Solving Linear Systems using SPOOLES 2.2

C. C. Ashcraft, R. G. Grimes, D. J. Pierce, D. K. Wah
Boeing Phantom Works*

April 29, 2002

*P. O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124. This research was supported in part by the DARPA
Contract DABT63-95-C-0122 and the DoD High Performance Computing Modernization Program Common HPC Software
Support Initiative.

2 SPOOLES 2.2 — Solving Linear Systems

Contents
1 Overview

2 Serial Solution of AX =Y using an LU factorization

2.1 Reading the input parameters
2.2 Communicating the data for the problem
2.3 Reordering the linear system
2.4 Non-numeric work L oL
2.5 The Matrix Factorization
2.6 The Forward and Backsolves
2.7 Sample Matrix and Right Hand Side Files

3 Multithreaded Solution of AX =Y using an LU factorization

3.1 Reading the input parameters
3.2 Communicating the data for the problem
3.3 Reordering the linear system
3.4 Non-numeric work oL
3.5 The Matrix Factorization
3.6 The Forward and Backsolves
3.7 Sample Matrix and Right Hand Side Files

4 MPI Solution of AX =Y using an LU factorization

4.1 Reading the input parameterso
4.2 Communicating the data for the problem
4.3 Reordering the linear system
4.4 Non-numeric worko
4.5 The Matrix Factorization,
4.6 The Forward and Backsolves
4.7 Sample Matrix and Right Hand Side Files

5 Serial Solution of AX =Y using an QR factorization

5.1 Reading the input parameters
5.2 Communicating the data for the problem
5.3 Reordering the linear system L.
5.4 Non-numeric work Lo
5.5 The Matrix Factorization
5.6 Solving the linear system
5.7 Sample Matrix and Right Hand Side Files

A allIn0One.c — A Serial LU Driver Program

B allln0One.c — A Serial LU Driver Program

April 29, 2002

April 29, 2002

C allInOne.c — A Serial LU Driver Program

D allIn0One.c — A Serial QR Driver Program

SPOOLES 2.2 — Solving Linear Systems

39

49

4 SPOOLES 2.2 — Solving Linear Systems April 29, 2002

1 Overview

The SPOOLES software library is designed to solve sparse systems of linear equations AX =Y for X,
where A is full rank and X and Y are dense matrices. The matrix A can be either real or complex, symmetric,
Hermitian, square nonsymmetric, or overdetermined. When A is square, there are four steps in the process
of solving AX =Y.

e communicate the data for the problem as 4, X and Y.

e reorder as AX =)Nf, where 4 = P APT, X=PXandY =P, Y, and P is a permutation matrix.
e factor A = P,LDUQY, where P, and), are permutation matrices.

e solve LDU(Q¥ P X) = (PIPY).

When A is symmetric or Hermitian, L = UT or L = U, respectively, and P, = Q». For a QR factorization
of A, there are also four steps in the process of solving AX =Y.

e communicate the data for the problem as 4, X and Y.
e reorder as AX = Y, where A=APT and X = PX. and Pis a permutation matrix.

factor A = @R, where @ is orthogonal and R is upper triangular.

solve RTR(PX) = ATY (if real) or solve RFR(PX) = A”Y (if complex).

The purpose of this manual is to describe the solution process in a step by step manner for several
different, scenarios — serial, multithreaded and MPI environments, and LU and QR factorizations. The
following sections describe driver programs to solve linear systems of these types.

This document largely replaces the “User Manual” from the SPOOLES 1.0 and SPOOLES 2.0 re-
leases. The material of those documents that deals with ordering sparse matrices has been removed and can
be found in an improved and extended format as the “Ordering Sparse Matrices and Transforming Front
Trees” user document.

The four simple steps described above to solve a linear system translate into a fair amount of code, as we
shall see in the following sections. The user who is looking for a more gentle introduction to solving square
linear systems using an LU factorization, might first take a look at LinSol directory and the user document
“Wrapper Objects for Solving a Linear System of Equations using SPOOLES 2.2”. The SPOOLES library
has been integrated into the CSAR-Nastran finite element package, in the serial, multithreaded and MPI
environments. To make the process easier, we wrote “wrappers” around the code found in the three driver
programs. These wrapper objects insulate the user from much of the complexity of using the package. There
is a cost, functionality is somewhat restricted. They are meant as learning examples rather than final code.

In a similar way, the SPOOLES library has been integrated into a Block-Shifted Lanczos eigensolver for
symmetric eigensystems. See the Eigen subdirectory and the user document “Integrating the SPOOLES 2.2
Sparse Linear Algebra Library into the LANCZOS Block-shifted Lanczos Figensolver”. This set of wrapper
objects has also served as a model to integrate SPOOLES into the PLANSO eigensystem package.

The SPOOLES library is based on an object oriented design philosophy. There are several data struc-
tures or objects that the user must interact with. These interactions are performed with a set of methods
for each object. Every object has some standard methods, such as initializing the object, placing data into
the object, extracting data out of the object, writing and reading the object to a input/output file, printing
the contents of the object to a specified file, and freeing the object.

For example, consider the DenseMtx object that models a dense matrix. The DenseMtx/DenseMtx.h
header file defines the object’s C struct and has prototypes (with extensive comments) of the object’s

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems 5

methods. The source files are found in the DenseMtx/src directory. The KXTEX documentation files are found
in the DenseMtx/doc directory. The files can be used to create the DenseMtx object’s chapter in the Reference
Manual, or in a standalone manner to generate the object’s documentation. The DenseMtx/drivers directory
contains driver programs that exercise and validate the object’s functionality.

Almost all the methods in the library are associated with a particular object. There are some exceptions,
mostly found in the misc/src directory. The misc/drivers directory contains the serial LU and QR driver
programs. The MT/drivers and MPI/drivers directories contain the multithreaded and MPI LU driver
programs.

6 SPOOLES 2.2 — Solving Linear Systems April 29, 2002

2 Serial Solution of AX =Y using an LU factorization

The user has some representation of the data which represents the linear system, AX =Y. The user wants
the solution X. The SPOOLES library will use A and Y and provide X back to the user.

The SPOOLES library is based on an object oriented design philosophy. The first object that the user
must interact with is InpMtx'. The InpMtx object is where the SPOOLES representation of A is assembled.
The user can input the representation of A into the InpMtx object with methods for single matrix entry
(consisting of the row index, the column index, and the value), for an array of entries, for a set of entries in
a specified row or column, and for a dense sub-matrices (useful for finite element applications). All of these
methods can be used interchangeably with each other.

A complete listing of a sample program is found in Section A. We will now begin to work our way through
the program to illustrate the use of SPOOLES to solve a system of linear equations.
2.1 Reading the input parameters

The program starts by declaring a variety of variables and pointers for the program. It then reads the
following parameters from standard input.

The variable msglvl controls the level of output generated by the program and by SPOOLES.

The printed output is sent to messageFile.

Whether the matrix is real or complex is controled by type (1 for real, 2 for complex).

Similarly, symmetryflag controls whether the matrix is symmetric (0), Hermitian (1), or nonsymmetric

2).

The matrix data will be read from the file matrixFileName. The matrix data has a simple format with
the first line containing the number of rows (nrow), the number of columns (ncol), and the number of
entries (nent). The remaining nent lines on the file contain the row number, the column number, and
value for each nonzero in the sparse matrix. In our sample case, the matrix is symmetric so only the
entries in the upper triangle are given on the file. If the matrix is complex, there would be 2 values,
one for the real part and one for the imaginary part. SPOOLES follows the C language convention
for indexing all arrays starting with 0. So the row and column labels for a matrix of order neqns range
from 0 to neqns-1.

e The right hand side matrix Y will be read from the file rhsFileName. The first line of this file has two
numbers: nrow, the number of rows of Y that are present in the file, followed by nrhs, the number of
columns of Y. (The number of rows of V" in the file may be different from the number of rows in Y,
since often right hand side matrices are sparse. This allows us the option of only reading in nonzero
rows of Y.) The remaining lines of the file have the following format: the row id, followed by either
nrhs floating point numbers if the system is real, or 2*nrhs numbers if the system is complex.

e The seed parameter is a random number seed used in the ordering process.

2.2 Communicating the data for the problem

The following code segment from the full sample program opens the file matrixFileName, reads the first
line of the file, and then initializes the InpMtx object. The program continues by reading each line of the
input matrix data and uses either the method InpMtx_inputRealEntry() or InpMtx_inputComplexEntry ()

I InpMtx stands for Input Matrix, for it is the object into which the user inputs the matrix entries.

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems 7

to place that entry into the InpMtx object. Finally this code segment closes the file. finalizes the input to
InpMtx by converting the internal storage of the matrix entries to a vector form. (This is necessary for later
steps.)

inputFile = fopen(matrixFileName, "r")
fscanf (inputFile, "%d %d %d", &nrow, &ncol, &nent) ;
neqns = nrow ;
mtxA = InpMtx_new() ;
InpMtx_init (mtxA, INPMTX_BY_ROWS, type, nent, neqns) ;
if (type == SPOOLES_REAL) {
double value ;
for (ient = 0 ; ient < nent ; ient++) {
fscanf (inputFile, "%d %d %le", &irow, &jcol, &value) ;
InpMtx_inputRealEntry(mtxA, irow, jcol, value) ;
}
} else {
double imag, real ;
for (ient = 0 ; ient < nent ; ient++) {
fscanf (inputFile, "%d %d %le %le", &irow, &jcol, &real, &imag) ;
InpMtx_inputComplexEntry(mtxA, irow, jcol, real, imag) ;
}
}
fclose(inputFile) ;
InpMtx_changeStorageMode (mtxA, INPMTX_BY_VECTORS) ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n input matrix") ;
InpMtx_writeForHumanEye (mtxA, msgFile) ;
fflush(msgFile) ;

The InpMtx object is created via a call to InpMtxnew() and initialized via a call to InpMtx_init ().
The arguments to InpMtx_init() are the pointer to the InpMtx object created by InpMtx new() followed
by four integers, coordType, inputMode, maxnent, and maxnvector.

e The second argument coordType = INPMTX_BY_ROWS represent a general purpose mode that is well
suited for most users.? Some users may want to use other settings for coordType whose complete
descriptions are found in the reference manual.

e The third argument inputMode controls whether the matrix is real or complex. One use of SPOOLES
not illustrated here is that the InpMtx object can have no values. This allows SPOOLES to be used
to generate an ordering for use by another package.

e The fourth argument maxnent is an estimate of the number of nonzero entries in the matrix.

e The fifth argument maxnvector is an estimate of the number of number of vectors that will be used,
e.g., number of rows or numbers of columns.

The maxnent and maxnvector arguments only have to be estimates as they are used in the initial sizing of
the object. Either can be 0. The InpMtx object resizes itself as required to handle the linear system.

2Note that SPOOLES has some pre-defined parameters such as INPMTX_BY_ROWS for some objects. These parameters are
always uppercase and either begin with the name of the object which they apply to, or the library name, e.g., SPOOLES_REAL.
They are described in the reference manual in the section for the particular object.

8 SPOOLES 2.2 — Solving Linear Systems April 29, 2002

Every object in SPOOLES has print methods to output the contents of that object. This is illustrated
in this code segment by printing the input matrix as contained in the InpMtx object, mtxA. To shorten this
chapter we will from now on omit the part of the code that prints debug output to msgFile for the various
code segments. The complete sample program in Section A contains all of the debug print statements.

After the matrix A has been read in from the file and placed in an InpMtx object, the right hand matrix
Y is read in from a file and placed in a DenseMtx object. The following code fragment does this operation.

inputFile = fopen(rhsFileName, "r")
fscanf (inputFile, "%d %d", &nrow, &nrhs) ;
mtxB = DenseMtx_new() ;
DenseMtx_init (mtxB, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxB) ;
if (type == SPOOLES_REAL) {
double value ;
for (irow = 0 ; irow < nrow ; irow++) {
fscanf (inputFile, "%d", &jrow) ;
for (jrhs = 0 ; jrhs < nrhs ; jrhs++) {
fscanf (inputFile, "%le", &value) ;
DenseMtx_setRealEntry(mtxB, jrow, jrhs, value) ;

}
} else {
double imag, real ;
for (irow = 0 ; irow < nrow ; irow++) {
fscanf (inputFile, "%d", &jrow) ;
for (jrhs = 0 ; jrhs < nrhs ; jrhs++) {
fscanf (inputFile, ")le %le", &real, &imag) ;
DenseMtx_setComplexEntry(mtxB, jrow, jrhs, real, imag) ;

}
}
fclose(inputFile) ;

The dense matrix object is created by a call to DenseMtx new () and initialized via a call to DenseMtx_init ().
There are seven arguments to DenseMtx_init (), not counting the initial pointer argument.

e The second argument specifies the type of the matrix, real or complex.

e The third and fourth arguments specify row and column ids of the matrix. This is useful when the
dense matrix is a submatrix of a larger block matrix, but this feature is not used in the present context.

e The fifth and sixth arguments are the number of rows and columns in the matrix, here equal to neqns
and nrhs.

e The seventh and eighth arguments are the row stride and column stride for the matrix entries. For our
application we require a column major matrix, and so the row stride is 1 and the column stride is the
number of rows, or neqns.

