Integrating the SPOOLES 2.2 Sparse Linear Algebra Library
into the LANCZOS Block-shifted Lanczos Eigensolver

Cleve Ashcraft Jim Patterson
Boeing Phantom Works! Boeing Phantom Works?

January 2, 1999

1P. O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124, cleve.ashcraft@boeing.com. This research
was supported in part by the DARPA Contract DABT63-95-C-0122 and the DoD High Performance Computing
Modernization Program Common HPC Software Support Initiative.

2P. O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124, pattersn@redwood.rt.cs.boeing.com. This re-
search was supported in part by the DARPA Contract DABT63-95-C-0122 and the DoD High Performance Computing
Modernization Program Common HPC Software Support Initiative.

Contents

1 Introduction

2 The Serial Bridge Object and Driver
2.1 The Bridge Data Structure L
2.2 Prototypes and descriptions of Bridge methods L L.
2.3 The testSerial Driver Program L e

3 The Multithreaded Bridge Object and Driver
3.1 The BridgeMT Data Structureo
3.2 Prototypes and descriptions of BridgeMT methods
3.3 The testMT Driver Program e

4 The MPI Bridge Object and Driver
4.1 The BridgeMPI Data Structure
4.2 Prototypes and descriptions of BridgeMPI methods
4.3 The testMPI Driver Program e

A testSerial.c — A Serial Driver Program
B testMT.c — A Multithreaded Driver Program

C testMPI.c — A MPI Driver Program

EN BNG; BTSN

14
14
15
19

20

27

34

Chapter 1

Introduction

The Lanczos eigensolver finds selected eigenvalues and eigenvectors of AX = BXA, where X are eigenvectors
and A is a diagonal matrix whose elements are eigenvalues. Three types of eigenproblems are supported.

e An “ordinary” eigenvalue problem where A is symmetric and B = I.
e An “vibration” eigenvalue problem where A is symmetric and B is symmetric positive semidefinite.

e A “buckling” eigenvalue problem A is symmetric positive semidefinite and B is symmetric.

For the vibration and buckling problems, there must exist a ¢ that is not an eigenvalue such that A — oB
is nonsingular, i.e., A and B cannot share the same null space.

During the computations, the eigensolver requires the following sparse linear algebra computations.

e Sparse factorizations of the form A — o B.
e Solves of the form (A—oB)Z =Y.
e Multiplies of the form Z = BY (for the vibration problem) or Z = AY (for the buckling problem).

The Lanczos eigensolver has defined a specific interface with an external linear algebra package to perform
these three operations. The eigensolver currently interfaces with the BCSLIB-EXT linear solver in a serial
environment and the SPOOLES linear solver in serial, multithreaded and MPI environments.

This paper documents the SPOOLES objects and functions that interface with the eigensolver. The
three following chapters describe the serial, multithreaded and MPI objects, their data structures, and their
methods. The appendix contains listings of three driver programs to exercise the eigensolver using the
SPOOLES library.

Symmetric permutations of the eigensystem do not change the eigenvalues, and the eigenvectors can be
easily constructed using the permutation matrix.

AX = BXA — AX = BXA where A=PAP", B=PBPT, and X =PX

The linear algebra package is free to use any permutation matrix P to most efficiently perform the factor-
izations and solves involving A and B. This permutation matrix P is typically found by ordering the graph
of A+ B using a variant of minimum degree or nested dissection. The ordering is performed prior to any
action by the eigensolver. This “setup phase” includes more than just finding the permutation matrix, e.g.,
various data structures must be initialized. In a parallel environment, there is even more setup work to do,
analyzing the factorization and solves and specifying which threads or processors perform what computations

SPOOLES 2.2 Wrapper Objects : January 2, 1999 3

and store what data. In a distributed environment, the entries of A and B must also be distributed among
the processors in preparation for the factors and multiplies.

For each of the three environments — serial, multithreaded and MPI — the SPOOLES solver has
constructed a “bridge” object to span the interface between the linear system solver and the eigensolver.
Each of the Bridge, BridgeMT and BridgeMPI objects have five methods: set-up, factor, solve, matrix-
multiply and cleanup. The factor, solve and matrix-multiply methods follow the calling sequence convention
imposed by the eigensolver, and are passed to the eigensolver at the beginning of the Lanczos run. The
set-up method is called prior to the eigensolver, and the cleanup method is called after the eigenvalues and
eigenvectors have been determined.

Chapter 2

The Serial Bridge Object and Driver

2.1 The Bridge Data Structure

The Bridge structure has the following fields.

e int prbtype : problem type

— 1 — vibration, a multiply with B is required.
— 2 — buckling, a multiply with A is required.

— 3 — simple, no multiply is required.
e int neqns : number of equations, i.e., number of vertices in the graph.
e int mxbsz : block size for the Lanczos process.
e int seed : random number seed used in the ordering.
e InpMtx *A : matrix object for A
e InpMtx *B : matrix object for B
e Pencil *pencil : object to hold linear combination of A and B.

e ETree *xfrontETree : object that defines the factorizations, e.g., the number of fronts, the tree they
form, the number of internal and external rows for each front, and the map from vertices to the front
where it is contained.

e IVL *symbfacIVL : object that contains the symbolic factorization of the matrix.

e SubMtxManager *mtxmanager : object that manages the SubMtx objects that store the factor entries
and are used in the solves.

e FrontMtx *frontmtx : object that stores the L, D and U factor matrices.

e IV *0ldToNewIV : object that stores old-to-new permutation vector.

e IV *newTo01dIV : object that stores new-to-old permutation vector.

e DenseMtx *X : dense matrix object that is used during the matrix multiples and solves.

e DenseMtx *Y : dense matrix object that is used during the matrix multiples and solves.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 5

e int msglvl : message level for output. When 0, no output, When 1, just statistics and cpu times.
When greater than 1, more and more output.

e FILE *msgFile : message file for output. When msglvl > 0, msgFile must not be NULL.

2.2 Prototypes and descriptions of Bridge methods

This section contains brief descriptions including prototypes of all methods that belong to the Bridge object.

1. int Setup (void *data, int *pprbtype, int *pneqns, int *pmxbsz,

InpMtx *A, InpMtx *B, int *pseed, int *pmsglvl, FILE *msgFile) ;

All calling sequence parameters are pointers to more easily allow an interface with Fortran.

void *data — a pointer to the Bridge object.
int *pprbtype — *pprbtype holds the problem type.
— 1 — vibration, a multiply with B is required.
— 2 — buckling, a multiply with A is required.
— 3 — simple, no multiply is required.
int *pneqns — *pnequs is the number of equations.
int *pmxbsz — *pmxbsz is an upper bound on the block size.
InpMtx *A — A is a SPOOLES object that holds the matrix A.

InpMtx *B — B is a SPOOLES object that holds the matrix B. For an ordinary eigenproblem,
B is the identity and B is NULL.

int *pseed — *pseed is a random number seed.

int *pmsglvl — *pmsglvl is a message level for the bridge methods and the SPOOLES methods
they call.

FILE *pmsglvl —msgFile is the message file for the bridge methods and the SPOOLES meth-
ods they call.

This method must be called in the driver program prior to invoking the eigensolver via a call to
lanczos_run(). It then follows this sequence of action.

The method begins by checking all the input data, and setting the appropriate fields of the Bridge
object.

The pencil object is initialized with A and B.
A and B are converted to storage by rows and vector mode.
A Graph object is created that contains the sparsity pattern of the union of A and B.

The graph is ordered by first finding a recursive dissection partition, and then evaluating the
orderings produced by nested dissection and multisection, and choosing the better of the two.
The frontETree object is produced and placed into the bridge object.

Old-to-new and new-to-old permutations are extracted from the front tree and loaded into the
Bridge object.

The vertices in the front tree are permuted, as well as the entries in A and B. Entries in the lower
triangle of A and B are mapped into the upper triangle, and the storage modes of A and B are
changed to chevrons and vectors, in preparation for the first factorization.

The symbolic factorization is then computed and loaded in the Bridge object.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 6

e A FrontMtx object is created to hold the factorization and loaded into the Bridge object.

e A SubMtxManager object is created to hold the factor’s submatrices and loaded into the Bridge
object.

e Two DenseMtx objects are created to be used during the matrix multiplies and solves.
The A and B matrices are now in their permuted ordering, i.e., PAPT and PBP”, and all data struc-

tures are with respect to this ordering. After the Lanczos run completes, any generated eigenvectors
must be permuted back into their original ordering using the 01dToNewIV and newTo01dIV objects.

