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1 Introduction

If the ultimate goal is to solve linear systems of the form AX = B, one must compute an A = LDU,
A=UTDU or A= UHDU factorization, depending on whether the matrix A is nonsymmetric, symmetric
or Hermitian. D is a diagonal or block diagonal matrix, L is unit lower triangular, and U is unit upper
triangular. A is sparse, but the sparsity structure of L and U will likely be much larger than that of A,
i.e., they will suffer fill-in. It is crucial to find a permutation matrix such that the factors of PAPT have as
moderate fill-in as can be reasonably expected.

To illustrate, consider a 27-point finite difference operator defined on an n x n x n grid. The number
of rows and columns in A is n?, as is the number of nonzero entries in A. Using the natural ordering, the
numbers of entries in L and U are O(n%), and it takes O(n”) operations to compute the factorization. The
banded and profile orderings [11] have the same complexity.

Using the nested dissection ordering, [10], the factor storage is reduced to O(n?) and factor operations
to O(n%). In practice, the minimum degree ordering has this same low-fill nature, although topological
counterexamples exist [7]. A unit cube is the worst case comparison between banded and profile orderings
and the minimum degree and nested dissection orderings. But, there is still a lot to be gained by using
a good permutation when solving most sparse linear systems, and the relative gain becomes larger as the
problem size increases.

This short paper is a gentle introduction to the ordering methods — the background as well as the
specific function calls. But finding a good ordering is not enough. The “choreography” of the factorization
and solves, i.e., what data structures and computations exist, and in a parallel environment, which thread
or processor does what and when, is as crucial. The structure of the factor matrices, as well as the structure
of the computations is controlled by a “front tree”. This object is constructed directly by the SPOOLES
ordering software, or can be created from the graph of the matrix and an outside permutation. Various
transformations on the front tree can make a large difference in performance. Some knowledge of the linear
system, (e.g., does it come from a 2-D or 3-D problem? is it small or large?), coupled with some knowledge
of how to tailor a front tree, can be important to getting the best performance from the library.

Section 2 introduces some background on sparse matrix orderings and describes the SPOOLES or-
dering software. Section 3 presents the front tree object that controls the factorization, and its various
transformations to improve performance.
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2 Sparse matrix orderings

The past few years have seen a resurgence of interest and accompanying improvement in algorithms and soft-
ware to order sparse matrices. The minimum degree algorithm, specifically the multiple external minimum
degree algorithm [19], was the preferred algorithm of choice for the better part of a decade. Alternative min-
imum priority codes have recently pushed multiple minimum degree aside, including approximate minimum
degree [1] and approximate deficiency [21], [25]. They offer improved quality or improved run time, and on
occasion, both.

Nested dissection for regular grids [10] is within a factor of optimal with respect to factor entries and
operation counts. One of the earliest attempts, automatic nested dissection [11] used a simple profile algo-
rithm to find separators. It rarely performed as well as minimum degree. Better heuristics to find separators
were brought in from the electrical device simulation area [18] and while these algorithms produced better
orderings, the run times kept them from practical application. Nested dissection came on its own with
two developments. The first was the application of spectral analysis of graphs to find separators [22]. The
eigenvector associated with the smallest nonzero eigenvalue of the Laplacian of a graph generates a spectrum
of separators. While the ordering times for spectral nested dissection were still on the order of ten or more
times the cost of a minimum degree ordering, the ordering quality sometimes made the cost worthwhile.

The key that made nested dissection a competitive and practical alternative to minimum degree was the
introduction of multilevel ideas — to find a separator on a graph, first find a separator on a coarse graph
and project back to the original. Early implementations include [6] and [8]. Multilevel algorithms are very
popular in current software including CHACO [14], [13], METIS [16], [17], BEND [15], WGGP [12] and
PCO [23].

SPOOLES also includes a hybrid ordering approach called multi-section [3], [5], [4] and [24]. For
some types of graphs, nested dissection does much better than minimum degree, for others much worse.
Multisection is an ordering that uses both nested dissection and minimum degree to create an ordering that
is almost always as good or better than the better of nested dissection or minimum degree and rarely much
worse.

