to be in the same directory as the source unless the -simdir or -vdir flag is used,
respectively.

3.10 Compiler transformations

-aggressive-conditions construct implicit conditions aggressively
-split-if split "if" in actioms
-lift 1lift method calls in "if" actions

When a rule contains an if-statement, the compiler has the option either of splitting the rule
into two mutually exclusive rules, or leaving it as one rule for scheduling but using MUXes in the
production of the action. Rule splitting can sometimes be desirable because the two split rules are
scheduled independently, so non-conflicting branches of otherwise conflicting rules can be scheduled
concurrently. The -split-if flag tells the compiler to split rules. Splitting is turned off by default
for two reasons:

e When a rule contains many if-statements, it can lead to an exponential explosion in the
number of rules. A rule with 15 if-statements might split into 2!° rules, depending on how
independent the statements (and their branch conditions) are. An explosion in the number
of rules can dramatically slow down (and cause other problems) for later compiler phases,
particularly scheduling.

e Splitting propagates the branch condition of each if to the predicates of the split rules. Re-
sources required to compute rule predicates are reserved on every cycle. If a branch condition
requires a scarce resource, this can starve other parts of the design that want to use that
resource.

If you need the effect of splitting for certain rules, but do not want to split all the rules in an entire
design using -split-if, use the (*split*) and (*nosplit*) attributes, as described in the BSV
Reference Guide.

When rules are not split along if-statements, it is important to lift actions through the if-statement.
If both branches of an if-statement call the same method but with different arguments, it’s better
to make one call to the method and MUX the argument. The -1ift flag turns on this optimization.
Lifting is recommended when rule splitting is turned off. When rule splitting is on, lifting is not
required and can make rules more resource hungry. Currently, lifting with splitting off can result
in poor resource allocation, so we recommend using -no-1ift with -split-if.

27

Bluespec Compiler User Guide

When the action in a branch of an if-statement has an implicit condition, that condition needs to
be propagated to the rule predicate. This can be done conservatively, by simply placing implicit
conditions for all branches in the predicate. Or it can be done more aggressively (i.e. attempting
to fire the concerned rule more often), by linking each implicit condition with its associated branch
condition. The flag -aggressive-conditions turns on this feature. This flag is off by default
because, as discussed above, propagating branch conditions to rule predicates can have undesirable
effects. However, if -split-if is on, branch conditions will be propagated to rule predicates regard-
less, so we recommend using -aggressive-conditions with —-split-if, since it may improve the
generated schedule.

3.11 Compiler optimizations

-opt-undetermined-vals aggressive optimization of undetermined values
-sat-stp use STP SMT for disjoint testing and SAT
-sat-yices use Yices SMT for disjoint testing and SAT

In late stages of the compiler, don’t-care values are converted into specific constants. In order
that the Verilog and Bluesim simulation paths produce exactly the same value dumps, the compiler
assigns a value to the don’t-care signals at the point where the Verilog and Bluesim back ends
diverge. However, the Verilog back end can generate more efficient hardware if it is allowed to assign
the don’t-care signals better values based on context. The -opt-undetermined-vals flag permits
the Verilog back end of the compiler to make better decisions about don’t-care values. This flag is
off by default. Turning this flag on may produce better hardware in Verilog, but can result in the
Bluesim and Verilog simulations producing different intermediate values.

It is possible to change the underlying proof engine used by the compiler. You should not use
these flags or switch proof engines unless you experience performance issues during the scheduling
or Verilog optimization phases of the bsc compile. The default proof engine is the Yices solver.

3.12 BSV debugging flags

The following flags might be useful in debugging a BSV design:

28

Bluespec Compiler User Guide

-check-assert test assertions with the Assert library
-keep—fires preserve CAN_FIRE and WILL_FIRE signals
-keep-inlined-boundaries preserve inlined register and wire boundaries
-remove-false-rules remove rules whose condition is provably false
-remove-starved-rules remove rules that are never fired by the generated
schedule
-remove-empty-rules remove rules whose bodies have no actions
-show-module-use output instantiated Verilog modules names
-show-range-conflict show predicates when reporting a parallel-
composability error
-show-method-conf show method conflict information in the generated code
-show-method-bvi show BVI format method schedule information in the
generated code
-show-stats show package statistics
-continue-after-errors aggressively continue compilation after an error has
been detected
-warn-method-urgency warn when a method’s urgency is arbitrarily chosen
-warn-action-shadowing warn when a rule’s action is overwritten by a later rule
-suppress-warnings list ignore a list of warnings (‘:’ sep list of tags)
-promote-warnings list treat a list of warnings as errors (‘:’ sep list of tags)
-demote-errors list treat a list of errors as warnings (‘:’ sep list of tags)
-show-elab-progress display trace as modules, rules, methods are elaborated

The -check-assert flag instructs the compiler to abort compilation if a boolean assertion ever fails.
These are assertions which are explicitly embedded in a BSV design using the Assert package (see
the Bluespec Reference Guide). If this flag is off, assertions of this type in a BSV design are ignored.

To view rule firings in the Verilog output, use the ~keep-fires flag. This flag will direct the compiler
to leave the CAN_FIRE and WILL_FIRE signals in the output Verilog (some of which might otherwise
be optimized away). These signals are generated for each rule and indicate whether a rule’s predicate
would allow the rule to fire in the current cycle and whether the scheduler chose the rule to fire in
the current cycle, respectively. Leaving these signals in the Verilog allows the designer to dump the
signals to VCD and view the firings in a waveform viewer.

When elaborating a design, if the compiler determines that a rule’s explicit condition is always false,
it issues a warning about the situation and removes the rule from the design (so the presumably
irrelevant rule does not interfere with scheduling). Sometimes, for debugging purposes it can be
helpful to preserve this (never enabled) rule in the output code. That can be done by disabling
the -remove-false-rules flag (i.e. passing -no-remove-false-rules). As you might expect, the
compiler will find more false rules when aggressive optimization (i.e. -0) is turned on, but it can be
helpful to turn off -0 when you want to examine the condition that the compiler can prove false.

Similarly, the compiler might determine, after scheduling, that a rule will never fire because con-
flicting rule(s) block it whenever it is enabled. The compiler warns about such rules, but does not
remove them by default because they probably indicate an important problem in scheduling the
design. If you wish to removed these rules, you can use the -remove-starved-rules flag.

The compiler may also determine that the body of a rule has no actions, either because there are no
actions in the body or because the compiler can prove at elaboration time that none of the actions
in the body can happen. The -remove-empty-rules flag causes these rules to be removed when
it is on, which it is by default. The compiler will generate a warning for such rules, since they are
likely to indicate a problem in the design.

Conflict relationships between methods of the generated module’s interface can be dumped (in the
generated code) with the -show-method-conf flag. This is useful for documenting the interface
protocol a generated module expects (particularly when the generated module is going to be called

29

Bluespec Compiler User Guide

by non-Bluespec modules). The -show-method-bvi flag is helpful when writing an importBVI
statement. It displays the method conflicts in a format that can be cut and pasted into an importBVI
statement. These flags are not enabled by default.

The -show-stats flag dumps various statistics at the end of each compiler stage (such as the
number of rules and number of definitions). To find out what Verilog modules are instantiated by
the generated module, use the ~show-module-use flag. This flag causes the compiler to create a file
mkFoo.use which contains a list of each Verilog module instantiated by module mkFoo, separated by
newlines.

The -show-range-conflict flag is used to display more information when the compiler reports error
message GO004. By default, the compiler omits the conditions of the method calls, because they
can be very large expressions in some cases, which distract from debugging rather than help. When
more detail is required, the -show-range-conflict flag can be turned on and the full condition is
displayed.

By default, the compiler stops once it finds errors in a module. The -continue-after-errors flag
allows the compiler to continue on to other modules and other phases after an error is encountered.
This may be helpful in finding multiple errors in a single compile, though some of later errors may
be misleading and vanish once the cause of initial error is fixed. Note that the compiler may not be
able to successfully complete because of the cumulative effects of errors encountered.

The -warn-method-urgency flag displays a warning when a method and a rule have an arbitrary
urgency order. By default the flag is on.

The -warn-action-shadowing flag displays a warning when there are two rules executing in the
same cycle and calling the same Action method. In this case, the state update of the first method is
ignored because it is overwritten by the state update of the second method. This can only occur for
methods which are annotated as non-conflicting, for example, register writes. Otherwise the Action
methods will conflict. This flag is on by default.

The -suppress-warnings, -promote-warnings, and -demote-errors flags provide control over
which warnings and errors are displayed. The flags take a list of specific warnings or errors (separated
by :) or the option ALL or NONE.

The -suppress-warnings flag ignores all warnings of the types provided in the list. For example,
when compiling with the flag bsc -suppress-warnings G0117:G0020, the warnings of types G0117
and G0020 are not displayed.

When any warnings are suppressed a warning of type S0080 is displayed along with the number of
warnings suppressed. Example:

Warning: Unknown position: (S0080)
2 warnings were suppressed.

This message can also be suppressed by including it in the list:
bsc -suppress-warnings G0117:G0020:S0080 ...

The -promote-warnings flag transforms a warning into an error, while the ~demote-errors flag
tranforms an error into a warning. A warning is displayed if you attempt to demote an error which
cannot be demoted. Example:

Warning: Command line: (S0094)
Cannot demote the following errors:
G0047, G0048

30

Bluespec Compiler User Guide

A message tag can be in multiple lists, in which case the following process is followed. For a warning,
the suppression list is checked first. If the warning is in that list, it is suppressed. Otherwise, the
compiler checks whether it is in the promotion list. If it is in both the promotion and demotion lists,
it is reported as a warning. If it is only in the promotion list, it is reported as an error. This allows
you to specify -promote-warnings ALL and then specifically exempt certain warnings from being
promoted by using —-demote-errors list.

For an error, the promotion list is irrelevant. If an error is not in the demotion list, it is reported
as an error. If the error is in the demotion list, the suppression list is checked. If it appears in the
suppression list, then the warning is not reported at all.

The -show-elab-progress flag directs the compiler to print trace statements as it expands a module.
If the compiler appears to hang, this flag enables the user to see what the last trace line was, which
should indicate where in the design the hang occurs. Section 4.1.2 provides more detail on the
messages generated by the flag.

3.13 Understanding the schedule

These flags generate output to help you understand the schedule for a generated module.

-show-rule-rel rl1 r2 display scheduling information about rules rl and r2
-show-schedule show generated schedule
-sched-dot generate .dot files with schedule information

If the rules in a design are not firing the way you thought they would, the -~show-schedule and the
-show-rule-rel flags may help you inspect the situation. See section 4.2.2 for a description on the
output generated by these flags.

The -sched-dot flag generates .dot (DOT) files which contain text representation of a graph.
The files are placed in the directory specified by the -info-dir flag. There are many tools in the
graphviz family, for example dotty, which read, manipulate, and render DOT files to visible format.
See www.graphviz.org for more information.

When specified, the following graph files are generated for each synthesized module (mod is the
module name):

1. conflicts (mod_conflict.dot)
2. execution order (mod_exec.dot)

urgency (mod_urgency.dot)

L

combined (mod_combined.dot)

5. combined full (mod_combined_full.dot)

In each of these graphs, the nodes are rules and methods and the edges represent some relationship
between pairs of rules/methods. In all graphs, methods are represented by a box and rules are
represented by an ellipse, so that they are visually distinguishable.

conflicts (mod_conflict.dot) A graph of rules/methods which conflict either completely (cannot
execute in the same cycle) or conflict in one direction (if they execute in the same cycle, it has the be
in the opposite order). Complete conflicts are represented by bold non-directional edges. Ordering
conflicts are represented by dashed directional edges, pointing from the node which must execute
first to the node which must execute second.

31

Bluespec Compiler User Guide

When a group of nodes form an execution cycle (such as A before B before C before A), the compiler
breaks the cycle by turning one of the edges into a complete conflict and emits a warning. This
DOT file is generated before that happens, so it includes any cycles and can be used to debug any
such warnings.

execution order (mod_exec.dot) This is similar to the conflicts graph, except that it only
includes the execution order edges; the full-conflict edges have been dropped. As a result, there
is no need to distinguish between the types of edges (bold versus dashed), so all edges appear as
normal directional edges.

This DOT file is generated after cycles have been broken and therefore describes the final execution
order for all rules/methods in the module.

urgency (mod_urgency.dot) The edges in this graph represent urgency dependencies. They are
directional edges which point from a more urgent node to a less urgent node (meaning that if the
rules/methods conflict, then the more urgent one will execute and block the less urgent one). Two
rules/methods have an edge either because the user specified a descending urgency attribute or
because there is a data path (though method calls) from the execution of the first rule/method to
the predicate of the second rule/method.

If there is a cycle in the urgency graph, bsc reports an error. This DOT file is generated before such
errors, so it will contain any cycles and is available to help debug the situation.

combined (mod_combined.dot) In this and the following graph, there are two nodes for each
rule/method. One node represents the scheduling of the rule/method (computing the CAN_FIRE and
the WILL_FIRE signals) and one node represents the execution of the rule/method’s body. The nodes
are labelled Sched and Exec along with the rule/method name. To further help visually distinguish
the nodes, the Sched nodes are shaded.

