SPOOLES 2.2 Installation Manual

Cleve Ashcraft, Boeing Shared Services Group*

January 25, 1999

1 Overview

The SPOOLES library is object-oriented. Just about everything is an object, data structures and algorithms.
The directory structure reflects this design philosophy. First, make a directory (say called spooles) and place
the tar file spooles.2.2.tar.gz in this directory. unzip the file and then extract the files. For example,
here are the Unix commands.

h
h
h
h
h

mkdir spooles

mv spooles.2.2.tar.gz spooles
cd spooles

gzip —-d spooles.2.2.tar.gz
tar -xvf spooles.2.2.tar.gz

The top level directory has many subdirectories and many header files. Most subdirectories deal with a
single object.

Let’s look at the first object, the A2 dense matrix object. (A2 stands for Array, 2-dimensional.) The A2

directory has two files and three subdirectories.

A2 .h — This is the header file that defines the struct that holds the A2 object and has prototypes of
all of the A2 methods. If you don’t have printed documentation in front of you, this is a handy place
to look. This file contains comments from the source code telling what the method does and describes
the calling sequence parameters.

makefile — This makefile is called by the top level makefile to compile source, drivers, and clean up
the subdirectories.

doc/ — This subdirectory contains KTEX files that document the A2 object. These files also form a
chapter of the SPOOLES Reference Manual.

src/ — This subdirectory contains all the source code for the A2 object.

drivers/ — This subdirectory contains all the driver programs that exercise and validate the behavior
of the A2 object.

Each object’s directory contains a header file, a make file, and a source and document subdirectories. Most
but not all contain driver directories.

*P. O. Box 24346, Mail Stop 7L-21, Seattle, Washington 98124. This research was supported in part by the DARPA

Contract DABT63-95-C-0122 and the DoD High Performance Computing Modernization Program Common HPC Software
Support Initiative.



SPOOLES 2.2 Installation Manual January 25, 1999

SPOOLES is written in the C language, which does not directly support object-oriented programming.
There is no inheritance in C, and so there is no nesting of our object directories. For example, there are
three tree objects — Tree for a simple tree, ETree for a front tree (which contains a Tree object and so
could be descended from it), and DSTree for a “domain/separator” tree (which also contains a Tree object)
— but they are separate objects whose directories are at the same level.

There are some directories that are peripheral to the main library.

[43

The LinSol directory contains some “bridge” or “wrapper” methods used to incorporate SPOOLES
into CSAR-Nastran, a finite element program, to solve linear systems.

The Eigen directory contains some “bridge” or “wrapper” methods used to incorporate SPOOLES
into a block-shifted Lanczos eigensolver.

The FanBothMap directory is an experimental object used to investigate the feasibility of replacing the
fan-in method with the fan-both method for a distributed factorization.

The ReferenceManual directory contains WTEX files to construct the reference manual (currently 400+
pages).

The UserManual directory contains IXTEX files to construct the various user manuals. (This document
is one.)

The Matrices directory contains some matrix files that can be used to run the example programs.

The goal is to get work done. The SPOOLES library can be used in several ways. Here are three
scenarios.

I want a global library to link with other application programs.

I want to exercise the objects in the library to get a feel for performance, e.g., test out the matrix
orderings, or the factors and solves, or the multithreaded and MPI programs.

I want to do development work, modify existing objects or create new objects.

We will discuss each in turn. But first, let’s talk about makefiles.

2

Makefiles

Each object’s src/ and (possibly) drivers/ directories have their own makefile. Each of these makefiles
“includes” (via an include statement) the file Make . inc from the top level directory.! This is the file where
one sets the following parameters.

CC is your favorite C compiler.

OPTLEVEL is the compiler’s optimization level.

CFLAGS is the compiler’s compilation flags, which normally includes the OPTLEVEL data.
LDFLAGS are load flags for executables.

THREAD_LIBS are system dependent libraries for multithreaded programs.

IMany thanks go to Clay Breshears from CEWES, clay@turing.wes.hpc.mil, for the prototype Make.inc file.



