1 SUBROUTINE curr_binp(MNUM,IMOD,P1,P2,P3,P4,HADCUR)
9 real p1(4),p2(4),p3(4),p4(4),pa(4)
13 Complex*16 z_summ(4),z_vec(4),factor
18 real*8 amass_rho,gamma_rho
19 common /zrho_pool/ amass_rho,gamma_rho
20 data gamma_rho /0.1445d0/
21 data amass_rho /0.7761d0/
26 invmrho4 = 1.d0/amass_rho**4
29 call lata(1,p1,p2,p3,p4)
31 z_summ(1) = dcmplx(0.d0,0.d0)
32 z_summ(2) = dcmplx(0.d0,0.d0)
33 z_summ(3) = dcmplx(0.d0,0.d0)
34 z_summ(4) = dcmplx(0.d0,0.d0)
37 pa(i)=p1(i)+p2(i)+p3(i)+p4(i)
46 call t1(p2,p3,p1,p4,z_vec)
47 z_summ(1) = z_summ(1) + z_vec(1)
48 z_summ(2) = z_summ(2) + z_vec(2)
49 z_summ(3) = z_summ(3) + z_vec(3)
50 z_summ(4) = z_summ(4) + z_vec(4)
52 call t1(p2,p4,p1,p3,z_vec)
53 z_summ(1) = z_summ(1) + z_vec(1)
54 z_summ(2) = z_summ(2) + z_vec(2)
55 z_summ(3) = z_summ(3) + z_vec(3)
56 z_summ(4) = z_summ(4) + z_vec(4)
58 call t1(p3,p2,p1,p4,z_vec)
59 z_summ(1) = z_summ(1) + z_vec(1)
60 z_summ(2) = z_summ(2) + z_vec(2)
61 z_summ(3) = z_summ(3) + z_vec(3)
62 z_summ(4) = z_summ(4) + z_vec(4)
64 call t1(p3,p4,p1,p2,z_vec)
65 z_summ(1) = z_summ(1) + z_vec(1)
66 z_summ(2) = z_summ(2) + z_vec(2)
67 z_summ(3) = z_summ(3) + z_vec(3)
68 z_summ(4) = z_summ(4) + z_vec(4)
70 call t1(p4,p2,p1,p3,z_vec)
71 z_summ(1) = z_summ(1) + z_vec(1)
72 z_summ(2) = z_summ(2) + z_vec(2)
73 z_summ(3) = z_summ(3) + z_vec(3)
74 z_summ(4) = z_summ(4) + z_vec(4)
76 call t1(p4,p3,p1,p2,z_vec)
77 z_summ(1) = z_summ(1) + z_vec(1)
78 z_summ(2) = z_summ(2) + z_vec(2)
79 z_summ(3) = z_summ(3) + z_vec(3)
80 z_summ(4) = z_summ(4) + z_vec(4)
87 call t2(p2,p1,p3,p4,z_vec)
88 z_summ(1) = z_summ(1) + z_vec(1)
89 z_summ(2) = z_summ(2) + z_vec(2)
90 z_summ(3) = z_summ(3) + z_vec(3)
91 z_summ(4) = z_summ(4) + z_vec(4)
93 call t2(p3,p1,p2,p4,z_vec)
94 z_summ(1) = z_summ(1) + z_vec(1)
95 z_summ(2) = z_summ(2) + z_vec(2)
96 z_summ(3) = z_summ(3) + z_vec(3)
97 z_summ(4) = z_summ(4) + z_vec(4)
99 call t2(p4,p1,p3,p2,z_vec)
100 z_summ(1) = z_summ(1) + z_vec(1)
101 z_summ(2) = z_summ(2) + z_vec(2)
102 z_summ(3) = z_summ(3) + z_vec(3)
103 z_summ(4) = z_summ(4) + z_vec(4)
105 call t2(p1,p2,p3,p4,z_vec)
106 z_summ(1) = z_summ(1) - z_vec(1)
107 z_summ(2) = z_summ(2) - z_vec(2)
108 z_summ(3) = z_summ(3) - z_vec(3)
109 z_summ(4) = z_summ(4) - z_vec(4)
111 call t2(p1,p3,p2,p4,z_vec)
112 z_summ(1) = z_summ(1) - z_vec(1)
113 z_summ(2) = z_summ(2) - z_vec(2)
114 z_summ(3) = z_summ(3) - z_vec(3)
115 z_summ(4) = z_summ(4) - z_vec(4)
117 call t2(p1,p4,p3,p2,z_vec)
118 z_summ(1) = z_summ(1) - z_vec(1)
119 z_summ(2) = z_summ(2) - z_vec(2)
120 z_summ(3) = z_summ(3) - z_vec(3)
121 z_summ(4) = z_summ(4) - z_vec(4)
123 elseif(mnum.eq.1)
then
127 call t1(p1,p2,p3,p4,z_vec)
128 z_summ(1) = z_summ(1) + z_vec(1)
129 z_summ(2) = z_summ(2) + z_vec(2)
130 z_summ(3) = z_summ(3) + z_vec(3)
131 z_summ(4) = z_summ(4) + z_vec(4)
133 call t1(p3,p2,p1,p4,z_vec)
134 z_summ(1) = z_summ(1) + z_vec(1)
135 z_summ(2) = z_summ(2) + z_vec(2)