The initialization step allocates storage for the matrix entries, but it does not fill them with any values. This
is done explicitly via the DenseMtx_zero () method, which places zeroes in all the entries. This is necessary
since the right hand side matrix ¥ may be sparse, and so the number of rows in the file may not equal the
number of equations.

The right hand side entries are then in, row by row, and placed into their locations via one of the two
“set entries” methods. Note, the nonzero rows can be read from the file in any order.

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems 9

2.3 Reordering the linear system

The first step is to find the permutation matrix P, and then permute AX =Y into (PAPT)(PX) = PY.
The result of the SPOOLES ordering step is not just P or its permutation vector, it is a front tree that
defines not just the permutation, but the blocking of the factor matrices, which in turn specifies the data
structures and the computations that are performed during the factor and solves. To determine this ETree
front tree object takes three step, as seen in the code fragment below.

adjIVL = InpMtx_fullAdjacency(mtxA) ;

nedges = IVL_tsize(adjIVL) ;

graph = Graph_new() ;

Graph_init2(graph, O, neqns, 0, nedges, neqns, nedges, adjIVL,
NULL, NULL) ;

frontETree = orderViaMMD(graph, seed, msglvl, mngile) H

The ordering modules requires a graph of A + A”. (The SPOOLES LU factorization works with matrices
of symmetric structure.) The Graph object represents the graph of the matrix. Its internal representation
uses adjacency lists, one for each vertex, which in turn are stored in an IVL object. The Graph and InpMtx
objects are at a high level in the object hierarchy. To promote independence of the objects, the two do not
know about each other, so we cannot create one from the other. Instead, the InpMtx object creates the
lower level IVL object®, which is then used in the initialization step for the Graph object. The Graph object
is quite general, and can be used to describe a graph with unit or non-unit vertices and edges. We refrain
from describing all the input parameters to initialize the Graph object and instead refer the reader to the
reference manual.

Once a Graph object has been created, it is ordered via the multiple minimum degree method, whose
return value is a front tree object. The minimum degree method is the simplest of the ordering methods pro-
vided in the SPOOLES library. For more information on ordering, please see the user document “Ordering
Sparse Matrices and Transforming Front Trees”.

2.4 Non-numeric work

The next phase is to obtain the permutation matrix P, (stored implicitly in a permutation vector), and apply
it to the front tree, the matrix A and the right hand side Y. This is done by the following code fragment.

01dToNewIV = ETree_oldToNewVtxPerm(frontETree) ;
o0ldToNew = IV_entries(oldToNewIV) ;
newTo01dIV = ETree_newTo0ldVtxPerm(frontETree) ;
newTo0ld IV_entries(newTo01dIV) ;
ETree_permuteVertices(frontETree, oldToNewIV) ;
InpMtx_permute (mtxA, oldToNew, oldToNew) ;
if (symmetryflag == SPOOLES_SYMMETRIC
|| symmetryflag == SPOOLES_HERMITIAN) {
InpMtx_mapToUpperTriangle(mtxA) ;

}

InpMtx_changeCoordType (mtxA, INPMTX_BY_CHEVRONS) ;
InpMtx_changeStorageMode (mtxA, INPMTX_BY_VECTORS) ;
DenseMtx_permuteRows (mtxB, 0ldToNewIV) ;

The 01dToNewIV and newTo01dIV variables are IV objects that represent an integer vector. The oldToNew
and newTo0ld variables are pointers to int, which point to the base address of the int vector in an IV
object.

3IVL stands for Integer Vector List, i.e., a list of integer vectors.

10 SPOOLES 2.2 — Solving Linear Systems April 29, 2002

Once we have the permutation vector, we apply it to the front tree, by the ETree_permuteVertices()
method, and then to the matrix with the InpMtx_permute() method. If the matrix A is symmetric or
Hermitian, we expect all nonzero entries to be in the upper triangle. Permuting the matrix yields PAPT,
which may not have all of its entries in the upper triangle. If A is symmetric or Hermitian, the call to
InpMtx_mapToUpperTriangle() ensures that all entries of PAPT are in its upper triangle. Permuting the
matrix destroys the internal vector structure, which has to be restored. But first we need to change the
coordinate type of the InpMtx object, from rows into chevrons.* This is necessary in order to assemble
entries of PAPT during the numerical factorization. At this point the InpMtx object holds PAPT in the
form required by the factorization. What remains is to transform Y into PY’, which is done via a call to
DenseMtx_permuteRows ().

The final step is to compute the symbolic factorization, which is stored in an IVL object.

symbfacIVL = SymbFac_initFromInpMtx(frontETree, mtxA) ;

2.5 The Matrix Factorization

The numeric factorization step begins by initializing the FrontMtx object with the frontETree and symbacIVL
objects created in early steps. The FrontMtx object holds the actual factorization. The code segment for
the initialization is found below.

frontmtx = FrontMtx_new() ;

mtxmanager = SubMtxManager_new() ;

SubMtxManager_init (mtxmanager, NO_LOCK, 0) ;

FrontMtx_init (frontmtx, frontETree, symbfacIVL, type, symmetryflag,
FRONTMTX_DENSE_FRONTS, pivotingflag, NO_LOCK, 0, NULL,
mtxmanager, msglvl, msgFile) ;

Here is a brief description of the initialization method and its input parameters.

e The fourth parameter is the matrix type, real or complex.
e The fifth parameter specifies whether the matrix is symmetric, Hermitian or nonsymmetric.

e The sixth parameter defines whether the fronts in the factor matrix are stored as dense or sparse
matrices. The latter is necessary for an approximate factorization.

e The seventh parameter says whether pivoting is enabled for numerical stability.

e The eighth, nine and ten parameters are used during a multithreaded or MPI factorization. Their
present values are for a serial factorization.

e The eleventh parameter, mtxmanager is a SubMtxManager object, an object used to manage instances
of submatrices that form the factor matrices. The FrontMtx object does not concern itself with finding
storage for the factor matrices, instead it asks the SubMtxManager object for submatrices. While this
seems awkward, it allows the FrontMtx to operate in serial, multithreaded and MPI environments with
little internal code differences, and it is the hook we have left in the library to extend its capabilities
to out-of-core factors and solves.

e The twelveth and thirteenth parameters define the message level and message file for the factorization.

The numeric factorization is performed by the FrontMtx factorInpMtx () method. The code segment
from the sample program for the numerical factorization step is found below.

4The i-th chevron of A consists of the diagonal entry A; ;, the i-th row of the upper triangle of A, and the i-th column of
the lower triangle of A.

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems 11

chvmanager = ChvManager_new() ;

ChvManager_init(chvmanager, NO_LOCK, 1) ;

DVfill(10, cpus, 0.0) ;

IVfil1l1(20, stats, 0) ;

rootchv = FrontMtx_factorInpMtx(frontmtx, mtxA, tau, droptol,
chvmanager, &error, cpus, stats, msglvl, mngile) ;

ChvManager_free(chvmanager) ;

Working storage used during the factorization is found in the form of block chevrons, in a Chv object, which
hold the partial frontal matrix for a front. Much as with the SubMtx object, the FrontMtx object does not
concern itself with managing working storage, instead it relies on a ChvManager object to manage the Chv
objects. We now discuss the arguments to the factor method.

e The third argument is used when pivoting for numerical stability is enabled. Each entry in L and U is
bounded above in magnitude by tau. We recommend a value of 100 for this parameter.

e The fourth argument is a drop tolerance that is not relevant for this case. When used with approximate
factorizations, this argument is a lower bound on the magnitude of the entries that are stored in the
front matrices.

e The sixth argument is an error flag. After a successful factorization, error < 0 implies that the
factorization finished. If error > 0, then the factorization failed at front error.

e The seventh and eighth arguments are vectors to be filled with statistics and breakdown of cpu times.

The return value of the factorization is a Chv object, which will be NULL if the factorization succeeded. We
have left this as a hook for future extensions where only portions of the factor matrices are created.

The factorization is performed using a one-dimensional decomposition of the factor matrices. Keeping
the factor matrices in this form severely limits the amount of parallelism for the forward and backsolves.
We perform a post-processing step to convert the one-dimensional data structures to submatrices of a two-
dimensional block decomposition of the factor matrices. The following code fragment performs this operation.

FrontMtx_postProcess(frontmtx, msglvl, msgFile) ;

2.6 The Forward and Backsolves

The following code fragment solves the linear system (PAPT)(PX) = PY, and permutes the solution PX
back into the original ordering, yielding X.

mtxX = DenseMtx_new() ;
DenseMtx_init (mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxX) ;
FrontMtx_solve(frontmtx, mtxX, mtxB, mtxmanager,

cpus, msglvl, mngile) ;
DenseMtx_permuteRows (mtxX, newTo01dIV) ;

First we initialize a new DenseMtx object to hold X (and also PX). (Note, in all cases but a nonsymmetric
matrix with pivoting enabled in an MPI environment, X may overwrite Y, and so we can use the same
DenseMtx object for X and Y.) We then solve the linear system with a call to FrontMtx_solve(). Note
that one of the arguments is the mtxmanager object, first created for the numerical factorization. The solve
requires working submatrices, and so we continue the convention of having the FrontMtx ask the manager
object for working storage. The last step is to permute the rows of the DenseMtx from the new ordering into
the old ordering.

12 SPOOLES 2.2 — Solving Linear Systems April 29, 2002

2.7 Sample Matrix and Right Hand Side Files

Immediately below are two sample files: matrix.input holds the matrix input and rhs.input holds the
right hand side. This example is for a symmetric Laplacian operator on a 3 x 3 grid. Only entries in the upper
triangle are stored. The right hand side is the 9 x 9 identity matrix. Note how the indices are zero-based as
for C, instead of one-based as for Fortran.

matrix.input

99 21

00 4.0

11 4.0

22 4.0

33 4.0

44 4.0 rhs.input

55 4.0 99

66 4.0 01.00.00.00.00.00.00.00.00.0
77T 4.0 10.01.00.00.00.00.00.00.00.0
88 4.0 2 0.00.01.00.00.00.00.00.00.0
01-1.0 30.00.00.01.00.00.00.00.00.0
12-1.0 40.00.00.00.01.00.00.00.00.0
34-1.0 5 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
45 -1.0 6 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
67 -1.0 7 0.00.00.00.00.00.00.01.00.0
78 -1.0 8 0.0 0.00.00.00.00.00.00.,01.0
03 -1.0

14-1.0

25 -1.0

36 -1.0

47 -1.0

58 -1.0

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems 13

3 Multithreaded Solution of AX =Y using an LU factorization

The only computations that are multithreaded are the factorization and forward and backsolves. Therefore,
this section will describe only the differences between the serial driver in Section A and the multithreaded
driver whose complete listing is found in Section B. This section will refer the reader to subsections in
Section 2 for the parts of the code where the two drivers are identical.

The shared memory parallel version of SPOOLES is implemented using thread based parallelism. The
multi-threaded code uses much of the serial code — the basic steps are the same and use the serial methods.
The usage of SPOOLES for communicating the data for the problem and reordering the linear system is
identical in the serial and multi-threaded versions. Only the numeric factorization and solve steps are paral-
lelized using threads. What is different between the serial and threaded versions of the numeric computations
is how the computations are scheduled.

While the storage for the factor matrices lies in one global FrontMtx object, all processes access the data
in a disjoint way. During the factorization, front J is owned by one process that is responsible for factoring
the front and computing its updates to all other fronts. In other words, only the process that owns front J
performs computations with that data. During the solve, all L, Drr and Ur j submatrices are stored in
the front matrix object, but the computations with them are mapped to different threads, i.e., each thread
owns a subset of the factor submatrices, and performs computations with it. We will now begin to work our
way through the program found in Section B to illustrate the use of SPOOLES to solve a system of linear
equations using multithreaded factor and solves.

3.1 Reading the input parameters

This step is identical to the serial code, as described in Section 2.1, with the exception that nthread, the
number of threads, is also input.

3.2 Communicating the data for the problem

This step is identical to the serial code, as described in Section 2.2

3.3 Reordering the linear system

This step is identical to the serial code, as described in Section 2.3

3.4 Non-numeric work

This step is identical to the serial code, as described in Section 2.4, with one addition. We need to map factor
computations to threads. The ownersIV vector object specifies which thread owns a front. The SPOOLES
library has four ways to do this. Two are of academic interest — the wrap map and the balanced map — for
these maps yield too much interaction between the threads. The subtree-subset map is suited for extremely
well balanced front trees from nested dissection orderings. The domain decomposition map is more robust
over a range of orderings, and this is what we recommend, as we see in the code fragment below.

if (nthread > (nfront = FrontMtx_nfront(frontmtx))) {
nthread = nfront ;
}
cumopsDV = DV_new() ;
DV_init(cumopsDV, nthread, NULL) ;
ownersIV = ETree_ddMap(frontETree, type, symmetryflag, cumopsDV, 1./(2.*nthread)) ;

14 SPOOLES 2.2 — Solving Linear Systems April 29, 2002

The first step is to ensure that each thread has a front to own, decreasing the number of threads if necessary.
We then construct the owners map using the front tree object. The cumopsDV object is a double precision
vector object whose length is the number of threads. On return from the map call, it contains the number
of factor operations that will be performed by each thread when pivoting for stability is not enabled.