January 25, 1999 SPOOLES 2.2 Installation Manual 3

e PURIFY and PURIFY_GCC_VERSION deal with the Purify program from PureAtria. This is a handy
program that detects memory leaks, overwriting of storage, and the like. Most of the code at one point
or another has been run through Purify.

e AR and ARFLAGS are the loader and its flags.

e RANLIB is used when the library must be postprocessed to get a symbol table. (Some systems still use
ranlib.) If ranlib is not needed (as on most systems), RANLIB is set to echo to echo out the library
name during the make process.

e The .c.o and .c.a suffix rules are defined.

e MPI_INSTALLDIR is the installation directory for MPI.
e MPI_LIB_PATH is the library path for MPI.

e MPI_LIBS are the libraries needed for MPI programs.

e MPI_INCLUDEDIR is the include directory for MPI.

The Make.inc file contains several different values for each of the parameters along with some comments
about which lines are for which system. We have found most of this to be fairly straightforward, but
getting the thread libraries and MPI libraries correct may take a bit of doing. Contact your local system
administrator for help.

3 Setting the thread type

Once the Make.inc file is modified for your system, it’s time to think about what functionality you want
to use. The SPOOLES library operates in serial, multithreaded and MPI environments. The code for
these three environments is fairly segregated. The MPI directory contains all source and driver code for
MPI programs. The MT directory contains all source and driver code for multithreaded programs. All
other directories contain serial code.? The MPI source code is compiled into a spoolesMPI.a library. The
multithreaded source code is compiled into a spoolesMT.a library. The serial code is compiled into a
spooles.a library.

If you are going to operate only in serial mode, then you should edit one file, Lock/Lock.h. Here is
where we hide the operating system specific details about mutual exclusion locks. Presently only POSIX
threads are actively supported by the library. The original development work was done using Solaris threads,
and there is some Solaris thread code still in the Lock and MT src/ directories. (The library has also been
ported to use the NeXT and WindowsNT thread packages, but this code is not included in this release.) The
decision to use threads or not, or which thread library to use, requires the Lock/Lock.h file to be modified.
Line 9 defines the thread type. It is presently set to POSIX threads.

#define THREAD_TYPE TT_POSIX
To use no threads, one would replace this line with the one below.
#define THREAD_TYPE TT_NONE

TT_POSIX and TT_NONE are defined in the Lock/Lock.h file. There is also a line to define Solaris threads.
If you are planning to port the SPOOLES library to another thread library, add a THREAD_TYPE define
statement and modify the definition of the lock in the Lock structure. The files in Lock/src and MT/src
will also have to be modified to use different subroutine calls to create and join threads, etc.

2This is not quite true. The LinSol directory contains serial, MT and MPI subdirectories, but the LinSol package is adjunct
to the SPOOLES library, not part of it.



4 SPOOLES 2.2 Installation Manual January 25, 1999

4 Building global libraries

To build the global serial library spooles.a, type the following.

% cd spooles
% make 1lib

This visits each of the serial objects’ src/ directories, compiles the source code and loads it into the
spooles.a library. Note, this option requires the Perl language installed on the system, for we use a
Perl script to generate a temporary makefile for each object. If your computer system does not have Perl
installed, this option will have the same result.

% cd spooles
% make global

This approach uses hard-coded makefile inside each src/ directory, and is less reliable than the first way.

The result of either of these two commands is a spooles.a library that is present in the top level spooles
directory. Recall, this only contains the serial code. This process may take a long time, for there are about
140,000 lines of source code in the library.

To build a multithreaded library, one must go to the MT/src directory. Now we have two choices —
to build a separate spoolesMT.a library, or two merge the multithreaded code into the spooles.a library.
We recommend the first, via typing make spoolesMT.a, though the second is perfectly fine by typing make
makeLib. If Perl is not installed, type make -f makeGlobalLib for the latter behavior.

Much the same applies to the MPI library. To build a MPI library, one must go to the MPI/src directory.
Now we have two choices — to build a separate spoolesMPI.a library, or two merge the MPI code into the
spooles.a library. We recommend the first, via typing make spoolesMPI.a, though the second is perfectly
fine by typing make makeLib. If Perl is not installed, type make -f makeGlobalLib for the latter behavior.