136 z_summ(3) = z_summ(3) + z_vec(3)
137 z_summ(4) = z_summ(4) + z_vec(4)
139 call t1(p1,p3,p2,p4,z_vec)
140 z_summ(1) = z_summ(1) + z_vec(1)
141 z_summ(2) = z_summ(2) + z_vec(2)
142 z_summ(3) = z_summ(3) + z_vec(3)
143 z_summ(4) = z_summ(4) + z_vec(4)
145 call t1(p3,p1,p2,p4,z_vec)
146 z_summ(1) = z_summ(1) + z_vec(1)
147 z_summ(2) = z_summ(2) + z_vec(2)
148 z_summ(3) = z_summ(3) + z_vec(3)
149 z_summ(4) = z_summ(4) + z_vec(4)
151 call t1(p4,p3,p1,p2,z_vec)
152 z_summ(1) = z_summ(1) + z_vec(1)
153 z_summ(2) = z_summ(2) + z_vec(2)
154 z_summ(3) = z_summ(3) + z_vec(3)
155 z_summ(4) = z_summ(4) + z_vec(4)
157 call t1(p4,p1,p3,p2,z_vec)
158 z_summ(1) = z_summ(1) + z_vec(1)
159 z_summ(2) = z_summ(2) + z_vec(2)
160 z_summ(3) = z_summ(3) + z_vec(3)
161 z_summ(4) = z_summ(4) + z_vec(4)
168 call t2(p4,p3,p1,p2,z_vec)
169 z_summ(1) = z_summ(1) + z_vec(1)
170 z_summ(2) = z_summ(2) + z_vec(2)
171 z_summ(3) = z_summ(3) + z_vec(3)
172 z_summ(4) = z_summ(4) + z_vec(4)
174 call t2(p4,p1,p3,p2,z_vec)
175 z_summ(1) = z_summ(1) + z_vec(1)
176 z_summ(2) = z_summ(2) + z_vec(2)
177 z_summ(3) = z_summ(3) + z_vec(3)
178 z_summ(4) = z_summ(4) + z_vec(4)
180 call t2(p3,p4,p1,p2,z_vec)
181 z_summ(1) = z_summ(1) - z_vec(1)
182 z_summ(2) = z_summ(2) - z_vec(2)
183 z_summ(3) = z_summ(3) - z_vec(3)
184 z_summ(4) = z_summ(4) - z_vec(4)
186 call t2(p1,p4,p3,p2,z_vec)
187 z_summ(1) = z_summ(1) - z_vec(1)
188 z_summ(2) = z_summ(2) - z_vec(2)
189 z_summ(3) = z_summ(3) - z_vec(3)
190 z_summ(4) = z_summ(4) - z_vec(4)
194 ELSEIF (imod.EQ.7)
THEN
196 call t3(p1,p2,p3,p4,z_vec)
197 z_summ(1) = z_summ(1) + z_vec(1)
198 z_summ(2) = z_summ(2) + z_vec(2)
199 z_summ(3) = z_summ(3) + z_vec(3)
200 z_summ(4) = z_summ(4) + z_vec(4)
202 call t3(p3,p2,p1,p4,z_vec)
203 z_summ(1) = z_summ(1) + z_vec(1)
204 z_summ(2) = z_summ(2) + z_vec(2)
205 z_summ(3) = z_summ(3) + z_vec(3)
206 z_summ(4) = z_summ(4) + z_vec(4)
208 call t3(p1,p3,p2,p4,z_vec)
209 z_summ(1) = z_summ(1) - z_vec(1)
210 z_summ(2) = z_summ(2) - z_vec(2)
211 z_summ(3) = z_summ(3) - z_vec(3)
212 z_summ(4) = z_summ(4) - z_vec(4)
214 call t3(p3,p1,p2,p4,z_vec)
215 z_summ(1) = z_summ(1) - z_vec(1)
216 z_summ(2) = z_summ(2) - z_vec(2)
217 z_summ(3) = z_summ(3) - z_vec(3)
218 z_summ(4) = z_summ(4) - z_vec(4)
220 call t3(p1,p4,p3,p2,z_vec)
221 z_summ(1) = z_summ(1) - z_vec(1)
222 z_summ(2) = z_summ(2) - z_vec(2)
223 z_summ(3) = z_summ(3) - z_vec(3)
224 z_summ(4) = z_summ(4) - z_vec(4)
226 call t3(p3,p4,p1,p2,z_vec)
227 z_summ(1) = z_summ(1) - z_vec(1)
228 z_summ(2) = z_summ(2) - z_vec(2)
229 z_summ(3) = z_summ(3) - z_vec(3)
230 z_summ(4) = z_summ(4) - z_vec(4)
245 factor= fit_a1_1(ssqrt) * 76.565033643843d0*
246 $ sqrt(0.71709*ssqrt-0.27505)*invmrho4/ssqrt
247 elseif(imod.eq.7)
then
250 factor= fit_om_1(ssqrt) * 886.837943974463d0 *
251 $ sqrt(0.70983*ssqrt-0.26689)*invmrho4/ssqrt
253 write(*,*)
' Wrong IMOD=',imod,
' !'