Return value:

1 normal return -6 pmxbsz is NULL
-1 datais NULL -7 *pmxbsz is invalid
-2 pprbtype is NULL -8 A and B are NULL
-3 *pprbtype is invalid -9 seed is NULL
-4 pneqns is NULL -10 msglvl is NULL
-5 *pneqns is invalid -11 msglvl > 0 and msgFile is NULL

2. void Factor (double *psigma, double *ppvttol, void *data, int *pinertia, int *perror) ;
This method computes the factorization of A — oB. All calling sequence parameters are pointers to
more easily allow an interface with Fortran.

e double *psigma — the shift parameter o is found in *psigma.

e double *ppvttol — the pivot tolerance is found in *ppvttol. When *ppvttol = 0.0, the
factorization is computed without pivoting for stability. When xppvttol > 0.0, the factorization
is computed with pivoting for stability, and all offdiagonal entries have magnitudes bounded above
by 1/(xppvttol).

e void *data — a pointer to the Bridge object.
e int *pinertia — on return, *pinertia holds the number of negative eigenvalues.

e int *perror — on return, *perror holds an error code.

1 error in the factorization -2 ppvttol is NULL
0 normal return -3 datais NULL
-1 psigma is NULL -4 pinertiais NULL

3. void MatMul (int *pnrows, int *pncols, double X[], double Y[],
int *pprbtype, void *data) ;
This method computes a multiply of the form Y = IX, Y = AX or Y = BX. All calling sequence
parameters are pointers to more easily allow an interface with Fortran.
e int *pnrows — *pnrows contains the number of rows in X and Y.
e int *pncols — *pncols contains the number of columns in X and Y.
e double X[] — this is the X matrix, stored column major with leading dimension *pnrows.
e double Y[] — this is the Y matrix, stored column major with leading dimension *pnrows.
e int *pprbtype — *pprbtype holds the problem type.
— 1 — vibration, a multiply with B is required.
— 2 — buckling, a multiply with A is required.
— 3 — simple, no multiply is required.

e void *data — a pointer to the Bridge object.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 7

4. void Solve (int *pnrows, int *pncols, double X[], double Y[],
void *data, int *perror) ;

This method solves (A—ocB)X =Y, where (A—o0B) has been factored by a previous call to Factor ().
All calling sequence parameters are pointers to more easily allow an interface with Fortran.

e int *pnrows — *pnrows contains the number of rows in X and Y.

e int *pncols — *pncols contains the number of columns in X and Y.

e double X[] — this is the X matrix, stored column major with leading dimension *pnrows.
e double Y[] — this is the Y matrix, stored column major with leading dimension *pnrows.
e void *data — a pointer to the Bridge object.

e int *perror — on return, *perror holds an error code.

1 normal return -3 X is NULL
-1 pnrowsis NULL -4 Y is NULL
-2 pncolsis NULL -5 datais NULL

5. int Cleanup (void *data) ;
This method releases all the storage used by the SPOOLES library functions.

Return value: 1 for a normal return, -1 if a data is NULL.

2.3 The testSerial Driver Program

A complete listing of the serial driver program is found in chapter A. The program is invoked by this
command sequence.

testSerial msglvl msgFile parmFile seed inFileA inFileB
where

e msglvl is the message level for the Bridge methods and the SPOOLES software.
e msgFile is the message file for the Bridge methods and the SPOOLES software.
e parmFile is the input file for the parameters of the eigensystem to be solved.

e seed is a random number seed used by the SPOOLES software.

e inFileA is the Harwell-Boeing file for the matrix A.

e inFileB is the Harwell-Boeing file for the matrix B.

This program is executed for some sample matrices by the do_ST_* shell scripts in the drivers directory.

Here is a short description of the steps in the driver program. See Chapter A for the listing.

1. The command line inputs are decoded.

2. The header of the Harwell-Boeing file for A is read. This yields the number of equations.

w

. The parameters that define the eigensystem to be solved are read in from the parmFile file.

4. The Lanczos eigensolver workspace is initialized.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 8

10.
11.
12.

The Lanczos communication structure is filled with some parameters.

The A and possibly B matrices are read in from the Harwell-Boeing files and converted into InpMtx
objects from the SPOOLES library.

The linear solver environment is then initialized via a call to Setup().

The eigensolver is invoked via a call to lanczos_run(). The FactorMT(), SolveMT () and MatMulMT ()
methods are passed to this routine.

The eigenvalues are extracted and printed via a call to lanczos_eigenvalues().
The eigenvectors are extracted and printed via calls to lanczos_eigenvector().
The eigensolver working storage is free’d via a call to lanczos_free().

The linear solver working storage is free’d via a call to Cleanup().

Chapter 3

The Multithreaded Bridge Object and
Driver

3.1 The BridgeMT Data Structure

The BridgeMT structure has the following fields.

e int prbtype : problem type

— 1 — vibration, a multiply with B is required.
— 2 — buckling, a multiply with A is required.

— 3 — simple, no multiply is required.
e int neqns : number of equations, i.e., number of vertices in the graph.
e int mxbsz : block size for the Lanczos process.
e int nthread : number of threads to use.
e int seed : random number seed used in the ordering.
e InpMtx *A : matrix object for A
e InpMtx *B : matrix object for B
e Pencil *pencil : object to hold linear combination of A and B.

e ETree xfrontETree : object that defines the factorizations, e.g., the number of fronts, the tree they
form, the number of internal and external rows for each front, and the map from vertices to the front
where it is contained.

e IVL *symbfacIVL : object that contains the symbolic factorization of the matrix.

e SubMtxManager *mtxmanager : object that manages the SubMtx objects that store the factor entries
and are used in the solves.

e FrontMtx *frontmtx : object that stores the L, D and U factor matrices.

e IV *x0ldToNewIV : object that stores old-to-new permutation vector.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 10

e IV *newTo01dIV : object that stores new-to-old permutation vector.

e DenseMtx *X : dense matrix object that is used during the matrix multiples and solves.

e DenseMtx *Y : dense matrix object that is used during the matrix multiples and solves.

e IV xownersIV: object that maps fronts to owning threads for the factorization and matrix-multiplies.
e SolveMap *solvemap : object that maps factor submatrices to owning threads for the solve.

e int msglvl : message level for output. When 0, no output, When 1, just statistics and cpu times.
When greater than 1, more and more output.

e FILE *msgFile : message file for output. When msglvl > 0, msgFile must not be NULL.

3.2 Prototypes and descriptions of BridgeMT methods

This section contains brief descriptions including prototypes of all methods that belong to the BridgeMT
object.

1. int SetupMT (void *data, int *pprbtype, int *pneqns,
int *pmxbsz, InpMtx *A, InpMtx *B, int *pseed,
int *pnthread, int *pmsglvl, FILE *msgFile) ;

All calling sequence parameters are pointers to more easily allow an interface with Fortran.

e void *data — a pointer to the BridgeMT object.
e int *pprbtype — *pprbtype holds the problem type.
— 1 — vibration, a multiply with B is required.
— 2 — buckling, a multiply with A is required.
— 3 — simple, no multiply is required.
e int *pneqns — *pneqns is the number of equations.
e int *pmxbsz — *pmxbsz is an upper bound on the block size.
e InpMtx *A — A is a SPOOLES object that holds the matrix A.

e InpMtx *B — B is a SPOOLES object that holds the matrix B. For an ordinary eigenproblem,
B is the identity and B is NULL.

e int *pseed — *pseed is a random number seed.

e int *pnthread — *pnthread is the number of threads to use during the factorizations, solves
and matrix-multiplies.

e int *pmsglvl — *pmsglvl is a message level for the bridge methods and the SPOOLES methods
they call.

e FILE *pmsglvl — msgFile is the message file for the bridge methods and the SPOOLES meth-
ods they call.

This method must be called in the driver program prior to invoking the eigensolver via a call to
lanczos_run(). It then follows this sequence of action.

e The method begins by checking all the input data, and setting the appropriate fields of the
BridgeMT object.

e The pencil object is initialized with A and B.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 11

A and B are converted to storage by rows and vector mode.
A Graph object is created that contains the sparsity pattern of the union of A and B.

The graph is ordered by first finding a recursive dissection partition, and then evaluating the
orderings produced by nested dissection and multisection, and choosing the better of the two.
The frontETree object is produced and placed into the bridge object.

Old-to-new and new-to-old permutations are extracted from the front tree and loaded into the
BridgeMT object.

The vertices in the front tree are permuted, as well as the entries in A and B. Entries in the lower
triangle of A and B are mapped into the upper triangle, and the storage modes of A and B are
changed to chevrons and vectors, in preparation for the first factorization.

The symbolic factorization is then computed and loaded in the BridgeMT object.
A FrontMtx object is created to hold the factorization and loaded into the BridgeMT object.

A SubMtxManager object is created to hold the factor’s submatrices and loaded into the BridgeMT
object.

Two DenseMtx objects are created to be used during the matrix multiplies and solves.
The map from fronts to their owning threads is computed and stored in the ownersIV object.

The map from factor submatrices to their owning threads is computed and stored in the solvemap
object.

The A and B matrices are now in their permuted ordering, i.e., PAPT and PBPT, and all data struc-
tures are with respect to this ordering. After the Lanczos run completes, any generated eigenvectors
must be permuted back into their original ordering using the 01dToNewIV and newTo01dIV objects.