2.1 The Graph object

Our goal is to find a permutation matrix P such that the factorization of PAPT has low-fill. This is a
symbolic step, we do not need to know the numerical entries in A, but we do need to know the structure of
A. More specifically, since when computing LDU, UT DU or U¥ DU factorizations we consider A to have
symmetric structure. We need to know the structure of A + AT, and so we need to construct the graph of
A+ AT, The way that SPOOLES deals with the graph of A + AT is via a Graph object. There are several
ways to construct a Graph object, some are high level, some are low level.

Inside each Graph object is an IVL object. IVL stands for Integer Vector List, and stores the adja-
cency lists for the vertices. For example, consider a 3 x 4 grid with a nine point operator. The adja-
cency lists for this graph are stored in the IVL object, displayed in Figure 1. (The listing comes from the
IVL_writeForHumanEye () method.)

One can construct the IVL object directly. There are methods to set the number of lists, to set the size
of a list, to copy entries in a list into the object. It resizes itself as necessary. However, if one already has
the matrix entries of A stored in an InpMtx object (which is the way that SPOOLES deals with sparse
matrices), there is an easier way. One can create an IVL object from the InpMtx object, as follows.

InpMtx  *A ;
IVL *adjIVL ;

adjIVL = InpMtx_fullAdjacency(A) ;
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Figure 1: A 3 x 4 9-point grid with its adjacency structure
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During a block shifted Lanczos eigenanalysis, one needs the graph of A 4+ oB for a pair of matrices. There
is a method to construct the IVL object for this case.

InpMtx *A, *B ;
IVL *adjIVL ;

adjIVL = InpMtx_fullAdjacency2(A, B) ;

Recall, we actually construct the adjacency structure of A+ AT (or A+ AT + B + BT), because the graph
object is undirected, and so needs a symmetric structure.

Once we have an IVL object, we can construct a Graph object as follows.

Graph  *graph ;
IVL *adjIVL ;
int nedges, neqns ;

nedges = IVL_tsize(adjIVL) ;
graph = Graph_new() ;
Graph_init2(graph, O, neqns, O, nedges, neqns, nedges, adjIVL, NULL, NULL) ;

This is an initializer for the Graph object, one that takes as input a complete IVL adjacency object. The
0 and NULL fields are not applicable here. (The Graph object is sophisticated — it can have weighted or
unweighted vertices, weighted or unweighted edges, or both, and it can have boundary vertices. Neither is
relevant now.)

2.2 Constructing an ordering

Once we have a Graph object, we can construct an ordering. There are four choices:

e minimum degree, (actually multiple external minimum degree, from [19]),
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e generalized nested dissection,
e multisection, and

e the better of generalized nested dissection and multisection.

Minimum degree takes the least amount of CPU time. Generalized nested dissection and multisection both
require the a partition of the graph, which can be much more expensive to compute than a minimum degree
ordering. By and large, for larger graphs nested dissection generates better orderings than minimum degree,
and the difference in quality increases as the graph size increases. Multisection is an ordering which almost
all the time does about as well as the better of nested dissection and minimum degree. The user should
know their problem and choose the ordering. Here are some rules of thumb.

e If the matrix size is small to moderate in size, say up to 10,000 rows and columns, use minimum degree.
The extra ordering time for nested dissection or multisection may not make up for any decrease in
factor or solve time.

e If the matrix size comes from a partial differential equation that has several degrees of freedom at a
grid point, use multisection or nested dissection, no matter the size.

e If the target is a parallel factorization, use nested dissection.

e For 2-D problems, minimum degree is usually good enough, for 3-D problems, use nested dissection or
multisection.

e To be safe, use the better of the nested dissection and multisection methods. The additional ordering
time is not much more than using either of them alone.

Before we discuss the different ordering methods found in SPOOLES, what is the output of the ordering?

One normally thinks of a permutation matrix P as represented by a permutation vector, a map from old
vertices to new vertices, or vice versa. That is sufficient if one is just concerned with permuting a matrix, but
there is much more information needed for the factor and solves. The SPOOLES ordering methods construct
and return an ETree object that holds the front tree. We will discuss this object in the next section. Let us
now look at the four different wrapper methods for the orderings.