3.5 The Matrix Factorization

During the factorization and solves, the threads access data and modify the state of the FrontMtx and
SubMtxManager objects in a concurrent fashion, so there must be some way to control this access for critical
sections of code. Inside each of the two objects we have placed a Lock object. The SPOOLES Lock object
is little more than a wrapper around a mutual exclusion lock. It provides a simple abstract interface so that
other objects which contain locks need not know about the particular thread package we use, be it Solaris
threads, or POSIX threads, or another.

To notify the FrontMtx and SubMtxManager objects that they must have a lock, their initialization
method calls differ slightly from the serial version. See Section 2.5 for a discussion of the similar features.
The code fragment below shows their initialization calls.

FrontMtx_new() ;

mtxmanager = SubMtxManager_new() ;

SubMtxManager_init (mtxmanager, LOCK_IN_PROCESS, 0) ;
FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, symmetryflag,
FRONTMTX_DENSE_FRONTS, pivotingflag, LOCK_IN_PROCESS,
0, NULL, mtxmanager, msglvl, msgFile) ;

frontmtx

The difference is that the SubMtxManager and FrontMtx objects are initialized with a LOCK_IN_PROCESS flag
instead of a NO_LOCK flag. The scope of the mutual exclusion lock is for threads within the same process, not
across the system.

The numeric factorization is performed by the FrontMtx factorInpMtx () method. The code segment
from the sample program for the numerical factorization step is found below.

chvmanager = ChvManager_new() ;

ChvManager_init(chvmanager, LOCK_IN_PROCESS, 1) ;

DVfill(10, cpus, 0.0) ;

IVfil1l1(20, stats, 0) ;

rootchv = FrontMtx_MT_factorInpMtx(frontmtx, mtxA, tau, droptol, chvmanager, ownersIV,
lookahead, &error, cpus, stats, msglvl, mngile) ;

ChvManager_free(chvmanager) ;

Note that the ChvManager is also locked. There are two additional parameters in the calling sequence of the
multithreaded factorization.

e The ownersIV object maps the fronts to threads.

e The lookahead parameter controls the flow of execution during the factorization. Since the threads
work cooperatively to compute the factor matrices, there is idle time while one thread waits on another.
The lookahead parameter controls the ability of the thread to look past the present idle point and
perform work that is not so immediate. Unfortunately, while a thread is off doing this work, it may block
a thread at a more crucial point. When lookahead = 0, each processor tries to do only “immediate”
work. Moderate speedups in the factorization have been for values of lookahead up to the number
of threads. For nonzero lookahead values, the amount of working storage can increase, sometimes
appreciably.

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems 15

The post-processing of the factorization is exactly the same as the serial code. Note, this step can be trivially
parallelized, but is not done at present.

After the post-processing step, the FrontMtx object contains the Ly, Dy ; and Uy j submatrices. What
remains to be done is to specify which threads own which submatrices, and thus perform computations with
them. This is done by constructing a “solve—map” object, as we see below.

solvemap = SolveMap_new() ;

SolveMap_ddMap(solvemap, symmetryflag, FrontMtx_upperBlockIVL(frontmtx),
FrontMtx_lowerBlockIVL(frontmtx), nthread, ownersIV,
FrontMtx_frontTree(frontmtx), seed, msglvl, msgFile) ;

This object also uses a domain decomposition map, the only solve map that presently found in the SPOOLES
library.
3.6 The Forward and Backsolves

The parallel solve is remarkably similar to the serial solve, as we see with the code fragment below.

mtxX = DenseMtx_new() ;

DenseMtx_init (mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;

DenseMtx_zero(mtxX) ;

FrontMtx_MT_solve (frontmtx, mtxX, mtxY, mtxmanager, solvemap, cpus, msglvl, msgFile) ;
DenseMtx_permuteRows (mtxX, newTo01dIV) ;

The only difference between the serial and multithreaded solve methods is the presence of the solve—map
object in the latter.

3.7 Sample Matrix and Right Hand Side Files

The multithreaded driver uses the same input files as found in Section 2.7.

16 SPOOLES 2.2 — Solving Linear Systems April 29, 2002

4 MPI Solution of AX =Y using an LU factorization

Unlike the serial and multithreaded environments where the data structures are global, existing under one
address space, in the MPI environment, data is local, each process or processor has its own distinct address
space. The MPT step-by-step process to solve a linear system is exactly the same as the multithreaded case,
with the additional trouble that the data structures are distributed and need to be re-distributed as needed.

The ownership of the factor matrices during the factorization and solves is exactly the same as for the
multithreaded case — the map from fronts to processors and map from submatrices to processors are identical
to their counterparts in the multithreaded program. What is different is the explicit message passing of data
structures between processors. Luckily, most of this is hidden to the user code.

We will now begin to work our way through the program found in Section C to illustrate the use of
SPOOLES to solve a system of linear equations in the MPI environment.

4.1 Reading the input parameters

This step is identical to the serial code, as described in Section 2.1, with the exception that the file names
for A and Y are hardcoded in the driver, and so are not part of the input parameters.

4.2 Communicating the data for the problem

This step is identical to the serial code, as described in Section 2.2 In the serial and multithreaded codes, the
entire matrix A was read in from one file and placed into one InpMtx object. In the MPI environment, this
need not be the case that one processor holds the entire matrix A. (In fact, A must be distributed across
processors during the factorization.)

Each processor opens a matrix file, (possibly) reads in matrix entries, and creates its local InpMtx object
that holds the matrix entries it has read in. We have hardcoded the file names: processor g reads its matrix
entries from file matrix.q.input and its right hand side entries from file rhs.q.input. The file formats are
the same as for the serial and multithreaded drivers.

The entries needed not be partitioned over the files. For example, each processor could read in entries
for disjoint sets of finite elements. Naturally some degrees of freedom will have support on elements that are
found on different processors. When the entries in A and Y are mapped to processors, an assembly of the
matrix entries will be done automatically.

It could be the case that the matrix A and right hand side Y are read in by one processor. (This was

the approach we took with the LinSol wrapper objects.) There still need to be input files for the other
processors with zeroes on their first (and only) line, to specify that no entries are to be read.

4.3 Reordering the linear system

The first part is very similar to the serial code, as described in Section 2.3.

graph = Graph_new() ;

adjIVL = InpMtx_MPI_fullAdjacency(mtxA, stats, msglvl, msgFile, MPI_COMM_WORLD) ;
nedges = IVL_tsize(adjIVL) ;

Graph_init2(graph, O, neqns, O, nedges, neqns, nedges, adjIVL, NULL, NULL) ;
frontETree = orderViaMMD(graph, seed + myid, msglvl, msgFile) ;

While the data and computations are distributed across the processors, the ordering process is not. Therefore
we need a global graph on each processor. Since the matrix A is distributed across the processors, we use
the distributed InpMtx MPI_fullAdjacency() method to construct the IVL object of the graph of A + AT.

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems 17

At this point, each processor has computed its own minimum degree ordering and created a front tree
object. The orderings will likely be different, because each processors input a different random number seed
to the ordering method. Only one ordering can be used for the factorization, so the processors collectively
determine which of the orderings is best, which is then broadcast to all the processors, as the code fragment
below illustrates.

opcounts = DVinit (nproc, 0.0) ;
opcounts[myid] = ETree_nFactorOps(frontETree, type, symmetryflag) ;
MPI_Allgather ((void *) &opcounts[myid], 1, MPI_DOUBLE,
(void *) opcounts, 1, MPI_DOUBLE, MPI_COMM_WORLD) ;
minops = DVmin(nproc, opcounts, &root) ;
DVfree(opcounts) ;
frontETree = ETree_MPI_Bcast(frontETree, root, msglvl, msgFile, MPI_COMM_WORLD) ;

4.4 Non-numeric work

Once the front tree is replicated across the processors, we obtain the permutation vectors and permute the
vertices in the front tree. The local matrices for A and Y are also permuted. These steps are identical to
the serial and multithreaded drivers, except the fact local instead of global A and Y matrices are permuted.

0ldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;

newTo01dIV = ETree_newTo0ldVtxPerm(frontETree) ;

ETree_permuteVertices(frontETree, oldToNewIV) ;

InpMtx_permute(mtxA, IV_entries(oldToNewIV),

IV_entries(oldToNewIV)) ;

if (symmetryflag == SPOOLES_SYMMETRIC || symmetryflag == SPOOLES_HERMITIAN) {
InpMtx_mapToUpperTriangle(mtxA) ;

}

InpMtx_changeCoordType (mtxA, INPMTX_BY_CHEVRONS) ;
InpMtx_changeStorageMode (mtxA, INPMTX_BY_VECTORS) ;
DenseMtx_permuteRows (mtxY, o0ldToNewIV) ;

The next step is to obtain the map from fronts to processors, just as was done in the multithreaded
driver. In addition, we need a map from vertices to processors to be able to distribute the matrix A and
right hand side Y as necessary. Since we have the map from vertices to fronts inside the front tree object,
the vertex map is easy to determine.

cutoff 1./(2*nproc) ;

cumopsDV = DV_new() ;

DV_init (cumopsDV, nproc, NULL) ;

ownersIV = ETree_ddMap(frontETree, type, symmetryflag, cumopsDV, cutoff) ;
DV_free(cumopsDV) ;

vtxmapIV = IV_new() ;

IV_init(vtxmapIV, neqns, NULL) ;

IVgather (neqns, IV_entries(vtxmapIV), IV_entries(ownersIV), ETree_vtxToFront(frontETree)) ;

At this point we are ready to assemble and distribute the entries of A and Y.

firsttag = 0 ;

newA = InpMtx_MPI_split(mtxA, vtxmapIV, stats, msglvl, msgFile, firsttag,
MPI_COMM_WORLD) ;

InpMtx_free(mtxA) ;

18 SPOOLES 2.2 — Solving Linear Systems April 29, 2002

mtxA = newA ;

InpMtx_changeStorageMode (mtxA, INPMTX_BY_VECTORS) ;

newY = DenseMtx_MPI_splitByRows(mtxY, vtxmapIV, stats, msglvl,
msgFile, firsttag, MPI_COMM_WORLD) ;

DenseMtx_free(mtxY) ;

mtxY = newY ;

The InpMtx MPI _split () method assembles and redistributes the matrix entries by the vectors of the local
matrix. Recall above that the coordinate type was set to chevrons, as is needed for the assembly of the
entries into the front matrices. The method returns a new InpMtx object that contains the part of A that is
needed by the processor. The old InpMtx object is free’d and the new one takes its place.

Now we are ready to compute the symbolic factorization, but it too much be done in a distributed
manner.

symbfacIVL = SymbFac_MPI_initFromInpMtx(frontETree, ownersIV, mtxA,
stats, msglvl, msgFile, firsttag, MPI_COMM_WORLD) ;

The symbfacIVL object on a particular processor is only a subset of the global symbolic factorization,
containing only what it needs to know for it to compute its part of the factorization.

4.5 The Matrix Factorization

In contrast the the multithreaded environment, data structures are local to a processor, and so locks are not
needed to manage access to critical regions of code. The initialization of the front matrix and submatrix
manager objects is much like the serial case, with one exception.

mtxmanager = SubMtxManager_new() ;

SubMtxManager_init (mtxmanager, NO_LOCK, 0) ;

frontmtx = FrontMtx_new() ;

FrontMtx_init (frontmtx, frontETree, symbfacIVL, type, symmetryflag,
FRONTMTX_DENSE_FRONTS, pivotingflag, NO_LOCK, myid,
ownersIV, mtxmanager, msglvl, mngile) ;

Note that the nineth and tenth arguments are myid and ownersIV, not O and NULL as for the serial and
multithreaded drivers. These arguments tell the front matrix object that it needs to initialize only those
parts of the factor matrices that it “owns”, which are given by the map from fronts to processors and the
processor id.

The numeric factorization is performed by the FrontMtx MPI _factorInpMtx() method. The code seg-
ment from the sample program for the numerical factorization step is found below.

chvmanager = ChvManager_new() ;

ChvManager_init(chvmanager, NO_LOCK, 0) ;

rootchv = FrontMtx_MPI_factorInpMtx(frontmtx, mtxA, tau, droptol,
chvmanager, ownersIV, lookahead, &error, cpus,
stats, msglvl, msgFile, firsttag, MPI_COMM_WORLD) ;

ChvManager_free(chvmanager) ;

Note that the ChvManager is not locked. The calling sequence is identical to that of the multithreaded
factorization except for the addition of the firsttag and MPI communicator at the end.