257 elseif(mnum.eq.2)
then
260 factor= fit_2(ssqrt) * 96.867161854922d0* zfa1tab(ss)*
261 $ sqrt(0.70907*ssqrt-0.26413)*invmrho4/ssqrt
265 write(*,*)
' WRONG MNUM ! MNUM=',mnum
270 z_summ(i) = z_summ(i)*factor
275 call lata(-1,p1,p2,p3,p4)
278 9100
FORMAT(
' ----- WRONG VALUE OF MNUM ')
282 subroutine t1(p1,p2,p3,p4,z_vec)
295 real p1(4),p2(4),p3(4),p4(4),pa(4)
297 complex*16 z_vec(4),z_ee
298 Complex*16 Z_a1,Z_rho
299 Complex*16 Z_da1,Z_drho,fcom
301 real*8 amass_rho,gamma_rho
302 common /zrho_pool/ amass_rho,gamma_rho
303 real*8 amass_a,gamma_a,scale_a
305 common /za1p_pool/ amass_a,gamma_a,scale_a,dsigma_a
308 real*8 ppp1,p4pp1,p3pp1,p3p,p4p,p1p3,p1p4
311 z_rho = z_drho(p3,p4)
312 pa(1)=p1(1)+p2(1)+p3(1)+p4(1)
313 pa(2)=p1(2)+p2(2)+p3(2)+p4(2)
314 pa(3)=p1(3)+p2(3)+p3(3)+p4(3)
315 pa(4)=p1(4)+p2(4)+p3(4)+p4(4)
317 sa = (pa(1)-p1(1))**2 - (pa(2)-p1(2))**2 -
318 $ (pa(3)-p1(3))**2 - (pa(4)-p1(4))**2
322 fs = ((1.d0+amass_a**2/scale_a)/(1.d0+sa/scale_a))**2
324 fcom = fs/(z_a1*z_rho)
326 ppp1 = scalar(pa,pa) - scalar(pa,p1)
327 p4pp1 = scalar(p4,pa) - scalar(p4,p1)
328 p3pp1 = scalar(p3,pa) - scalar(p3,p1)
335 z_vec(i) = fcom*(ppp1*(p3(i)*p4pp1 - p4(i)*p3pp1) +
336 $ (pa(i) - p1(i))*(p3p*p1p4-p4p*p1p3))
341 z_vec(i) = z_vec(i+1)
346 subroutine t2(p1,p2,p3,p4,z_vec)
358 real p1(4),p2(4),p3(4),p4(4),pa(4)
360 complex*16 z_vec(4),z_ee
361 Complex*16 Z_a1,Z_sgm,fcom
362 Complex*16 Z_da1,Z_dsigma
364 real*8 amass_rho,gamma_rho
365 common /zrho_pool/ amass_rho,gamma_rho
367 real*8 amass_a,gamma_a,scale_a
369 common /za1p_pool/ amass_a,gamma_a,scale_a,dsigma_a
374 z_sgm = z_dsigma(p3,p4)
376 pa(1)=p1(1)+p2(1)+p3(1)+p4(1)
377 pa(2)=p1(2)+p2(2)+p3(2)+p4(2)
378 pa(3)=p1(3)+p2(3)+p3(3)+p4(3)
379 pa(4)=p1(4)+p2(4)+p3(4)+p4(4)
381 sa = (pa(1)-p1(1))**2 - (pa(2)-p1(2))**2 -
382 $ (pa(3)-p1(3))**2 - (pa(4)-p1(4))**2
387 fs = ((1.d0+amass_a**2/scale_a)/(1.d0+sa/scale_a))**2
389 fcom = fs*dsigma_a/(z_a1*z_sgm)*sa
391 ppp1 = scalar(pa,pa) - scalar(pa,p1)
394 z_vec(i) = fcom*(p2(i)*ppp1 + (p1(i)-pa(i))*p2p)
399 z_vec(i) = z_vec(i+1)
404 real*8 function scalar(a,b)
407 scalar = a(1)*b(1)-a(2)*b(2)-a(3)*b(3)-a(4)*b(4)
413 complex*16 function z_da1(sa_q)
423 real*8 amass_a,gamma_a,scale_a
425 common /za1p_pool/ amass_a,gamma_a,scale_a,dwave_a
428 real*8 ama1,gma1,gmv0
434 data gamma_a /0.45d0/
435 data amass_a /1.23d0/
437 data dwave_a / (1.269d0,0.591d0) /
445 gma1 = gamma_a/amass_a
453 z_da1 = dcmplx(sa_q/ama1-1.d0,gma1*pm/pm0)
456 double precision function gma1v(X2)
461 real*8 amass_a,gamma_a,scale_a
463 common /za1p_pool/ amass_a,gamma_a,scale_a,z
466 real*8 x2,delta,ga1my
468 real*8 s(100),inte(100),int_abs(100),int_re(100),int_im(100)
469 DATA s/0.17531806e+00,0.20062977e+00,0.22594148e+00,0.25125318e+00
470 #0.27656489e+00,0.30187660e+00,0.32718830e+00,0.35250001e+00,0.3778
471 #0.42843513e+00,0.45374684e+00,0.47905854e+00,0.50437025e+00,0.5296
472 #0.58030537e+00,0.60561707e+00,0.63092878e+00,0.65624049e+00,0.6815
473 #0.73217561e+00,0.75748731e+00,0.78279902e+00,0.80811073e+00,0.8334
474 #0.88404585e+00,0.90935755e+00,0.93466926e+00,0.95998096e+00,0.9852
475 #0.10359161e+01,0.10612278e+01,0.10865395e+01,0.11118512e+01,0.1137
476 #0.11877863e+01,0.12130980e+01,0.12384097e+01,0.12637214e+01,0.1289
477 #0.13396566e+01,0.13649683e+01,0.13902800e+01,0.14155917e+01,0.1440
478 #0.14915268e+01,0.15168385e+01,0.15421502e+01,0.15674619e+01,0.1592
479 #0.16433970e+01,0.16687087e+01,0.16940205e+01,0.17193322e+01,0.1744
480 #0.17952673e+01,0.18205790e+01,0.18458907e+01,0.18712024e+01,0.1896
481 #0.19471375e+01,0.19724492e+01,0.19977609e+01,0.20230726e+01,0.2048
482 #0.20990078e+01,0.21243195e+01,0.21496312e+01,0.21749429e+01,0.2200