ETree *etree ;

Graph  *graph ;

int maxdomainsize, maxsize, maxzeros, msglvl, seed ;
FILE *msgFile ;

etree = orderViaMMD(graph, seed, msglvl, mngile) ;

etree = orderViaND(graph, maxdomainsize, seed, msglvl, msgFile) ;

etree = orderVialMS(graph, maxdomainsize, seed, msglvl, msgFile) ;

etree = orderViaBestOfNDandMS(graph, maxdomainsize, maxzeros,
maxsize, seed, msglvl, msgFile) ;

Now let us describe the different parameters.

e The msglvl and msgFile parameters are used to control output. When msglvl = 0, there is no
output. When msglvl > 0, output goes to the msgFile file. The SPOOLES library is a research
code, we have left a great deal of monitoring and debug code in the software. Large values of msglvl
may result in large message files. To see the statistics generated during the ordering, use msglvl = 1.
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e The seed parameter is used as a random number seed. (There are many places in the graph partitioning
and minimum degree algorithms where randomness plays a part. Using a random number seed ensures

repeatability.)

e maxdomainsize is used for the nested dissection and multisection orderings. This parameter is used
during the graph partition. Any subgraph that is larger than maxdomainsize is split. We recommend
using a value of neqns/16 or neqns/32. Note: maxdomainsize must be greater than zero.

e maxzeros and maxsize are used to transform the front tree. In effect, we have placed the ordering
functionality as well as the transformation of the front tree into this method. So let’s wait until the
next section to learn about the maxzeros and maxsize parameters.

There is also the capability to create a front tree from a graph using any permutation vectors, e.g., a
permutation that came from another graph partitioning or ordering library.

ETree *etree ;
Graph  *graph ;

int newTo01d[], oldToNew[] ;

etree = ETree_new() ;

ETree_initFromGraphWithPerms(etree, graph, newToOld, oldToNew) ;

The output from this method is a verter elimination tree, there has been no merging of rows and columns
into fronts. But we are getting ahead of ourselves.

2.3 Results

Let us look at the four different orderings and compare the ordering time, the number of factor entries, and
number of operations in the factorization. (The latter two are for a real, symmetric matrix.)

The R2D10000 matrix is a randomly triangulated grid on the unit square. There are 10000 grid points,
100 points are equally spaced along each boundary. The remainder of the vertices are placed in the interior
using quasi-random points, and the Delauney triangulation is computed.

seed
10101
10102
10103
10104
10105

seed
10101
10102
10103
10104
10105

For the nested dissection and multisection orderings, we used maxdomainsize

CPU
1.4
1.5
1.5
1.5
1.5

CPU
4.6
4.6
4.6
4.6
4.8

minimum degree

# entries # ops
212811 11600517
211928 11654848
222119 13492499
214151 11849181
216176 12063326

multisection

# entries # ops
207927 10407553
210364 10651916
215795 11760095
210989 10842091
209201 10335761

nested dissection

CPU  # entries # ops
4.8 213235 11092015
4.6 216555 11665187
4.9 217141 11606103
5.0 217486 11896366
4.8 216404 11638612

better of ND and MS

CPU  # entries # ops
6.2 208724 10612824
6.2 211089 10722231
6.4 217141 11606103
6.1 212828 11168728
6.1 210468 10582750

= 100. We see that there is

really little difference in ordering quality, while the minimum degree ordering takes much less time than the

other orderings.
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Let us now look at a random triangulation of a unit cube. This matrix has 13824 rows and columns.
Each face of the cube has a 22 x 22 regular grid of points. The remainder of the vertices are placed in the
interior using quasi-random points, and the Delauney triangulation is computed.