The edges in this graph are a combination of the execution order and urgency graphs. This is the
graph in which the microsteps of a cycle are performed: compute whether a rule will fire, execute a
rule, and so on.

In the rare event that the graph has a cycle, bsc will report an error. This DOT file is generated
prior to that error, so it will contain the cycle and be available to help in debugging the situation.

combined full (mod_combined_full.dot) Sometimes the execution or urgency order between
two rules/methods is under specified and either order is a legal schedule. In those cases, bsc picks
an order and warns the user that it did so.

This DOT graph is the same as the combined graph above, except that it includes the arbitrary
edges which the compiler inserted. The new edges are bold and colored blue, to help highlight them
visually.

This is the final graph which determines the static schedule of a module (the microsteps of computing
predicates and executing bodies).

As with the above graph, there are separate Sched and Exec nodes for each rule/method, where the
Sched nodes are shaded.

3.14 C/C+H+ flags

These flags run the C preprocessor and pass arguments to C tools.

32

Bluespec Compiler User Guide

-cpp preprocess the source with the C preprocessor
-Xc arg pass argument to the C compiler

-Xc++ arg pass argument to the C++ compiler

-Xcpp arg pass argument to the C preprocessor

-X1 arg pass argument to the C/C++ linker

The -cpp flags runs the C preprocessor on the source file before the BSV preprocessor is run. The
CC environment variable specifies which C compiler will be used. If the environment variable is not
specified, the compiler will run the default (cc) which must be found in the path.

The flags -Xcpp, -Xc, -Xc++, and -X1 pass the specified argument to the C preprocessor, C compiler,
C++ compiler and C/C++ linker respectively. Only one argument can be passed with each -X flag.
If you want to pass multiple arguments, then the flag must be specified multiple times, once for each
argument. Example:

’ -Xcpp -Dfoo=bar -Xcpp /1l/usr/local/special/include

4 Compiler messages

4.1 Warnings and Errors

The following is an example of a warning from BSC:

Warning: "Test.bsv", line 5, column 9: (G0021)
According to the generated schedule, rule "rl" can never fire.

All warnings and errors have this form, as illustrated below. They begin with the position of the
problem, a tag which is unique for each message, and the type (either “Error” or “Warning”).

<type>: <position>: (<tag>)
<message>

The unique tag consists of a letter, indicating the class of message, and a four digit number. There are
four classes of messages. Tags beginning with P are for warnings and errors in the parsing stage of the
compiler. Tags beginning with T are type-checking and elaboration messages. Tags beginning with
G are for problems in the back-end, or code-generation, including rule scheduling. Tags beginning
with S are for file handling problems, command-line errors, and other system messages.

4.1.1 Type-checking Errors

If there is a type mismatch in your design, you will encounter a message like this:

Error: "Test.bsv", line 3, column 10: (T0020)
Type error at:
X

Expected type:
Prelude: :Bool

Inferred type:
Prelude: :Bit#(8)

33

Bluespec Compiler User Guide

This message points to an expression (here, x) whose type does not match the type expected by the
surrounding code.

You can think of this like trying to put a square block into a round hole. The square type and the
round type don’t match, so there is a problem. The type of the expression (the block) doesn’t match
the type that the surrounding code is expecting (the hole). In the error message, the “expected
type” is hole and the “inferred type” is the block.

4.1.2 Elaboration Messages

All errors and warnings during the elaboration phase include some additional lines at the end of the
message to indicate where in the hierarchy the compiler was elaborating when the error occurred.
The elaboration can be inside a rule, inside a method, or inside a module. And that location can
be instantiated from inside a module, which was instantiated inside a module, and so on, up to the
top level. There is one line of output for each level, with the last line showing the top module being
elaborated.

Error: "Example.bsv", line 6, column 30: (T0051)

Literal 17 is not a valid Bit#(4).

During elaboration of the body of rule ‘shift’ at "Example.bsv", line 20,
column 9

During elaboration of ‘mkStage’ at "Example.bsv", line 43, column 7.
During elaboration of ‘Loop’ at "Example.bsv", line 41, column 4.

During elaboration of ‘mkTop’ at "Example.bsv", line 58, column 4.

The position for each level is provided for convenience.

Here is an example of the message when an error occurs in the method of the top module’s interface:

During elaboration of the interface method ‘put’ at "Example.bsv",
line 86, column 8.
During elaboration of ‘mkTop’ at "Example.bsv", line 58, column 4.

When elaborating inside a rule, the error message would look like this:

During elaboration of rule "doDisp" at "Test.bsv", line 3, column 9.

Or if more information is known, the message can indicate which part of the rule was being elabo-
rated, as shown by the following three examples:

During elaboration of the explicit condition of rule "doDisp" at "Test.bsv",
line 3, column 9.

During elaboration of the body of rule "doDisp" at "Test.bsv", line 3,
column 9.

During elaboration of the implicit condition of rule "doDisp" at "Test.bsv",
line 3, column 9.

34

Bluespec Compiler User Guide

Similarly, if the error is during elaboration of the explicit or implicit condition of the method, that
is reported as well. In addition to methods, there are also messages for output clocks, resets, and
inouts in the top module’s interface:

During elaboration of the interface output clock ‘clk_out’ at
"Example.bsv",
line 6, column 8.

During elaboration of the interface inout ‘io_out’ at "Example.bsv",
line 6, column 8.

The messages displayed at the end of elaboration are helpful when the compiler emits a message.
Sometimes there’s no message or the compiler appears to hang. In these cases, you can use the
-show-elab-progress flag to see what parts of the design are taking up time. When the flag is set,
the compiler prints status messages as it enters and exits parts of the design.

Messages are generated for submodules, rules (divided into explicit condition, implicit condition,
and body), and the top-level interface (divided for methods and their implicit conditions). For
submodules, the hierarchical instance name is provided in parentheses. Example:

[timestamp] elab progress: Elaborating module ‘mkGCD’

[timestamp] elab progress: (the_x) Elaborating module

[timestamp] elab progress: (the_x) Finished module

[timestamp] elab progress: (the_y) Elaborating module

[timestamp] elab progress: (the_y) Finished module

[timestamp] elab progress: Elaborating rule (flip)

[timestamp] elab progress: Elaborating rule explicit condition (flip)
[timestamp] elab progress: Elaborating rule body (flip)

[timestamp] elab progress: Elaborating rule implicit condition (flip)
[timestamp] elab progress: Finished rule (flip)

[timestamp] elab progress: Elaborating rule (sub)

[timestamp] elab progress: Elaborating rule explicit condition (sub)
[timestamp] elab progress: Elaborating rule body (sub)

[timestamp] elab progress: Elaborating rule implicit condition (sub)
[timestamp] elab progress: Finished rule (sub)

[timestamp] elab progress: Elaborating interface

[timestamp] elab progress: Elaborating method ‘start’

[timestamp] elab progress: Elaborating method implicit condition
[timestamp] elab progress: Elaborating method ‘result’

[timestamp] elab progress: Elaborating method implicit condition
[timestamp] elab progress: Finished elaborating module ‘mkGCD’

4.1.3 Scheduling Messages

Static execution order When multiple rules execute in the same cycle, they must execute in a
sequence, with each rule completing its state update before the next rule begins. In order to simplify
the muxing logic, BSC chooses one execution order which is used in every clock cycle. If rule A and
rule B can be executed in the same cycle, then they will always execute in the same order. The
hardware does not dynamically choose to execute them in the order “A before B” in one cycle and
“B before A” in a later cycle.

35

Bluespec Compiler User Guide

There may be times when three or more rules cannot execute in the same cycle, even though any
two of the rules can. Consider three rules A, B, and C, where A can be sequenced before B but not
after, B can only be sequenced before C, and C can only be sequenced after A. For any two rules,
there is an order in which they may be executed in the same cycle. But there is no order for all
three. If the conditions of all three rules are satisfied, the scheduler cannot execute all of them. It
must make a decision to execute only two — for example, only A and B. But notice that this is not
all. The scheduler must pick an order for all three rules, say “A before B before C.” That means
that not only will C not fire when both A and B are chosen to execute, but also that C can never fire
when A is executed. This is because the compiler has chosen a static order, with A before C, which
prevents rule C from ever executing before rule A. Effectively, the compiler has created a conflict
between rules A and C.

If the compiler must introduce such a conflict, in order to create a static execution order, it will
output a warning:

Warning: "Test.bsv", line 30, column O: (GO009)
The scheduling phase created a conflict between the following rules:
‘RL_One’ and ‘RL_Two’
to break the following cycle:
‘RL_One’ -> ‘RL_Two’ -> ‘RL_Three’ -> ‘RL_One’

Rule urgency The execution order of rules specifies the order in which chosen rules will appear
to execute within a clock cycle. It does not say anything about the order in which rules are chosen.
The scheduling phase of the compiler chooses a set of rules to execute, and then that set is executed
in the order specified by the static execution order. The order in which the scheduling phase chooses
rules to put into that set can be different from the execution order. The scheduling phase may first
consider whether to include rule B before considering whether to include rule A, even if rule A will
execute first. This order of consideration by the scheduling phase is called the urgency order.

If rule A and B conflict and cannot be executed in the same cycle, but can be ready in the same
cycle, then the first one chosen by the scheduler will be the one to execute. If rule B is chosen before
rule A then we say that B is more urgent than A.

If two rules conflict and the user has not specified which rule should be more urgent, the compiler
will make its own (arbitrary) choice and will warn the user that it has done so, with the following
warning:

Warning: "Test.bsv", line 24, column O0: (G0010)
Rule "one" was treated as more urgent than "two". Conflicts:
"one" cannot fire before "two": calls to x.write vs. xX.read

"one": calls to y.write vs. y.read

"two" cannot fire before

As you can see, this warning also includes details about how the compiler determined that the rules
conflict. This is because an unexpected urgency warning could be due to a conflict that the user
didn’t expect.

If the conflict is legitimate, the user can avoid this warning by specifying the urgency order between
the rules (and thus not leave it up to the vagaries of the compiler). The user can specify the urgency
with the descending urgency attribute. See the BSV Reference Guide for more information on
scheduling attributes.

Note that methods of generated modules are treated as more urgent than internal rules, unless a
wire requires that the rule be more urgent than the method.

Urgency between two rules can also be implied by a data dependency between the more urgent rule’s
action and the less urgent rule’s condition. This is because the first rule must execute before the

36

Bluespec Compiler User Guide

scheduler can know whether the second rule is ready. See Section 4.1.4 for more information on how
such paths are created.

If a contradiction is created, between the user-supplied attributes, the path-implied urgency rela-
tionships, and/or the assumed relationship between methods and rules, then an error is reported,
as follows:

Error: "Test.bsv", line 8, column 8: (G0030)

A cycle was detected in the urgency requirements for this module:
‘par’ -> ‘RL_foo’

The relationships were introduced for the following reasons:
(bar, RL_foo) introduced because of method/rule requirement
(RL_foo, bar) introduced because of the following data dependency:

[WillFire signal of rule/method ‘RL_foo’,

Enable signal of method ‘wset’ of submodule ‘the_rw’,
Return value of method ‘whas’ of submodule ‘the_rw’,
Output of top-level method ‘RDY_bar’,

Enable signal of top-level method ‘bar’,

CanFire signal of rule/method ‘bar’]

4.1.4 Path Messages

Some state elements, such as RWire, allow reading of values which were written in the same cycle.
These elements can be used to avoid the latency of communicating through registers. However, they
should only be used to communicate from a rule earlier in the execution sequence to a rule later in
the sequence. Other uses are invalid and are detected by the compiler.

For example, if a value read in a rule’s condition depends on the writing of that value in the rule’s
action, then you have an invalid situation where the choosing of a rule to fire depends on whether
that rule has fired! In such cases, the compiler will produce the following error:

Error: "Test.bsv", line 20, column 10: (G0033)

The condition of rule ‘RL_flip’ depends on the firing of that rule. This is

due to the following path from the rule’s WILL_FIRE to its CAN_FIRE:
[WillFire signal of rule/method ‘RL_flip~’,
Control mux for arguments of method ‘wset’ of submodule ‘the_x’,
Argument 1 of method ‘wset’ of submodule ‘the_x’,
Return value of method ‘wget’ of submodule ‘the_x’,
CanFire signal of rule/method ‘RL_flip’]

Similarly, if the ready signal of a method has been defined as dependent on the enable signal of that
same method, then an invalid situation has been created, and the compiler will produce an error
(G0035). The ready signal of a method must also be computed prior to knowing the inputs to the
method. If the ready signal of a method depends on the values of the arguments to that method,
an error message will be reported (G0034).

A combinational cycle can result if a bypass primitive is used entirely within a single rule’s action.
In such cases, the compiler will produce an error explaining the source objects involved in the
combinational path, in data-dependency order:

Error: "Test.bsv", line 4, column 8: (G0032)
A cycle was detected in the design prior to scheduling. It is likely that
an action in this module uses circular logic. The cycle is through the
following:
[Argument 1 of method ‘wset’ of submodule ‘the_rw’,
Return value of method ‘wget’ of submodule ‘the_rw’]

37

Bluespec Compiler User Guide

4.2 Other messages

BSC can also emit status messages during the course of compilation.