483 #0.22508780e+01,0.22761897e+01,0.23015014e+01,0.23268131e+01,0.2352
484 #0.24027482e+01,0.24280599e+01,0.24533716e+01,0.24786834e+01,0.2503
485 #0.25546185e+01,0.25799302e+01,0.26052419e+01,0.26305536e+01,0.2655
486 DATA inte/0.00000000e+00,0.19835316e-09,0.17277872e-08,0.63260250e
487 #0.16228446e-07,0.34254199e-07,0.63924158e-07,0.10961715e-06,0.1767
488 #0.40426145e-06,0.58366008e-06,0.82375764e-06,0.11415688e-05,0.1558
489 #0.28128794e-05,0.37340827e-05,0.49305520e-05,0.64855462e-05,0.8507
490 #0.14538578e-04,0.18892731e-04,0.24346357e-04,0.30949160e-04,0.3860
491 #0.56065745e-04,0.65330521e-04,0.74672459e-04,0.83967396e-04,0.9314
492 #0.11099490e-03,0.11964932e-03,0.12812206e-03,0.13641877e-03,0.1445
493 #0.16033133e-03,0.16800535e-03,0.17554509e-03,0.18295843e-03,0.1902
494 #0.20451223e-03,0.21148974e-03,0.21837340e-03,0.22516843e-03,0.2318
495 #0.24506849e-03,0.25155433e-03,0.25797236e-03,0.26432627e-03,0.2706
496 #0.28303336e-03,0.28916027e-03,0.29523695e-03,0.30126590e-03,0.3072
497 #0.31908532e-03,0.32494289e-03,0.33076174e-03,0.33654407e-03,0.3422
498 #0.35368553e-03,0.35933539e-03,0.36495540e-03,0.37054666e-03,0.3761
499 #0.38715892e-03,0.39264583e-03,0.39810880e-03,0.40354939e-03,0.4089
500 #0.41974145e-03,0.42509830e-03,0.43043607e-03,0.43575541e-03,0.4410
501 #0.45160906e-03,0.45686072e-03,0.46209683e-03,0.46731790e-03,0.4725
502 #0.48289566e-03,0.48806125e-03,0.49321407e-03,0.49835450e-03,0.5034
503 DATA int_abs/0.00000000e+00,0.21066009e-09,0.16564992e-08,0.553594
504 #0.13052891e-07,0.25435346e-07,0.43943074e-07,0.69871482e-07,0.1045
505 #0.20571712e-06,0.27506977e-06,0.35892330e-06,0.45882244e-06,0.5763
506 #0.87092972e-06,0.10513722e-05,0.12562662e-05,0.14874272e-05,0.1746
507 #0.23572986e-05,0.27125129e-05,0.31036774e-05,0.35328342e-05,0.4002
508 #0.50690759e-05,0.56711263e-05,0.63217233e-05,0.70230186e-05,0.7777
509 #0.94526337e-05,0.10378245e-04,0.11365281e-04,0.12415854e-04,0.1353
510 #0.15969588e-04,0.17294974e-04,0.18694106e-04,0.20168926e-04,0.2172
511 #0.25066665e-04,0.26863051e-04,0.28744432e-04,0.30712501e-04,0.3276
512 #0.37153651e-04,0.39485116e-04,0.41911400e-04,0.44434054e-04,0.4705
513 #0.52594877e-04,0.55517507e-04,0.58543603e-04,0.61674489e-04,0.6491
514 #0.71708689e-04,0.75271391e-04,0.78945069e-04,0.82730875e-04,0.8662
515 #0.94772202e-04,0.99017560e-04,0.10338045e-03,0.10786187e-03,0.1124
516 #0.12204385e-03,0.12699238e-03,0.13208090e-03,0.13729358e-03,0.1426
517 #0.15368518e-03,0.15940303e-03,0.16524921e-03,0.17122452e-03,0.1773
518 #0.18993282e-03,0.19643219e-03,0.20306438e-03,0.20983011e-03,0.2167
519 #0.23093528e-03,0.23824187e-03,0.24568530e-03,0.25326619e-03,0.2609
520 DATA int_re/0.00000000e+00,-.38711044e-09,-.30791558e-08,-.1044523
521 #-.25062489e-07,-.49803729e-07,-.87911341e-07,-.14307792e-06,-.2195
522 #-.45681885e-06,-.63010309e-06,-.85008368e-06,-.11263793e-05,-.1470
523 #-.24233327e-05,-.30710710e-05,-.38673463e-05,-.48455316e-05,-.6046
524 #-.93030466e-05,-.11448885e-04,-.13966772e-04,-.16823546e-04,-.1993
525 #-.26472191e-04,-.29719254e-04,-.32887419e-04,-.35962204e-04,-.3894
526 #-.44665024e-04,-.47426566e-04,-.50137251e-04,-.52807218e-04,-.5544
527 #-.60657047e-04,-.63242968e-04,-.65822615e-04,-.68400294e-04,-.7097
528 #-.76155632e-04,-.78758044e-04,-.81372163e-04,-.84000166e-04,-.8664
529 #-.91982105e-04,-.94679390e-04,-.97396632e-04,-.10013464e-03,-.1028
530 #-.10847991e-03,-.11130726e-03,-.11415800e-03,-.11703298e-03,-.1199
531 #-.12580402e-03,-.12877720e-03,-.13177591e-03,-.13479977e-03,-.1378
532 #-.14402448e-03,-.14715072e-03,-.15030274e-03,-.15348058e-03,-.1566
533 #-.16316917e-03,-.16645040e-03,-.16975745e-03,-.17309031e-03,-.1764
534 #-.18324331e-03,-.18667896e-03,-.19014018e-03,-.19362689e-03,-.1971