Return value:

1 normal return -7 *pmxbsz is invalid
-1 datais NULL -8 A and B are NULL
-2 pprbtype is NULL -9 seedis NULL
-3 #*pprbtype is invalid -10 msglvl is NULL
-4 pneqns is NULL -11 msglvl > 0 and msgFile is NULL
-5 *pnequns is invalid -12 pnthread is NULL
-6 pmxbsz is NULL -13 *pnthread is invalid

2. void FactorMT (double *psigma, double *ppvttol, void *data,

int *pinertia, int *perror)

This method computes the factorization of A — oB. All calling sequence parameters are pointers to
more easily allow an interface with Fortran.

double *psigma — the shift parameter o is found in *psigma.

double *ppvttol — the pivot tolerance is found in *ppvttol. When sppvttol = 0.0, the
factorization is computed without pivoting for stability. When xppvttol > 0.0, the factorization
is computed with pivoting for stability, and all offdiagonal entries have magnitudes bounded above
by 1/(xppvttol).

void *data — a pointer to the BridgeMT object.

int #*pinertia — on return, *pinertia holds the number of negative eigenvalues.

int *perror — on return, *perror holds an error code.
1 error in the factorization -2 ppvttol is NULL

0 normal return -3 datais NULL
-1 psigma is NULL -4 pinertiais NULL

SPOOLES 2.2 Wrapper Objects : January 2, 1999 12

3. void MatMulMT (int *pnrows, int *pncols, double X[], double Y[],
int *pprbtype, void *data) ;

This method computes a multiply of the form Y = IX, Y = AX or Y = BX. All calling sequence
parameters are pointers to more easily allow an interface with Fortran.
e int *pnrows — *pnrows contains the number of rows in X and Y.
e int *pncols — *pncols contains the number of columns in X and Y.
e double X[] — this is the X matrix, stored column major with leading dimension *pnrows.
e double Y[] — this is the Y matrix, stored column major with leading dimension *pnrows.
e int *pprbtype — *pprbtype holds the problem type.
— 1 — vibration, a multiply with B is required.
— 2 — buckling, a multiply with A is required.
— 3 — simple, no multiply is required.
e void *data — a pointer to the BridgeMT object.
4. void SolveMT (int *pnrows, int *pncols, double X[], double Y[],
void *data, int *perror) ;
This method solves (A—oB)X =Y, where (A— o B) has been factored by a previous call to Factor ().
All calling sequence parameters are pointers to more easily allow an interface with Fortran.
e int *pnrows — *pnrows contains the number of rows in X and Y.
e int *pncols — *pncols contains the number of columns in X and Y.

double X[] — this is the X matrix, stored column major with leading dimension *pnrows.

double Y[] — this is the Y matrix, stored column major with leading dimension *pnrows.

e void *data — a pointer to the BridgeMT object.

e int *perror — on return, *perror holds an error code.

1 normal return -3 X is NULL
-1 pnrows is NULL -4 Y is NULL
-2 pncolsis NULL -5 datais NULL

5. int CleanupMT (void *data) ;
This method releases all the storage used by the SPOOLES library functions.

Return value: 1 for a normal return, -1 if a data is NULL.

3.3 The testMT Driver Program

A complete listing of the multithreaded driver program is found in chapter B. The program is invoked by
this command sequence.

testMT msglvl msgFile parmFile seed nthread inFileA inFileB
where

e msglvl is the message level for the BridgeMT methods and the SPOOLES software.

e msgFile is the message file for the BridgeMT methods and the SPOOLES software.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 13

parmFile is the input file for the parameters of the eigensystem to be solved.

seed is a random number seed used by the SPOOLES software.

nthread is the number of threads to use in the factors, solves and matrix-multiplies.
inFileA is the Harwell-Boeing file for the matrix A.

inFileB is the Harwell-Boeing file for the matrix B.

This program is executed for some sample matrices by the do_ST_* shell scripts in the drivers directory.

Here is a short description of the steps in the driver program. See Chapter A for the listing.

1.

- W

10.
11.
12.

The command line inputs are decoded.

The header of the Harwell-Boeing file for A is read. This yields the number of equations.
The parameters that define the eigensystem to be solved are read in from the parmFile file.
The Lanczos eigensolver workspace is initialized.

The Lanczos communication structure is filled with some parameters.

The A and possibly B matrices are read in from the Harwell-Boeing files and converted into InpMtx
objects from the SPOOLES library.

The linear solver environment is then initialized via a call to SetupMT ().

The eigensolver is invoked via a call to lanczos_run(). The FactorMT (), SolveMT () and MatMulMT ()
methods are passed to this routine.

The eigenvalues are extracted and printed via a call to lanczos_eigenvalues().
The eigenvectors are extracted and printed via calls to lanczos_eigenvector().
The eigensolver working storage is free’d via a call to lanczos_free().

The linear solver working storage is free’d via a call to CleanupMT ().

Chapter 4

The MPI Bridge Object and Driver

4.1 The BridgeMPI Data Structure

The BridgeMPI structure has the following fields.

e int prbtype : problem type

— 1 — vibration, a multiply with B is required.
— 2 — buckling, a multiply with A is required.

— 3 — simple, no multiply is required.
e int neqns : number of equations, i.e., number of vertices in the graph.
e int mxbsz : block size for the Lanczos process.
e int nproc : number of processors.
e int myid : id (rank) of this processor.
e int seed : random number seed used in the ordering.
e int coordFlag : coordinate flag for local A and B matrices.

— 1 (LOCAL) for local indices, needed for matrix-multiplies.

— 2 (GLOBAL) for global indices, needed for factorizations.
e InpMtx *A : matrix object for A
e InpMtx *B : matrix object for B
e Pencil *pencil : object to hold linear combination of A and B.

e ETree *xfrontETree : object that defines the factorizations, e.g., the number of fronts, the tree they
form, the number of internal and external rows for each front, and the map from vertices to the front
where it is contained.

e IVL *symbfacIVL : object that contains the symbolic factorization of the matrix.

e SubMtxManager *mtxmanager : object that manages the SubMtx objects that store the factor entries
and are used in the solves.

14

SPOOLES 2.2 Wrapper Objects : January 2, 1999 15

e FrontMtx *frontmtx : object that stores the L, D and U factor matrices.

e IV *x0ldToNewIV : object that stores old-to-new permutation vector.

e IV *newTo01dIV : object that stores new-to-old permutation vector.

e DenseMtx *Xloc : dense local matrix object that is used during the matrix multiples and solves.
e DenseMtx *Yloc : dense local matrix object that is used during the matrix multiples and solves.

e IV *vtxmapIV : object that maps vertices to owning processors for the factorization and matrix-
multiplies.

e IV *myownedIV : object that contains a list of all vertices owned by this processor.
e IV xownersIV:object that maps fronts to owning processors for the factorization and matrix-multiplies.

e IV *rowmapIV : if pivoting was performed for numerical stability, this object maps rows of the factor
to processors.

e SolveMap *solvemap : object that maps factor submatrices to owning threads for the solve.

e MatMulInfo *info : object that holds all the communication information for a distributed matrix-
multiply.

e int msglvl : message level for output. When 0, no output, When 1, just statistics and cpu times.
When greater than 1, more and more output.

e FILE *msgFile : message file for output. When msglvl > 0, msgFile must not be NULL.

e MPI_Comm comm : MPI communicator.

4.2 Prototypes and descriptions of BridgeMPI methods

This section contains brief descriptions including prototypes of all methods that belong to the BridgeMPI
object.

In contrast to the serial and MT bridge objects, there are seven methods instead of five. In a distributed
environment, data structures should be partitioned across processors. On the SPOOLES side, the factor
entries, and the X and Y matrices that take part in the solves and matrix-multiplies, are partitioned among
the processors according to the “front structure” and vertex map of the factor matrices. The SPOOLES
solve and matrix-multiply bridge methods expect the local X and Y matrices. On the LANCZOS side, the
Krylov blocks and eigenvectors are partitioned across processors in a simple block manner. (The first of p
processors has the first n/p rows, etc.)

At the present time, the SPOOLES and LANCZOS software have no agreement on how the data
should be partitioned. (For example, SPOOLES could tell LANCZOS how it wants the data to be
partitioned, or LANCZOS could tell SPOOLES how it wants the data to be partitioned.) Therefore,
inside the LANCZOS software a global Krylov block is assembled on each processor prior to calling the
solve or matrix-multiply methods. To “translate” between the global blocks to local blocks, and then back
to global blocks, we have written two wrapper methods, JimMatMulMPI() and JimSolveMPI(). Each takes
the global input block, compresses it into a local block, call the bridge matrix-multiply or solve method,
then takes the local output blocks and gathers them on all the processors into each of their global output
blocks. These operations add a considerable cost to the solve and matrix-multiplies, but the next release of
the LANCZOS software will remove these steps.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 16

1. int SetupMPI (void *data, int *pprbtype, int *pneqns,

int *pmxbsz, InpMtx *A, InpMtx *B, int *pseed,
int *pmsglvl, FILE *msgFile, MPI_Comm comm) ;

All calling sequence parameters are pointers to more easily allow an interface with Fortran.

void *data — a pointer to the BridgeMPI object.
int *pprbtype — *pprbtype holds the problem type.
— 1 — vibration, a multiply with B is required.
— 2 — buckling, a multiply with A is required.
— 3 — simple, no multiply is required.
int *pneqns — *pnequs is the number of equations.
int *pmxbsz — *pmxbsz is an upper bound on the block size.
InpMtx *A — A is a SPOOLES object that holds the matrix A.