Note, in the top level spooles/makefile there are two lines commented out under the 1lib: target
which will compile the multithreaded and MPI source code into spooles.a. If you uncomment these lines,
(replace the # with a tab), and type make 1ib, then the multithreaded and MPI source will be included in
spooles.a.

5 Exercising the objects’ driver programs

Each object has a src/ subdirectory that contains source code, and a doc subdirectory that contains TEX
files for documentation. Most objects also have a drivers/ subdirectory that contain driver programs that
exercise and verify the objects’ behavior.

Once the global spooles.a library is built, one can compile, link and load the driver programs. This
can be done inside the drivers/ subdirectory of each individual object, or all the executables for the driver
programs can be created by typing make all_drivers in the top level directory.

Let us look at one particular example. The Chv object is used during the sparse factorization to store a
“front”, a submatrix of the sparse matrix that is worked on at one time. The most expensive part of the fac-
torization is the dense matrix-matrix operations that are done to a front. The Chv/drivers/test update.c
program exercises this functionality. To create the test_update executable, type make test_update while
in the Chv/drivers/ directory. To execute this program, there is a do_update shell script. Here we can test
the accuracy and performance of this particular computation.

The shell script has a number of parameters — real or complex entries, symmetric, Hermitian or non-
symmetric matrices, sparse or dense fronts, sizes of the updating and updated fronts, etc. The message level
parameter msglvl governs the amount of output sent to the message file. When msglvl is 1, only timing



January 25, 1999 SPOOLES 2.2 Installation Manual 5

information is written. When msglvl is 2 or greater, the program dumps output in a form that is readable
by Matlab, (and, with some tweaking, by the GNU Octave program that is very similar and free.) This is
our usual practice to validate the behavior of small parts of the computations before we link them into larger
pieces.

While the source code is very well documented, and the driver programs are fairly well documented, the
shell scripts that exercise the driver programs are rarely documented. Consult the source of each driver
program to understand their accompanying shell script.

If you want to get a feel for the speed of the SPOOLES library on your system, see the test_update
program in the Chv/drivers/ directory and the test_solveupd* programs in the SubMtx/drivers/ direc-
tory. These are the programs that exercise the BLAS3 computations used during the factors and solves.
Remember to set msglvl to 1 to get just timings. To test out the numeric factorizations and solves, see the
testGrid program. in the FrontMtx/drivers directory. There are similar programs in the MT/drivers and
MPI/drivers directories. Many shell scripts, particularly those that deal with the ordering and factorization
objects, attempt to read in matrix and graph files you will not find on your systems.?> There is a small
Matrices directory that contains test matrices, which can be used in some of the shell scripts, once the files
are un-zip’ed.

6 Modifying source code and new development

One of the strengths of the SPOOLES library is its open design. Objects manage much of the complexity
of 140,000 lines of source code. There is a great deal of compartmentalization or encapsulation of data
structures that make it relatively easy to replace modules or extend the functionality.

To make a new object, simply copy over the directory structure of a similar object, and then modify
the header, source, documentation and drivers files as necessary. Let us call this new object NewObj. When
in NewObj/src, typing make updateLib or make -f makeGlobalLib will load the new source files into the
global spooles.a library. Or one can make a local library by typing make NewObj.a. In the NewObj/drivers
directory, modify makefile as necessary. If the NewObj source code has been loaded into spooles.a, then
the line

LIBS = ../../spooles.a -1m

will be fine. (Of course, if NewObj has multithreaded or MPI code, see the makefile’s in the MT/drivers or
MPI/drivers directories.) If instead you have created the NewObj/src/NewObj .a library, modify the library
line to

LIBS = ../src/NewObj.a ../../spooles.a -1m

so the new source code can be linked. As changes are made to the NewObj source files, they need to be
recompiled via make updateLib (for the global spooles.a library) or via make NewObj.a (for the local
NewObj .a library).

Any driver programs will have to be re-linked after changes to the NewObj source code, whether it lies
in the global or local library. There is currently no connection in the driver/makefile between the drivers
and the accompanying source code. That can be easily added by the user.