535 #-.20423936e-03,-.20782708e-03,-.21144049e-03,-.21507866e-03,-.2187
536 #-.22614252e-03,-.22987995e-03,-.23364196e-03,-.23742846e-03,-.2412
537 DATA int_im/0.00000000e+00,0.12002091e-09,0.12850209e-08,0.5114144
538 #0.13632230e-07,0.29227933e-07,0.54655557e-07,0.93051069e-07,0.1479
539 #0.32360920e-06,0.45366352e-06,0.61884173e-06,0.82491108e-06,0.1077
540 #0.17495437e-05,0.21789224e-05,0.26750078e-05,0.32360835e-05,0.3852
541 #0.51400771e-05,0.56980360e-05,0.60787180e-05,0.61747611e-05,0.5900
542 #0.41575455e-05,0.27611998e-05,0.10942719e-05,-.78733816e-06,-.2838
543 #-.73219124e-05,-.97098783e-05,-.12175421e-04,-.14708367e-04,-.1730
544 #-.22644299e-04,-.25386852e-04,-.28172810e-04,-.30999930e-04,-.3386
545 #-.39710918e-04,-.42686461e-04,-.45695990e-04,-.48738489e-04,-.5181
546 #-.58054706e-04,-.61220193e-04,-.64414436e-04,-.67636711e-04,-.7088
547 #-.77464884e-04,-.80792567e-04,-.84145039e-04,-.87521715e-04,-.9092
548 #-.97791406e-04,-.10125942e-03,-.10474898e-03,-.10825960e-03,-.1117
549 #-.11891322e-03,-.12250352e-03,-.12611268e-03,-.12974120e-03,-.1333
550 #-.14072981e-03,-.14442733e-03,-.14814143e-03,-.15187176e-03,-.1556
551 #-.16315687e-03,-.16694889e-03,-.17075556e-03,-.17457660e-03,-.1784
552 #-.18612432e-03,-.19000007e-03,-.19388755e-03,-.19778906e-03,-.2017
553 #-.20956779e-03,-.21351800e-03,-.21747982e-03,-.22145304e-03,-.2254
556 i = int((x2-s(1))/delta) + 1
558 ga1my = inte(i) + (inte(i+1)-inte(i))/delta*(x2-s(i))
559 ga1my = ga1my + abs(z)**2 * (int_abs(i) + (int_abs(i+1)-int_abs(i)
560 ga1my = ga1my + dble(z)* (int_re(i) + (int_re(i+1)-int_re(i))/delta
561 ga1my = ga1my + dimag(z)*(int_im(i) + (int_im(i+1)-int_im(i))/delta
563 fs = ((1.d0+amass_a**2/scale_a)/(1.d0+x2/scale_a))**2
567 complex*16 function z_dsigma(p1,p2)
575 real*8 amass_s,gamma_s
578 real*8 ps1,ps2,am2_1,am2_2,as,d1,d2,dsq,pm,pm0,dd,am12
584 ps1 = p1(2)**2+p1(3)**2+p1(4)**2
585 ps2 = p2(2)**2+p2(3)**2+p2(4)**2
590 am12 = p1(1)*p2(1)-p1(2)*p2(2)-p1(3)*p2(3)-p1(4)*p2(4)
591 as = am2_1+am2_2+2.d0*am12
595 d1 = 1.d0-(am1+am2)**2/as
596 d2 = 1.d0-(am1-am2)**2/as
597 dd = max(d1*d2,1.d-16)
602 d1 = 1.d0-(am1+am2)**2/amass_s**2
603 d2 = 1.d0-(am1-am2)**2/amass_s**2
608 z_dsigma = dcmplx(as/amass_s**2-1.d0,gamma_s/amass_s*pm/pm0)
611 complex*16 function z_drho(p1,p2)
619 real*8 amass_rho,gamma_rho,ampi,s,g,gammas,dm
620 common /zrho_pool/ amass_rho,gamma_rho
622 parameter(ampi=.13957d0)
624 g(s) = sqrt(max((s-4.*ampi**2)**3/s,0.d0))
626 s = (p1(1)+p2(1))**2 -(p1(2)+p2(2))**2-(p1(3)+p2(3))**2-
629 gammas = gamma_rho*amass_rho
630 z_drho =
COMPLEX(s-AMass_Rho**2-dm(s)*GamMas,GamMas*g(s)/g(AMass_Rho
632 z_drho = z_drho /(1.+ gamma_rho/amass_rho*dm(0.d0))
635 real*8 function dm(s)
638 real*8 s,m2,gm2,hrho,dhrho
640 real*8 amass_rho,gamma_rho
641 common /zrho_pool/ amass_rho,gamma_rho
642 parameter(ampi=.13957d0)
643 parameter(pi=3.1415926d0)
646 gm2=m2*(sqrt(1.d0-(2.d0*ampi)**2/m2))**3
647 dm = (hrho(s)-hrho(m2)-(s-m2)*dhrho(m2))/gm2
649 real*8 function hrho(s)
653 parameter(ampi=.13957d0)
654 parameter(pi=3.1415926d0)
657 hrho = -2.d0*4.d0*ampi**2/pi
659 y=1.d0-4.d0*ampi**2/s
660 y = sqrt(max(0.d0,y))
661 w = y*log((1.d0+y)/(1.d0-y))
662 hrho = w*(s-4.d0*ampi**2)/pi
665 real*8 function dhrho(s)
669 real*8 s,pi,ampi,y,a,w,dy
670 parameter(ampi=.13957d0)
671 parameter(pi=3.1415926d0)
673 y=1.d0-4.d0*ampi**2/s
674 y = sqrt(max(0.d0,y))
675 a = log((1.d0+y)/(1.d0-y))
677 dy= 4.d0*ampi**2/2.d0/s/y
678 dhrho = (w + (dy*a+1.d0)*y**2)/pi
681 subroutine lata(key,p1,p2,p3,p4)
683 real ee1,ee2,ee3,ee4,p1(4),p2(4),p3(4),p4(4)
718 subroutine t3(p1,p2,p3,p4,z_vec)
729 real p1(4),p2(4),p3(4),p4(4),PA(4)
731 real*8 scalar,pp2,pp3,pp4,p1p2,p1p3,p1p4