InpMtx *B — B is a SPOOLES object that holds the matrix B. For an ordinary eigenproblem,
B is the identity and B is NULL.

int *pseed — *pseed is a random number seed.

int *pmsglvl — *pmsglvl is a message level for the bridge methods and the SPOOLES methods
they call.

FILE *pmsglvl — msgFile is the message file for the bridge methods and the SPOOLES meth-
ods they call.

MPI_Comm comm — MPI communicator. matrix-multiplies.

This method must be called in the driver program prior to invoking the eigensolver via a call to
lanczos_run(). It then follows this sequence of action.

The method begins by checking all the input data, and setting the appropriate fields of the
BridgeMPI object.

The pencil object is initialized with A and B.
A and B are converted to storage by rows and vector mode.
A Graph object is created that contains the sparsity pattern of the union of A and B.

The graph is ordered by first finding a recursive dissection partition, and then evaluating the
orderings produced by nested dissection and multisection, and choosing the better of the two.
The frontETree object is produced and placed into the bridge object.

Old-to-new and new-to-old permutations are extracted from the front tree and loaded into the
BridgeMPI object.

The vertices in the front tree are permuted, as well as the entries in A and B. Entries in the lower
triangle of A and B are mapped into the upper triangle, and the storage modes of A and B are
changed to chevrons and vectors, in preparation for the first factorization.

The ownersIV, vtxmapIV and myownedIV objects are created, that map fronts and vertices to
pProcessors.

The entries in A and B are permuted. Entries in the permuted lower triangle are mapped into
the upper triangle. The storage modes of A and B are changed to chevrons and vectors, and the
entries of A and B are redistributed to the processors that own them.

The symbolic factorization is then computed and loaded in the BridgeMPI object.
A FrontMtx object is created to hold the factorization and loaded into the BridgeMPI object.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 17

A SubMtxManager object is created to hold the factor’s submatrices and loaded into the BridgeMPI
object.

The map from factor submatrices to their owning threads is computed and stored in the solvemap
object.

The distributed matrix-multiplies are set up.

The A and B matrices are now in their permuted ordering, i.e., PAPT and PBP”, and all data struc-
tures are with respect to this ordering. After the Lanczos run completes, any generated eigenvectors
must be permuted back into their original ordering using the 01dToNewIV and newTo01dIV objects.

Return value:

1 normal return -7 *pmxbsz is invalid
-1 datais NULL -8 A and B are NULL
-2 pprbtype is NULL -9 seedis NULL
-3 #*pprbtype is invalid -10 msglvl is NULL
-4 pneqns is NULL -11 msglvl > 0 and msgFile is NULL
-5 #*pneqns is invalid -12 comm is NULL

-6 pmxbsz is NULL

2. void FactorMPI (double *psigma, double *ppvttol, void *data,

int *pinertia, int *perror) ;

This method computes the factorization of A — oB. All calling sequence parameters are pointers to
more easily allow an interface with Fortran.

double *psigma — the shift parameter o is found in *psigma.

double *ppvttol — the pivot tolerance is found in *ppvttol. When xppvttol = 0.0, the
factorization is computed without pivoting for stability. When xppvttol > 0.0, the factorization
is computed with pivoting for stability, and all offdiagonal entries have magnitudes bounded above
by 1/(xppvttol).

void *data — a pointer to the BridgeMPI object.

int *pinertia — on return, *pinertia holds the number of negative eigenvalues.

int *perror — on return, *perror holds an error code.
1 error in the factorization -2 ppvttol is NULL

0 normal return -3 datais NULL
-1 psigma is NULL -4 pinertiais NULL

3. void JimMatMulMPI (int *pnrows, int *pncols, double X[], double Y[],

int *pprbtype, void *data) ;

This method computes a multiply of the form Y = IX, Y = AX or Y = BX. All calling sequence
parameters are pointers to more easily allow an interface with Fortran.

int *pnrows — *pnrows contains the number of global rows in X and Y.
int *pncols — *pncols contains the number of global columns in X and Y.
double X[] — this is the global X matrix, stored column major with leading dimension *pnrows.
double Y[] — this is the global Y matrix, stored column major with leading dimension *pnrows.
int *pprbtype — *pprbtype holds the problem type.

— 1 — vibration, a multiply with B is required.

— 2 — buckling, a multiply with A is required.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 18

— 3 — simple, no multiply is required.
e void *data — a pointer to the BridgeMPI object.
. void MatMulMPI (int *pnrows, int *pncols, double X[], double Y[],
int *pprbtype, void *data) ;
This method computes a multiply of the form Y = IX, Y = AX or Y = BX. All calling sequence
parameters are pointers to more easily allow an interface with Fortran.
e int *pnrows — *pnrows contains the number of local rows in X and Y.
e int *pncols — *pncols contains the number of local columns in X and Y.
e double X[] — this is the local X matrix, stored column major with leading dimension *pnrows.
e double Y[] — this is the local Y matrix, stored column major with leading dimension *pnrows.
e int *pprbtype — *pprbtype holds the problem type.
— 1 — vibration, a multiply with B is required.
— 2 — buckling, a multiply with A is required.
— 3 — simple, no multiply is required.
e void *data — a pointer to the BridgeMPI object.
. void JimSolveMPI (int *pnrows, int *pncols, double X[], double Y[],
void *data, int *perror) ;
This method solves (A—ocB)X =Y, where (A—o0B) has been factored by a previous call to Factor ().
All calling sequence parameters are pointers to more easily allow an interface with Fortran.
e int *pnrows — *pnrows contains the number of global rows in X and Y.
e int *pncols — *pncols contains the number of global columns in X and Y.
e double X[] — thisis the global X matrix, stored column major with leading dimension *pnrows.
e double Y[] — this is the global Y matrix, stored column major with leading dimension *pnrows.
e void *data — a pointer to the BridgeMPI object.

e int *perror — on return, *perror holds an error code.

1 normal return -3 X is NULL
-1 pnrowsis NULL -4 Y is NULL
-2 pncolsis NULL -5 datais NULL

. void SolveMPI (int #*pnrows, int *pncols, double X[], double Y[],
void *data, int *perror) ;
This method solves (A—oB)X =Y, where (A— o B) has been factored by a previous call to Factor ().
All calling sequence parameters are pointers to more easily allow an interface with Fortran.
e int *pnrows — *pnrows contains the number of local rows in X and Y.
e int *pncols — *pncols contains the number of local columns in X and Y.
e double X[] — this is the local X matrix, stored column major with leading dimension *pnrows.
e double Y[] — this is the local Y matrix, stored column major with leading dimension *pnrows.
e void *data — a pointer to the BridgeMPI object.

e int *perror — on return, *perror holds an error code.

1 normal return -3 X is NULL
-1 pnrows is NULL -4 Y is NULL
-2 pncolsis NULL -5 datais NULL

SPOOLES 2.2 Wrapper Objects : January 2, 1999 19

7.

int CleanupMPI (void *data) ;
This method releases all the storage used by the SPOOLES library functions.

Return value: 1 for a normal return, -1 if a data is NULL.

4.3 The testMPI Driver Program

A complete listing of the multithreaded driver program is found in chapter C. The program is invoked by
this command sequence.

testMPI msglvl msgFile parmFile seed inFileA inFileB

where

msglvl is the message level for the BridgeMPI methods and the SPOOLES software.
msgFile is the message file for the BridgeMPI methods and the SPOOLES software.
parmFile is the input file for the parameters of the eigensystem to be solved.

seed is a random number seed used by the SPOOLES software.

inFileA is the Harwell-Boeing file for the matrix A.

inFileB is the Harwell-Boeing file for the matrix B.

This program is executed for some sample matrices by the do_ST_x shell scripts in the drivers directory.

Here is a short description of the steps in the driver program. See Chapter A for the listing.

1.
2.

N o e

10.
11.
12.
13.

Each processor determines the number of processors and its rank.
Each processor decodes the command line inputs.

Processor 0 reads the header of the Harwell-Boeing file for A and broadcasts the number of equations
to all processors.

Each processor reads from the parmFile file the parameters that define the eigensystem to be solved.
Each processor initializes its Lanczos eigensolver workspace.
Each processor fills its Lanczos communication structure with some parameters.