The post-processing of the factorization is the same in principle as in the serial code but differs in that
is uses the distributed data structures.

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems 19

FrontMtx_MPI_postProcess(frontmtx, ownersIV, stats, msglvl,
msgFile, firsttag, MPI_COMM_WORLD) ;

After the post-processing step, each local FrontMtx object contains the Ljr, Dy and Ur ; submatrices
for the fronts that were owned by the particular processor. However, the parallel solve is based on the
submatrices being distributed across the processors, not just the fronts.

We must specify which threads own which submatrices, and so perform computations with them. This
is done by constructing a “solve-map” object, as we see below.

solvemap = SolveMap_new() ;

SolveMap_ddMap(solvemap, symmetryflag, FrontMtx_upperBlockIVL(frontmtx),
FrontMtx_lowerBlockIVL(frontmtx), nproc, ownersIV,
FrontMtx_frontTree(frontmtx), seed, msglvl, msgFile) ;

This object also uses a domain decomposition map, the only solve map that presently found in the SPOOLES
library.

Once the solve map has been created, (and note that it is identical across all the processors), we redis-
tribute the submatrices with the following code fragment.

FrontMtx_MPI_split(frontmtx, solvemap, stats, msglvl, msgFile, firsttag, MPI_COMM_WORLD) ;

At this point in time, the submatrices that a processor owns are local to that processor.

4.6 The Forward and Backsolves

If pivoting has been performed for numerical stability, then the rows of PY may not be located on the
processor that needs them. We must perform an additional redistribution of the local DenseMtx objects that
hold PY, as the code fragment below illustrates.

if (FRONTMTX_IS_PIVOTING(frontmtx)) {
IV xrowmaplV ;

/%
pivoting has taken place, redistribute the right hand side
to match the final rows and columns in the fronts

*/

rowmapIV = FrontMtx_MPI_rowmapIV(frontmtx, ownersIV, msglvl,
msgFile, MPI_COMM_WORLD) ;

newY = DenseMtx_MPI_splitByRows(mtxY, rowmapIV, stats, msglvl,
msgFile, firsttag, MPI_COMM_WORLD) ;

DenseMtx_free(mtxY) ;

mtxY = newY ;

IV_free(rowmaplIV) ;

Each processor now must create a local DenseMtx object to hold the rows of PX that it owns.
ownedColumnsIV = FrontMtx_ownedColumnsIV(frontmtx, myid, ownersIV,

msglvl, msgFile) ;
nmycol = IV_size(ownedColumnsIV) ;

20 SPOOLES 2.2 — Solving Linear Systems April 29, 2002

mtxX = DenseMtx_new() ;

if (nmycol > 0) {
DenseMtx_init (mtxX, type, 0, 0, nmycol, nrhs, 1, nmycol) ;
DenseMtx_rowIndices (mtxX, &nrow, &rowind) ;
IVcopy (nmycol, rowind, IV_entries(ownedColumnsIV)) ;

¥

If A is symmetric, or if pivoting for stability was not used, then mtxX can just be a pointer to mtxY, i.e., PX
could overwrite PY.

The parallel solve is remarkably similar to the serial solve, as we see with the code fragment below.

solvemanager = SubMtxManager_new() ;

SubMtxManager_init (solvemanager, NO_LOCK, 0) ;

FrontMtx_MPI_solve(frontmtx, mtxX, mtxY, solvemanager, solvemap, cpus,
stats, msglvl, msgFile, firsttag, MPI_COMM_WORLD) ;

SubMtxManager_free(solvemanager) ;

The only difference between the multithreaded and MPI solve methods is the presence of the first tag and
MPI communicator in the latter.

The last step is to permute the rows of the local solution matrix into the original matrix ordering. We
also gather all the solution entries into one DenseMtx object on processor zero.

DenseMtx_permuteRows (mtxX, newTo01dIV) ;

IV_fill(vtxmapIV, 0) ;

firsttag++ ;

mtxX = DenseMtx_MPI_splitByRows(mtxX, vtxmapIV, stats, msglvl, msgFile,
firsttag, MPI_COMM_WORLD) ;

4.7 Sample Matrix and Right Hand Side Files

matrix.0.input || matrix.1l.input || matrix.2.input || matrix.3.input
996 995 997 993
00 4.0 22 4.0 44 4.0 7TT7T 4.0
01-1.0 25 -1.0 45 -1.0 78 -1.0
03 -1.0 33 4.0 47 -1.0 88 4.0
11 4.0 34-1.0 55 4.0
12-1.0 36 -1.0 58 -1.0
14-1.0 66 4.0

67 -1.0
rhs.0.input rhs.1.input rhs.2.input rhs.3.input
21 21 21 31
0 0.0 2 0.0 4 1.0 6 0.0
10.0 3 0.0 5 0.0 7 0.0

8 0.0

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems 21

5 Serial Solution of AX =Y using an QR factorization

Let us review the steps is solving AX =Y using a QR factorization.

e communicate the data for the problem as 4, X and Y.
e reorder as AX = Y, where A=APT and X = PX. and Pis a permutation matrix.
e factor A = @R, where @ is orthogonal and R is upper triangular.

e solve RTR(PX) = ATY (if real) or solve RFR(PX) = AFY (if complex).

A complete listing of a sample program is found in Section D. We will now begin to work our way through
the program to illustrate the use of SPOOLES to solve a system of linear equations.

5.1 Reading the input parameters

The input parameters are identical to those of the serial LU driver program described in Section 2.1 with
the exception that the symmetryflag is not present.

5.2 Communicating the data for the problem

This step is identical to the serial code, as described in Section 2.2

5.3 Reordering the linear system

For the LU factorization of A, we used the graph of A + A”. For the QR factorization of A, we need the
graph of AT A. The only difference between the two orderings is how we create the IVL object for the graph.
For the QR factorization, we use InpMtx_adjForATA(), as we see below.

adjIVL = InpMtx_adjForATA(mtxA) ;

nedges = IVL_tsize(adjIVL) ;

graph = Graph_new() ;

Graph_init2(graph, O, neqns, O, nedges, neqns, nedges, adjIVL,
NULL, NULL) ;

frontETree = orderViaMMD(graph, seed, msglvl, mngile) H

The minimum degree method is the simplest of the ordering methods provided in the SPOOLES library. For
more information on ordering, please see the user document “Ordering Sparse Matrices and Transforming
Front Trees”.

5.4 Non-numeric work

The next phase is to obtain the permutation matrix P, (stored implicitly in a permutation vector), and
apply it to the matrix A. This is done by the following code fragment.

0ldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;
oldToNew IV_entries(oldToNewlIV) ;

newTo01dIV = ETree_newTo0ldVtxPerm(frontETree) ;
newTo0ld = IV_entries(newTo01ldIV) ;
InpMtx_permute (mtxA, NULL, oldToNew)) ;
InpMtx_changeStorageMode (mtxA, INPMTX_BY_VECTORS) ;

22 SPOOLES 2.2 — Solving Linear Systems April 29, 2002

The 01dToNewIV and newTo01dIV variables are IV objects that represent an integer vector. The oldToNew
and newTo01d variables are pointers to int, which point to the base address of the int vector in an IV object.
Once we have the permutation vector, we apply it to the front tree, by the ETree permuteVertices()
method. We need APT, so we permute the InpMtx object using a NULL pointer for the row permutation
(which means do not permute the rows) and the o1dToNew vector for the column permutation. At this point
the InpMtx object holds APT in the form required by the factorization.

The final steps are to compute the symbolic factorization, which is stored in an IVL object, and to
permute the vertices in the front tree. The symbolic factorization differs slightly from the LU case.

symbfacIVL = SymbFac_initFromGraph(frontETree, graph) ;
IVL_overwrite(symbfacIVL, oldToNewIV) ;
IVL_sortUp(symbfacIVL) ;
ETree_permuteVertices(frontETree, oldToNewIV) ;

We do not have the AT A matrix object, so we constuct the symbolic factorization using the front tree and
the Graph object. Note, at this point in time, both the graph and front tree are in terms of the original
ordering, so after the IVL object is created, its vertices must be mapped into the new permutation and sorted
into ascending order. Then the vertices in the front tree are mapped into the new ordering.

5.5 The Matrix Factorization

The numeric factorization step begins by initializing the FrontMtx object with the frontETree and symbacIVL
objects created in early steps. The FrontMtx object holds the actual factorization. The code segment for
the initialization is found below.

frontmtx = FrontMtx_new() ;

mtxmanager = SubMtxManager_new() ;
SubMtxManager_init (mtxmanager, NO_LOCK, 0) ;
if (type == SPOOLES_REAL) {

FrontMtx_init (frontmtx, frontETree, symbfacIVL, type,
SPOOLES_SYMMETRIC, FRONTMTX_DENSE_FRONTS,
SPOOLES_NO_PIVOTING, NO_LOCK, 0, NULL,
mtxmanager, msglvl, msgFile) ;

} else {

FrontMtx_init (frontmtx, frontETree, symbfacIVL, type,
SPOOLES_HERMITIAN, FRONTMTX_DENSE_FRONTS,
SPOOLES_NO_PIVOTING, NO_LOCK, 0, NULL,
mtxmanager, msglvl, msgFile) ;

}

This differs little from the initialization in Section 2.5, except that the matrix type is symmetric or Hermitian,
and no pivoting is used for stability.

The numeric factorization is performed by the FrontMtx_QR_factor () method. The code segment from
the sample program for the numerical factorization step is found below.

chvmanager = ChvManager_new() ;

ChvManager_init(chvmanager, NO_LOCK, 1) ;

DVzero(10, cpus) ;

facops = 0.0 ;

FrontMtx_QR_factor(frontmtx, mtxA, chvmanager, cpus, &facops, msglvl, msgFile) ;
ChvManager_free(chvmanager) ;

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems 23

Working storage used during the factorization is found in the form of block chevrons, in a Chv object,
which hold the partial frontal matrix for a front. Much as with the SubMtx object, the FrontMtx object
does not concern itself with managing working storage, instead it relies on a ChvManager object to manage
the Chv objects. On return facops contains the number of floating point operations performed during the
factorization.

The factorization is performed using a one-dimensional decomposition of the factor matrices. Keeping
the factor matrices in this form severely limits the amount of parallelism for the forward and backsolves.
We perform a post-processing step to convert the one-dimensional data structures to submatrices of a two-
dimensional block decomposition of the factor matrices. The following code fragment performs this operation.

FrontMtx_postProcess(frontmtx, msglvl, msgFile) ;

5.6 Solving the linear system
The following code fragment solves the linear system RTRX = ATY if real or RERX = AHY if complex.

mtxX = DenseMtx_new() ;

DenseMtx_init (mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;

FrontMtx_QR_solve(frontmtx, mtxA, mtxX, mtxB, mtxmanager,
cpus, msglvl, msgFile) ;

Last, we permute the rows of widehatX back into X.

DenseMtx_permuteRows (mtxX, newTo01dIV) ;

5.7 Sample Matrix and Right Hand Side Files

Immediately below are two sample files: qr.matrix.input holds the matrix input and qr.rhs.input holds
the right hand side. This simple example is an 8 x 6 matrix A and a single right hand side. The solution is
the vector of all ones. Note how the indices are zero-based as for C, instead of one-based as for Fortran.

matrix.input

8 6 18

011.0

03 2.0

123.0

131.0 rhs.input
151.0 81
201.0 0 3.0
22 2.0 15.0
303.0 2 3.0
324.0 3 9.0
342.0 4 1.0
431.0 5 6.0
51 2.0 6 5.0
54 3.0 7 4.0
55 1.0

6 0 2.0

6 3 3.0

711.0

7 4 3.0

24 SPOOLES 2.2 — Solving Linear Systems

A allInOne.c — A Serial LU Driver Program

/* allInOne.c */

#include "../../misc.h"
#include "../../FrontMtx.h"
#include "../../SymbFac.h"

int
main (int argc, char xargv[]) {
/*

all-in-one program to solve A X =Y

(1) read in matrix entries for A and form InpMtx object
(2) read in right hand side for Y entries and form DenseMtx object
(3) form Graph object, order matrix and form front tree
(4) get the permutation, permute the front tree, matrix
and right hand side and get the symbolic factorization
(6) initialize the front matrix object to hold the factor matrices
(6) compute the numeric factorization
(7) post-process the factor matrices
(8) compute the solution
(9) permute the solution into the original ordering

created -- 98jun04, cca
*/
e ettt et */
char *matrixFileName, *rhsFileName ;
DenseMtx *mtxY, *mtxX ;
Chv *rootchv ;
ChvManager *chvmanager ;
SubMtxManager *mtxmanager ;
FrontMtx *frontmtx ;
InpMtx *mtxA ;
double droptol = 0.0, tau = 100. ;
double cpus[10] ;
ETree *frontETree ;
FILE *inputFile, *msgFile ;
Graph *graph ;
int error, ient, irow, jcol, jrhs, jrow, msglvl, ncol,
nedges, nent, neqns, nrhs, nrow, pivotingflag, seed,
symmetryflag, type ;
int *newTo0ld, *oldToNew ;
int stats[20] ;
IV *newTo01dIV, *o0ldToNewIV ;
IVL *adjIVL, *symbfacIVL ;
[m */