4.2.1 Compilation progress

When the compiler finishes generating Verilog code for a module, it will output the location of the
file which it generated:

Verilog file created: mkGCD.v

The following message is output when elaborating a design for Bluesim:

Elaborated Bluesim module file created: mkGCD.ba

When an elaboration file is generated to a Bluesim object, the following message is given:

’Bluesim object created: mkGCD.{h,o}‘

If previously generated Bluesim object files still exist, are newer than the .ba file from which they
were generated, and the module does not instantiate any modified submodules, then the existing
object files will be reused. In this case the following message is seen instead of the message above:

Bluesim object reused: mkGCD.{h,o}

When the Bluesim object is linked to create a simulation binary, the following message is given:

Simulation shared library created: mkGCD.so
Simulation executable created: mkGCD

When using serial linking for Bluesim (-parallel-sim-link 1) (Section 3.4), the -v flag displays
the exec command for each module and the resulting messages in serial order:

exec: c++ ... mkTbGCD.cxx
Bluesim object created: mkTbGCD.<{h,o}
exec: c++ ... model_mkTbGCD.cxx

Bluesim object created: model_mkTbGCD.{h,o}

When parallel linking is turned on (-parallel-sim-link > 1), a makefile is used to process the
C/C++ compilations. If the -v flag is set, you will see the command for the make execution called
to execute the parallel process:

’exec: make -f compile_kabGCD.mk‘

Since the compilations are occuring in parallel, the messages will be interspersed with each other
and will not show up in serial order:

exec: c++ ... mkTbGCD.cxx

exec: c++ ... model_mkTbGCD.cxx

Bluesim object created: model_mkTbGCD.<{h,o}
Bluesim object created: mkTbGCD.<{h,o}

38

Bluespec Compiler User Guide

Automatic recompilation As described in Section 3.9, the —u flag can be used to check depen-
dencies and recompile any needed packages which have been updated since their last compilation.
The -show-compiles flag, which is on by default, will have the compiler output messages about the
dependent files which need recompiling, as follows:

checking package dependencies
compiling ./FindFIF02.bsv

compiling ./FiveStageCPUStall.bsv
compiling CPUTest.bsv

code generation for mkCPUTest starts
packages up to date

Verbose output The -v flag causes the compiler to output much progress information. First,
the version of BSC is displayed. Then, as each phase of compilation is entered, a starting message
is displayed. When the phase is completed, a done message is displayed along with the time spent
in that phase. During the import phase, the compiler lists all of the header files which were read,
including the full path to the files. During the binary phase, the compiler lists all of the binary files
which were read. Prior to code generation, all of the modules to be compiled in the current package
are listed:

modules: [mkFiveStageCPUStall_]

Then, code generation is performed for each module, in the order listed. Each is prefaced by a
divider and the name of the module being generated:

* Kk k k

code generation for mkFiveStageCPUStall starts

After all modules have been generated, the binary (.bo) files are output for the package with the
following message:

’Generate interface files‘

Finally, the total elapsed time of compilation is displayed.

Whenever the C or C++ compiler is invoked from bsc (such as during Bluesim compilation or when
compiling or linking foreign C functions), the executed command is displayed:

exec: c++ -Wall -Wno-unused -03 -fno-rtti -g -D_FILE_OFFSET_BITS=64
-I/tools/bsc/lib/Bluesim -c¢ -o mkGCD.o mkGCD.cxx

4.2.2 Scheduling information

There are two flags which can be used to dump the schedule generated by the compiler and the
information which led to that schedule: -show-schedule and -show-rule-rel.

The -show-schedule flag outputs three groups of information: method scheduling information (if
the module has methods), rule scheduling information, and the linear execution order of rules and
methods (see the paragraph on static execution order in Section 4.1.3). The output is in a file
modulename. sched in the directory specified by the info-dir (Section 3.6) flag.

39

Bluespec Compiler User Guide

For each method, the following information is given: the method’s name, the expression for the
method’s ready signal (1 if it is always ready), and a list of conflict relationships with other methods.
Any methods which can execute in the same clock cycle as the current method, in any execution
order, are listed as “conflict-free.” Any methods which can execute in the same clock cycle but only
in a specific order are labelled either “sequenced before” (if the current method must execute first)
or “sequenced after” (if the current method must execute second). Any methods which cannot be
called in the same clock cycle as this method are listed as “conflicts.” The following is an example
entry:

Method: imem_get

Ready signal: True

Conflict-free: dmem_get, dmem_put, start, done
Sequenced before: imem_put

Conflicts: imem_get

For each rule, the following information is given: the rule’s name, the expression for the rule’s ready
signal, and a list of more urgent rules which can block the execution of this rule. The more urgent
rules conflict with the current rule and, if chosen to execute, they will prevent the current rule from
executing in the same clock cycle (see the paragraph on rule urgency in Section 4.1.3). The following
is an example entry:

Rule: fetch
Predicate: the_bf.i_notFull_ && the_started.get
Blocking rules: imem_put, start

The -show-schedule flag will inform you that a rule is blocked by a conflicting rule, but won’t show
you why the rules conflict. It will show you that one rule was sequenced before another rule, but it
won’t tell you whether the other order was not possible due to a conflict. For conflict information,
you need to use the -~show-rule-rel flag.

The -show-rule-rel flag can be used, during code generation, to query the compiler about the
conflict relationship between two rules. Since this requires re-running the compiler, it is most useful
to give the wildcard arguments * * and dump all rule relationships in one compile.

’—show—rule—rel \ * *‘

If you only want to see the conflict relationships for a single rule, you can use:

’ -show-rule-rel * rulenameQ‘

which will output all the rule relationships for rulename2. No other uses of the wildcard argument
* are valid with this flag.

The following is an example entry in the -show-rule-rel output:

40

Bluespec Compiler User Guide

Scheduling info for rules "RL_execute_jz_taken" and "RL_fetch":
predicates are not disjoint
<>
conflict:
calls to
the_pc.set vs. the_pc.get
the_bf.clear_ vs. the_bf.i_notFull_
the_pc.set vs. the_pc.set
the_bf.clear_ vs. the_bf.enq_
<
conflict:
calls to
the_pc.set vs. the_pc.get
the_bf.clear_ vs. the_bf.i_notFull_
the_bf.clear_ vs. the_bf.enq_
no resource conflict
no cycle conflict
no attribute conflict

For the two rules given, several pieces of information are provided. If the compiler can determine
that the predicates of the two rules are mutually exclusive, then the two rules can never be ready
in the same cycle and therefore we need never worry about whether the actions can be executed in
the same clock cycle. In the above example, the predicates could not be determined to be disjoint,
so conflict information was computed.

Two rules have a <>-type conflict if they use a pair of methods which are not conflict free. The rules
either cannot be executed in the same clock cycle or they can but one must be sequenced first. The
compiler lists the methods used in each rule which are the source of the conflict.

Two rules have a <-type conflict if the first rule mentioned cannot be executed in sequence before
the second rule, because they use methods which cannot sequence in that order. There is no entry
for >-type conflicts; for that information, look for an entry for the two rules in the opposite order
and consult the <-type conflict. Again, the compiler lists the methods used in each rule which are
the source of the conflict.

If a conflict was introduced between two rules because of resource arbitration (see Section 3.5), that
information will be displayed third. The fourth line indicates whether a conflict was introduced
to break an execution order cycle (see Section 4.1.3). The fifth, and last, line indicates whether a
conflict was introduced by a scheduling attribute or operator in the design, such as the preempts
attribute (see the BSV Reference Guide for more information on pre-emption).

5 Verilog back end

The Verilog code produced by BSC can either be executed using standard Verilog execution/interpretation
tools or it can be compiled into netlists using standard synthesis tools. The generated code uses
BSC-provided modules such as registers and FIFOs; these can be found in $BLUESPECDIR/Verilog.
These modules must be used for simulation or synthesis, though creating a simulator with bsc -e
automatically includes them. For example, to run the vcs simulator, use the following command:

bsc -vsim vcs -e mkToplevel mkToplevel.v otherfiles.v

See Section 2.5.3 for details on choosing the Verilog simulator.

The $BLUESPECDIR/Verilog directory also contains the file Bluespec.xcf, a Xilinx XCF constraint
file, to be used when synthesizing with Xilinx.

41

Bluespec Compiler User Guide

5.1 Bluespec to Verilog mapping

To aid in the understanding and debugging of the generated Verilog code, this section describes the
general structure and name transformations that occur in mapping the original BSV source code
into Verilog RTL. The section is based on a single example, which implements a greatest common
denominator (GCD) algorithm. The source BSV code for the example is shown in Figure 2. The
generated Verilog RTL is shown in Figures 3 and 4.

5.1.1 Interfaces and Ports

The interface section of a BSV design is used to specify the ports (input and outputs) of the generated
Verilog code. The BSV interface specification for the GCD example is repeated below.

interface ArithIO_IFC #(parameter type aTyp); // aTyp is a parameterized type
method Action start(aTyp numl, aTyp num2);
method aTyp result();

endinterface: ArithIO_IFC

This interface specification leads to the following Verilog port specification. In the BSV specification
shown in Figure 2, the type parameter aTyp has been bound to be a 51-bit integer.

module mkGCD(CLK, // input 1 bit (implicit)
RST_N, // input 1 bit (implicit)
start_numl, // input 51 bits (explicit)
start_num2, // input 51 bits (explicit)
EN_start, // input 1 bit (implicit)
RDY_start, // output 1 bit (implicit)
result, // output 51 bits (explicit)
RDY_result // output 1 bit (implicit)
);

Note that the generated Verilog includes a number of ports in addition to the numl, num2, and
result signals that are specified explicitly in the interface definition. More specifically, each BSV
interface has implicit clock and reset signals, whereas the generated Verilog includes these signals as
CLK and RST_N. In addition, both the start and result methods have associated implicit signals.

The Verilog implementation of the start method (an input method) includes input signals for the
arguments numl and num2 which were explicitly declared in the BSV interface. The Verilog port
names corresponding to these inputs have the method name prepended, however, to avoid duplicate
port names. They have the generated names start_numl and start_num2. In addition to these
explicit signals, there are also the implicit signals EN_start, a 1-bit input signal, and RDY_start, a
1-bit output signal.

Similarly, the Verilog implementation of the result method (an output method) includes the result
output signal specified by the BSV interface, as well as the implicit signal RDY_start, a 1-bit output
signal.

By default, the sense of the generated reset signal is asserted low. To generate a positive reset
(asserted high), use the Verilog macro BSV_POSITIVE RESET, described in Section 2.5.3. This is a
global switch; it is not possible to generate mixed resets within a single design.

The default name of the reset for generated modules is RST_N, regardless of the sense of the reset.
The name may be changed with the bsc flag ~reset-prefix <name>, which assigns the new name to
all synthesized modules. When specified in the link stage the -reset-prefix flag causes the Verilog

42

Bluespec Compiler User Guide

linker to define the macro BSV_RESET _NAME which used by the file main.v to properly connect to the
top module. When generating a Verilog file, the -reset-prefix flag should be used in both the
compile and the link stages.

To generate positive resets, the following flags are recommended:

-reset-prefix RST_P -D BSV_POSITIVE_RESET

where RST_P can be replaced by any name you choose for the positive reset. The -D flag is only
required for the link stage, but you can use the same set of flags for both compile and link.

Since the implicit signal names are generated automatically by BSC, the BSV syntax provides a
way in which the user can control the naming of these signals using attributes specified in the BSV
source code. To rename the generated clock and reset signals, the following syntax is used:

(* osc="clk" *)
(* reset="rst" *)

There are also attributes to define a prefix string to be added to all clock oscillators, clock gates,
and resets in a module:

More information on clock and reset naming attributes is available in the Bluespec Reference Guide.

The user may remove Ready signals by adding the attribute always_ready to the method definition.
Similarly, the user may remove enable signals by adding the attribute always_enabled to the method
definition. The syntax for this is shown below.

(* always_ready, always_enabled *)

More information on interface attributes is available in the BSV Reference Guide.

In addition to the provided interface, a BSV module declaration may include parameters and argu-
ments (such as clocks, resets, and used interfaces). When such a module is synthesized, these inputs
become input ports in the generated Verilog. If a Verilog parameter is preferred, the designer can
specify this by using the optional parameter keyword. For example, consider the following module:

’module mkMod #(parameter Bit#(8) chipId, Bit#(8) busId) (IfcType);

This module has two instantiation parameters, but only one is marked to be generated as a parameter
in Verilog. This BSV module would synthesize to a Verilog module with parameter chipId and input
port busId in addition to the ports for the interface IfcType:

module mkMod(busId,
DK
parameter chipId = O;
input [7 : 0] busId;

Parameters generated in this way have a default value of 0.