Processor 0 reads in the A and possibly B matrices from the Harwell-Boeing files and converts them
into InpMtx objects from the SPOOLES library. The other processors initialize their local InpMtx
objects.

Each processor initializes its linear solver environment via a call to SetupMPI().

Each processor invokes the eigensolver via a call to lanczos_run(). The FactorMPI (), JimSolveMPI ()
and JimMatMulMPI () methods are passed to this routine.

Processor zero extracts the eigenvalues via a call to lanczos_eigenvalues () and prints them out.
Processor zero extracts the eigenvectors via a call to lanczos_eigenvectors() and prints them out.
Each processor free’s the eigensolver working storage via a call to lanczos_free().

Each processor free’s the linear solver working storage via a call to CleanupMPI().

Appendix A

testSerial.c — A Serial Driver
Program

/* testSerial.c */
#include "../Bridge.h"

void Factor () ;
void MatMul () ;
void Solve () ;

void main (int argc, char *argv[])

/*
read in Harwell-Boeing matrices, use serial factor, solve,
and multiply routines based on spooles, invoke eigensolver

created -- 98mar31 jcp
modified -- 98decl18, cca

*/

{

Bridge bridge ;

char *inFileName_A, *inFileName_B, *outFileName,
*parmFileName, *type ;

char buffer[20], pbtypel4], which[4] ;

double 1lftend, rhtend, center, shfscl, t1, t2 ;

double c__1=1.0, c__4 =4.0, tolact = 2.309970868130169e-11 ;

double eigval[1000], sigmal[2];

double *evec;

int error, fstevl, 1finit, lstevl, mxbksz, msglvl, ncol, ndiscd,
neig, neigvl, nfound, nnonzeros, nrhs, nrow, prbtyp, rc,
retc, rfinit, seed, warnng ;

int c__5 =5, output = 6 ;

20

int *lanczos_wksp;
InpMtx *inpmtxA, *inpmtxB ;
FILE *msgFile, *parmFile;
R
if (arge '=7) {
fprintf (stdout,
"\n\n usage : ’%s msglvl msgFile parmFile seed inFileA inFileB"
"\n msglvl -- message level"
"\n msgFile -- message file"
"\n parmFile -- input parameters file"
"\n seed -- random number seed, used for ordering"
"\n inFileA -- stiffness matrix in Harwell-Boeing format"
"\n inFileB -- mass matrix in Harwell-Boeing format"
"\n used for prbtyp = 1 or 2"
"\n", argv[0]) ;
return ;

}
msglvl = atoi(argv[1]) ;
if (strcmp(argv[2], "stdout") == 0) {
msgFile = stdout ;
} else if ((msgFile = fopen(argv([2], "a")) == NULL) {
fprintf (stderr, "\n fatal error in %s"
"\n unable to open file %s\n",
argv[0], argv([2]) ;

exit(-1) ;
}
parmFileName = argv[3] ;
seed = atoi(argv[4]) ;

inFileName_A = argv[5] ;
inFileName_B = argv[6] ;

fprintf (msgFile,
n \n %S n
"\n msglvl -= %d"
"\n msgFile -= hs"
"\n parmFile -= hs"
"\n seed —= %d"
"\n stiffness file —— %s"
"\n mass file -= %s"
"\n",

argv[0], msglvl, argv[2], parmFileName, seed,
inFileName_A, inFileName_B) ;

fflush(msgFile) ;

/*

*/
if (strcmp(inFileName_A, "none") == 0) {
fprintf (msgFile, "\n no file to read from") ;

SPOOLES 2.2 Wrapper Objects : January 2, 1999

21

SPOOLES 2.2 Wrapper Objects : January 2, 1999

exit(0) ;
}
MARKTIME(t1) ;
readHB_info (inFileName_A, &nrow, &ncol, &nnonzeros, &type, &nrhs) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : read in header information for A",

t2 - t1)
[
/*
read in eigenvalue problem data
neigvl -- # of desired eigenvalues
which -- which eigenvalues to compute

’17 or ’L’ lowest (smallest magnitude)
’h’ or ’H’ highest (largest magnitude)
’n’ or ’N’ nearest to central value
’c’ or ’C’ nearest to central value
’a’ or ’A’ all eigenvalues in interval
pbtype -- type of problem
’v? or ’V’ generalized symmetric problem (K,M)
with M positive semidefinite (vibration problem)
’b’ or ’B’ generalized symmetric problem (K,K_s)
with K positive semidefinite
with K_s posibly indefinite (buckling problem)
0’ or ’0’ ordinary symmetric eigenproblem
1finit -- if true, lftend is restriction on lower bound of
eigenvalues. if false, no restriction on lower bound
lftend —- left endpoint of interval

rfinit -- if true, rhtend is restriction on upper bound of
eigenvalues. 1if false, no restriction on upper bound

rhtend -- right endpoint of interval

center -- center of interval

mxbksz -- upper bound on block size for Lanczos recurrence

shfscl -- shift scaling parameter, an estimate on the magnitude

of the smallest nonzero eigenvalues

*/

MARKTIME(t1) ;

parmFile = fopen(parmFileName, "r");

fscanf (parmFile, "%d %s %s %d %le %d %le %le %d %le",
&neigvl, which, pbtype, &lfinit, &lftend,
&rfinit, &rhtend, ¢er, &mxbksz, &shfscl) ;

fclose(parmFile);

MARKTIME(t2) ;

fprintf(msgFile, "\n CPU %8.3f : read in eigenvalue problem data",
t2 - t1) ;

/*

23

SPOOLES 2.2 Wrapper Objects : January 2, 1999

switch (pbtypel1]) {
case ’v’ : case ’V’ : prbtyp = 1 ; break ;

case ’b’ : case ’B’ : prbtyp = 2 ; break ;
case ’o’ : case ’0’ : prbtyp = 3 ; break ;
default :

fprintf (stderr, "\n invalid problem type %s", pbtype) ;
exit(-1) ;

}
/*

Initialize Lanczos workspace
*/
MARKTIME(t1) ;
lanczos_init_ (&lanczos_wksp) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : initialize lanczos workspace",

t2 - tl1) ;

/*

initialize communication structure
*/
MARKTIME(t1) ;
lanczos_set_parm(&lanczos_wksp, "order-of-problem", &nrow, &retc
lanczos_set_parm(&lanczos_wksp, "accuracy-tolerance", &tolact, &retc
lanczos_set_parm(&lanczos_wksp, "max-block-size", &mxbksz, &retc
lanczos_set_parm(&lanczos_wksp, "shift-scale", &shfscl, &retc
lanczos_set_parm(&lanczos_wksp, "message_level", &¢msglvl, &retc
MARKTIME(t2) ;
fprintf (msgFile, "\n CPU %8.3f : init lanczos communication structure"

t2 - t1) ;

R
/*

create the InpMtx objects for matrix A and B
*/

if (strcmp(inFileName_A, "none") == 0) {
fprintf (msgFile, "\n no file to read from") ;
exit (0) ;
}
MARKTIME(t1) ;
inpmtxA = InpMtx_new() ;
InpMtx_readFromHBfile (inpmtxA, inFileName_A) ;
MARKTIME(t2) ;
fprintf (msgFile, "\n CPU %8.3f : read in A", t2 - t1) ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n InpMtx A object after loading")
InpMtx_writeForHumanEye (inpmtxA, msgFile) ;
fflush(msgFile) ;

B

SPOOLES 2.2 Wrapper Objects : January 2, 1999

24

}
MARKTIME(t1) ;
lanczos_set_parm(&lanczos_wksp, "matrix-type", &c__1, &retc);
MARKTIME(t2) ;
fprintf (msgFile, "\n CPU %8.3f : set A’s parameters", t2 - tl1) ;
if (prbtyp !'= 3) {
if (strcmp(inFileName_B, "none") == 0) {
fprintf(msgFile, "\n no file to read from") ;
exit (0) ;
}
MARKTIME(t1) ;
inpmtxB = InpMtx_new() ;
InpMtx_readFromHBfile (inpmtxB, inFileName_B) ;
MARKTIME(t2) ;
fprintf (msgFile, "\n CPU %8.3f : read in B", t2 - tl1) ;
} else {
MARKTIME(t1) ;
inpmtxB = NULL ;
lanczos_set_parm(&lanczos_wksp, "matrix-type", &c__4, &retc);
MARKTIME(t2) ;
fprintf (msgFile, "\n CPU %8.3f : set B’s parameters", t2 - tl1) ;

if (msglvl > 2 && prbtyp != 3) {
fprintf(msgFile, "\n\n InpMtx B object after loading")
InpMtx_writeForHumanEye (inpmtxB, msgFile) ;
fflush(msgFile) ;

/%

*/
MARKTIME(t1) ;
rc = Setup((void *) &bridge, &prbtyp, &nrow, &mxbksz, inpmtxA, inpmtxB,
&seed, &msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf (msgFile, "\n CPU %8.3f : set up solver environment", t2 - t1) ;
if (rct!=1) {
fprintf(stderr, "\n fatal error ’%d from Setup()", rc) ;
exit(-1) ;

invoke eigensolver
nfound -- # of eigenvalues found and kept
ndisc -- # of additional eigenvalues discarded