minimum degree nested dissection

seed CPU # entries # ops CPU # entries # ops
10101 9.2 5783892 6119141542 27.8 3410222 1921402246
10102 8.8 5651678 5959584620 31.4 3470063 1998795621
10103 8.8 6002897 6724035555 25.8 3456887 1986837981
10104 8.6 5888698 6652391434 29.6 3459432 1977133474
10105 8.5 5749469 6074040475 30.1 3567956 2223250836

multisection better of ND and MS

seed CPU # entries # ops CPU # entries # ops
10101 26.9 3984032 2807531148 34.3 3410222 1921402246
10102 29.7 4209860 3266381908 37.0 3470063 1998795621
10103  23.5 4044399 2963782415 31.7 3456887 1986837981
10104  25.9 4239568 3325299298  34.8 3459432 1977133474
10105  27.2 4039078 2945539836  35.9 3567956 2223250836

Again there is about a factor of three in CPU time comparing minimum degree against the others, but unlike
R2D10000, the minimum degree requires far fewer operations than the others. Note how the multisection
ordering requires about 50% more operations than nested dissection. The situation can be reversed in other
cases. That is the reason that we recommend using the wrapper that generates the better of the nested
dissection and multisection orderings.

3 Front Trees

To illustrate the different types of front trees, and their transformations we do for the sake of efficiency,
we will use an an example the matrix R2D100, a matrix generated by first randomly triangulating the
unit square with 100 grid points. The resulting matrix has 100 rows and columns. We ordered the matrix
using a generalized nested dissection algorithm from the SPOOLES library. On the left in Figure 2 is the
triangulation. On the right we have labeled the grid points with their place in the nested dissection ordering.
Note that vertices 90 through 99 form a separator of the graph. Vertices 0 through 47 are found on the right
of the separator, vertices 48 through 89 are found on the left

3.1 Vertex elimination trees

Recall that the four ordering methods from Section 2 return an ETree object. There is another way to
construct a tree using the Graph object and the permutation vectors. The following code fragment shows
how to do this.

ETree *xvetree ;
int *newTo0ld, *oldToNew ;
Graph  *graph ;

vetree = ETree_new() ;
ETree_initFromGraphWithPerms(vetree, graph, newTo0Old, oldToNew) ;

The vetree object in the code fragment above is a vertex elimination tree [20], [26], where each front contains
one vertex.



January 25, 1999 Orderings and Front Trees 7

Figure 2: R2D100: randomly triangulated, 100 grid points
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Figure 3 contains the vertex elimination tree for this ordering. The vertex elimination tree is a repre-
sentation of the partial order by which the vertices in the graph may be eliminated.! The dependencies of
the rows and columns form a tree structure. The leaves of the tree (our trees hang upside down with the
leaves at the bottom and the root at the top) represent vertices which can be eliminated first. The parents
of those leaf nodes can be eliminated next, and so on, until finally the vertices represented by the root of
the tree will be eliminated last.

The elimination tree illustrates the dependence of the vertices. The basic rule is that a vertex depends
only on its descendents and will affect only its ancestors. It should be clear that the tree allows us to identify
independent, parallel computation. For example, the computation of the factor entries in the subtree rooted
at vertex 47 is completely independent of the subtree rooted at vertex 89, so we could identify one process
to compute the left subtree and another to compute the right subtree.

3.2 Fundamental supernode trees

While the vertex elimination tree is useful to communicate the data dependencies, it is not a good granularity
on which to base a factorization or solve, in serial or in parallel. It is important to group vertices together in
some meaningful way to create larger data structures that will be more efficient with respect to storage and
computation. Any grouping of vertices imposes a block structure on the matrix. The fundamental supernode
tree [2] has these property: any node in the tree is

e either a leaf,
e or has two or more children,
e or its nonzero structure is not contained in that of its one child.

The top tree in Figure 4 shows the vertex elimination tree with the “front” number of each vertex superim-
posed on the vertex. The bottom tree is the fundamental supernode tree. Figure 5 shows the block partition

IVertex j is the parent of i if j is the first vertex greater than  such that L ; # 0.
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Figure 3: Vertex elimination tree for R2D100, 100 rows and columns
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superimposed on the structure of the factor L. Note this one important property: within any block column
and below the diagonal block, a row is either zero or dense.

The code fragment to convert a tree into a fundamental supernode tree is given below.