43

Bluespec Compiler User Guide

5.1.2 State elements

State elements, synthesized from mkFIFO and the like, are instantiated as appropriate elements in
the generated Verilog. For example, consider the following BSV code fragment:

FIFO #(NumTyp) queuel <- mkFIFO; // queuel is the FIFO instance

The above fragment produces the following Verilog instantiation:

FIF02 #(.width(51)) queuel(.CLK(CLK),
.RST(RST_N),
.D_IN(queuel$D_IN),
.ENQ(queue1$ENQ),
.DEQ(queue1$DEQ),
.D_0OUT (queue1$D_0OUT) ,
.CLR(queuel1$CLR),
.FULL_N(queuel1$FULL_N),
.EMPTY_N(queuel$EMPTY_N)) ;

Note that the Verilog instance name matches the instance name used in the BSV source code.
Similarly, the associated signal names are constructed as a concatenation of the Verilog instance
name and the Verilog port names.

Registers instantiated with mkReg, mkRegU, and mkRegA are treated specially. Rather than declare a
bulky module instantiation, they are declared as Verilog reg signals and the contents of the module
(for setting and initializing the register) are inlined. For example, consider the following BSV code
fragment:

Reg #(NumTyp) x(); // x is the interface to the register
mkReg reg_1(x); // reg_l1 is the register instance

Reg #(NumTyp) yO;
mkRegU reg_2(y);

Reg #(NumTyp) z();
mkRegA reg_3(z);

Which generates the following Verilog instantiation:

44

Bluespec Compiler User Guide

reg [50 : 0] reg_1, reg 2, reg_3;
wire [50 : 0] reg_1D_IN, reg_2D_IN, reg_3$D_IN;
wire reg_1EN, reg_2EN, reg_3$EN;

always@(posedge CLK)

begin
if ('RST_N)
reg_1 <= ‘BSV_ASSIGNMENT_DELAY 51°d0;
else

if (reg_1$EN) reg_1 <= reg_1$D_IN;
if (reg_28$EN) reg_2 <= reg_2$D_IN;
end

always@(posedge CLK , negedge RST_N)

if (!'RST_N)
reg_3 <= ‘BSV_ASSIGNMENT_DELAY 51°d0;
else

if (reg_3$EN) reg_3 <= ‘BSV_ASSIGNMENT_DELAY reg_3$D_IN;

“ifdef BSV_NO_INITIAL_BLOCKS
‘else // no BSV_NO_INITIAL_BLOCKS
// synopsys translate_off

initial

begin
reg_1 = 51°h2AAAAAAAAAAAA;
reg_2 = 51°h2AAAAAAAAAAAA;
reg_3 = 51 h2AAAAAAAAAAAA;

end

// synopsys translate_on
‘endif // BSV_NO_INITIAL_BLOCKS

Register assignments are guarded by the macro BSV_ASSIGNMENT DELAY, defined to be empty by
default. In simulation, delaying assignment to registers and other state elements with respect to the
relevant clock may be effected by defining BSV_ASSIGNMENT DELAY (generally to “#0” or “#1”) in the
Verilog simulator.!

All registers are initialized with the distinguishable hex value A in order to guarantee consistent
simulation in both Verilog and Bluesim, in the presence of multiple clocks and resets. This initial-
ization is guarded by the macro BSV_NO_INITIAL _BLOCKS, which, if defined in the Verilog simulator
or synthesis tool, disables the initial blocks.

The bsc command line option -remove-unused-modules can be used to remove primitives and
modules which do not impact any output port. This option should only be used on synthesized
modules, and not on testbenches.

5.1.3 Rules and related signals
For each instantiated rule, two combinational signals are created:

e CAN_FIRE rulelabel: This signal indicates that the preconditions for the associated rule have
been satisfied and the rule can fire at the next clock edge. The rule may not fire (execute)
because the scheduler has assigned a higher priority to another rule and simultaneous rule
firing causes resource conflicts.

1While the creative possibilities this feature opens—such as defining BSV_ASSIGNMENT_DELAY to “~”—may seem
tempting at times, we discourage uses for purposes other than delaying assignment with respect to the clock edge.

45

Bluespec Compiler

User Guide

typedef UInt#(51) NumTyp;

interface ArithIO_IFC #(parameter type aTyp); // aTyp is a paramerized type
method Action start(aTyp numl, aTyp num2);
method aTyp result();

endinterface: ArithIO_IFC

// The following is an attribute that tells the compiler to generate

// separate code for mkGCD

(* synthesize *)

module mkGCD (ArithI0_IFC#(NumTyp)); // here aTyp is defined to be type Int

Reg# (NumTyp) x(); // x is the interface to the register
mkRegU reg_1(x); // reg_l is the register instance

Reg #(NumTyp) y(); // y is the interface to the register
mkRegU reg 2(y); // reg_2 is the register instance

rule flip (x > y && y !'= 0);

X <=vy;
y<=X;
endrule

rule sub (x <=y && y != 0);
y<=Ey -X
endrule

method Action start(NumTyp numl, NumTyp num2) if (y == 0);
action
X <= numl;
y <= num2;
endaction
endmethod: start

method NumTyp result() if (y == 0);
result = x;
endmethod: result

endmodule: mkGCD

Figure 2: BSV Source Code For The GCD Example

e WILL_FIRE rulelabel: This signal indicates that the rule will fire at the next clock edge.
That is, its preconditions have been met, and the scheduler has determined that no resource
conflicts will occur. Multiple rules can fire during one cycle provided that there are no resource

conflicts between the rules.

The rulelabel substring includes an unmangled version of the source rule name as well as a RL_
prefix and optionally a _<n> suffix. This suffix appears when it is needed to create a unique name

from the instances from different submodules.

5.1.4 Other signals

Signals beginning with an underscore (_) character are internal combinational signals generated

during elaboration and synthesis. These should not be used during debug.

46

Bluespec Compiler User Guide

‘ifdef BSV_ASSIGNMENT_DELAY
‘else
‘define BSV_ASSIGNMENT_DELAY
‘endif

module mkGCD(CLK,
RST_N,

start_numil,
start_num2,
EN_start,
RDY_start,

result,

RDY_result);
input CLK;
input RST_N;

// action method start
input [50 : O] start_numil;
input [50 : 0] start_num2;
input EN_start;

output RDY_start;

// value method result
output [50 : 0] result;
output RDY_result;

// signals for module outputs
wire [50 : 0] result;
wire RDY_result, RDY_start;

// register reg_1

reg [50 : 0] reg_1;

wire [60 : 0] reg_1$D_IN;
wire reg_13$EN;

// register reg_2

reg [50 : 0] reg_2;

reg [50 : 0] reg_2$D_IN;
wire reg_2$EN;

// rule scheduling signals
wire WILL_FIRE_RL_flip, WILL_FIRE_RL_sub;

// inputs to muxes for submodule ports
wire [60 : 0] MUX_reg_2$write_1__VAL_3;

// remaining internal signals
wire reg_1_ULE_reg_2___d3;

Figure 3: Generated Verilog GCD Example (part 1)

47

Bluespec Compiler User Guide

// action method start
assign RDY_start = reg_2 == 51°d0 ;

// value method result
assign result = reg_1 ;
assign RDY_result = reg_2 == 51°d0 ;

// rule RL_flip

assign WILL_FIRE_RL_flip = !reg_1_ULE_reg_2___d3 && reg_2 !'= 51°d0 ;
// rule RL_sub

assign WILL_FIRE_RL_sub = reg_1_ULE_reg_2___d3 && reg_2 != 51°d0 ;

// inputs to muxes for submodule ports
assign MUX_reg_2$write_1__VAL_3 = reg_ 2 - reg_1 ;

// register reg_1
assign reg_1$D_IN = EN_start ? start_numl : reg_2 ;
assign reg_1$EN = EN_start || WILL_FIRE_RL_flip ;

// register reg_2
always@(EN_start or
start_num2 or
WILL_FIRE_RL_flip or
reg_1 or WILL_FIRE_RL_sub or MUX_reg_2$write_1__VAL_3)
begin
case (1’°bl) // synopsys parallel_case
EN_start: reg_2$D_IN = start_num2;
WILL_FIRE_RL_flip: reg_2$D_IN = reg_1;
WILL_FIRE_RL_sub: reg_2$D_IN = MUX_reg_2$write_1__VAL_3;
default: reg_2$D_IN = 51°h2AAAAAAAAAAAA /* unspecified value */ ;
endcase
end
assign reg 2$EN = EN_start || WILL_FIRE_RL_flip || WILL_FIRE_RL_sub ;

// remaining internal signals
assign reg_1_ULE_reg_2 d3 = reg_1 <= reg_2 ;

// handling of inlined registers

always@(posedge CLK)
begin
if (reg_1$EN) reg_1 <
if (reg_2$EN) reg_2 <
end

‘BSV_ASSIGNMENT_DELAY reg_1$D_IN;
‘BSV_ASSIGNMENT_DELAY reg_23$D_IN;

// synopsys translate_off
‘ifdef BSV_NO_INITIAL_BLOCKS
‘else // not BSV_NO_INITIAL_BLOCKS

initial
begin
reg_1 = 51°h2AAAAAAAAAAAA;
reg_2 = 51’h2AAAAAAAAAAAA;
end

‘endif // BSV_NO_INITIAL_BLOCKS
// synopsys translate_on
endmodule // mkGCD

Figure 4: Generated Verilog GCD Example (part 2)

48

Bluespec Compiler User Guide

// Generated by Bluespec Compiler, version 2013.12.betal (build 32830, 2013-12-02)
//

// On Mon Dec 16 12:42:09 EST 2013

//

//

// Ports:

// Name I/0 size props
// RDY_start 0 1

// result 0 51 reg

// RDY_result 0 1

// CLK I 1 clock
// RST_N I 1 reset
// start_numl I 51

// start_num2 I 51

// EN_start I 1

//

// No combinational paths from inputs to outputs
//

Figure 5: Generated Verilog Header For The GCD Example

5.2 Verilog header comment

When BSC generates the Verilog file for a module, it includes a comment with information about
the compile and the module’s interface. The header for the GCD example is shown in Figure 5.
This comment would appear at the top of the file mkGCD.v.

The header begins with information about the version of the BSC software which was used to
generate the file and the date of compilation. The subsequent information relates to the module’s
interface and its Verilog properties.

The method conflict information, shown in Figure 6, documents the scheduling constraints on the
methods. These are Bluespec semantics which must be respected when using the module. They
are the same details which the user must provide when importing his own Verilog module (see
import "BVI" in the BSV Reference Guide). This information is included or omitted based on the
-show-method-conf flag and the ~show-method-bvi flag , discussed in Section 3.12. These flags are
off by default. The format of the information is similar to the method output of the ~show-schedule
flag (see Section 4.2.2).

The port information provides RTL-level information about the Verilog design. There is an entry
for each port which specifies whether the port is an input or an output, the port’s size in bits, and
any properties of the port. The possible properties are reg, const, unused, clock, clock gate,
and reset. The reg property indicates that there is no logic between the port and a register — if
the port is an input then the value is immediately registered, and if the port is an output than the
value comes directly from a register. The const property indicates that the value of the port never
changes, it is constant. Ports with the unused property are not connected to any state element or
other port, and so their values are unused. The clock, clock gate, and reset properties indicate
that the port is a clock oscillator, clock gate, and reset port, respectively.

The final information in the comment is a list of any combinational paths from inputs to outputs.
If there is an unregistered path from an input port write_val (corresponding to the val argument
of method write) to an output port read, it will appear as follows:

// Combinational paths from inputs to outputs:
// write_val -> read

49

Bluespec Compiler User Guide

// Generated by Bluespec Compiler, version 2013.12.betal (build 32830, 2013-12-02)
//

// On Mon Dec 16 12:40:14 EST 2013
//

// Method conflict info:

// Method: start

// Sequenced after: result

// Conflicts: start

//

// Method: result

// Conflict-free: result

// Sequenced before: start

//

// BVI format method schedule info:
// schedule start C (start);

//

// schedule result CF (result);
// schedule result SB (start);

Figure 6: Generated Verilog Header with method conflict information flags

Multiple inputs which have a combinational path to one output are grouped together, for brevity,
as follows:

// Combinational paths from inputs to outputs:
// (add_x, add_y, add_z) -> add

This situation arises often for read methods with arguments. Multiple outputs are not grouped;
there is only ever one output listed on the right-hand side.

6 Bluesim back end

Bluesim is a cycle simulator for generated BSV designs. It is cycle-accurate with the Verilog gener-
ated for the same designs. Bluesim can output VCD files for a simulation and offers other debugging
capabilities as described below.

6.1 Bluesim tool flow

When a BSV design is compiled and linked using the Bluesim back end, the compiler links the design
with a driver, to produce a stand-alone executable. When the executable is invoked, the default
driver “clocks” the circuit and executes it.

The Bluesim back-end compiles modules in a Bluespec design to C++ objects which contain the
module data and temporaries and which define routines for executing the rules and methods of
each module. In addition to the modules, scheduling routines are generated which coordinate the
execution of rules throughout the entire design. Primitive modules, functions, and system tasks are
implemented as elements of a library supplied with the compiler.