April 29, 2002

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems

*/
if (arge !'= 9) {
fprintf (stdout, "\n"
"\n usage: %s msglvl msgFile type symmetryflag pivotingflag"

"\n matrixFileName rhsFileName seed"
"\n msglvl -- message level"
"\n msgFile -- message file"
"\n type -- type of entries"
"\n 1 (SPOOLES_REAL) -- real entries"
"\n 2 (SPOOLES_COMPLEX) -- complex entries"
"\n symmetryflag -- type of matrix"
"\n 0 (SPOOLES_SYMMETRIC) -- symmetric entries"
"\n 1 (SPOOLES_HERMITIAN) -- Hermitian entries"
"\n 2 (SPOOLES_NONSYMMETRIC) -- nonsymmetric entries"
"\n pivotingflag -- type of pivoting"
"\n 0 (SPOOLES_NO_PIVOTING) -- no pivoting used"
"\n 1 (SPOOLES_PIVOTING) -- pivoting used"
"\n matrixFileName -- matrix file name, format"
"\n nrow ncol nent"
"\n irow jcol entry"
u\n L
"\n note: indices are zero based"
"\n rhsFileName -- right hand side file name, format"
"\n nrow nrhs "
u\n L
"\n jrow entry(jrow,0) ... entry(jrow,nrhs-1)"
"\n ot
"\n seed -- random number seed, used for ordering"
"\n", argv[0]) ;
return(0) ;

}
msglvl = atoi(argv([1]) ;
if (strcmp(argv([2], "stdout") == 0) {
msgFile = stdout ;
} else if ((msgFile = fopen(argv[2], "a")) == NULL) {
fprintf (stderr, "\n fatal error in %s"
"\n unable to open file %s\n",
argv[0], argv[2]) ;
return(-1) ;

}

type = atoi(argv[3]) ;

symmetryflag = atoi(argv[4]) ;

pivotingflag = atoi(argv[5]) ;

matrixFileName = argv[6] ;

rhsFileName = argv[7] ;

seed = atoi(argv([8]) ;

R m */

25

26 SPOOLES 2.2 — Solving Linear Systems

STEP 1: read the entries from the input file
and create the InpMtx object
*/
inputFile = fopen(matrixFileName, "r")
fscanf (inputFile, "%d %d %d", &nrow, &ncol, &nent) ;
neqns = nrow ;
mtxA = InpMtx_new() ;
InpMtx_init (mtxA, INPMTX_BY_ROWS, type, nent, neqns) ;
if (type == SPOOLES_REAL) {
double value ;
for (ient = 0 ; ient < nent ; ient++) {
fscanf (inputFile, "%d %d %le", &irow, &jcol, &value) ;
InpMtx_inputRealEntry(mtxA, irow, jcol, value) ;
}
} else {
double imag, real ;
for (ient = 0 ; ient < nent ; ient++) {

fscanf (inputFile, "%d %d %le %le", &irow, &jcol, &real, &imag) ;
InpMtx_inputComplexEntry(mtxA, irow, jcol, real, imag) ;

}
}
fclose(inputFile) ;
InpMtx_changeStorageMode (mtxA, INPMTX_BY_VECTORS) ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n input matrix") ;
InpMtx_writeForHumanEye (mtxA, msgFile) ;

fflush(msgFile) ;
}
R m—mmm
/*
STEP 2: read the right hand side matrix Y
*/

inputFile = fopen(rhsFileName, "r") ;
fscanf (inputFile, "%d %d", &nrow, &nrhs) ;
mtxY = DenseMtx_new() ;
DenseMtx_init (mtxY, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxY) ;
if (type == SPOOLES_REAL) {
double value ;
for (irow = 0 ; irow < nrow ; irow++) {
fscanf (inputFile, "%d", &jrow) ;
for (jrhs = 0 ; jrhs < nrhs ; jrhs++) {
fscanf (inputFile, "%le", &value) ;
DenseMtx_setRealEntry(mtxY, jrow, jrhs, value) ;

} else {

April 29, 2002

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems

double imag, real ;
for (irow = 0 ; irow < nrow ; irow++) {
fscanf (inputFile, "%d", &jrow) ;
for (jrhs = 0 ; jrhs < nrhs ; jrhs++) {
fscanf (inputFile, "%le %le", &real, &imag) ;
DenseMtx_setComplexEntry(mtxY, jrow, jrhs, real, imag) ;

}
}
fclose(inputFile) ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n rhs matrix in original ordering") ;
DenseMtx_writeForHumanEye (mtxY, msgFile) ;
fflush(msgFile) ;

STEP 3 : find a low-fill ordering
(1) create the Graph object
(2) order the graph using multiple minimum degree
*/
graph = Graph_new() ;
adjIVL = InpMtx_fullAdjacency(mtxA) ;
nedges = IVL_tsize(adjIVL) ;
Graph_init2(graph, O, neqns, 0, nedges, neqns, nedges, adjIVL,
NULL, NULL) ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n graph of the input matrix") ;
Graph_writeForHumanEye (graph, msgFile) ;
fflush(msgFile) ;
}
frontETree = orderViaMMD(graph, seed, msglvl, mngile) H
if (msglvl > 2) {
fprintf (msgFile, "\n\n front tree from ordering") ;
ETree_writeForHumanEye (frontETree, msgFile) ;

fflush(msgFile) ;
}
K e *x/
/%

STEP 4: get the permutation, permute the front tree,
permute the matrix and right hand side, and
get the symbolic factorization

*/

0ldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;
oldToNew = IV_entries(oldToNewIV) ;

newTo01dIV = ETree_newTo0ldVtxPerm(frontETree) ;
newTo0ld = IV_entries(newTo01ldIV) ;

27

28 SPOOLES 2.2 — Solving Linear Systems

ETree_permuteVertices(frontETree, oldToNewIV) ;
InpMtx_permute (mtxA, oldToNew, oldToNew) ;
if (symmetryflag == SPOOLES_SYMMETRIC
|| symmetryflag == SPOOLES_HERMITIAN) {
InpMtx_mapToUpperTriangle(mtxA) ;
}
InpMtx_changeCoordType (mtxA, INPMTX_BY_CHEVRONS) ;
InpMtx_changeStorageMode (mtxA, INPMTX_BY_VECTORS) ;
DenseMtx_permuteRows (mtxY, oldToNewIV) ;
symbfacIVL = SymbFac_initFromInpMtx(frontETree, mtxA) ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n old-to-new permutation vector") ;
IV_writeForHumanEye (0o1dToNewIV, msgFile) ;
fprintf (msgFile, "\n\n new-to-old permutation vector") ;
IV_writeForHumanEye (newTo01dIV, msgFile) ;
fprintf (msgFile, "\n\n front tree after permutation")
ETree_writeForHumanEye (frontETree, msgFile) ;
fprintf (msgFile, "\n\n input matrix after permutation")
InpMtx_writeForHumanEye (mtxA, msgFile) ;
fprintf (msgFile, "\n\n right hand side matrix after permutation")
DenseMtx_writeForHumanEye (mtxY, msgFile) ;
fprintf (msgFile, "\n\n symbolic factorization") ;
IVL_writeForHumanEye(symbfacIVL, msgFile) ;

fflush(msgFile) ;
}
R m—mmm */
/%
STEP 5: initialize the front matrix object
*/
frontmtx = FrontMtx_new() ;

mtxmanager = SubMtxManager_new() ;

SubMtxManager_init (mtxmanager, NO_LOCK, 0) ;

FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, symmetryflag,
FRONTMTX_DENSE_FRONTS, pivotingflag, NO_LOCK, O, NULL,
mtxmanager, msglvl, msgFile) ;

*/

chvmanager = ChvManager_new() ;

ChvManager_init(chvmanager, NO_LOCK, 1) ;

DVfill(10, cpus, 0.0) ;

IVfil1l1(20, stats, 0) ;

rootchv = FrontMtx_factorInpMtx(frontmtx, mtxA, tau, droptol,
chvmanager, &error, cpus, stats, msglvl, mngile) ;

ChvManager_free(chvmanager) ;

if (msglvl > 2) {

April 29, 2002

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems

fprintf (msgFile, "\n\n factor matrix")
FrontMtx_writeForHumanEye (frontmtx, msgFile) ;
fflush(msgFile) ;

if (rootchv != NULL) {
fprintf (msgFile, "\n\n matrix found to be singular\n")
exit(-1) ;

if (error >= 0) {
fprintf (msgFile, "\n\n error encountered at front %d", error) ;
exit(-1) ;

*/

FrontMtx_postProcess(frontmtx, msglvl, msgFile) ;

if (msglvl > 2) {
fprintf (msgFile, "\n\n factor matrix after post-processing")
FrontMtx_writeForHumanEye (frontmtx, msgFile) ;

fflush(msgFile) ;
}
R m—mmm */
/*
STEP 8: solve the linear system
*/

mtxX = DenseMtx_new() ;
DenseMtx_init (mtxX, type, 0, 0O, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxX) ;
FrontMtx_solve(frontmtx, mtxX, mtxY, mtxmanager,
cpus, msglvl, mngile) ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n solution matrix in new ordering") ;
DenseMtx_writeForHumanEye (mtxX, msgFile) ;

fflush(msgFile) ;
X
R m—mmm */
/*
STEP 9: permute the solution into the original ordering
*/

DenseMtx_permuteRows (mtxX, newTo01dIV) ;

if (msglvl > 0) {
fprintf (msgFile, "\n\n solution matrix in original ordering") ;
DenseMtx_writeForHumanEye (mtxX, msgFile) ;
fflush(msgFile) ;

29

30 SPOOLES 2.2 — Solving Linear Systems

*/
FrontMtx_free(frontmtx) ;
DenseMtx_free(mtxX) ;
DenseMtx_free(mtxY) ;
IV_free(newTo01dIV) ;
IV_free(oldToNewIV) ;
InpMtx_free(mtxA) ;
ETree_free(frontETree) ;
IVL_free(symbfacIVL) ;
SubMtxManager_free (mtxmanager) ;
Graph_free(graph) ;

April 29, 2002

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems

B allInOne.c — A Serial LU Driver Program

/* allInOneMT.c */

#include "../spoolesMT.h"
#include "../../misc.h"
#include "../../FrontMtx.h"
#include "../../SymbFac.h"

[m */
int
main (int argc, char xargv[]) {
/*
all-in-one program to solve A X =Y
using a multithreaded factorization and solve
(1) read in matrix entries for A and form InpMtx object
(2) read in right hand side for Y entries and form DenseMtx object
(3) form Graph object, order matrix and form front tree
(4) get the permutation, permute the front tree, matrix
and right hand side and get the symbolic factorization
(6) initialize the front matrix object to hold the factor matrices
(6) get the domain-decomposition map from fronts to threads
(7) compute the numeric factorization
(8) post-process the factor matrices
(9) get the map for the parallel solve
(10) compute the solution
(11) permute the solution into the original ordering
created —— 98jun04, cca
*/
[m */
char *matrixFileName, *rhsFileName ;
DenseMtx *mtxY, *mtxX ;
Chv *rootchv ;
ChvManager *chvmanager ;
double droptol = 0.0, tau = 100. ;
double cpus[10] ;
DV *cumopsDV ;
ETree *frontETree ;
FrontMtx *frontmtx ;
FILE xinputFile, *msgFile ;
Graph *graph ;
InpMtx *mtxA ;
int error, ient, irow, jcol, jrhs, jrow, lookahead, msglvl,
ncol, nedges, nent, neqns, nfront, nrhs, nrow,
nthread, pivotingflag, seed, symmetryflag, type ;
int *newTo0ld, *oldToNew ;
int stats[20] ;

31

32 SPOOLES 2.2 — Solving Linear Systems April 29, 2002

IV *newTo01dIV, *0ldToNewIV, *ownersIV ;

IVL *adjIVL, *symbfacIVL ;

SolveMap *solvemap ;

SubMtxManager *mtxmanager ;

R m—mmm */
/%

*/
if (arge '= 10) {
fprintf (stdout, "\n"
"\n usage: %s msglvl msgFile type symmetryflag pivotingflag"