732 complex*16 z_vec(4),z_ee
733 Complex*16 Z_a1,Z_rho
734 Complex*16 Z_domega,Z_drho,fcom,zmix
736 real*8 amass_rho,gamma_rho
737 common /zrho_pool/ amass_rho,gamma_rho
740 zmix=dcmplx(1.d0,0.d0)
742 z_rho = z_drho(p3,p4)
743 pa(1)=p1(1)+p2(1)+p3(1)+p4(1)
744 pa(2)=p1(2)+p2(2)+p3(2)+p4(2)
745 pa(3)=p1(3)+p2(3)+p3(3)+p4(3)
746 pa(4)=p1(4)+p2(4)+p3(4)+p4(4)
748 som = (pa(1)-p1(1))**2 - (pa(2)-p1(2))**2 -
749 $ (pa(3)-p1(3))**2 - (pa(4)-p1(4))**2
754 fcom = fs/(z_a1*z_rho)
762 z_vec(i)=fcom*(p2(i)*(pp3*p1p4-pp4*p1p3)-pp2*(p3(i)*p1p4-
763 $ p4(i)*p1p3) + p1p2*(p3(i)*pp4-p4(i)*pp3)) * zmix
768 z_vec(i) = z_vec(i+1)
773 complex*16 function z_domega(som)
781 real*8 amass_o,gamma_o
782 real*8 som,gom,gomega
783 common /omega/amass_o
785 data gamma_o /0.00841d0/
786 data amass_o /0.782d0/
788 gom = gomega(sqrt(som))
789 z_domega = dcmplx(som/(amass_o**2)-1.d0,gamma_o/amass_o*gom)
791 real*8 function gomega(x)
795 real*8 amass_o,par(10)
796 common /omega/amass_o
797 data par/17.5598888d0,141.110153d0,894.884460d0,4977.35107d0,
798 #7610.65625d0,-42524.4062d0,-1333.26282d0,4860.18799d0,
799 #-6000.80908d0,2504.97461d0/
801 gomega = 1. + par(1)*(x-0.782)+par(2)*(x-0.782)**2
802 # +par(3)*(x-0.782)**3+par(4)*(x-0.782)**4+par(5)*(x-0.782)**5
803 # +par(6)*(x-0.782)**6
805 gomega = par(7)+par(8)*x+par(9)*x**2+par(10)*x**3
807 gomega = max(0.d0,gomega)
810 REAL FUNCTION ZFA1TAB(Q2)
820 DATA s/ 0.2916000,0.3206586,0.3497172,0.3787757,
821 # 0.4078344,0.4368929,0.4659515,0.4950101,0.5240687,0.5531273,
822 # 0.5821859,0.6112444,0.6403030,0.6693616,0.6984202,0.7274788,
823 # 0.7565374,0.7855960,0.8146545,0.8437131,0.8727717,0.9018303,
824 # 0.9308889,0.9599475,0.9890060,1.0180646,1.0471232,1.0761818,
825 # 1.1052403,1.1342990,1.1633576,1.1924162,1.2214748,1.2505333,
826 # 1.2795919,1.3086505,1.3377091,1.3667676,1.3958262,1.4248848,
827 # 1.4539435,1.4830021,1.5120606,1.5411192,1.5701778,1.5992364,
828 # 1.6282949,1.6573535,1.6864121,1.7154707,1.7445292,1.7735878,
829 # 1.8026465,1.8317051,1.8607637,1.8898222,1.9188808,1.9479394,
830 # 1.9769980,2.0060565,2.0351152,2.0641737,2.0932324,2.1222908,
831 # 2.1513495,2.1804080,2.2094667,2.2385252,2.2675838,2.2966425,
832 # 2.3257010,2.3547597,2.3838181,2.4128768,2.4419353,2.4709940,
833 # 2.5000525,2.5291111,2.5581696,2.5872283,2.6162868,2.6453454,
834 # 2.6744041,2.7034626,2.7325213,2.7615798,2.7906384,2.8196969,
835 # 2.8487556,2.8778141,2.9068727,2.9359312,2.9649899,2.9940486,
836 # 3.0231071,3.0521657,3.0812242,3.1102829,3.1393414,3.1684000/
837 DATA val/ 2.0261996,2.2349865,2.4839740,2.7840748,
838 # 3.1488798,3.5936222,4.1301847,4.7517977,5.3984838,5.9147439,
839 # 6.0864558,5.8283591,5.2841811,4.6615186,4.0839195,3.5914702,
840 # 3.1841860,2.8494759,2.5732665,2.3434010,2.1502059,1.9862038,
841 # 1.8456544,1.7241427,1.6182493,1.5253036,1.4432002,1.3702650,
842 # 1.3051554,1.2467849,1.1942677,1.1468738,1.1039963,1.0651271,
843 # 1.0298390,0.9977714,0.9686196,0.9421255,0.9180685,0.8962603,
844 # 0.8765374,0.8587573,0.8427927,0.8285285,0.8158574,0.8046767,
845 # 0.7948853,0.7863811,0.7790571,0.7728010,0.7674922,0.7630011,
846 # 0.7591889,0.7559078,0.7530031,0.7503147,0.7476809,0.7449428,
847 # 0.7419487,0.7385587,0.7346500,0.7301207,0.7248930,0.7189151,
848 # 0.7121620,0.7046344,0.6963565,0.6873729,0.6777444,0.6675445,
849 # 0.6568548,0.6457604,0.6343476,0.6227004,0.6108983,0.5990148,
850 # 0.5871165,0.5752623,0.5635037,0.5518846,0.5404415,0.5292045,
851 # 0.5181981,0.5074410,0.4969472,0.4867267,0.4767860,0.4671288,
852 # 0.4577557,0.4486661,0.4398569,0.4313242,0.4230627,0.4150662,
853 # 0.4073282,0.3998415,0.3925985,0.3855914,0.3788125,0.3722538/
856 delta = (s(100)-s(1))/99.d0
857 i = int((q2-s(1))/delta) + 1