*/
MARKTIME(t1) ;
lanczos_run(&neigvl, &which[1] , &pbtypel1l], &lfinit, &lftend,

SPOOLES 2.2 Wrapper Objects : January 2, 1999

25

&rfinit, &rhtend, ¢er, &lanczos_wksp, &bridge, &nfound,
&ndiscd, &warnng, &error, Factor, MatMul, Solve) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : time for lanczos run", t2 - tl) ;
/*

*/
MARKTIME(t1) ;
neig = nfound + ndiscd ;

lstevl = nfound ;
lanczos_eigenvalues (&lanczos_wksp, eigval, &neig, &retc);
fstevl = 1 ;
if (nfound == 0) fstevl = -1 ;
if (ndiscd > 0) 1lstevl = -ndiscd ;
hdslp5_ ("computed eigenvalues returned by hdserl",
&neig, eigval, &output, 39L) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : get and print eigenvalues ", t2 - tl) ;
/*

*/

/*

MARKTIME(t1) ;

neig = min (50, nrow);
Lncz_ALLOCATE(evec, double, nrow, retc);

for (i =1 ; i <= nfound ; i++) {

lanczos_eigenvector (&lanczos_wksp, &i, &i, newTo0Old,

evec, &nrow, &retc) ;
hdslp5_ ("computed eigenvector returned by hdserc",
&neig, evec, &output, 39L) ;

}
MARKTIME(t2) ;
fprintf (msgFile, "\n CPU %8.3f : get and print eigenvectors ", t2 - t1) ;
*/
/%

*/

MARKTIME(t1) ;

lanczos_free(&lanczos_wksp) ;

MARKTIME(t2) ;

fprintf (msgFile, "\n CPU %8.3f : free lanczos workspace ", t2 - tl1) ;
MARKTIME(t1) ;

rc = Cleanup(&bridge) ;

MARKTIME(t2) ;

SPOOLES 2.2 Wrapper Objects : January 2, 1999

26

fprintf (msgFile, "\n CPU %8.3f : free solver workspace ", t2 - t1) ;
if (rc!'=1) {
fprintf(stderr, "\n error return %d from Cleanup()", rc) ;
exit(-1) ;
}
fprintf (msgFile, "\n") ;
fclose(msgFile) ;

return ; }

Appendix B

testMT.c — A Multithreaded Driver
Program

/* testMT.c x*/
#include "../BridgeMT.h"

void FactorMT () ;
void MatMulMT () ;
void SolveMT () ;

void main (int argc, char *argv[])

/*
read in Harwell-Boeing matrices, using multithreaded factor,
solve, and multiply routines based on spooles, invoke eigensolver

created -- 98mar31, jcp
modified -- 98decl18, cca

*/

{

BridgeMT bridge ;

char *inFileName_A, *inFileName_B, *parmFileName, *type ;
char buffer[20], pbtypel4], which[4] ;

double 1lftend, rhtend, center, shfscl, t1, t2 ;

double c__1=1.0, c__4 =4.0, tolact = 2.309970868130169e-11 ;

double eigval[1000], sigma[2];

double *evec;

int error, fstevl, 1finit, lstevl, msglvl, mxbksz, ncol, ndiscd,
neig, neigvl, nfound, nnonzeros, nrhs, nrow, nthreads,
prbtyp, rc, retc, rfinit, seed, warnng ;

int c__5 =5, output = 6 ;

int *lanczos_wksp;

27

SPOOLES 2.2 Wrapper Objects : January 2, 1999 28

InpMtx *inpmtxA, *inpmtxB ;
FILE *msgFile, *parmFile ;

if (argc !'=8) {

fprintf (stdout,
"\n\n usage : %s msglvl msgFile parmFile seed nthread inFileA inFileB"
"\n msglvl -- message level"

"\n msgFile -- message file"
"\n parmFile -- input parameters file"
"\n seed -- random number seed, used for ordering"
"\n nthreads -- number of threads "
"\n inFileA -- stiffness matrix, in Harwell-Boeing format"
"\n inFileB -- mass matrix, in Harwell-Boeing format"
"\n used for prbtype = 1 or 2"
"\n", argv[0]) ;
return ;
}

msglvl = atoi(argv([1]) ;
if (strcmp(argv[2], "stdout") == 0) {
msgFile = stdout ;
} else if ((msgFile = fopen(argv[2], "a")) == NULL) {
fprintf (stderr, "\n fatal error in %s"
"\n able to open file %s\n", argv[0], argv([2]) ;

exit(-1) ;
}
parmFileName = argv[3] ;
seed = atoi(argv([4]) ;
nthreads = atoi(argv([5]) ;

inFileName_A = argv[6] ;
inFileName_B = argv[7] ;

fprintf (msgFile,
"\n %s "
"\n msglvl —= Jhd"
"\n message file -= %s"
"\n parameter file == %s"
"\n stiffness matrix file —-- %s"
"\n mass matrix file -= Js"
"\n random number seed -= %d"
"\n number of threads -= %d"
n \n" s

argv[0], msglvl, argv[2], parmFileName, inFileName_A,
inFileName_B, seed, nthreads) ;

fflush(msgFile) ;

/*

*/

if (strcmp(inFileName_A, "none") == 0) {
fprintf (msgFile, "\n no file to read from") ;
exit(0) ;

SPOOLES 2.2 Wrapper Objects : January 2, 1999

}

MARKTIME(t1) ;

readHB_info (inFileName_A, &nrow, &ncol, &nnonzeros, &type, &nrhs) ;

MARKTIME(t2) ;

fprintf (msgFile, "\n CPU %8.3f : read in harwell-boeing header info",
t2 - tl1) ;

fflush(msgFile) ;

read in eigenvalue problem data
neigvl -- # of desired eigenvalues
which -- which eigenvalues to compute
’1? or ’L’ lowest (smallest magnitude)
’h’ or ’H’ highest (largest magnitude)
’n’ or ’N’ nearest to central value
’c’ or ’C’ nearest to central value
’a’ or ’A’ all eigenvalues in interval
pbtype -- type of problem
’v? or ’V’ generalized symmetric problem (K,M)
with M positive semidefinite (vibration problem)
’b’ or ’B’ generalized symmetric problem (K,K_s)
with K positive semidefinite
with K_s posibly indefinite (buckling problem)
0’ or ’0’ ordinary symmetric eigenproblem
1finit -- if true, lftend is restriction on lower bound of
eigenvalues. if false, no restriction on lower bound
lftend —- left endpoint of interval
rfinit -- if true, rhtend is restriction on upper bound of
eigenvalues. 1if false, no restriction on upper bound
rhtend -- right endpoint of interval

center -- center of interval
mxbksz —-- upper bound on block size for Lanczos recurrence
shfscl —-- shift scaling parameter, an estimate on the magnitude

of the smallest nonzero eigenvalues

*/

MARKTIME(t1) ;

parmFile = fopen(parmFileName, "r");

fscanf (parmFile, "%d %s %s %d %le %d %le %le %d %le",
&neigvl, which, pbtype, &lfinit, &lftend,
&rfinit, &rhtend, ¢er, &mxbksz, &shfscl) ;

fclose(parmFile);

MARKTIME(t2) ;

fprintf(msgFile, "\n CPU %8.3f : read in eigenvalue problem data",

t2 - t1) ;
fflush(msgFile) ;
/*

30

SPOOLES 2.2 Wrapper Objects : January 2, 1999

*/
switch (pbtypel1]) {
case v’
case 'V’
prbtyp
break ;
case ’b’
case ’B’
prbtyp
break ;
case ’o’
case 0’
prbtyp
break ;
default :
fprintf(stderr, "\n invalid problem type %s", pbtype) ;
exit(-1) ;

1]
—

1]
N

]
w

}
/*
Initialize Lanczos workspace
*/
MARKTIME(t1) ;
lanczos_init_ (&lanczos_wksp) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : initialize Lanczos workspace",
t2 - tl1) ;
fflush(msgFile) ;
/*
initialize communication structure
*/
MARKTIME(t1) ;

lanczos_set_parm(&lanczos_wksp, "order-of-problem", &nrow, &retc);
lanczos_set_parm(&lanczos_wksp, "accuracy-tolerance", &tolact, &retc);
lanczos_set_parm(&lanczos_wksp, "max-block-size", &mxbksz, &retc);
lanczos_set_parm(&lanczos_wksp, "shift-scale", &shfscl, &retc);
lanczos_set_parm(&lanczos_wksp, "message_level", &msglvl, &retc);
lanczos_set_parm(&lanczos_wksp, "number-of-threads", &nthreads, &retc);
MARKTIME(t2) ;
fprintf (msgFile, "\n CPU %8.3f : init lanczos communication structure",
t2 - tl1) ;