"\n matrixFileName rhsFileName seed"
"\n msglvl -- message level"
"\n msgFile -- message file"
"\n type -- type of entries"
"\n 1 (SPOOLES_REAL) -- real entries"
"\n 2 (SPOOLES_COMPLEX) -- complex entries"
"\n symmetryflag -- type of matrix"
"\n 0 (SPOOLES_SYMMETRIC) -- symmetric entries"
"\n 1 (SPOOLES_HERMITIAN) -- Hermitian entries"
"\n 2 (SPOOLES_NONSYMMETRIC) -- nonsymmetric entries"
"\n pivotingflag -- type of pivoting"
"\n 0 (SPOOLES_NO_PIVOTING) -- no pivoting used"
"\n 1 (SPOOLES_PIVOTING) -- pivoting used"
"\n matrixFileName -- matrix file name, format"
"\n nrow ncol nent"
"\n irow jcol entry"
"\n ot
"\n note: indices are zero based"
"\n rhsFileName -- right hand side file name, format"
"\n nrow nrhs "
u\n L
"\n jrow entry(jrow,0) ... entry(jrow,nrhs-1)"
"\n ot
"\n seed -- random number seed, used for ordering"
"\n nthread -- number of threads"
"\n", argv[0]) ;
return(0) ;

}
msglvl = atoi(argv([1]) ;
if (strcmp(argv([2], "stdout") == 0) {
msgFile = stdout ;
} else if ((msgFile = fopen(argv[2], "a")) == NULL) {
fprintf (stderr, "\n fatal error in Js"
"\n unable to open file ¥%s\n",
argv[0], argv[2]) ;
return(-1) ;
}
type = atoi(argv[3]) ;

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems

symmetryflag = atoi(argv[4]) ;

pivotingflag = atoi(argv[5]) ;

matrixFileName = argv[6] ;

rhsFileName = argv[7] ;

seed = atoi(argv[8]) ;

nthread = atoi(argv[9]) ;

[m */
/*

STEP 1: read the entries from the input file
and create the InpMtx object
*/
inputFile = fopen(matrixFileName, "r") ;
fscanf (inputFile, "%d %d %d", &nrow, &ncol, &nent) ;
neqns = nrow ;
mtxA = InpMtx_new() ;
InpMtx_init (mtxA, INPMTX_BY_ROWS, type, nent, 0) ;
if (type == SPOOLES_REAL) {
double value ;
for (ient = 0 ; ient < nent ; ient++) {
fscanf (inputFile, "%d %d %le", &irow, &jcol, &value) ;
InpMtx_inputRealEntry(mtxA, irow, jcol, value) ;
}
} else {
double imag, real ;
for (ient = 0 ; ient < nent ; ient++) {
fscanf (inputFile, "%d %d %le %le", &irow, &jcol, &real, &imag) ;
InpMtx_inputComplexEntry(mtxA, irow, jcol, real, imag) ;
}
}
fclose(inputFile) ;
InpMtx_changeStorageMode (mtxA, INPMTX_BY_VECTORS) ;
if (msglvl > 1) {
fprintf (msgFile, "\n\n input matrix") ;
InpMtx_writeForHumanEye (mtxA, msgFile) ;

fflush(msgFile) ;
}
[m */
/*
STEP 2: read the right hand side matrix Y
*/

inputFile = fopen(rhsFileName, "r")
fscanf (inputFile, "%d %d", &nrow, &nrhs) ;
mtxY = DenseMtx_new() ;
DenseMtx_init (mtxY, type, 0, O, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxY) ;
if (type == SPOOLES_REAL) {
double value ;

33

34 SPOOLES 2.2 — Solving Linear Systems

for (irow = 0 ; irow < nrow ; irow++) {
fscanf (inputFile, "%d", &jrow) ;
for (jrhs = 0 ; jrhs < nrhs ; jrhs++) {
fscanf (inputFile, "%le", &value) ;
DenseMtx_setRealEntry(mtxY, jrow, jrhs, value) ;

}
} else {
double imag, real ;
for (irow = 0 ; irow < nrow ; irow++) {
fscanf (inputFile, "%d", &jrow) ;
for (jrhs = 0 ; jrhs < nrhs ; jrhs++) {
fscanf (inputFile, ")le %le", &real, &imag) ;
DenseMtx_setComplexEntry(mtxY, jrow, jrhs, real, imag) ;

}
}
fclose(inputFile) ;
if (msglvl > 1) {
fprintf (msgFile, "\n\n rhs matrix in original ordering") ;
DenseMtx_writeForHumanEye (mtxY, msgFile) ;
fflush(msgFile) ;

STEP 3 : find a low-fill ordering
(1) create the Graph object
(2) order the graph using multiple minimum degree

*/

graph = Graph_new() ;

adjIVL = InpMtx_fullAdjacency(mtxA) ;

nedges = IVL_tsize(adjIVL) ;

Graph_init2(graph, O, negqns, 0, nedges, neqns, nedges, adjIVL,

NULL, NULL) ;

if (msglvl > 1) {
fprintf (msgFile, "\n\n graph of the input matrix")
Graph_writeForHumanEye(graph, msgFile) ;
fflush(msgFile) ;

}

frontETree = orderViaMMD(graph, seed, msglvl, msgFile) ;

if (msglvl > 1) {
fprintf (msgFile, "\n\n front tree from ordering") ;
ETree_writeForHumanEye(frontETree, msgFile) ;
fflush(msgFile) ;

STEP 4: get the permutation, permute the front tree,

April 29, 2002

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems

permute the matrix and right hand side, and
get the symbolic factorization

*/
0ldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;

0ldToNew = IV_entries(oldToNewIV) ;
newTo01dIV = ETree_newTo0ldVtxPerm(frontETree) ;
newTo0ld = IV_entries(newTo01ldIV) ;

ETree_permuteVertices(frontETree, oldToNewIV) ;
InpMtx_permute (mtxA, oldToNew, oldTolNew) ;
if (symmetryflag == SPOOLES_SYMMETRIC
|| symmetryflag == SPOOLES_HERMITIAN) {
InpMtx_mapToUpperTriangle(mtxA) ;
}
InpMtx_changeCoordType (mtxA, INPMTX_BY_CHEVRONS) ;
InpMtx_changeStorageMode (mtxA, INPMTX_BY_VECTORS) ;
DenseMtx_permuteRows (mtxY, o0ldToNewIV) ;
symbfacIVL = SymbFac_initFromInpMtx(frontETree, mtxA) ;
if (msglvl > 1) {
fprintf (msgFile, "\n\n old-to-new permutation vector") ;
IV_writeForHumanEye (01dToNewIV, msgFile) ;
fprintf (msgFile, "\n\n new-to-old permutation vector") ;
IV_writeForHumanEye (newTo01dIV, msgFile) ;
fprintf (msgFile, "\n\n front tree after permutation")
ETree_writeForHumanEye (frontETree, msgFile) ;
fprintf (msgFile, "\n\n input matrix after permutation")
InpMtx_writeForHumanEye (mtxA, msgFile) ;
fprintf (msgFile, "\n\n right hand side matrix after permutation")
DenseMtx_writeForHumanEye (mtxY, msgFile) ;
fprintf (msgFile, "\n\n symbolic factorization") ;
IVL_writeForHumanEye (symbfacIVL, msgFile) ;

fflush(msgFile) ;
}
R m */
/*
STEP 5: setup the domain decomposition map
*/

if (nthread > (nfront = FrontMtx_nfront(frontmtx))) {
nthread = nfront ;

}

cumopsDV = DV_new() ;

DV_init(cumopsDV, nthread, NULL) ;

ownersIV = ETree_ddMap(frontETree, type, symmetryflag,

cumopsDV, 1./(2.*nthread)) ;

if (msglvl > 1) {
fprintf (msgFile, "\n\n map from fronts to threads") ;
IV_writeForHumanEye (ownersIV, msgFile) ;
fprintf (msgFile, "\n\n factor operations for each front") ;
DV_writeForHumanEye (cumopsDV, msgFile) ;

35

36 SPOOLES 2.2 — Solving Linear Systems

fflush(msgFile) ;
}
DV_free(cumopsDV) ;

*/

frontmtx FrontMtx_new() ;

mtxmanager = SubMtxManager_new() ;

SubMtxManager_init (mtxmanager, LOCK_IN_PROCESS, 0) ;

FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, symmetryflag,
FRONTMTX_DENSE_FRONTS, pivotingflag, LOCK_IN_PROCESS,
0, NULL, mtxmanager, msglvl, msgFile) ;

*/
chvmanager = ChvManager_new() ;
ChvManager_init(chvmanager, LOCK_IN_PROCESS, 1) ;
DVfill(10, cpus, 0.0) ;
IVfill1(20, stats, 0) ;
rootchv = FrontMtx_MT_factorInpMtx(frontmtx, mtxA, tau, droptol,
chvmanager, ownersIV, lookahead,
&error, cpus, stats, msglvl, msgFile) ;
ChvManager_free(chvmanager) ;
if (msglvl > 1) {
fprintf (msgFile, "\n\n factor matrix")
FrontMtx_writeForHumanEye (frontmtx, msgFile) ;
fflush(msgFile) ;

if (rootchv != NULL) {
fprintf (msgFile, "\n\n matrix found to be singular\n")
exit(-1) ;

if (error >= 0) {
fprintf (msgFile, "\n\n fatal error at front %d", error) ;
exit(-1) ;

*/
FrontMtx_postProcess(frontmtx, msglvl, mngile) ;
if (msglvl > 1) {
fprintf (msgFile, "\n\n factor matrix after post-processing")

April 29, 2002

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems

FrontMtx_writeForHumanEye (frontmtx, msgFile) ;

fflush(msgFile) ;
}
R m—mmm */
/*
STEP 9: get the solve map object for the parallel solve
*/

solvemap = SolveMap_new() ;

SolveMap_ddMap(solvemap, symmetryflag, FrontMtx_upperBlockIVL(frontmtx),
FrontMtx_lowerBlockIVL(frontmtx), nthread, ownersIV,
FrontMtx_frontTree(frontmtx), seed, msglvl, msgFile) ;

*/

mtxX = DenseMtx_new() ;

DenseMtx_init (mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;

DenseMtx_zero(mtxX) ;

FrontMtx_MT_solve(frontmtx, mtxX, mtxY, mtxmanager, solvemap,

cpus, msglvl, mngile) ;

if (msglvl > 1) {
fprintf (msgFile, "\n\n solution matrix in new ordering") ;
DenseMtx_writeForHumanEye (mtxX, msgFile) ;

fflush(msgFile) ;
X
R m—mmm */
/*
STEP 11: permute the solution into the original ordering
*/

DenseMtx_permuteRows (mtxX, newTo01dIV) ;

if (msglvl > 0) {
fprintf (msgFile, "\n\n solution matrix in original ordering") ;
DenseMtx_writeForHumanEye (mtxX, msgFile) ;
fflush(msgFile) ;

*/
FrontMtx_free(frontmtx) ;
DenseMtx_free(mtxX) ;
DenseMtx_free(mtxY) ;
IV_free(newTo01dIV) ;

37

38 SPOOLES 2.2 — Solving Linear Systems April 29, 2002

IV_free(oldToNewIV) ;
InpMtx_free(mtxA) ;
ETree_free(frontETree) ;
IVL_free(symbfacIVL) ;
SubMtxManager_free (mtxmanager) ;
Graph_free(graph) ;
SolveMap_free(solvemap) ;
IV_free(ownersIV) ;

April 29, 2002

C alllnOne.c — A Serial LU Driver Program

/* allInOneMPI.c x*/

#include "../spoolesMPI.h"
#include "../../timings.h"

R m—mm */
int
main (int argc, char xargv[]) {
/*
all-in-one MPI program for each process
order, factor and solve A X =Y
(1) read in matrix entries and form InpMtx object for A
(2) order the system using minimum degree
(3) permute the front tree
(4) create the owners map IV object
(5) permute the matrix A and redistribute
(6) compute the symbolic factorization
(7) compute the numeric factorization
(8) split the factors into submatrices
(9) create the submatrix map and redistribute
(10) read in right hand side entries
and form dense matrix DenseMtx object for Y
(11) permute and redistribute Y
(12) solve the linear system
(13) gather X on processor 0
created -- 98junl3, cca
*/
R m—mmm */
char buffer[20] ;
Chv *rootchv ;
ChvManager *chvmanager ;
DenseMtx *mtxX, *mtxY, *newY ;
SubMtxManager *mtxmanager, *solvemanager ;
FrontMtx *frontmtx ;
InpMtx *mtxA, *newA ;
double cutoff, droptol = 0.0, minops, tau = 100. ;
double cpus[20] ;
double *opcounts ;
DV *cumopsDV ;
ETree *frontETree ;
FILE xinputFile, *msgFile ;
Graph xgraph ;
int error, firsttag, ient, irow, jcol, lookahead = O,

msglvl, myid, nedges, nent, neqns, nmycol, nproc, nrhs,

SPOOLES 2.2 — Solving Linear Systems

39

40 SPOOLES 2.2 — Solving Linear Systems April 29, 2002

nrow, pivotingflag, root, seed, symmetryflag, type ;

int stats[20] ;
int *rowind ;
IV *¥01dToNewIV, *ownedColumnsIV, *ownersIV,
*newTo01dIV, *vtxmaplV ;
IVL *adjIVL, *symbfacIVL ;
SolveMap *solvemap ;
[m */
/%