859 zfa1tab = val(i) + (val(i+1)-val(i))/(s(i+1)-s(i))*(q2-s(i))
862 REAL FUNCTION fit_a1_1(E)
871 DATA arg/ 0.6000000,0.6131313,0.6262626,0.6393939,
872 # 0.6525252,0.6656566,0.6787879,0.6919192,0.7050505,0.7181818,
873 # 0.7313131,0.7444444,0.7575758,0.7707071,0.7838384,0.7969697,
874 # 0.8101010,0.8232324,0.8363636,0.8494949,0.8626263,0.8757576,
875 # 0.8888889,0.9020202,0.9151515,0.9282829,0.9414141,0.9545454,
876 # 0.9676768,0.9808081,0.9939394,1.0070707,1.0202020,1.0333333,
877 # 1.0464647,1.0595959,1.0727273,1.0858586,1.0989898,1.1121212,
878 # 1.1252525,1.1383839,1.1515151,1.1646465,1.1777778,1.1909091,
879 # 1.2040404,1.2171717,1.2303030,1.2434343,1.2565657,1.2696970,
880 # 1.2828283,1.2959596,1.3090909,1.3222222,1.3353535,1.3484849,
881 # 1.3616161,1.3747475,1.3878788,1.4010102,1.4141414,1.4272727,
882 # 1.4404041,1.4535353,1.4666667,1.4797980,1.4929293,1.5060606,
883 # 1.5191919,1.5323232,1.5454545,1.5585859,1.5717171,1.5848485,
884 # 1.5979798,1.6111112,1.6242424,1.6373737,1.6505051,1.6636363,
885 # 1.6767677,1.6898990,1.7030303,1.7161616,1.7292930,1.7424242,
886 # 1.7555555,1.7686869,1.7818182,1.7949495,1.8080808,1.8212122,
887 # 1.8343434,1.8474747,1.8606061,1.8737373/
888 DATA val/ 0.0000000, 0.0000000, 0.0000000, 0.0000000,
889 # 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000,
890 # 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000,13.1664906,
891 #10.7234087, 8.8219614,10.7989664, 9.1883001, 7.8526378, 7.7481031,
892 # 8.2633696, 5.5042820, 4.9029269, 4.4794345, 3.9654009, 4.5254011,
893 # 3.6509495, 3.5005512, 3.2274280, 3.1808922, 2.9925177, 2.6886659,
894 # 2.5195024, 2.4678771, 2.3540580, 2.2123868, 2.1103525, 2.0106986,
895 # 1.8792295, 1.8250662, 1.7068460, 1.6442842, 1.5503920, 1.4814349,
896 # 1.4225838, 1.3627135, 1.3205355, 1.2784383, 1.2387408, 1.1975995,
897 # 1.1633024, 1.1318133, 1.1114354, 1.0951439, 1.0691465, 1.0602311,
898 # 1.0392803, 1.0220672, 1.0154786, 1.0010130, 0.9908018, 0.9710845,
899 # 0.9602382, 0.9488459, 0.9316537, 0.9118049, 0.8920435, 0.8719332,
900 # 0.8520256, 0.8280582, 0.8064085, 0.7767881, 0.7570597, 0.7382626,
901 # 0.7100251, 0.6846500, 0.6666913, 0.6372250, 0.6162248, 0.6007728,
902 # 0.5799103, 0.5674670, 0.5446148, 0.5352115, 0.5128809, 0.4932536,
903 # 0.5310397, 0.8566489, 0.0000000, 0.0000000, 0.0000000, 0.0000000,
904 # 0.0000000, 0.0000000, 0.0000000, 0.0000000/
908 elseif(e.lt.1.777)
then
910 if (arg(i).le.e)
goto 100
912 100 fit=val(i)+(val(i+1)-val(i))/(arg(i+1)-arg(i))*(e-arg(i))
918 REAL FUNCTION fit_om_1(E)
927 DATA arg/ 0.6000000,0.6131313,0.6262626,0.6393939,
928 # 0.6525252,0.6656566,0.6787879,0.6919192,0.7050505,0.7181818,
929 # 0.7313131,0.7444444,0.7575758,0.7707071,0.7838384,0.7969697,
930 # 0.8101010,0.8232324,0.8363636,0.8494949,0.8626263,0.8757576,
931 # 0.8888889,0.9020202,0.9151515,0.9282829,0.9414141,0.9545454,
932 # 0.9676768,0.9808081,0.9939394,1.0070707,1.0202020,1.0333333,
933 # 1.0464647,1.0595959,1.0727273,1.0858586,1.0989898,1.1121212,
934 # 1.1252525,1.1383839,1.1515151,1.1646465,1.1777778,1.1909091,
935 # 1.2040404,1.2171717,1.2303030,1.2434343,1.2565657,1.2696970,
936 # 1.2828283,1.2959596,1.3090909,1.3222222,1.3353535,1.3484849,
937 # 1.3616161,1.3747475,1.3878788,1.4010102,1.4141414,1.4272727,
938 # 1.4404041,1.4535353,1.4666667,1.4797980,1.4929293,1.5060606,
939 # 1.5191919,1.5323232,1.5454545,1.5585859,1.5717171,1.5848485,
940 # 1.5979798,1.6111112,1.6242424,1.6373737,1.6505051,1.6636363,
941 # 1.6767677,1.6898990,1.7030303,1.7161616,1.7292930,1.7424242,
942 # 1.7555555,1.7686869,1.7818182,1.7949495,1.8080808,1.8212122,
943 # 1.8343434,1.8474747,1.8606061,1.8737373/
944 DATA val/ 0.0000000, 0.0000000, 0.0000000, 0.0000000,