ETree *fsetree, *vetree ;
int maxzeros ;
Iv *nzerosIV ;

nzerosIV = IV_new() ;

IV_init(nzerosIV, vetree->nfront, NULL) ;

IV_fill(nzerosIV, 0) ;

maxzeros = 0 ;

fsetree = ETree_mergeFrontsOne(vetree, maxzeros, nzerosIV) ;

The ETreemergeFrontsOne () method constructs a new ETree object from the vetree object. When a
node J has a single child I, it looks to see whether merging I and J together will add more than a given
number of zeroes into the block columns of I and J. (The nonzero rows of the block of I and J together is
the union of the nonzero rows of blocks I and J separately, and all nonzero rows are stored as dense rows.)
To create a fundamental supernode tree, the number of zeros allowed into a block column is zero, i.e., the
nonzero structure of the fundamental supernode tree contains no zeros. The nzerosIV object contains a
running count of the number of zero entries present in the factor storage. It will be used in later calls to
other transformation methods.

3.3 Amalgamated or relaxed supernode trees

A factorization based on the fundamental supernode tree requires no more operations than one based on the
vertex elimination tree. There are many small supernodes at the lower levels of the tree. By amalgamating
small but connected sets of supernodes together into larger supernodes we can reduce the overhead of
the processing all of the small supernodes at the expense of adding entries to the factors and operations
to compute the factorization. This amalgamation of supernodes generally leads to an overall increase in
efficiency [2], [9]. We call the result the amalgamated or relaxed supernode tree.

The top tree in Figure 6 shows the vertex elimination tree with the “front” number of each vertex
superimposed on the vertex. The bottom tree is the amalgamated supernode tree. Figure 7 shows the block
partition superimposed on the structure of the factor L.

The code fragment to create this amalgamated tree is found below.
ETree *ametree ;

maxzeros = 20 ;
ametree = ETree_mergeFrontsAll (fsetree, maxzeros, nzerosIV) ;

This method will merge a node with all of its children if it will not result in more than maxzeros zeros inside
the new block. On input, nzerosIV object keeps count of the number of zeroes already in the blocks of
fsetree, and on return it will contain the number of zeros in the blocks of ametree.

3.4 Splitting large fronts

There is one final step to constructing the tree that governs the factorization and solve. Large matrices will
generate large supernodes at the topmost levels of the tree. For example, a k x k x k grid with a 27 point
finite difference operator, when ordered by nested dissection, has a root supernode with k2 rows and columns.
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Figure 4: Top: vertex elimination tree with the vertices mapped to the fundamental supernode that contains
them. Bottom: fundamental supernode tree.
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Figure 5: Block structure of L with the fundamental supernode partition.
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Figure 6: Top: fundamental supernode tree with the supernodes mapped to the amalgamated supernode
that contains them. Bottom: amalgamated supernode tree.
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Figure 7: Block structure of L with the amalgamated supernode partition.
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The data structure for a top level supernode can be very large, too large to fit into memory. In a parallel
environment, we follow the convention that each node in the tree is handled by one process. Having a very
large node at the top levels of the tree will severely decrease the parallelism available to the computations.

The solution to both problems, large data structures and limited parallelism, is to split large supernodes
into pieces. We can specify a maximum size for the nodes in the tree, and split the large supernode into pieces
no larger than this maximum size. This will keep the data structures to a manageable size and increase the
available parallelism. We call the resulting tree the front tree because it represents the final computational
unit for the factorization, the frontal matrix.

The amalgamated supernode tree has been transformed so that except for the leaf nodes, which are
not changed, no node in the tree has more than four vertices. The top tree in Figure 8 shows the vertex
elimination tree with the “front” number of each vertex superimposed on the vertex. The bottom tree is the
amalgamated and split supernode tree. Figure 9 shows the block partition superimposed on the structure of
the factor L. Splitting large nodes into smaller nodes will not increase the factor storage or operation counts,
in fact, as we shall soon see, it is possible to decrease them slightly when compared to the amalgamated tree
before splitting.

The code fragment to split the large fronts is found below.