The flat directory structure and the relative independence of the objects is not without its faults. It
makes keeping libraries current in an efficient matter difficult to do. We now explain some of the details that
hopefully will save time and confusion later. We focus on the situation where some change has been made
to an objects source file(s), and the new source must be loaded into the global spooles.a library. There are
three choices.

3What you are seeing is a snapshot of my development environment. You should be able to customize your environment.



6 SPOOLES 2.2 Installation Manual January 25, 1999

e If your system does not have Perl, you must call make -f makeGlobalLib inside the src directory.
The makeGlobalLib compiles and loads all source files in the src directory, at least that is what it
should do. The makeGlobalLib file contains a list of source files, which should be the same as in
the makefile file. It is the user’s responsibility to keep these two files current — add or remove a file
to/from one, add or remove it to/from the other. This approach can be quite cumbersome if only one
file in the src directory has been modified, for all the source files will be compiled. Alternatively, you
can edit the SRC = line (or preferably, add a second line below the first) to reflect only those files that
need loading.

e If your system does have Perl, you have more flexibility.

— To compile all source files into the spooles.a library, type make makeLib while in the spooles
directory. Execution proceeds in each of the objects’ src/ directories in turn. The Perl script
makeLib found in the top level spooles directory is executed, which scans the makefile for all
source code names, compiles them and loads them into the library.

— Inside an object’s src/ directory, you can compile the newly modified source files into the
spooles.a library by typing make updateLib. The Perl script updLib found in the top level
spooles directory is executed, which scans the makefile for all source code names, compares
their modification time against the spooles.a library, compiles the newer ones and loads them
into the library. This last step can be somewhat tricky, at least when changes are being made to
source files in two or more objects.

Consider the case where we are running the testGrid program in the FrontMtx/drivers direc-
tory, and we have made some modifications to some source files for the Chv and SubMtx objects.
We change directories to Chv/src and type make updateLib, and the modified files are compiled
and loaded into spooles.a. We then change directories to SubMtx/src and type make updateLib,
but nothing happens, our newly modified files are not compiled nor loaded into spooles.a. The
problem is that the spooles.a directory was modified when the new Chv/src files were compiled
and loaded, and so is newer than the modified SubMtx files.

The solution is to modify files in the Chv/src directory, type make updateLib, then modify the
files in the SubMtx/src directory, again type make updateLib, and then type make testgrid in
the FrontMtx/drivers directory.

7 Cleaning up and packaging

Let’s say we’ve just created the spooles.a library and then typed make all_drivers when in the spooles
directory. All the executable programs are now on disk, and taking up a lot of space. To remove all the
executable programs, we don’t need to go into each object’s driver program and remove them one by one.
We can do this from the top level directory by typing make clean.

This process visits each of the objects’ src/, doc/ and drivers/ directories one by one. In the src/
directories, any *.o0 and *.a files are removed. In the doc/ directories, any *.dvi files are removed. In the
drivers/ directories, any *.o and *.a files are removed, as well as all driver program executables. (The
makefile in a drivers directory keeps track of the driver programs in the DRIVERS variable. Modify this as
necessary if you add a driver program to the directory.)

Let’s say you've got SPOOLES working on one system and you want to move it to another system.
Even after cleanup (via the make clean call) there may be a large number of files that don’t need to be
moved. Or perhaps you'd like to tar everything that is necessary without removing your spooles.a library
and executables that took so long to compile.

The dotar shell script is used to package up everything that is necessary into one tar file. You should
modify this as necessary. Here are the lines from dotar that archive what is necessary from the A2 object.



January 25, 1999 SPOOLES 2.2 Installation Manual 7

A2.h \
A2/{*.h,makefile} \
A2/src/{makefile,makeGlobalLib,*.c} \
A2/drivers/{do*,makefile,*.c} \
A2/doc \

This tar’s the header file and middle level makefile, then goes into the src/ directory and tar’s the makefiles
and source code, then goes into the drivers/ directory and tar’s the makefiles, driver programs and shell

scripts, and then tar’s everything in the doc/ directory. This happens for every object, with a few minor
exceptions.

8 Afterword

Any questions, comments, and particularly, suggestions, contact Cleve Ashcraft, cleve.ashcraft@boeing. com.