*/

if (strcmp(inFileName_A, "none") == 0) {

SPOOLES 2.2 Wrapper Objects : January 2, 1999

31

fprintf (msgFile, "\n no file to read A from") ;
exit(-1) ;
}
MARKTIME(t1) ;
inpmtxA = InpMtx_new() ;
InpMtx_readFromHBfile (inpmtxA, inFileName_A) ;
MARKTIME(t2) ;
fprintf (msgFile, "\n CPU %8.3f : read in A", t2 - t1) ;
fflush(msgFile) ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n InpMtx A object after loading")
InpMtx_writeForHumanEye (inpmtxA, msgFile) ;
fflush(msgFile) ;
}
lanczos_set_parm(&lanczos_wksp, "matrix-type", &c
if (prbtyp !'= 3) {
if (strcmp(inFileName_B, "none") == 0) {
fprintf(msgFile, "\n no file to read from") ;
exit (0) ;

1, &retc);

}
MARKTIME(t1) ;
inpmtxB = InpMtx_new() ;
InpMtx_readFromHBfile (inpmtxB, inFileName_B) ;
MARKTIME(t2) ;
fprintf (msgFile, "\n CPU %8.3f : read in B", t2 - tl1) ;
fflush(msgFile) ;
if (msglvl > 2) {
fprintf(msgFile, "\n\n InpMtx B object after loading")
InpMtx_writeForHumanEye (inpmtxB, msgFile) ;
fflush(msgFile) ;
}
} else {
inpmtxB = NULL ;
lanczos_set_parm(&lanczos_wksp, "matrix-type", &c__4, &retc);

*/

MARKTIME(t1) ;

rc = SetupMT((void *) &bridge, &prbtyp, &nrow, &mxbksz, inpmtxA,

inpmtxB, &seed, &nthreads, &msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : set up the solver environment",
t2 - t1) ;

fflush(msgFile) ;

if (rec!'=1) {
fprintf(stderr, "\n error return %d from SetupMT()", rc) ;
exit(-1) ;

SPOOLES 2.2 Wrapper Objects : January 2, 1999

32

R */
/*
invoke eigensolver
nfound -- # of eigenvalues found and kept
ndisc -- # of additional eigenvalues discarded
*/
MARKTIME(t1) ;

lanczos_run (&neigvl, &which[1] , &pbtypel[l], &lfinit, &lftend,
&rfinit, &rhtend, ¢er, &lanczos_wksp, &bridge, &nfound,
&ndiscd, &warnng, &error, FactorMT, MatMulMT, SolveMT) ;

MARKTIME(t2) ;

fprintf(msgFile, "\n CPU %8.3f : time for lanczos_run", t2 - tl) ;

fflush(msgFile) ;

/*

*/
MARKTIME(t1) ;
neig = nfound + ndiscd ;

lstevl = nfound ;
lanczos_eigenvalues (&lanczos_wksp, eigval, &neig, &retc);
fstevl = 1 ;
if (nfound == 0) fstevl = -1 ;
if (ndiscd > 0) lstevl = -ndiscd ;
hdslp5_ ("computed eigenvalues returned by hdserl",
&neig, eigval, &output, 39L) ;
MARKTIME(t2) ;
fprintf (msgFile, "\n CPU %8.3f : get and print eigenvalues", t2 - t1) ;
fflush(msgFile) ;
/*

*/
/%
MARKTIME(t1) ;
neig = min (50, nrow);
Lncz_ALLOCATE(evec, double, nrow, retc);
for (i = 1; i<= nfound; i++) {d
lanczos_eigenvector (&lanczos_wksp, &i, &i, newTo0Old,
evec, &nrow, &retc) ;
hdslp5_ ("computed eigenvector returned by hdserc",
&neig, evec, &output, 39L) ;
}
MARKTIME(t2) ;
fprintf (msgFile, "\n CPU %8.3f : get and print eigenvectors", t2 - t1) ;
fflush(msgFile) ;
*/

*/

MARKTIME(t1) ;

lanczos_free(&lanczos_wksp) ;
MARKTIME(t2) ;

fprintf (msgFile, "\n CPU %8.3f :

fflush(msgFile) ;
MARKTIME(t1) ;
CleanupMT (&bridge) ;
MARKTIME(t2) ;

fprintf (msgFile, "\n CPU %8.3f :

fflush(msgFile) ;

fprintf (msgFile, "\n") ;
fclose(msgFile) ;

return ; }

SPOOLES 2.2 Wrapper Objects : January 2, 1999

33

free lanczos workspace", t2 - tl) ;

free solver workspace", t2 - tl1) ;

Appendix C

testMPI.c — A MPI Driver Program

/* testMPI.c */
#include "../BridgeMPI.h"

void JimMatMulMPI () ;
void JimSolveMPI () ;

void main (int argc, char *argv[])

/*
MPI environment: read in Harwell-Boeing matrices, using factor,
solve, and multiply routines based on spooles, invoke eigensolver

created -- 98mar31l, jcp
modified -- 98decl18, cca

*/

{

BridgeMPI bridge ;

MPI_Comm comm ;

char *inFileName_A, *inFileName_B, *parmFileName, *type ;

char buffer[20], pbtypel4], which[4] ;

int error, fstevl, 1finit, lstevl, msglvl, myid, mxbksz, ncol,
ndiscd, neig, neigvl, nfound, nnonzeros, nproc, nrhs, nrow,
prbtyp, rc, retc, rfinit, seed, warnng ;

int c__5 =5, output = 6 ;

int *lanczos_wksp ;

InpMtx *inpmtxA, *inpmtxB ;

FILE *msgFile, *parmFile ;

double 1ftend, rhtend, center, shfscl, t1, t2 ;
double c__1=1.0, c__4 =4.0, tolact = 2.309970868130169e-11 ;

double eigval[1000], sigmal[2] ;
double *evec;

34

*/

MPI_Init(&argc, &argv) ;

MPI_Comm_dup (MPI_COMM_WORLD, &comm) ;
MPI_Comm_rank(comm, &myid) ;
MPI_Comm_size(comm, &nproc) ;

fprintf (stdout, "\n myid = %d", myid) ;
fflush(stdout) ;

*/
if (arge '=7) {
fprintf (stdout,
"\n\n usage : %s msglvl msgFile parmFile seed inFileA inFileB"
"\n msglvl -- message level"
"\n msgFile -- message file"
"\n parmFile -- input parameters file"
"\n seed -- random number seed, used for ordering"
"\n inFileA -- stiffness matrix, in Harwell-Boeing format"
"\n inFileB -- mass matrix, in Harwell-Boeing format"
"\n used for prbtyp = 1 or 2"
"\n", argv[0]) ;
return ;
}

msglvl = atoi(argv[1]) ;
if (strcmp(argv[2], "stdout") == 0) {
msgFile = stdout ;
} else {
int length = strlen(argv(2]) + 1 + 4 ;
char *buffer = CVinit(length, ’\0’) ;
sprintf (buffer, "s.%d", argv[2], myid) ;
if ((msgFile = fopen(buffer, "w")) == NULL) {
fprintf(stderr, "\n fatal error in Js"
"\n unable to open file ¥%s\n",
argv[0], buffer) ;

return ;
}
CVfree(buffer) ;
}
parmFileName = argv[3] ;
seed = atoi(argv[4]) ;

inFileName_A = argv[5] ;
inFileName_B = argv[6] ;
fprintf (msgFile,

ll\n %S n

SPOOLES 2.2 Wrapper Objects : January 2, 1999

SPOOLES 2.2 Wrapper Objects : January 2, 1999 36

"\n msglvl -= %d"
"\n message file -= %s"
"\n parameter file == %s"
"\n stiffness matrix file —-- %s"
"\n mass matrix file -= Js"
"\n random number seed -= %d"
n \n" s

argv[0], msglvl, argv([2], parmFileName, inFileName_A,
inFileName_B, seed) ;
fflush(msgFile) ;
if (strcmp(inFileName_A, "none") == 0) {
fprintf (msgFile, "\n no file to read from") ;

exit(0) ;
}
J e et */
if (myid == 0) {
/*
processor zero reads in the matrix header info
*/
MARKTIME(t1) ;
readHB_info(inFileName_A, &nrow, &ncol, &nnonzeros, &type, &nrhs) ;
MARKTIME(t2) ;
fprintf (msgFile, "\n CPU %8.3f : read in harwell-boeing header info",
t2 - t1) ;
fflush(msgFile) ;
}
MPI_Bcast((void *) &nrow, 1, MPI_INT, O, MPI_COMM_WORLD) ;
J et */
/*
read in eigenvalue problem data
neigvl -- # of desired eigenvalues
which -- which eigenvalues to compute