*/

MPI_Init(&argc, &argv) ;

MPI_Comm_rank (MPI_COMM_WORLD, &myid) ;
MPI_Comm_size(MPI_COMM_WORLD, &nproc) ;

*/
if (arge '=7) {
fprintf (stdout,
"\n usage: %s msglvl msgFile type symmetryflag pivotingflag seed"
"\n msglvl -- message level"
"\n msgFile -- message file"
"\n type -- type of entries"
"\n 1 (SPOOLES_REAL) -- real entries"
"\n 2 (SPOOLES_COMPLEX) -- complex entries"
"\n symmetryflag -- type of matrix"
"\n 0 (SPOOLES_SYMMETRIC) -- symmetric entries"
"\n 1 (SPOOLES_HERMITIAN) -- Hermitian entries"
"\n 2 (SPOOLES_NONSYMMETRIC) -- nonsymmetric entries"
"\n pivotingflag -- type of pivoting"
"\n 0 (SPOOLES_NO_PIVOTING) -- no pivoting used"
"\n 1 (SPOOLES_PIVOTING) -- pivoting used"
"\n seed —- random number seed"
u\n "
"\n note: matrix entries are read in from matrix.k.input"
"\n where k is the process number"
"\n note: rhs entries are read in from rhs.k.input"
"\n where k is the process number"
"\n", argv[0]) ;
return(0) ;
}

msglvl = atoi(argv([1]) ;

if (strcmp(argv([2], "stdout") == 0) {
msgFile = stdout ;

} else {
sprintf (buffer, "res.%d", myid) ;

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems

if ((msgFile = fopen(buffer, "w")) == NULL) {
fprintf(stderr, "\n fatal error in ¥%s"
"\n unable to open file %s\n",
argv[0], buffer) ;
return(-1) ;

}

type = atoi(argv[3]) ;
symmetryflag = atoi(argv[4]) ;
pivotingflag = atoi(argv([5]) ;
seed = atoi(argv[6]) ;
IVzero(20, stats) ;

DVzero (20, cpus) ;

STEP 1: read the entries from the input file
and create the InpMtx object
*/
sprintf (buffer, "matrix.’)d.input", myid) ;
inputFile = fopen(buffer, "r")
fscanf (inputFile, "%d %d %d", &neqns, &neqns, &nent) ;
mtxA = InpMtx_new() ;
InpMtx_init (mtxA, INPMTX_BY_ROWS, type, nent, 0) ;
if (type == SPOOLES_REAL) {
double value ;
for (ient = 0 ; ient < nent ; ient++) {
fscanf (inputFile, "%d %d %le", &irow, &jcol, &value) ;
InpMtx_inputRealEntry(mtxA, irow, jcol, value) ;
}
} else if (type == SPOOLES_COMPLEX) {
double imag, real ;
for (ient = 0 ; ient < nent ; ient++) {
fscanf (inputFile, "%d %d %le %le", &irow, &jcol, &real, &imag) ;
InpMtx_inputComplexEntry(mtxA, irow, jcol, real, imag) ;
}
}
fclose(inputFile) ;
InpMtx_sortAndCompress (mtxA) ;
InpMtx_changeStorageMode (mtxA, INPMTX_BY_VECTORS) ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n input matrix") ;
InpMtx_writeForHumanEye (mtxA, msgFile) ;
fflush(msgFile) ;

STEP 2: read the rhs entries from the rhs input file
and create the DenseMtx object for Y

41

42 SPOOLES 2.2 — Solving Linear Systems

*/
sprintf (buffer, "rhs.’%d.input", myid) ;
inputFile = fopen(buffer, "r") ;
fscanf (inputFile, "%d %d", &nrow, &nrhs) ;
mtxY = DenseMtx_new() ;
DenseMtx_init (mtxY, type, 0, O, nrow, nrhs, 1, nrow) ;
DenseMtx_rowIndices(mtxY, &nrow, &rowind) ;
if (type == SPOOLES_REAL) {
double value ;
for (irow = 0 ; irow < nrow ; irow++) {
fscanf (inputFile, "%d", rowind + irow) ;
for (jcol = 0 ; jcol < nrhs ; jcol++) {
fscanf (inputFile, "%le", &value) ;
DenseMtx_setRealEntry(mtxY, irow, jcol, value) ;

}
} if (type == SPOOLES_COMPLEX) {
double imag, real ;
for (irow = 0 ; irow < nrow ; irow++) {
fscanf (inputFile, "%d", rowind + irow) ;
for (jcol = 0 ; jcol < nrhs ; jcol++) {
fscanf (inputFile, ")le %le", &real, &imag) ;
DenseMtx_setComplexEntry(mtxY, irow, jcol, real, imag) ;

}

}

fclose(inputFile) ;

if (msglvl > 2) {
fprintf (msgFile, "\n\n rhs matrix in original ordering") ;
DenseMtx_writeForHumanEye (mtxY, msgFile) ;

fflush(msgFile) ;
X
[hmmmmm e */
/*

STEP 2 : find a low-fill ordering

(1) create the Graph object

(2) order the graph using multiple minimum degree

(3) find out who has the best ordering w.r.t. op count,

and broadcast that front tree object

*/

graph = Graph_new() ;
adjIVL = InpMtx_MPI_fullAdjacency(mtxA, stats,
msglvl, msgFile, MPI_COMM_WORLD) ;
nedges = IVL_tsize(adjIVL) ;
Graph_init2(graph, O, neqns, O, nedges, neqns, nedges, adjIVL,
NULL, NULL) ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n graph of the input matrix")

April 29, 2002

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems

Graph_writeForHumanEye(graph, msgFile) ;
fflush(msgFile) ;
}
frontETree = orderViaMMD(graph, seed + myid, msglvl, msgFile) ;
Graph_free(graph) ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n front tree from ordering") ;
ETree_writeForHumanEye (frontETree, msgFile) ;
fflush(msgFile) ;
}
opcounts = DVinit (nproc, 0.0) ;
opcounts[myid] = ETree_nFactorOps(frontETree, type, symmetryflag) ;
MPI_Allgather((void *) &opcounts[myid], 1, MPI_DOUBLE,
(void *) opcounts, 1, MPI_DOUBLE, MPI_COMM_WORLD) ;
minops = DVmin(nproc, opcounts, &root) ;
DVfree(opcounts) ;
frontETree = ETree_MPI_Bcast(frontETree, root,
msglvl, msgFile, MPI_COMM_WORLD) ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n best front tree")
ETree_writeForHumanEye (frontETree, msgFile) ;

fflush(msgFile) ;
X
R m */
/*
STEP 3: get the permutations, permute the front tree,
permute the matrix and right hand side.
*/

0ldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;
newTo01dIV = ETree_newTo0ldVtxPerm(frontETree) ;
ETree_permuteVertices(frontETree, oldToNewIV) ;
InpMtx_permute (mtxA, IV_entries(oldToNewIV), IV_entries(oldToNewIV)) ;
if (symmetryflag == SPOOLES_SYMMETRIC
|| symmetryflag == SPOOLES_HERMITIAN) {
InpMtx_mapToUpperTriangle(mtxA) ;

}
InpMtx_changeCoordType (mtxA, INPMTX_BY_CHEVRONS) ;
InpMtx_changeStorageMode (mtxA, INPMTX_BY_VECTORS) ;
DenseMtx_permuteRows (mtxY, 0ldToNewIV) ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n rhs matrix in new ordering") ;
DenseMtx_writeForHumanEye (mtxY, msgFile) ;
fflush(msgFile) ;

STEP 4: generate the owners map IV object
and the map from vertices to owners

43

44 SPOOLES 2.2 — Solving Linear Systems
*/
cutoff = 1./(2#%nproc) ;

cumopsDV = DV_new() ;
DV_init(cumopsDV, nproc, NULL) ;
ownersIV = ETree_ddMap (frontETree,
type, symmetryflag, cumopsDV, cutoff) ;
DV_free(cumopsDV) ;
vtxmapIV = IV_new() ;
IV_init(vtxmapIV, neqns, NULL) ;
IVgather(neqns, IV_entries(vtxmapIV),
IV_entries(ownersIV), ETree_vtxToFront (frontETree)) ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n map from fronts to owning processes") ;
IV_writeForHumanEye (ownersIV, msgFile) ;
fprintf (msgFile, "\n\n map from vertices to owning processes")
IV_writeForHumanEye (vtxmapIV, msgFile) ;

fflush(msgFile) ;
¥
R m—m m */
/*
STEP 5: redistribute the matrix and right hand side
*/

firsttag = 0 ;
newA = InpMtx_MPI_split(mtxA, vtxmapIV, stats,
msglvl, msgFile, firsttag, MPI_COMM_WORLD) ;
firsttag++ ;
InpMtx_free(mtxA) ;
mtxA = newA ;
InpMtx_changeStorageMode (mtxA, INPMTX_BY_VECTORS) ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n split InpMtx") ;
InpMtx_writeForHumanEye (mtxA, msgFile) ;
fflush(msgFile) ;
}
newY = DenseMtx_MPI_splitByRows(mtxY, vtxmapIV, stats, msglvl,
msgFile, firsttag, MPI_COMM_WORLD) ;
DenseMtx_free(mtxY) ;
mtxY = newY ;
firsttag += nproc ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n split DenseMtx Y")
DenseMtx_writeForHumanEye (mtxY, msgFile) ;
fflush(msgFile) ;

STEP 6: compute the symbolic factorization

April 29, 2002

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems

*/
symbfacIVL = SymbFac_MPI_initFromInpMtx(frontETree, ownersIV, mtxA,
stats, msglvl, msgFile, firsttag, MPI_COMM_WORLD) ;
firsttag += frontETree->nfront ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n local symbolic factorization") ;
IVL_writeForHumanEye(symbfacIVL, msgFile) ;

fflush(msgFile) ;
}
R m */
/*
STEP 7: initialize the front matrix
*/

mtxmanager = SubMtxManager_new() ;

SubMtxManager_init (mtxmanager, NO_LOCK, 0) ;

frontmtx = FrontMtx_new() ;

FrontMtx_init (frontmtx, frontETree, symbfacIVL, type, symmetryflag,
FRONTMTX_DENSE_FRONTS, pivotingflag, NO_LOCK, myid,
ownersIV, mtxmanager, msglvl, mngile) ;

*/
chvmanager = ChvManager_new() ;
ChvManager_init(chvmanager, NO_LOCK, 0) ;
rootchv = FrontMtx_MPI_factorInpMtx(frontmtx, mtxA, tau, droptol,
chvmanager, ownersIV, lookahead, &error, cpus,
stats, msglvl, msgFile, firsttag, MPI_COMM_WORLD) ;
ChvManager_free(chvmanager) ;
firsttag += 3*frontETree->nfront + 2 ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n numeric factorization") ;
FrontMtx_writeForHumanEye (frontmtx, msgFile) ;
fflush(msgFile) ;

if (error >=0) {
fprintf (stderr,
"\n proc %d : factorization error at front %d", myid, error) ;
MPI_Finalize() ;
exit(-1) ;

STEP 9: post-process the factorization and split
the factor matrices into submatrices

45

46 SPOOLES 2.2 — Solving Linear Systems

*/
FrontMtx_MPI_postProcess(frontmtx, ownersIV, stats, msglvl,
msgFile, firsttag, MPI_COMM_WORLD) ;
firsttag += b*nproc ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n numeric factorization after post-processing");
FrontMtx_writeForHumanEye (frontmtx, msgFile) ;

fflush(msgFile) ;
}
T et e T it T */
/*
STEP 10: create the solve map object
*/

solvemap = SolveMap_new() ;

SolveMap_ddMap(solvemap, symmetryflag,
FrontMtx_upperBlockIVL(frontmtx) ,
FrontMtx_lowerBlockIVL (frontmtx),
nproc, ownersIV, FrontMtx_frontTree(frontmtx),
seed, msglvl, msgFile);

if (msglvl > 3) {

SolveMap_writeForHumanEye(solvemap, msgFile) ;

fflush(msgFile) ;
}
[R m */
/*
STEP 11: redistribute the submatrices of the factors
*/

FrontMtx_MPI_split(frontmtx, solvemap,
stats, msglvl, msgFile, firsttag, MPI_COMM_WORLD) ;
if (msglvl > 2) {
fprintf (msgFile, "\n\n numeric factorization after split")
FrontMtx_writeForHumanEye (frontmtx, msgFile) ;

fflush(msgFile) ;
3
[R m */
/*
STEP 13: permute and redistribute Y if necessary
*/

if (FRONTMTX_IS_PIVOTING(frontmtx)) {
IV *rowmapIV ;

/*
pivoting has taken place, redistribute the right hand side
to match the final rows and columns in the fronts

April 29, 2002

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems

rowmapIV = FrontMtx_MPI_rowmapIV(frontmtx, ownersIV, msglvl,
msgFile, MPI_COMM_WORLD) ;

newY = DenseMtx_MPI_splitByRows(mtxY, rowmapIV, stats, msglvl,
msgFile, firsttag, MPI_COMM_WORLD) ;