ETree *spetree ;
int maxsize, seed ;

maxsize = 4 ;
spetree = ETree_splitFronts(ametree, NULL, maxsize, seed) ;

This method creates and returns an ETree object where each front has maxsize or fewer internal rows and
columns, except for the fronts that are leaves in the tree. Here we imposed the condition that no non-leaf
front has more than four vertices. The second parameter in the calling sequence is non-NULL if the graph has
nonunit vertex weights. The last parameter is a seed for a random number generator. When we identify a
front with more than maxsize internal rows and columns, there are many ways to split the front into smaller
fronts. We try to keep the sizes of the fronts roughly equal, but which vertices to play into which fronts is
not specified. We shuffle the vertices using a random number generator and assign vertices to smaller fronts
in a block manner.

3.5 Results

This front tree is now the defining structure for the numerical factorization and solve steps. The structure of
the front tree defines the order of the computations that will be carried out in the factorization and the solve.
The composition of the front tree can have a profound effect on storage and performance of the factorization
and solves.

Our R2D100 matrix was small enough to illustrate the steps in the transformation of the front tree, but is
not large enough to realistically display how the front tree influences the differences in storage and speed of
the computations. Now we look at the R3D13824 matrix. Table 3.5 contains some statistics for a sequence
of front trees. The original front tree came from our nested dissection ordering.

There are 13824 rows and columns in the matrix, and 6001 fronts in the nested dissection tree. While
there is an average of two rows and columns per front, most of the fronts are singleton fronts at the lower
levels of the tree. The top level front has 750 internal rows and columns.

e In the first step we create an fundamental supernode tree with a call to ETree_ mergeFrontsOne () with
maxzeros = 0. We see that the number of fronts decreases by one and the number of entries does not
change.
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Figure 8: Left: tree after the large supernodes have been split. Right: tree with nodes mapped back to their
amalgamated supernode.
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Figure 9: Block structure of L with the amalgamated and split supernode partition.

Table 1: R3D13824: front tree transformations

CPU # fronts # indices # entries # operations
original 6001 326858 3459359 1981403337
fs tree 0.040 6000 326103 3459359 1981403337
merge one | 0.032 3477 158834 3497139 2000297117
merge all | 0.020 748 95306 3690546 2021347776
merge any | 0.012 597 85366 3753241 2035158539
split 0.043 643 115139 3753241 2035158539
final 0.423 643 115128 3752694 2034396840
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e The second step is also a call to ETree_mergeFrontsOne (), this time with maxzeros = 1000. Here
we merge fronts with only one child with that child, in other words, only chains of nodes can merge
together. Note how the number of fronts is decreased by almost one half, and the number of factor
entries and operations increase by 1%.

e The third step is a call to ETree mergeFrontsAll () with maxzeros = 1000, where we try to merge a
node with all of its children if possible. The number of fronts decreases again by a factor of five, while
the number of factor entries and operations increases by 7% and 2%, respectively, when compared with
the original factor matrices.

e The fourth step is a call to ETree mergeFrontsAny () with maxzeros = 1000, where we try to merge
a front with any subset of its children. The number of fronts decreases further, and the factor entries
and operations increase by 8% and 3%, respectively.

e In the fifth step is a call to ETree_splitFronts() with maxsize = 64, where we try split the large
fronts into smaller fronts. Note that the number of factor entries and operations do not seem to
increase, while the number of fronts increases by about 8%. In reality, a large front that is split into
smaller fronts may have a non-dense block column structure, a one of its smaller fronts may have rows
in its block column of L that are zero, whereas that same row in the larger front is nonzero.

Merging fronts and splitting fronts can have a large effect on the computational performance of a factor and
solve. Table 3.5 contains some results for solving linear systems of equations for the R3D13824 matrix using
the five different front trees.

Table 2: R3D13824: factor and solve timings for five different front trees.

factor solve total

init CPU mflops postprocess CPU mflops CPU

original 4.0 131.7 15.0 5.0 7.3 7.6 148.0
fs tree 3.3 1304 152 5.4 7.8 7.1 146.9
merge one | 3.1 1199 16.7 2.7 4.6 12.1 130.3
merge all | 3.0 120.7 16.7 14 3.6 16.2  128.7
merge any | 3.0 121.6 16.7 1.4 3.5 16.9 129.5
split 3.0 84.9 24.0 1.9 3.5 17.1 93.3