50

Bluespec Compiler User Guide

6.2 Cycle-accuracy between Bluesim and Verilog simulation

For all code compiled by bsc from BSV sources, one will observe identical cycle behavior whether
executing in Bluesim or Verilog simulation (or even the SystemC plug-in). This is because all these
back-ends go through identical scheduling in bsc. You should see exactly the same waveforms in
VCD files generated from any of these kinds of simulations.

There is one situation you should be aware of where the waveforms seen in Bluesim and Verilog
simulation may apparently be different, even though they are technically equivalent, and that is in
situations where you use "?". Note that this really means "don’t care”, i.e., any value is acceptable
and all values are equivalent. Such a signal may indeed appear as different specific values in Bluesim
and Verilog simulation, but the (perhaps initially surprising) difference is explained by remembering
that for "?" all values are equivalent.

The Standard Prelude section of the Libraries Reference Guide describes two Bool environment
variables genC and genVerilog by which a BSV program can test whether it is being compiled for
Bluesim or for Verilog, and can perform different static elaborations accordingly. Of course, the two
different static elaborations may not have identical cycle behavior.

The following design practices or design errors can cause differences in the VCDs generated by
Verilog and Bluesim simulations:

e [f the opt-undetermined-vals option, as described in Section 3.11, is used the bsc compiler is
free to choose different values for don’t cares in the Verilog and the Bluesim simulations. For
example, this could show up as a different value for the don’t care bits of a tagged Invalid
value of a Maybe#(a) type in a VCD waveform. This is not a bug, as the user has explicitly
requested that the compiler optimize the don’t care values for each backend by specifying the
opt-undetermined-vals flag.

e Bluesim primitive implementations may differ internally from Verilog primitive implementa-
tions. Bluesim primitives are separate implementations from the Verilog implementations of
the same primitives in the BSV libraries. In normal operation the Bluesim primitives and the
Verilog primitives will behave the same. In error conditions, however, they may differ. For
example, consider a deq() from an empty unguarded FIFO. The value returned is not guar-
anteed to be the same between Bluesim and Verilog when this error condition is encountered.
Also signal names internal to the primitive which exist in Verilog may have no corresponding
value in Bluesim. In most cases, the Bluesim waveforms attempt to reproduce the Verilog
waveforms at the primitive ports or internal signals, although there are exceptions. In some
cases the Bluesim VCD waveforms expose additional primitive state that is not visible in the
Verilog waveforms.

e The $random system function may exhibit different behavior in Bluesim and Verilog simulation.
In Bluesim, the implementation calls a random () function from the C library, whereas in Verilog
simulation it uses the Verilog simulator’s $random function.

e Bluesim simulation can differ from Verilog simulation in some situations in which design con-
straints are violated. For example, if a method is annotated as always_enabled but then is
not always enabled, the behavior in Bluesim can differ from the behavior in Verilog when the
method is not enabled. The compiler will provide a warning during compilation that it could
not guarantee the method would always be enabled.

e There are some schedules which are acceptable for the Verilog back end but not for Bluesim,
because they do not strictly follow the static scheduling discipline. This is not a simulation-
time difference, but a difference that is caught at compile time. For Verilog the compiler will
generate a warning but accept the design. For Bluesim the compiler will stop with an error
message. Dynamic module arguments and importBVI have similar behaviors.

o1

Bluespec Compiler User Guide

e There are some unsafe primitives that can violate atomic semantics and lead to simulation
differences between Bluesim and Verilog. One example is mkNullCrossingWire, which is
deprecated. The compiler will issue a warning when it is used in a design. Another example is
mkUnsafeRWire. The Unsafe in the name indicates that you should be understand what you
are doing when using it.

Bluesim behavior adheres closely to the atomic sematics of the BSV source langauage, while at
times the Verilog simulator’s behavior varies. The following differences can be observed in how the
simulators behave:

e System tasks and imported C functions are called on the falling edge of the clock in Verilog

simulation but on the rising edge in Bluesim. This can lead to differences in the order of
$display output (particularly with muli-clock domain designs) and in the value of $time()
between Bluesim and Verilog. If imported C functions are sensitive to ordering issues they
may also show a difference. This may lead to differences in task calls or display output at the
edges of simulation (startup, reset, and the end of simulation), where a task may be called in
one simulator but not in the other.

By TRS semantics the correct behavior is to execute all of the tasks and imported functions on
the positive edge of the clock. However, the Verilog backend is forced to move these executions
to the preceding negative edge of the clock to avoid complications with the Verilog simulation
event ordering.

Bluesim is a 2-state simulator, If using a 4-state Verilog simulator and X or Z values are intro-
duced during simulation, these can show up in the VCD waveforms and affect the simulation
behavior. Bluesim does not support X or Z values, so its behavior will differ.

Even though Bluesim is a 2-state simulator, in some cases it will attempt to show X values in
the VCD waveforms it produces. For instance, a wire which is not written during a cycle will
take on an X value for that cycle in Bluesim VCD waveforms. It will not show up that way
in the Verilog waveforms. This is an extra feature of Bluesim VCDs that make the waveforms
easier to interpret.

The Bluesim behavior adheres closely to the atomic semantics of the BSV source language, but
the generated Verilog code’s behavior is determined by the event-driven semantics of the Verilog
simulator. This means that the Verilog simulator will propagate value changes independently,
regardless of their relationship in the BSV semantics. For example, a change to a method
argument value of a method that is not enabled will have no effect in Bluesim, but Verilog
will propagate the value change through the circuit even though the associated enable signal
is 0. The language design allows this to happen without affecting the operation of the design,
although it is visible in the VCD waveforms. In some cases the use of ? in the BSV code can
extend the propagation path and make the changes in the VCD waveforms more numerous,
even without the use of the opt-undetermined-vals flag.

System task ordering between separately-synthesized modules can vary between Bluesim and
Verilog. This is an artifact of undefined ordering in the Verilog execution model. The compiler
will generate a warning whenever possible.

6.3 Bluesim simulation flags

The following flags can be given on the command line to the Bluesim simulation executable:

52

Bluespec Compiler User Guide

-c <commands> = execute commands given as an argument

-f <file> = execute script from file

-h = print help and exit

-m <N> = execute for N cycles

-V = print version information and exit

-V [<file>] = dump waveforms to VCD file (default: dump.vcd)
+<arg> = Verilog-style plus-arg

The -c flag provides one or more commands to be executed by the simulator (see Section 6.4 for
command syntax).

The -£ flag directs the simulator to execute commands from the given script file (see Section 6.4 for
command syntax).

The -h flags directs the simulator to print a help message which describes the available flags.

The -m flag forces the simulation to stop after a certain number of cycles; the default behavior is to
execute forever or until the $finish system task is executed.

The -v flag directs the simulator to print some version information related to the simulation model,
including the compiler version used to create it and the time and date at which it was created.

The -V flag causes the simulator to dump waveforms to a VCD file. If a file name is provided the
waveforms will be written the named file, otherwise the default file name “dump.ved” will be used.

Arguments can be passed to the simulation model with +<arg>. These values can be tested by the
BSV model via the $test$plusargs system task.

6.4 Interactive simulation

The simulator can be executed in an interactive or scripted mode. Commands and scripts can be
given using the -c and -f flags. Alternatively, the simulation object can be loaded directly in Bluetcl
using the sim load command.

Bluetcl extends a TCL shell with a sim command whose subcommands control all aspects of loading,
executing and interacting with a Bluesim simulation object. For a list of Bluetcl sim subcommands,
see the Bluetcl appendix B.4.2.

There are two ways to access these simulation commands, through scripting or interactively. When
a model is compiled through the Bluesim backend, it generates a .so file containing the simulation
object. It also generates an executable program that provides a convenient way to run and use the
simulation object. Passing the —c or -f flags to the executable enables scripting the simulation.

To run the simulation interactively, the standard Bluetcl tool, described in Appendix B, should be
used.

In addition to these actions accessible through the sim command, all of the normal functions of a
TCL interpreter as well as additional BSC-specific extensions are available in Bluetcl and they can
be freely intermixed.

Note that the TCL interpreter behaves differently when executing a script than when running
interactively. In an interactive session, the TCL interpreter will print the value returned by each
command (if any), but when executing a script output is only generated in response to an explicit
output command (eg. puts).

Loading Bluesim

Before executing Bluesim commands interactively, the Bluesim package must be loaded into Bluetcl
and the namespace must be imported. This is done automatically when using the -c and -f flags,
but must be done manually when running interactively.

53

Bluespec Compiler User Guide

From Bluetcl, the following commands must be entered at the start of the interactive session, to
load the Bluesim package and import the Bluesim namespace:

package require Bluesim
namespace import Bluesim::*

load and unload

Before working with a Bluesim simulation object, it must be loaded — this is done automatically
when using the -c and -f flags but must be done manually when using Bluetcl directly. The full
command to load a simulation object in Bluetcl is sim load followed by the name of the .so file
and the name of the top module.

A simulation object can be unloaded using the sim unload command. Any active object is auto-
matically unloaded when the simulator exits or before loading a new simulation object, so it is not
normally necessary to manually perform a sim unload.

arg

The sim arg command allows a Verilog-style plusarg to be set interactively. The command sim arg
<string> adds the supplied string to the end of the list of plusargs searched by the $test$plusargs
system task. The “+” character should not be included in the string argument.

run, step, stop and sync

The sim run command runs the current simulation to completion.
The sim runto command runs the current simulation to the time given as its argument.

The sim step command advances the current simulation for a given number of cycles of the currently
active clock domain.

The sim nextedge command advances the current simulation until the next edge in any clock
domain. The currently active domain does not change, so a subsequent sim step command will
still execute according to the active domain regardless of the clock edge to which a sim nextedge
command advances.

By default, these commands will not return until the requested simulation activity is complete.
However, sim step, sim runto and sim run can be instructed to return immediately by adding
the keyword async to the end of the command sequence (eg. sim step 100 async). This will
cause the command to return immediately so that additional commands can be processed while the
simulation continues to run asynchronously.

There are two commands that synchronize with an asynchronously spawned simulation: stop and
sync. The stop command will pause the simulation at the end of the currently executing simulation
cycle. The sync command will wait for the simulation to complete normally before returning.

As examples of the behavior of the run and step simulation commands, assume that we have a
simulation executable named “bsim”. Then

bsim -c¢ ’sim run’

is equivalent to just

bsim

54

Bluespec Compiler User Guide

and

’bsim -c ’sim step 100’

is equivalent to using the -m flag

bsim -m 100

Note that when a model is loaded, simulation time is at 0 and no clock edges have occurred. Stepping
1 cycle from that point will advance past the first clock edge, and if the first rising edge of the active
clock occurs at time 0 then the step command will move from before the edge at time 0 to after the
edge at time 0.

time

The sim time command returns the current simulation time.

It could be used interactively within Bluetcl

% sim load bsim.so mkTop
% sim step 10

% sim time

90

or within a script

bsim -c ’sim step 10; puts [sim time]’
90

clock

The sim clock command provides information on the currently defined clocks and allows the user
to change the active clock domain used by the sim step command.

With no argument, the sim clock command returns a list containing a clock description for each
currently defined clock. Each clock description is itself a list of 10 different pieces of information
about the clock domain:

e a unique number assigned to the clock domain

e a flag indicating if the clock is the currently active domain (1 indicates active, 0 indicates not
active)

o the textual name of the clock domain

e the initial value of the clock (0 or 1)

e the delay before the first edge of the clock
e the duration of the low clock phase

e the duration of the high clock phase

e the number of elapsed cycles of this clock

55

Bluespec Compiler User Guide

e the current value of the clock signal (0 or 1)

e the time of the last edge of the clock

Here is sample output from a sim clock command for a design with 2 clock domains:

% sim clock
{01 CLK 0055 12 1 110} {1 0 {mc$CLK_OUT} 0 0 0 O 3 O 100}

This output indicates that there are 2 domains. The first is domain number 0 and is the currently
active clock. It is called “CLK” and is initially low, rises at time 0 and then alternates every five
time units. At the current simulation time, 12 cycles have elapsed in the “CLK” clock domain and
its current clock value is 1, after a rising edge at time 110. The second domain is number 1 and is
not the currently active clock used for stepping. It is called “mc$CLK_OUT” and we have no timing
information because it is not a periodic waveform (it is internally generated in the model). At the
current simulation time, 3 cycles have elapsed in the “mc$CLK_OUT” domain and its current value
is 0, after a falling edge at time 100.

To change the currently active clock, simply use the sim clock <name> form of the command, where
the name argument specifies which clock to be made active. After executing this command, future
sim step commands will step through cycles in the newly activated clock domain.

% sim clock {mc$CLK_OUT}
% sim clock
{0 0 CLK 0055 12 1 110} {1 1 {mc$CLK_OUT} 0 0 0 0 3 0 100}

Note that the clock name argument was quoted in curly braces so that the TCL interpreter would
treat the dollar-sign in the clock domain name as a literal dollar-sign.

Is, cd, up and pwd
Bluesim allows the user to navigate through the hierarchy of module instantiations using the sim
cd and sim up commands.