945 # 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000,
946 # 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000,
947 # 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000,
948 # 0.0000000, 0.0000000, 2.2867811, 2.9710648, 2.9344304, 2.6913538,
949 # 2.5471206, 2.3557470, 2.2448280, 2.1074708, 2.0504866, 1.9270257,
950 # 1.8669430, 1.7907301, 1.7184515, 1.6535717, 1.6039416, 1.5535343,
951 # 1.5065620, 1.4608675, 1.4215596, 1.3849826, 1.3480113, 1.3147917,
952 # 1.2793381, 1.2487282, 1.2184237, 1.1952927, 1.1683835, 1.1458827,
953 # 1.1145806, 1.0935820, 1.0608720, 1.0390474, 1.0164336, 0.9908721,
954 # 0.9585276, 0.9307971, 0.9017274, 0.8731154, 0.8452763, 0.8145532,
955 # 0.7817339, 0.7493086, 0.7199919, 0.6887290, 0.6568120, 0.6255773,
956 # 0.5944664, 0.5661956, 0.5391204, 0.5102391, 0.4786543, 0.4546428,
957 # 0.4316779, 0.4063754, 0.3769831, 0.3561141, 0.3333555, 0.3139160,
958 # 0.2949214, 0.2814728, 0.2602444, 0.2349602, 0.2269845, 0.2192318,
959 # 0.2286938, 0.2839763, 0.0000000, 0.0000000, 0.0000000, 0.0000000,
960 # 0.0000000, 0.0000000, 0.0000000, 0.0000000/
964 elseif(e.lt.1.777)
then
966 if (arg(i).le.e)
goto 100
968 100 fit=val(i)+(val(i+1)-val(i))/(arg(i+1)-arg(i))*(e-arg(i))
974 REAL FUNCTION fit_2(E)
982 DATA arg/ 0.6000000,0.6131313,0.6262626,0.6393939,
983 # 0.6525252,0.6656566,0.6787879,0.6919192,0.7050505,0.7181818,
984 # 0.7313131,0.7444444,0.7575758,0.7707071,0.7838384,0.7969697,
985 # 0.8101010,0.8232324,0.8363636,0.8494949,0.8626263,0.8757576,
986 # 0.8888889,0.9020202,0.9151515,0.9282829,0.9414141,0.9545454,
987 # 0.9676768,0.9808081,0.9939394,1.0070707,1.0202020,1.0333333,
988 # 1.0464647,1.0595959,1.0727273,1.0858586,1.0989898,1.1121212,
989 # 1.1252525,1.1383839,1.1515151,1.1646465,1.1777778,1.1909091,
990 # 1.2040404,1.2171717,1.2303030,1.2434343,1.2565657,1.2696970,
991 # 1.2828283,1.2959596,1.3090909,1.3222222,1.3353535,1.3484849,
992 # 1.3616161,1.3747475,1.3878788,1.4010102,1.4141414,1.4272727,
993 # 1.4404041,1.4535353,1.4666667,1.4797980,1.4929293,1.5060606,
994 # 1.5191919,1.5323232,1.5454545,1.5585859,1.5717171,1.5848485,
995 # 1.5979798,1.6111112,1.6242424,1.6373737,1.6505051,1.6636363,
996 # 1.6767677,1.6898990,1.7030303,1.7161616,1.7292930,1.7424242,
997 # 1.7555555,1.7686869,1.7818182,1.7949495,1.8080808,1.8212122,
998 # 1.8343434,1.8474747,1.8606061,1.8737373/
999 DATA val/ 0.0000000, 0.0000000, 0.0000000, 0.0000000,
1000 # 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000,
1001 # 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 1.4819183,
1002 # 1.7086354, 1.6958492, 1.6172935, 1.6301320, 1.5719706, 1.5459771,
1003 # 1.5377471, 1.5008864, 1.4924121, 1.4720882, 1.4371741, 1.3990080,
1004 # 1.3879193, 1.4030601, 1.3768673, 1.3493533, 1.3547127, 1.3275831,
1005 # 1.3167892, 1.3035913, 1.2968298, 1.2801558, 1.2650299, 1.2557997,
1006 # 1.2325822, 1.2210644, 1.1935984, 1.1746194, 1.1510350, 1.1358515,
1007 # 1.1205584, 1.1010553, 1.0903869, 1.0731295, 1.0578678, 1.0438409,
1008 # 1.0377911, 1.0253277, 1.0103551, 1.0042409, 0.9937978, 0.9858117,
1009 # 0.9770346, 0.9724492, 0.9656686, 0.9606671, 0.9525813, 0.9488522,
1010 # 0.9417335, 0.9399430, 0.9323438, 0.9281269, 0.9244171, 0.9237418,
1011 # 0.9174354, 0.9177181, 0.9120840, 0.9047825, 0.9065579, 0.9034142,
1012 # 0.8992961, 0.9011586, 0.9036470, 0.8954964, 0.8898208, 0.8911991,
1013 # 0.8854824, 0.8888282, 0.8868449, 0.9004632, 0.8981572, 0.9096183,
1014 # 0.9046990, 1.7454215, 0.0000000, 0.0000000, 0.0000000, 0.0000000,
1015 # 0.0000000, 0.0000000, 0.0000000, 0.0000000/
1019 elseif(e.lt.1.777)
then
1021 if (arg(i).le.e)
goto 100
1023 100 fit=val(i)+(val(i+1)-val(i))/(arg(i+1)-arg(i))*(e-arg(i))