The first thing to notice is that factorization performance improves slightly as small fronts are merged
together. The large improvement comes when the fronts are split. The explanation of this behavior is that
all inter-front computation is done using BLAS3 kernels for the operation Y :=Y — L *x D x U, where L and
U are dense matrices, D is diagonal or block diagonal with 1 x 1 and 2 x 2 pivots, and Y is dense. The
intra-front computations, done entirely within the block columns of L and block rows of U, are done using
BLASI kernels. This is necessary when pivoting for stability. Had we chosen to write BLAS3 kernels for the
intra-front computations when pivoting is not enabled, the factorization timings for the first five front trees
would have been higher. But splitting fronts into smaller fronts is necessary for parallel computations, so it
made sense to make it the recommended route for serial computations as well. There would be very little
difference in speed had the intra-front computations been done with BLAS3 kernels compared with using
the final front tree, for the intra-front computations are a small fraction of the total number of operations.

The solve time improves dramatically when small fronts are merged together into larger fronts. Our
solves are submatrix algorithms, where the fundamental kernel is an operation Y; := By — L ;X1 and
Xy :=Y;—U, Yy, and is designed to be a BLAS2 kernel (when X and Y have a single column) or BLAS3
kernel (when X and Y are matrices). When fronts are small, particularly with one internal row and column,
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the submatrices that take part are very small. The overhead for the computations takes far more time than
the computations themselves.

This multistep process of merging, merging again, etc, and finally splitting the front trees is tedious.
There are simple methods that do the process in one step.

ETree *etree, *etree2, *etreel ;
int maxfrontsize, maxzeros, seed ;

etree2 = ETree_transform(etree, NULL, maxzeros, maxfrontsize, seed) ;
etree3 ETree_transform2(etree, NULL, maxzeros, maxfrontsize, seed) ;

Inside The ETree_transform() method is a sequence of four transformations:

e Merge small fronts into larger fronts using the ETree mergeFrontsOne () method.
e Then merge small fronts into larger fronts using the ETree mergeFrontsAll () method.
e Then merge small fronts into larger fronts using the ETree mergeFrontsAny () method.

e Then merge a large front into a chain of smaller fronts using the ETree_splitFronts() method.

The ETree_transform2() method differs from the ETree_transform() method in that it omits the setp
with ETree mergeFrontsAny (). Either method will be suitable in most cases.

However, there are some times one method is to be preferred over the other. If we look again at the
vertex elimination tree in Figure 3, we see the top level separator with nodes {90, - - -, 99}, and the two second
level separators with nodes {45,---,47} and {87,---,89}. If one looks at their block columns in Figure 5
we see that either of the two second level separators could be merged with the top level separator without
introducing any zero entries into the factor. Using the ETree mergeFrontsAny () method could merge the
top level separator with one of its two children, and produce an imbalanced tree, not as well suited for
parallel computation had the two separators not been merged.

In a parallel environment, it is much more efficient to not merge the top level separator with either of its
second level separators. The transformation methods in SPOOLES 1.0 created front trees that were not
as efficient for parallel processing, precisely because of the use of the “merge-with-any” step. This led us to
write three separate merging methods to replace the single method from the 1.0 release, and thus give us
the ability to avoid the trees unsuitable for parallel computation.

The values of maxzeros and maxsize will have a fair amount of influence on the efficiency of the factor
and solves. This is illustrated in Table 3.5 for the R3D13824 matrix and a number of different combinations
of maxzeros and maxsize.

As the matrix size grows, the number of zero entries we can allow into a front can also grow. We
recommend using maxzeros somewhere between 0.01*neqns and 0. 1*neqns. The exact value isn’t crucial,
what is important is to have the smaller subtrees at the lower levels of the tree merged together. The maxsize
parameter specifies the “panel” size of the large fronts, and so influences the granularity of the BLAS3
computations in the factorization and solve. If maxsize is too large, then too much of the computations in
the factorization is done inside a front, which uses a slow kernel. If maxsize is too small, then the fronts are
too small to get much computational efficiency. We recommend using a value between 32 and 96. Luckily,
the factor and solve times are fairly flat within this range. A value of 64 is what we customarily use.
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