To move down one or more levels of hierarchy, provide a path to the sim cd command. The path
must consist of a sequence of instance names separated by ‘.’. A path which begins with . is
considered to be an absolute path from the top of the hierarchy, but a path which does not begin
with . is interpreted as a path relative to the current location.

The sim up command is used to move up the hierarchy into parents of the current directory. It can
be given a numeric argument to control how many levels to ascend, or it can be used without an
argument to move up one level.

As a special case, the sim cd command will return the user to the uppermost point in the hierarchy
if used without a path argument.

To find your current location in the module hierarchy, use the sim pwd command.

At any point in the hierarchy, the sim 1s command can be used to list the sub-instances, rules and
values at that level of hierarchy. The command can be given any number of patterns to control
which names are listed. If no argument is given, it is equivalent to sim 1s *.

The patterns follow the standard syntax for filename globbing:

e 7: Matches any single character

56

Bluespec Compiler User Guide

e *: Matches any number of characters (possibly none)
e [...]: Matches any character inside of the brackets
e [a-z]: Matches any character in the specified range

e [l...]: Matches any character which does not match specification inside the brackets

)

The instance separator character ‘.’ is never matched in a pattern. The special characters ?7,* and
[can be escaped in a pattern using a backslash (\).

% sim pwd

% sim 1s

{b__h380 signal} {CAN_FIRE_RL_done signal} {CAN_FIRE_RL_incr signal}
{count module} {levell module} {midl module} {mid2 module} {RL_done rule}
{RL_incr rule} {WILL_FIRE_RL_done signal} {WILL_FIRE_RL_incr signal}
% sim ls levell.*

{levell.level2 module}

% sim cd levell.level2

% sim pwd

.levell.level2

% sim 1ls RL_*

{RL_incr rule} {RL_subl_flip rule} {RL_wrap rule}

% sim up

% sim pwd

.levell

lookup, get and getrange

In addition to navigating through the instance hierarchy, Bluesim allows the user to examine the
simulation values at run-time, using the sim lookup, sim get and sim getrange commands.

To get the value for a signal, you must first obtain a “handle” for the value using the sim lookup
command. The command takes as an argument a pattern describing the absolute or relative path to
the desired signal. A relative path is interpreted in the current directory unless an optional second
argument is given containing the handle to a different starting directory. sim lookup will return a
handle for every simulation object which matches the pattern argument.

Once the handle of a signal is known, its value can be obtained using the sim get command. This
command takes one or more handles as arguments and returns the raw values associated with the
handles, as sized hexadecimal numbers.

% set WF_incr [sim lookup .levell.level2.WILL_FIRE_RL_incr]
150533432

% sim get $WF_incr

1°h1

% sim 1s .mid?.count

{midl.count module} {mid2.count module}

% eval sim get [sim lookup .mid?.count]

4°h9 4°hil

The sim getrange command is a specialized command to get values for handles which represent
multiple values, such the storage inside of a FIFO or register file. The command takes the handle
for the value range object along with either a single address or a start and end address pair.

57

Bluespec Compiler User Guide

% sim getrange [sim lookup rf] 0 3
16°h0 16’h1 16°h2 16°’h3

% sim getrange [sim lookup rf] 2
16°h2

% sim getrange [sim lookup fifo] 0
16°h8

Details about the simulation object referenced by a handle can be obtained using the sim describe
command.

ved

The sim vecd command controls dumping of waveforms to a VCD file. Use sim vcd on to enable
dumping and sim vcd off to disable it. The form sim ved <file> enables dumping to a file of
the given name, rather than the default file named “dump.vecd”.

version

The sim version command prints details about the tool version used to build the current simulation
object. It returns a list of 5 TCL objects: the year of the release, the month of the release, the
(optional) release tag, the revision number of the release, and the time at which the object was
created (as a number of seconds since the start of 1970).

An example of using the sim version command to print the date and time at which a simulation
object was created:

% puts [clock format [lindex [sim version] 4]]
Fri Dec 14 01:24:39 PM EST 2007

6.4.1 Command scripts for Bluesim

The Bluesim simulator can be run with a command script by using the -c or -f arguments.

./bluesim -f script.tcl

The contents of the script file can be standard TCL commands or any Bluetcl command extensions,
including the sim commands. When used in this way, some aspects of Bluesim’s behavior change to
be more appropriate for executing scripts:

e No prompt is displayed.

The result of each command is not printed. An explicit puts should be used to print command
output in a script.

e Error messages include line numbers and stack traces.

e Errors and Ctrl-C end the simulation.
No sim load command is required when using a script, because the model will automatically be
loaded before the script is executed and unloaded on exit.

No exit command is required when using a script, because the simulator will automatically exit
when it reaches the end of the script file.

Comments can be included in the script file by starting a line with the TCL comment character #.

58

Bluespec Compiler User Guide

Run 300 cycles
sim step 300

Enable dumping VCD waveforms for the next 10 cycles
sim vcd on
sim step 10

6.5 Value change dump (VCD) output

The Bluesim simulator supports generation of a value change dump (VCD) to record the changes
in user-selected state components. VCD files are an industry-standard way to record simulator
state changes for use by external post-processing tools. For example, Novas Debussy, Undertow,
and gtkWave are graphical waveform display programs that can be used to browse simulator state
recorded in VCD files. FSDB files are currently not generated by Bluesim.

The Verilog system task $dumpvars may be used with no arguments to request VCD for all variables.
Selective dumping with this task is not supported at this time. The Verilog system tasks $dumpon
and $dumpoff can be used to turn VCD dumping on and off at specific times during simulation.
Specifying -V <file> argument or using the sim vcd <file> command in a script will cause the
simulator to output a VCD file of that name, in which the state of all registers and the internal
signals of all BSV modules are dumped at the end of each cycle.

VCD files dumped by Bluesim attempt to match VCD files generated by Verilog simulation as closely
as possible. Known differences between Bluesim- and Verilog-generated VCD files are documented
in the Known Problems and Solutions (KPNS) document accompanying each release.

6.6 Bluesim multiple clock domain support

The Bluesim backend supports a subset of the multiple-clock-domain (MCD) features supported by
the Verilog backend, including bit, pulse and word synchronizers as well as synchronized FIFOs.
However, some MCD features supported in Verilog are not supported in Bluesim:

e mkNullCrossing

59

Bluespec Compiler User Guide

A Environment variables
You can customize your environment through the large number of environment variables set in your

Unix shell.

All of these variables are option.

A.1 Installation

BLUESPECDIR 1lib directory of Bluespec installation
BLUESPEC_HOME home directory where Bluespec is installed
HOME Unix home directory

SYSTEMC directory in which SystemC is installed

The BLUESPECDIR variable points to the 1ib directory of the Bluespec installation. The variable
BLUESPEC_HOME is an optional variable which points to the top level of the Bluespec installation.

The compiler needs to know where SystemC is installed so that it can compile C++ files that
refer to SystemC files. The compiler uses the SYSTEMC variable to find standard SytemC files
such as systemc.h and libsystemc.a. When the SYSTEMC variable is set, the compiler adds -I
{$SYSTEMC}/include to the C++ compiler command line.

A.2 Options

BSC_OPTIONS default options to BSC, Bluetcl, Bluewish, BDW
BLUETCL_OPTIONS BSC options for Bluetcl, Bluewish, BDW

GHCRTS sets run time flags -RTS and +RTS
BSV_VERILOG_SIM specifies the Verilog simulator

The variable BSC_OPTIONS can be used to set any bsc flags documented in Section 3, except the RTS
flags. To set the RTS flags described in Section 3.8, use the GHCRTS variable.

The variable BSV_VERILOG_SIM is another way to specify the Verilog simulator, providing the same
function as the -vsim command-line flag. If the flag is given, its value is used. If the flag is not
given, the compiler consults the environment variable. If the variable is not set, the compiler picks
an available simulator.

A.3 C/C+H+ variables

CXX specifies C++ compiler to use
cC specifies C compiler to use
BSC_CXXFLAGS Bluespec C++ compiler flags
BSC_CFLAGS Bluespec C compiler flags
CFLAGS C compiler flags

CXXFLAGS C++ compiler flags

If either CXX or CC are not specified, the compiler will run the default C4++ or C compiler, which
must be found in the path.

The variables BSC_CXXFLAGS and BSC_CFLAGS are alternatives to using the -Xc++ and -Xc compiler
flags (Section 3.14). BSC also uses the general C environment variables CFLAGS and CXXFLAGS.

60

Bluespec Compiler User Guide

A.4 Make variables

MAKE specifies name of make tool to use
BSC_MAKEFLAGS Bluespec make flags

When the -parallel-sim-link flag (Section 3.4) is set to a value greater than 1, a makefile is
generated, used, and then deleted for processing the parallel compiles for Bluesim. The compiler
will look for MAKE in the environment to find the command to use. If MAKE is not defined, the
command make is used. If the environment variable BSC_MAKEFLAGS exists, it is included on the
command line.

61

Bluespec Compiler User Guide

B Bluetcl Reference

Bluetcl is a Tcl extension with a collection of scripts and packages providing an interface into the
BSC view of a design. You can execute Bluetcl commands and scripts from a unix command line.

Bluetcl contains several layers (scripts, commands, packages) which should be familiar to the Tecl
programmer. You can use Bluetcl extensions within Tcl scripts. More information on Tcl is available
at www.tcl.tk or from the many books and references written about Tcl/Tk.

B.1 Invoking Bluetcl

Bluetcl commands can be run either interactively or through Tcl scripts. These commands load,
execute, and interact with BSC-generated files. As with BSC, pre-elaboration information is obtained
from the .bo files, and post-elaboration information is obtained from the .ba files.

Bluetcl commands can be invoked in the following ways:

e You can invoke Bluetcl from a unix prompt by typing bluetcl. This command provides a Tcl
shell with the Bluetcl extensions.

e You can write and use Tcl scripts which use Bluetcl. For an example of a Tcl script provided
with BSC, see Section B.5.1.

B.2 Packages and namespaces

Bluetcl is organized into a collection of packages, which are described in this appendix. The major
packages are:

e The Bluetcl package which contains the low-level commands to interact with Bluespec files
and designs.

e The Bluesim package containing Bluesim command extensions.?

All commands in the Bluetcl package are in the Bluetcl namespace. All commands in the Bluesim
package are in the Bluesim namespace.

When referencing a command you must specify the namespace. Example:
Bluetcl::version

Alternately, you can import commands from a namespace. The following example imports all the
commands in a namespace:

namespace import ::Bluetcl::*
Or you can import a single command:
namespace import ::Bluetcl::schedule

Refer to the Tcl documentation for additional information on packages and namespaces.

2The sim command for interacting with Bluesim simulation objects (.so files) is contained in both the Bluetcl
and Bluesim packages.

62

Bluespec Compiler User Guide

B.3 Customizing Bluetcl

You can use Bluetcl, along with all standard Tcl constructs, to write scripts and issue commands.
Bluetcl will source the setup file $HOME/ . bluetclrc during initialization. You can customize Bluetcl
by adding to the .bluetclrc file.

The namespace import command can be put in the .bluetclrc file, providing the command into
the current namespace when the file is sourced. This will allow you to use just the command name
in scripts or from the command line.

B.4 Package command reference
B.4.1 Conventions

The following conventions are used within the command reference:

name identifier
keyword as is
[..] optional

When an argument (or token) contains embedded spaces, the argument may need to be enclosed in
brackets ({ }).

B.4.2 Bluetcl

This sections describes the commands in the Bluetcl package. These commands provide a low-level
interface to access BSC-specific files (.bo/.ba) for use by Tcl programmers; they are not intended
for interactive use.

Before using a command from the Bluetcl package, the following Tcl command must be executed,
either in a script, from the command line, or in the .bluetclrc file:

package require Bluetcl
All commands in the Bluetcl package are in the Bluetcl:: namespace. The namespace must
be referenced, as described in Section B.3, either by using the namespace import command or by

prepending the command name with Bluetcl::. Example:

Bluetcl::bpackage list

Bluetcl::bpackage

Controls loading and unloading of packages and returns package information. When a package is
loaded, all dependent (imported) packages are loaded as well.

bpackage load packname | Reads in the .bo package and all imported packages. Packages
[packname ...] are searched in the standard bsc way, via the -p flag. Returns
a list of all packages which are loaded. One or more package
names can be provided.

bpackage list Returns the list of packages which are loaded.

bpackage clear Clear all currently loaded packages.

bpackage depend Returns package dependencies of all currently loaded packages.
bpackage search regex Searches packages for names matching a regular expression.

bpackage types packname Returns a list of type names found in the package.

63

Bluespec Compiler

User Guide

Bluetcl::defs

Returns a list of the components defined in a package. Components returned include types, synthe-

sized modules, and functions.

defs all packname

Returns a list of all components which are defined in the pack-
age.

defs type packname

Returns a list of all types which are defined in the package.

defs module packname

Returns a list of all module names defined in the package which
are marked synthesize.

defs func packname

Returns a tagged structure list of all functions which are defined
in the package.