’1? or ’L’ lowest (smallest magnitude)
’h’ or ’H’ highest (largest magnitude)
’n’ or ’N’ nearest to central value
’c’ or ’C’ nearest to central value
’a’ or ’A’ all eigenvalues in interval
pbtype -- type of problem
>y’ or ’V’ generalized symmetric problem (K,M)
with M positive semidefinite (vibration problem)
’b’ or ’B’ generalized symmetric problem (K,K_s)
with K positive semidefinite
with K_s posibly indefinite (buckling problem)
0’ or ’0’ ordinary symmetric eigenproblem
1finit -- if true, lftend is restriction on lower bound of
eigenvalues. if false, no restriction on lower bound
lftend —- left endpoint of interval
rfinit -- if true, rhtend is restriction on upper bound of

37

SPOOLES 2.2 Wrapper Objects : January 2, 1999

eigenvalues. 1if false, no restriction on upper bound
rhtend -- right endpoint of interval

center -- center of interval
mxbksz —-- upper bound on block size for Lanczos recurrence
shfscl -- shift scaling parameter, an estimate on the magnitude

of the smallest nonzero eigenvalues

*/

MARKTIME(t1) ;

parmFile = fopen(parmFileName, "r");

fscanf (parmFile, "%d %s %s %d %le %d %le %le %d %le",
&neigvl, which, pbtype, &lfinit, &lftend,
&rfinit, &rhtend, ¢er, &mxbksz, &shfscl) ;

fclose(parmFile);

MARKTIME(t2) ;

fprintf (msgFile, "\n CPU %8.3f : read in eigenvalue problem data",

t2 - tl1) ;
fflush(msgFile) ;
/*

*/

switch (pbtypel1]) {

case ’v’ : case 'V’ : prbtyp = 1 ; break ;

case ’b’ : case ’B’ : prbtyp = 2 ; break ;

case ’0’ : case ’0’ : prbtyp = 3 ; break ;

default :
fprintf (stderr, "\n invalid problem type %s", pbtype) ;
exit(-1) ;

}
/*
Initialize Lanczos workspace
*/
MARKTIME(t1) ;
lanczos_init_ (&lanczos_wksp) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : initialize Lanczos workspace",
t2 - t1) ;
fflush(msgFile) ;
/*
initialize communication structure
*/
MARKTIME(t1) ;

lanczos_set_parm(&lanczos_wksp, "order-of-problem", &nrow, &retc);

lanczos_set_parm(&lanczos_wksp, "accuracy-tolerance", &tolact, &retc);

lanczos_set_parm(&lanczos_wksp, "max-block-size", &mxbksz, &retc);

SPOOLES 2.2 Wrapper Objects : January 2, 1999 38

lanczos_set_parm(&lanczos_wksp, "shift-scale", &shfscl, &retc);
lanczos_set_parm(&lanczos_wksp, "message_level", &msglvl, &retc);
lanczos_set_parm(&lanczos_wksp, "mpi-communicator", &comm, &retc);
lanczos_set_parm(&lanczos_wksp, "qfile-pathname", "1lqfil", &retc);
lanczos_set_parm(&lanczos_wksp, "mgfil-pathname", "lmqfil", &retc);
lanczos_set_parm(&lanczos_wksp, "evfil-pathname", "evcfil", &retc);
MARKTIME(t2) ;
fprintf (msgFile,

"\n CPU %8.3f : init the lanczos communication structure",

t2 - t1) ;
fflush(msgFile) ;

/*

*/
MARKTIME(t1) ;
inpmtxA = InpMtx_new() ;
InpMtx_readFromHBfile (inpmtxA, inFileName_A) ;
MARKTIME(t2) ;
fprintf (msgFile, "\n CPU %8.3f : read in first matrix", t2 - t1) ;
fflush(msgFile) ;
if (msglvl > 2) {
fprintf(msgFile, "\n\n InpMtx A object after loading") ;
InpMtx_writeForHumanEye (inpmtxA, msgFile) ;
fflush(msgFile) ;
}
lanczos_set_parm(&lanczos_wksp, "matrix-type", &c__1, &retc);
if (prbtyp !'= 3) {

if (strcmp(inFileName_B, "none") == 0) {
fprintf(msgFile, "\n no file to read from") ;
exit(0) ;

}

MARKTIME(t1) ;

inpmtxB = InpMtx_new() ;
InpMtx_readFromHBfile (inpmtxB, inFileName_B) ;
MARKTIME(t2) ;
fprintf (msgFile, "\n CPU %8.3f : read in first matrix", t2 - t1) ;
fflush(msgFile) ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n InpMtx B object after loading") ;
InpMtx_writeForHumanEye (inpmtxB, msgFile) ;
fflush(msgFile) ;
}
} else {
inpmtxB = NULL ;
lanczos_set_parm(&lanczos_wksp, "matrix-type", &c__4, &retc);
}
} else {

SPOOLES 2.2 Wrapper Objects : January 2, 1999 39

*/
inpmtxA = InpMtx_new() ;
InpMtx_init (inpmtxA, INPMTX_BY_CHEVRONS, SPOOLES_REAL, 0, 0) ;
lanczos_set_parm(&lanczos_wksp, "matrix-type", &c__1, &retc);
if (prbtyp == 1 || prbtyp == 2) {
inpmtxB = InpMtx_new() ;
InpMtx_init (inpmtxB, INPMTX_BY_CHEVRONS, SPOOLES_REAL, 0, 0) ;
} else {
inpmtxB = NULL ;
lanczos_set_parm(&lanczos_wksp, "matrix-type", &c__4, &retc);

*/
MARKTIME(t1) ;
rc = SetupMPI((void *) &bridge, &prbtyp, &nrow, &mxbksz, inpmtxA,
inpmtxB, &seed, &msglvl, msgFile, MPI_COMM_WORLD) ;
MARKTIME(t2) ;
fprintf (msgFile, "\n CPU %8.3f : set up solver environment", t2 - t1) ;
fflush(msgFile) ;
if (rc!=1) {
fprintf(stderr, "\n fatal error return %d from SetupMPI()", rc) ;
MPI_Finalize() ;
exit(-1) ;

invoke eigensolver

nfound -- # of eigenvalues found and kept

ndisc -- # of additional eigenvalues discarded
*/
MARKTIME(t1) ;
lanczos_run (&neigvl, &which[1] , &pbtypel[l], &lfinit, &lftend,

&rfinit, &rhtend, ¢er, &lanczos_wksp, &bridge, &nfound,

&ndiscd, &warnng, &error, FactorMPI, JimMatMulMPI,

JimSolveMPI) ;
MARKTIME(t2) ;
fprintf (msgFile, "\n CPU %8.3f : time for lanczos run", t2 - tl) ;
fflush(msgFile) ;
if (myid == 0) {
/%

SPOOLES 2.2 Wrapper Objects : January 2, 1999

*/

/%

*/
/%

*/

/%

*/

processor O deals with eigenvalues and vectors

MARKTIME(t1) ;

neig = nfound + ndiscd ;

lstevl = nfound ;

lanczos_eigenvalues (&lanczos_wksp, eigval, &neig, &retc);

fstevl = 1 ;

if (nfound == 0) fstevl = -1 ;

if (ndiscd > 0) lstevl = -ndiscd ;

hdslp5_ ("computed eigenvalues returned by hdserl",
&neig, eigval, &output, 39L) ;

MARKTIME(t2) ;

fprintf (msgFile, "\n CPU %8.3f : get and print eigenvalues",
t2 - t1) ;

fflush(msgFile) ;

MARKTIME(t1) ;
neig = min (50, nrow);
Lncz_ALLOCATE(evec, double, nrow, retc);
for (i = 1; i<= nfound; i++) {
lanczos_eigenvector(&lanczos_wksp, &i, &i, newToOld,
evec, &nrow, &retc) ;
hdslp5_("computed eigenvector returned by hdserc",
&neig, evec, &output, 39L) ;
}
MARKTIME(t2) ;
fprintf (msgFile, "\n CPU %8.3f : get and print eigenvectors",
t2 - tl1) ;
fflush(msgFile) ;

MARKTIME(t1) ;

lanczos_free(&lanczos_wksp) ;

MARKTIME(t2) ;

fprintf (msgFile, "\n CPU %8.3f : free lanczos workspace", t2 - t1) ;
fflush(msgFile) ;

MARKTIME(t1) ;

CleanupMPI (&bridge) ;

MARKTIME(t2) ;

fprintf (msgFile, "\n CPU %8.3f : free solver workspace", t2 - tl1) ;

40

SPOOLES 2.2 Wrapper Objects :

fflush(msgFile) ;
MPI_Finalize() ;

fprintf (msgFile, "\n") ;
fclose(msgFile) ;

return ; }

January 2, 1999

41

Index

Cleanup(), 7
CleanupMPI(), 19
CleanupMT (), 12

Factor(), 6
FactorMPI(), 17
FactorMT(), 11

JimMatMulMPI (), 17
JimSolveMPI(), 18

MatMul(), 6
MatMulMPI(), 18
MatMulMT (), 12

Setup(), 5
SetupMPI(), 16
SetupMT (), 10
Solve(), 7
SolveMPI(), 18
SolveMT (), 12

42