DenseMtx_free(mtxY) ;

mtxY = newY ;

IV_free(rowmapIV) ;

if (msglvl > 2) {
fprintf (msgFile, "\n\n rhs matrix after split") ;
DenseMtx_writeForHumanEye (mtxY, msgFile) ;

fflush(msgFile) ;
}
R m—mmm */
/*
STEP 14: create a solution DenseMtx object
*/

ownedColumnsIV = FrontMtx_ownedColumnsIV(frontmtx, myid, ownersIV,
msglvl, msgFile) ;

nmycol = IV_size(ownedColumnsIV) ;

mtxX = DenseMtx_new() ;

if (nmycol > 0) {
DenseMtx_init (mtxX, type, 0, 0, nmycol, nrhs, 1, nmycol) ;
DenseMtx_rowIndices(mtxX, &nrow, &rowind) ;
IVcopy(nmycol, rowind, IV_entries(ownedColumnsIV)) ;

*/
solvemanager = SubMtxManager_new() ;
SubMtxManager_init (solvemanager, NO_LOCK, 0) ;
FrontMtx_MPI_solve(frontmtx, mtxX, mtxY, solvemanager, solvemap, cpus,
stats, msglvl, msgFile, firsttag, MPI_COMM_WORLD) ;
SubMtxManager_free(solvemanager) ;
if (msglvl > 2) {
fprintf (msgFile, "\n solution in new ordering") ;
DenseMtx_writeForHumanEye (mtxX, msgFile) ;

STEP 15: permute the solution into the original ordering
and assemble the solution onto processor zero

47

48 SPOOLES 2.2 — Solving Linear Systems

*/

DenseMtx_permuteRows (mtxX, newTo01dIV) ;

if (msglvl > 2) {
fprintf (msgFile, "\n\n solution in old ordering") ;
DenseMtx_writeForHumanEye (mtxX, msgFile) ;
fflush(msgFile) ;

}

IV_fill(vtxmapIV, 0) ;

firsttagt++ ;

mtxX = DenseMtx_MPI_splitByRows(mtxX, vtxmapIV, stats, msglvl, msgFile,

firsttag, MPI_COMM_WORLD) ;

if (myid == 0 && msglvl > 0) {
fprintf (msgFile, "\n\n complete solution in old ordering") ;
DenseMtx_writeForHumanEye (mtxX, msgFile) ;
fflush(msgFile) ;

MPI_Finalize() ;

return(1l) ; }

April 29, 2002

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems

D allInOne.c — A Serial QR Driver Program

/* QRallInOne.c */

#include "../../misc.h"
#include "../../FrontMtx.h"
#include "../../SymbFac.h"

int
main (int argc, char xargv[]) {
/*
QR all-in-one program
(1) read in matrix entries and form InpMtx object
of A and A"TA
(2) form Graph object of A"TA
(3) order matrix and form front tree
(4) get the permutation, permute the matrix and
front tree and get the symbolic factorization
(5) compute the numeric factorization
(6) read in right hand side entries
(7) compute the solution

created —— 98junll, cca
*/
R m */
char *matrixFileName, *rhsFileName ;
ChvManager *chvmanager ;
DenseMtx *mtxB, *mtxX ;
double facops, imag, real, value ;
double cpus[10] ;
ETree *frontETree ;
FILE *inputFile, *msgFile ;
FrontMtx *frontmtx ;
Graph xgraph ;
int ient, irow, jcol, jrhs, jrow, msglvl, neqns,

nedges, nent, nrhs, nrow, seed, type ;

InpMtx *mtxA ;
IV *newTo01dIV, *o0ldToNewIV ;
IVL *adjIVL, *symbfacIVL ;
SubMtxManager *mtxmanager ;
[R m */
/%

*/
if (arge '=7) {
fprintf (stdout,

49

50 SPOOLES 2.2 — Solving Linear Systems

"\n usage: %s msglvl msgFile type matrixFileName rhsFileName seed"

"\n msglvl -- message level"
"\n msgFile -- message file"
"\n type -- type of entries"
"\n 1 (SPOOLES_REAL) -- real entries"
"\n 2 (SPOOLES_COMPLEX) -- complex entries"
"\n matrixFileName -- matrix file name, format"
"\n nrow ncol nent"
"\n irow jcol entry"
"\n ot
"\n note: indices are zero based"
"\n rhsFileName -- right hand side file name, format"
"\n nrow "
"\n entry[0]"
"\n ot
"\n entry[nrow-1]"
"\n seed —-- random number seed, used for ordering"
"\n", argv[0]) ;
return(0) ;

}
msglvl = atoi(argv[1]) ;
if (strcmp(argv[2], "stdout") == 0) {
msgFile = stdout ;
} else if ((msgFile = fopen(argv[2], "a")) == NULL) {
fprintf(stderr, "\n fatal error in %s"
"\n unable to open file ¥%s\n",
argv[0], argv[2]) ;
return(-1) ;

}
type = atoi(argv([3]) ;
matrixFileName = argv([4] ;
rhsFileName = argv[5] ;
seed = atoi(argv([6]) ;
[hmmmmm e */
/*
STEP 1: read the entries from the input file
and create the InpMtx object of A
*/

inputFile = fopen(matrixFileName, "r")
fscanf (inputFile, "%d %d %d", &nrow, &neqns, &nent) ;
mtxA = InpMtx_new() ;
InpMtx_init (mtxA, INPMTX_BY_ROWS, type, nent, 0) ;
if (type == SPOOLES_REAL) {
for (ient = 0 ; ient < nent ; ient++) {
fscanf (inputFile, "%d %d %le", &irow, &jcol, &value) ;
InpMtx_inputRealEntry(mtxA, irow, jcol, value) ;
}
} else {
for (ient = 0 ; ient < nent ; ient++) {

April 29, 2002

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems

fscanf (inputFile, "%d %d %le %le", &irow, &jcol, &real, &imag) ;
InpMtx_inputComplexEntry(mtxA, irow, jcol, real, imag) ;
}
}
fclose(inputFile) ;
if (msglvl > 1) {
fprintf (msgFile, "\n\n input matrix") ;
InpMtx_writeForHumanEye (mtxA, msgFile) ;

fflush(msgFile) ;
}
T et e T it T */
/*
STEP 2: read the right hand side entries
*/

inputFile = fopen(rhsFileName, "r")
fscanf (inputFile, "%d %d", &nrow, &nrhs) ;
mtxB = DenseMtx_new() ;
DenseMtx_init (mtxB, type, 0, 0O, nrow, nrhs, 1, nrow) ;
DenseMtx_zero(mtxB) ;
if (type == SPOOLES_REAL) {
for (irow = 0 ; irow < nrow ; irow++) {
fscanf (inputFile, "%d", &jrow) ;
for (jrhs = 0 ; jrhs < nrhs ; jrhs++) {
fscanf (inputFile, "%le", &value) ;
DenseMtx_setRealEntry(mtxB, jrow, jrhs, value) ;

}
} else {
for (irow = 0 ; irow < nrow ; irow++) {
fscanf (inputFile, "%d", &jrow) ;
for (jrhs = 0 ; jrhs < nrhs ; jrhs++) {
fscanf (inputFile, ")le %le", &real, &imag) ;
DenseMtx_setComplexEntry(mtxB, jrow, jrhs, real, imag) ;

}
}
fclose(inputFile) ;
if (msglvl > 1) {
fprintf (msgFile, "\n\n rhs matrix in original ordering") ;
DenseMtx_writeForHumanEye (mtxB, msgFile) ;
fflush(msgFile) ;

STEP 3 : find a low-fill ordering
(1) create the Graph object for A"TA or A"HA
(2) order the graph using multiple minimum degree

o1

52 SPOOLES 2.2 — Solving Linear Systems

*/

graph = Graph_new() ;

adjIVL = InpMtx_adjForATA(mtxA) ;

nedges = IVL_tsize(adjIVL) ;

Graph_init2(graph, O, neqns, O, nedges, neqns, nedges, adjIVL,

NULL, NULL) ;

if (msglvl > 1) {
fprintf (msgFile, "\n\n graph of A"T A") ;
Graph_writeForHumanEye (graph, msgFile) ;
fflush(msgFile) ;

}

frontETree = orderViaMMD(graph, seed, msglvl, mngile) H

if (msglvl > 1) {
fprintf (msgFile, "\n\n front tree from ordering") ;
ETree_writeForHumanEye (frontETree, msgFile) ;

fflush(msgFile) ;
X
R m */
/*
STEP 4: get the permutation, permute the matrix and
front tree and get the symbolic factorization
*/

0ldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;
newTo01dIV = ETree_newTo0ldVtxPerm(frontETree) ;
InpMtx_permute (mtxA, NULL, IV_entries(oldToNewIV)) ;
InpMtx_changeStorageMode (mtxA, INPMTX_BY_VECTORS) ;
symbfacIVL = SymbFac_initFromGraph(frontETree, graph) ;
IVL_overwrite(symbfacIVL, oldToNewIV) ;
IVL_sortUp(symbfacIVL) ;
ETree_permuteVertices(frontETree, oldToNewIV) ;
if (msglvl > 1) {
fprintf (msgFile, "\n\n old-to-new permutation vector")
IV_writeForHumanEye (0o1dToNewIV, msgFile) ;
fprintf (msgFile, "\n\n new-to-old permutation vector")
IV_writeForHumanEye (newTo01dIV, msgFile) ;
fprintf (msgFile, "\n\n front tree after permutation")
ETree_writeForHumanEye (frontETree, msgFile) ;
fprintf (msgFile, "\n\n input matrix after permutation")
InpMtx_writeForHumanEye (mtxA, msgFile) ;
fprintf (msgFile, "\n\n symbolic factorization") ;
IVL_writeForHumanEye (symbfacIVL, msgFile) ;
fflush(msgFile) ;

April 29, 2002

April 29, 2002 SPOOLES 2.2 — Solving Linear Systems

frontmtx = FrontMtx_new() ;

mtxmanager = SubMtxManager_new() ;
SubMtxManager_init (mtxmanager, NO_LOCK, 0) ;
if (type == SPOOLES_REAL) {

FrontMtx_init (frontmtx, frontETree, symbfacIVL, type,
SPOOLES_SYMMETRIC, FRONTMTX_DENSE_FRONTS,
SPOOLES_NO_PIVOTING, NO_LOCK, 0, NULL,
mtxmanager, msglvl, msgFile) ;

} else {

FrontMtx_init (frontmtx, frontETree, symbfacIVL, type,
SPOOLES_HERMITIAN, FRONTMTX_DENSE_FRONTS,
SPOOLES_NO_PIVOTING, NO_LOCK, 0, NULL,
mtxmanager, msglvl, msgFile) ;

*/
chvmanager = ChvManager_new() ;
ChvManager_init(chvmanager, NO_LOCK, 1) ;
DVzero(10, cpus) ;
facops = 0.0 ;
FrontMtx_QR_factor(frontmtx, mtxA, chvmanager,
cpus, &facops, msglvl, msgFile) ;
ChvManager_free(chvmanager) ;
if (msglvl > 1) {
fprintf (msgFile, "\n\n factor matrix")
fprintf (msgFile, "\n facops = %9.2f", facops) ;
FrontMtx_writeForHumanEye (frontmtx, msgFile) ;
fflush(msgFile) ;

*/

FrontMtx_postProcess(frontmtx, msglvl, mngile) ;

if (msglvl > 1) {
fprintf (msgFile, "\n\n factor matrix after post-processing") ;
FrontMtx_writeForHumanEye (frontmtx, msgFile) ;
fflush(msgFile) ;

53

54 SPOOLES 2.2 — Solving Linear Systems

mtxX = DenseMtx_new() ;
DenseMtx_init (mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;
FrontMtx_QR_solve (frontmtx, mtxA, mtxX, mtxB, mtxmanager,
cpus, msglvl, msgFile) ;
if (msglvl > 1) {
fprintf (msgFile, "\n\n solution matrix in new ordering") ;
DenseMtx_writeForHumanEye (mtxX, msgFile) ;

fflush(msgFile) ;
X
R m—mmm */
/*
STEP 9: permute the solution into the original ordering
*/

DenseMtx_permuteRows (mtxX, newTo01dIV) ;

if (msglvl > 0) {
fprintf (msgFile, "\n\n solution matrix in original ordering") ;
DenseMtx_writeForHumanEye (mtxX, msgFile) ;
fflush(msgFile) ;

*/

InpMtx_free(mtxA) ;
FrontMtx_free(frontmtx) ;
Graph_free(graph) ;
DenseMtx_free(mtxX) ;
DenseMtx_free(mtxB) ;
ETree_free(frontETree) ;
IV_free(newTo01dIV) ;
IV_free(oldToNewIV) ;
IVL_free(symbfacIVL) ;
SubMtxManager_free (mtxmanager) ;

April 29, 2002