Bluetcl::flags

Returns or sets the status of flags used by BSC.

flags show flagname | Show the value of the specified flags. One ore more flag names
[flagname ...] can be provided.
flags set flagname walue | Set the flags to the value provided. Multiple flags may be set

[flagname value ...]

in a single command.

Note: Values enclosed in brackets define a single token. For example, setting the value of the flag
-verilog-filter with embedded spaces:

Bluetcl::flags set -verilog-filter {sed -e -e ’s/XX/SS/’}

Bluetcl::help

Help with no arguments will list all available help topics. Optionally, an argument can be provided
to get help on a specific topic. Also, ’help list” will return a string listing the names of all commands.

help

Returns a list of all help topics.

help list

Returns a string listing the name of all commands

help command

Returns help for the specified command.

Bluetcl::module

Returns information on synthesized (post elaboration) modules.

module load modname

Loads the module and all instantiated submodules into Bluetcl’s
workspace. Returns a list of the modules loaded.

module clear

Clear all loaded modules

module submods modname

Returns a 3-tuple. The first element of the tuple is a tag (primi-
tive or user), the second is a list of pairs contain the synthesized
submodule name and its interface type. The third element is a
list of function which have not been in-lined.

module rules modname

Returns a list of rule names in the module.

module ifc modname

Returns a list of interface types in the module.

module methods modname

Returns a list of the flattened methods in the module.

module ports modname

Returns a list of the ports in the module.

module porttypes mod-
name

Returns a list of the types of the ports in the module.

module list

Returns a list of all loaded modules.

64

Bluespec Compiler User Guide

Bluetcl::rule

Returns information about rules in a post elaboration module.

rule rel modname rulel rule2 Shows the relationship between two rules in the module.
rule full modname rule Returns a tagged structure detailing the rules position, pred-
icates expression, attributes and method calls.

Bluetcl::schedule

Returns scheduling information for a synthesized module. The schedule command requires a sub-
command and the module name.

schedule execution modname Returns a list of rule/method names in execution order.
For example, if r1 fires after r2, then the output would
be: RL_r1 RL_r2.

schedule methodinfo modname | Returns scheduling relationships between all pairs of meth-
ods.

schedule pathinfo modname Returns a list of combinational paths through the module.
Each element is a list of two elements: a list of inputs and
an output that they connect to.

schedule urgency modname Returns a list of lists, one for each rule/method, in urgency
order. Each lists contains two elements: the rule name and
a list of rules which would block that rule from firing.
schedule warnings modname Returns a list of scheduling warnings. The result is a list
of three elements: the position of the warning, the tag for
the warning, and the complete warning message.

Bluetcl::sim

Controls all aspects of loading, executing and interacting with a Bluesim simulation object. These
commands are used when running Bluesim interactively, as described in section 6.4.

This command is also provided in the Bluesim package. See section B.4.3 for the complete definition.

Bluetcl::submodule

Returns information about each submodule and which rules use the methods of the submodule.

submodule full modname Returns information about each submodule in the specified
module and the rules which use the methods of the submod-
ule.

Bluetcl::type

Finds and returns type information.

type constr typename Shows the type constructor for the provided type name. The
type constructor is the type arguments needed for the type.
Returns an error if the typename is not found in any of the
loaded packages.

type full typeconstructor Returns a tagged structure based on the type constructor argu-
ment. The type constructor provided must be fully qualified.

65

Bluespec Compiler User Guide

Bluetcl::version

Returns the current compiler version

version Returns a list of 2 items: the compiler version and the build
version. The compiler version is provided in year-month-
(annotation) format.

B.4.3 Bluesim

The Bluesim package contains the sim command which controls Bluesim interactive mode. This
command is also found in the Bluetcl package.

Before using a command from the Bluesim package, the following Tcl command must be executed,
either in a script, from the command line, or in the .bluetclrc file:

package require Bluesim
All commands in the Bluesim package are in the Bluesim:: namespace. The namespace must
be referenced, as described in Section B.3, either by using the namespace import command or by
prepending the command name with Bluesim: :. Example:

Bluesim::sim clock
sim
Controls all aspects of loading, executing and interacting with a Bluesim simulation object. These

commands are used when running Bluesim interactively, as described in section 6.4. This command
is also provided in the Bluetcl package (B.4.2).

sim arg string Set a simulation plus-arg. Adds the supplied string to the end
of the list of plusargs searched by the $test$plusargs system
task.

sim cd [path] Change location in hierarchy. The path must consist of a se-

quence of instance names separated by a period (.). A path
which begins with a . is an absolute path from the top of the
hierarchy, but one which does not begin with a . is relative to
the current location. No provided path will return the user to
the uppermost point in the hierarchy.

sim clock Returns a list containing a clock description for each currently
defined clock.
sim clock [name] Select the named clock, make it the active clock.

’ sim describe handle

Describe the object to which a symbol handle refers. ‘

sim get handle Returns the simulation value for the object with the provided
handle. The value is returned as a sized hexadecimal number.

’ sim getrange handle addr \ Get simulation values from a range. ‘
’ sim load model \ Load a bluesim model object. ‘
sim lookup pattern [root] Lookup symbol handles. Returns a handle for every simulation

object which matches the pattern.

66

Bluespec Compiler User Guide

sim 1s pattern * List the sub-instances, rules and values at that level of the hi-
erarchy. If a pattern is provided, it controls which names are
listed. No pattern is equivalent to sim 1s *.

sim nextedge \ Advance simulation to the next clock edge in any domain. ‘

’ sim pwd

Print current location in hierarchy. ‘

sim run [async] Run simulation to completion. The keyword async cause the
command to return immediately so that additional commands
can be processed while the simulation continues to run asyn-
chronously.

sim runto time [async] Run simulation to a given time. The keyword async cause the
command to return immediately so that additional commands
can be processed while the simulation continues to run asyn-
chronously.

sim step [cycles| [async] Advance simulation a given number of cycles. The keyword
async cause the command to return immediately so that addi-
tional commands can be processed while the simulation contin-
ues to run asynchronously.

sim stop :stop the simulation at the end of the currently executing sim-
ulation cycle.

’ sim sync

Wait for simulation to complete normally before returning ‘

’ sim time

Display current simulation time. ‘

sim unload

Unload the current bluesim model. ‘

sim up [N Move up the module hierarchy into the parents of the current
directory. It will move up N levels if N is provided.

sim vcd [on | off | file] Control dumping waveforms to a VCD file named file. If no file
name is provided, it will use the default file dump.ved.

’ sim version Show Bluesim model version information. ‘

B.4.4 InstSynth

The InstSynth package contains scripts to generate instance specific synthesis in Bluespec Sys-
temVerilog. These scripts use Bluespec’s typeclass and overloading to match a module’s instantiation
with a specific instance which may instantiate a synthesized module.

When using any of the commands in the InstSynth package, the package must be loaded first.
package require InstSynth

The InstSynth package contains the commands genTypeClass, genSpecificInst, and genSynthMod.

67

Bluespec Compiler

User Guide

InstSynth Commands

genTypeClass

genTypeClass packname {modname}

Creates an include file for a package containing a typeclass for
overloading of a module and a default instance for the module.
Multiple modules within the same package can be specified in a
single command.

genSpecificInst

genSpecificInst packname modname type

Modifies the packname.include.bsv file with an instance for each
missing type.

genSynthMod

genSynthMod packname modname type

Generates a synthesize module wrapper for a given module and
type within a package. The generated module is returned as a
string from this function.

Example using InstSynth.tcl to generate instance specific synthesis modules

Overview: This example demonstrates how to use the InstSynth.tcl package to use Bluespec’s
typeclass and overloading to match a module’s instantiation with a specific instance to instantiate

a synthesized module.

The example is composed of three .bsv files: m1.bsv which contains the module definition for mkM1,
m2.bsv which contains the module definition for mkM2 and instantiates multiple instances of mkM1,
and Top.bsv containing the testbench mkTb. The two modules mkM1 and mkM2 are polymorphic. The
testbench mkTb instantiates mkM2 and is not polymorphic.

The polymorphic modules are instantiated in the hierarchy as shown in figure 7.

Top

m2 3 mkM?2 a m2_7 mkM2 a m2_8 mkM2 a

Bit#(3) Bit#(7) Bit#(8)
m1_1 mkM1 ml 1 mkM1 m1_1 mkM1

(a,a) (a,a) (a.a)
m1_2 mkM1 ml 2 mkM1 m1_2 mkM1
Tuple2(a,a) Tuple2(a,a) Tuple2(a,a)
m1_2 mkM1 ml 2 mkM1 m1_2 mkM1
Tuple3(a,a,a) Tuple3(a,a,a) Tuple3(a,a,a)

Figure 7: Example Module Hierarchy

Steps for using InstSynth

1. Compile your design with bsc as normal, creating the .bo files.

2. Generate typeclass and default instances for modules with the genTypeClass command, spec-
ifying the packages and modules for instance specific synthesis. The genTypeClass command

will generate an include file (<package>.include.bsv) for each package.

68

Bluespec Compiler User Guide

The include file will contain a type class (named MakeInst _<module>) for each module and a
general catch-all instance of that type class.

The type class contains one method, which is a module constructor. The method is named
<module>_Synth and has the same arguments as the general polymorphic module. The instance
of this type class is a thin wrapper which instantiates the polymorphic module and prints a
message about the type which is synthesized.

Example of the include file for m1.bsv (m1.include.bsv) after this step:

typeclass MakeInst_mkM1 #(type ifc_t);
module mkM1_Synth (ifc_t ifc) ;
endtypeclass

instance MakeInst_mkM1 #(ClientServer::Server#(a, a))
provisos (Bits#(a, sa)) ;

module mkM1_Synth (ClientServer::Server#(a, a) ifc) ;
let _i <- mkM1 ;
messageM ("No concrete definition of mkM1 for type " +
(printType (typeOf (_i))));
messageM ("Execute: InstSynth::genSpecificInst ml mkM1 {" +

" {" + (printType (typeOf(asIfc (_i)))) + "}"
),
return _i ;
endmodule
endinstance

3. Manually edit the .bsv file to include the generated file. For example, add the line ‘include
"<package>.include.bsv" at the bottom of the file for <package>. In this example, you
would add the line ‘include "ml.include.bsv" to the file m1.bsv.

4. Manually edit the .bsv file to change the module constructor from <module> to <module_Synth>
at each point you would like an instance synthesized. In this example, change mkM1 to
mkM1_Synth in the m2.bsv file, and change mkM2 to mkM2_Synth in the Top.bsv file where
you want to synthesize an instance.

5. Compile the design again with bsc. The compile will generate messages listing missing instances
along with the genSpecificInst command to create each missing instance. Execute the
commands one at a time to generate an instance for each missing type.

The genSpecificInst command will modify the include.bsv files, adding the instances. For
example, in this step, the following lines are added to the m1.include.bsv file to resolve the
Server#(a,a) type.

module mkM1__ClientServer_Server_Bit_3_Bit_3_(
ClientServer: :Server#(Bit#(3), Bit#(3)) ifc) ;
let _i <- mkM1 ;
return _i ;
endmodule

instance MakeInst_mkM1 #(ClientServer::Server#(Bit#(3), Bit#(3))) ;
module mkM1_Synth (ClientServer::Server#(Bit#(3), Bit#(3)) ifc);
let _i <- mkM1__ClientServer_Server_Bit_3_Bit_3_ ;
messageM("Using mkM1__ClientServer_Server_Bit_3_Bit_3_ for mkM1 of

69

Bluespec Compiler User Guide

type: " +
(printType (typeOf (_i))));
return _i ;
endmodule
endinstance

Note that the code added in this step does not add to or change the behavior of the design.
Only the additional hierarchy is added.

6. Add provisos to the polymorphic modules to avoid early binding of the module. Otherwise
compiling at this point will not show the specific instances because the instance of the _Synth
is bound before the specific type of the module is known. In this example, mkM1_Synth would
be bound before the specific type of mkM2 is known. To fix this, provisos are added to the
polymorphic module mkM2. The module mkM2 has three instantiations of mkM1, therefore a
proviso for each instantiation is added.

module mkM2 (Server#(a,a)) provisos (Bits#(a,sa)
,MakeInst_mkM1#(Server#(a,a))
,MakeInst_mkM1#(Server#(Tuple2#(a,a),Tuple2#(a,a)))
,MakeInst_mkM1#(Server#(Tuple3#(a,a,a),Tuple3#(a,a,a)))
);

7. Compile with bsc again.

8. Continue until there are no missing instance messages. A Verilog file will be created for each
synthesized module instance.

SynthInst Example Files
m1l.bsv: Module mkM1 is defined in the package (file) m1.bsv:

import ClientServer :: *;
import GetPut :: x*;
import FIFOF :: * ;

module mkM1 (Server#(a,a)) provisos (Bits#(a,sa));
FIFOF#(a) fifo <- mkFIFOF;

interface request = toPut (fifo);
interface response = toGet (fifo);
endmodule

m2.bsv: Module mkM2 is defined in the package m2.bsv. Note that there are three instantiations of
mkM1. You can choose to synthesize any or all of the instances.

import FIFO::*;

import GetPut: :*;
import ClientServer: :*;
import ml :: *;

module mkM2 (Server#(a,a)) provisos (Bits#(a,sa)

Server#(a,a) mi_1 <- mkMi;
Server#(Tuple2#(a,a) ,Tuple2#(a,a)) ml_2 <- mkMi;

70

Bluespec Compiler

User Guide

Server#(Tuple3#(a,a,a) ,Tuple3#(a,a,a)) m1_3 <- mkMi;

rule r0;
let { x1,x2 } <- m1_2.response.get();
ml_3.request.put (tuple3d (x1,x2,x2));
endrule

interface Put request;
method Action put (a x);
ml_2.request.put (tuple2(x,x));
endmethod
endinterface

interface Get response;
method ActionValue#(a) get (;
let { y1,y2,y3 } <- ml1_3.response.get();
return (y1);
endmethod
endinterface
endmodule

Top.bsv: The testbench is contained in the file Top.bsv

import ClientServer :: *;
import GetPut :: *;
import m2 :: *;

(* synthesize *)
module mkTb (Empty);
Reg# (int) cycle <- mkReg (0);

Server#(Bit#(3), Bit#(3)) m2_3 <- mkM2;
Server#(Bit#(7), Bit#(7)) m2_6 <- mkM2;
Server#(Bit#(8), Bit#(8)) m2_8 <- mkM2;

rule ri;

$display ("%0d: r1l: put (%0d)", cycle, cycle);

m2_3.request.put (truncate (pack (cycle)));
m2_6.request.put (truncate (pack (cycle)));
cycle <= cycle + 1;
if (cycle > 8) $finish(0);

endrule

rule r2;
let x_3 <- m2_3.response.get ();
let x_6 <- m2_6.response.get ();

$display ("%0d: r2: %0d,%0d <= get", cycle, x_3, x_6);

endrule
endmodule

B.5 Bluetcl Scripts

Scripts are self-contained commands you run from a shell. A Tcl script may be include any combi-

nation of Bluetcl and Tecl commands.

71

Bluespec Compiler User Guide

The scripts described in this section are provided with BSC in the $BLUESPECDIR/tcllib/bluespec
directory. To execute a script, type the fully qualified script name. For example, to execute the
expandPorts script from a command prompt you would type:

$BLUESPECDIR/tcllib/bluespec/expandPorts.tcl
If you are already in a Tcl shell, type exec before the script name:

exec $BLUESPECDIR/tcllib/bluespec/expandPorts.tcl

B.5.1 expandPorts

Script to create a Verilog wrapper file which expands structures into separate Verilog ports.

Usage:

expandPorts.tcl {options} packname modname module.v

options Optional command line switches:

-p path path, if supplied to the bsc command
-verilog compile to verilog (default)

-sim compile to bluesim

-include outfile
-wrapper outfile
-rename file.tcl

output file for include.vh
output file for wrapper.v
Tcl script creating rename pin structure

-makerename Create empty .rename.tcl file to edit for -rename
-interface name Interface to expand - defaults to package name (packname)
packname Name of the input .bo file.

modname Name of the top level module.

module.v bsc generated Verilog (.v) file for the module being wrapped.

72

Index

+ (Bluesim simulation flag), 52

+bsccycle (Verilog simulation), 17

+bscved (Verilog simulation), 17

-D (compiler flag), 25

-E (compiler flag), 25

-Hsize (compiler flag), 26

-I (compiler flag), 15, 24

-Ksize (compiler flag), 26

-L (compiler flag), 15, 20

-V (Bluesim simulation flag), 52

-Xc++ (compiler flag), 32

-Xcpp (compiler flag), 32

-Xc (compiler flag), 32

-X1 (compiler flag), 32

-Xv (compiler flag), 22

-aggressive-conditions (compiler flag), 27

-bdir (compiler flag), 24

-c (Bluesim simulation flag), 52

-check-assert (compiler flag), 29

-continue-after-errors (compiler flag), 29

-cpp (compiler flag), 32

demote-errors (compiler flag), 29

-e (compiler flag), 20

-elab (compiler flag), 20

-f (Bluesim simulation flag), 52

-fdir (compiler flag), 24

-g (compiler flag), 9-11, 20

-h (Bluesim simulation flag), 52

-help (compiler flag), 20

-i (compiler flag), 24

-info-dir (compiler flag), 24

-keep-fires (compiler flag), 29

-keep-inlined-boundaries (compiler flag),
29

-1 (compiler flag), 15, 20, 24

-1ift (compiler flag), 27

-m (Bluesim simulation flag), 52

-no (compiler flag), 20

-o (compiler flag), 20

-opt-undetermined-vals (compiler flag), 28

-p (compiler flag), 24

-parallel-sim-link (compiler flag), 23

-print-flags (compiler flag), 25

promote-warnings (compiler flag), 29

-q (compiler flag), 20

-quiet (compiler flag), 20

-remove-dollar (compiler flag), 22

-remove-empty-rules (compiler flag), 29

-remove-false-rules (compiler flag), 29

-remove-starved-rules (compiler flag), 29

73

-remove-unused-modules (compiler flag), 22
-reset-prefix (compiler flag), 25
-resource-off (compiler flag), 24
-resource-simple (compiler flag), 24
-sat-stp (compiler flag), 28

-sat-yices (compiler flag), 28

-sched-dot (compiler flag), 9, 31
-show-compiles (compiler flag), 27, 39
-show-elab-progress (compiler flag), 29, 35
-show-method-bvi (compiler flag), 49
-show-method-conf (compiler flag), 29, 49
-show-module-use (compiler flag), 29
-show-range-conflict (compiler flag), 29
-show-rule-rel (compiler flag), 31, 39
-show-schedule (compiler flag), 31, 39
-show-stats (compiler flag), 29
-show-timestamps (compiler flag), 25
-show-version (compiler flag), 25

-sim (compiler flag), 10, 20

-simdir (compiler flag), 24

-split-if (compiler flag), 27

-steps (compiler flag), 25
-steps-max-intervals (compiler flag), 25
-steps-warn-interval (compiler flag), 25
-suppress-warnings (compiler flag), 29
-systemc (compiler flag), 15, 23

-u (compiler flag), 20, 27, 39
-unspecified-to (compiler flag), 22
-use-dpi, 22

-v (Bluesim simulation flag), 52

-v (compiler flag), 20, 39

-v95 (compiler flag), 22

-vdir (compiler flag), 24

-verbose (compiler flag), 20

-verilog (compiler flag), 10, 20
-verilog-filter (compiler flag), 22
-vsearch (compiler flag), 17, 24

-vsim (compiler flag), 17, 20

-w (Bluesim simulation flag), 52
-warn-action-shadowing (compiler flag), 29
-warn-method-urgency (compiler flag), 29
.ba, 9

.ba (file type), 7

.bluetclre, 63

.bo, 9

.bo (file type), 7, 11

.bsv (file type), 7

.cxx (file type), 7
.h (file type), 7
.o (file type), 7

Bluespec Compiler

User Guide

.so (file type), 7

v, 9

.v (file type), 7

.xcf (synthesis script), 18, 41

attributes
synthesize, 9
automatic recompilation, 27, 39

Bluesim, 12, 50
importing C functions, 14
interactive mode, 53
linking .ba files, 13
MCD, 59
multiple clock domains, 59
scripting, 53, 58
commands, 53
navigation, 56
simulation flags, 52
Bluesim back end, 13, 14, 23, 24, 50
Bluesim flags, 23, 52
BLUESPEC_HOME, 60
BLUESPECDIR, 60
Bluetcl, 6
BLUETCL_OPTIONS, 60
bpackage (bluetcl command), 63
bsc flags, 20
BSC_CFLAGS, 60
BSC_CXXFLAGS, 60
BSC_MAKEFLAGS, 61
BSC_OPTIONS, 22, 60
BSC_VERILOG_SIM, 60

CC, 60

code generation, 10
compilation, 11

compile, 8, 9

compile flags, 20

Compiler messages, 33
compiler optimizations, 28
compiler transformations, 27
cve (Verilog simulator), 17
cver (Verilog simulator), 17
CXX, 60

debugging flags, 29
defs (bluetcl command), 64

Direct Programming Interface (DPI), 12, 18,

23
documentation, 6

elaboration error messages, 34
emacs (text editor), 7
enscript, 7

environment variables, 60

BLUESPECDIR, 60
BLUESPEC_HOME, 60
BLUETCL_OPTIONS, 60
BSC_CFLAGS, 60
BSC_CXXFLAGS, 60
BSC_MAKEFLAGS, 61
BSC_OPTIONS, 60
BSC_VERILOG_SIM, 60
CC, 60
CXX, 60
GHCRTS, 60
HOME, 60
SYSTEMC, 60

error messages, 33

file types, 7
flags (bluetcl command), 64
FSDB, 20

Bluesim, 59

Verilog, 17

GHCRTS, 60

help (bluetcl command), 64
HOME, 60

import BDPI, 12, 14, 18
import BVI, 12, 13

import packages, 9

importing C, 12, 14, 18
importing foreign functions, 12
importing packages, 10
importing Verilog, 12, 13, 18
installing, 6

isim (Verilog simulator), 17
iverilog (Verilog simulator), 17

jedit (text editor), 7

library packages, 10
link, 8, 12

linking, 12

linking flags, 20

Makefile, 61
modelsim (Verilog simulator), 17
module (bluetcl command), 64

ncverilog (Verilog simulator), 17

path flags, 24

path messages, 37
positive reset, 42
progress messages, 38

questa (Verilog simulator), 17

Bluespec Compiler

User Guide

reset, 42

resource scheduling, 24
rule (bluetcl command), 65
rules, 45

run-time flags, 26

schedule (bluetcl command), 65
scheduling, 39
scheduling messages, 35
selecting modules, 10
sim (bluesim command), 66
sim (bluetcl command), 65
state elements, 44
submodule (bluetcl command), 65
synthesize (attribute), 10, 11
synthesize attribute, 9
SYSTEMC, 60
SystemC

linking .ba files, 15
SystemC back end, 15

top module, 9

type (bluetcl command), 65
type check, 9

type-checking error messages, 33

utilities, 7

value change dump

Bluesim, 59

Verilog, 17
VCD, 20

Bluesim, 59

Verilog, 17
ves (Verilog simulator), 17
vesi (Verilog simulator), 17
verilator (Verilog simulator), 17
Verilog, 9, 12

importing, 12

linking, 17

simulator, 17
Verilog back end, 17, 18, 22, 24, 41
Verilog flags, 22
Verilog header comment, 49
Verilog ports, 42

Verilog Procedural Interface (VPI), 12, 18, 23

Verilog simulator
cve, 17
cver, 17
isim, 17
iverilog, 17
modelsim, 17
ncverilog, 17
questa, 17
ves, 17

75

vesi, 17

verilator, 17

veriwell, 17

xsim, 17
veriwell (Verilog simulator), 17
version (bluetcl command), 66
VHDL, 18
vim (text editor), 7

warnings messages, 33

Xilinx synthesis script, 18, 41
xsim (Verilog simulator), 17

Commands by Namespace

Bluesim
sim, 66

Bluetcl
bpackage, 63
defs, 64
flags, 64
help, 64
module, 64
rule, 65
schedule, 65
sim, 65
submodule, 65
type, 65
version, 66

	Table of Contents
	Getting Started
	Introduction
	Installing BSC
	Download the software
	System Requirements
	Install the software

	Components of BSC Release
	Utilities
	Quick Start

	Designing with Bluespec
	Components of a BSV Design
	Overview of the BSC process
	Help
	Compile
	Compiling a File
	Importing other packages
	Specifying modules for code generation
	Understanding separate compilation
	Interfacing to foreign modules and functions

	Link
	Linking with Bluesim
	Creating a SystemC Model Instead of a Bluesim Executable
	Linking with Verilog

	Simulate

	BSC flags
	Common compile and linking flags
	Controlling default flag values
	Verilog back-end
	Bluesim back-end
	Resource scheduling (all back ends)
	Setting the path
	Miscellaneous flags
	Run-time system
	Automatic recompilation
	Compiler transformations
	Compiler optimizations
	BSV debugging flags
	Understanding the schedule
	C/C++ flags

	Compiler messages
	Warnings and Errors
	Type-checking Errors
	Elaboration Messages
	Scheduling Messages
	Path Messages

	Other messages
	Compilation progress
	Scheduling information

	Verilog back end
	Bluespec to Verilog mapping
	Interfaces and Ports
	State elements
	Rules and related signals
	Other signals

	Verilog header comment

	Bluesim back end
	Bluesim tool flow
	Cycle-accuracy between Bluesim and Verilog simulation
	Bluesim simulation flags
	Interactive simulation
	Command scripts for Bluesim

	Value change dump (VCD) output
	Bluesim multiple clock domain support

	Environment variables
	Installation
	Options
	C/C++ variables
	Make variables

	Bluetcl Reference
	Invoking Bluetcl
	Packages and namespaces
	Customizing Bluetcl
	Package command reference
	Conventions
	Bluetcl
	Bluesim
	InstSynth

	Bluetcl Scripts
	expandPorts

	Index
	Commands by Namespace

