
The Reference Manual for SPOOLES, Release 2.2:

An Object Oriented Software Library for Solving

Sparse Linear Systems of Equations

Cleve Ashcraft1 Daniel Pierce2 David K. Wah3 Jason Wu4

January 26, 1999

1Boeing Shared Services Group, P. O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124,

cleve.ashcraft@boeing.com. This research was supported in part by the DARPA Contract DABT63-95-C-0122

and the DoD High Performance Computing Modernization Program Common HPC Software Support Initiative.
2Boeing Shared Services Group, P. O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124,

dpierce@redwood.rt.cs.boeing.com. This research was supported in part by the DARPA Contract DABT63-

95-C-0122 and the DoD High Performance Computing Modernization Program Common HPC Software Support

Initiative.
3Boeing Shared Services Group, P. O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124,

david.wah@pss.boeing.com. This research was supported in part by the DARPA Contract DABT63-95-C-0122

and the DoD High Performance Computing Modernization Program Common HPC Software Support Initiative.
4Boeing Shared Services Group, P. O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124,

jwu@redwood.rt.cs.boeing.com. This research was supported in part by the DARPA Contract DABT63-95-C-0122

and the DoD High Performance Computing Modernization Program Common HPC Software Support Initiative.

Abstract

Solving sparse linear systems of equations is a common and important application of a multitude of scientific
and engineering applications. The SPOOLES software package1 provides this functionality with a collection
of software objects. The first step to solving a sparse linear system is to find a good low-fill ordering of the
rows and columns. The library contains several ways to perform this operation: minimum degree, generalized
nested dissection, and multisection. The second step is to factor the matrix as a product of triangular and
diagonal matrices. The library supports pivoting for numerical stability (when required), approximation
techniques to reduce the storage for and work to compute the matrix factors, and the computations are
based on BLAS3 numerical kernels to take advantage of high performance computing architectures. The
third step is to solve the linear system using the computed factors.

The library is written in ANSI C using object oriented design. Good design and efficient code sometimes
conflict; generally we have preferred to cater to design. For large sparse matrices the serial code outperforms
its FORTRAN predecessors, the reverse holds for moderate sized matrices or those that do not have good
block structure. The present release of the library contains a serial factorization and solve, a multithreaded
version using the Solaris and Posix thread packages, and an MPI version. There is considerable code overlap
between the serial, threaded and MPI versions.

This release of the package is totally within the public domain; there are absolutely no licensing restric-
tions as with other software packages. The development of this software was funded by DARPA2 and the
DoD3 with the express purpose that others (academic, government, industrial and commercial) could easily
incorporate the data structures and algorithms into application codes. All we ask is an acknowledgement
in derivative codes and any publications from research that uses this software. And, we hope that any
improvements will be communicated to others.

1
SPOOLES is an acronym for SParse Object-Oriented Linear Equations Solver.

2DARPA Contract DABT63-95-C-0122.
3DoD High Performance Computing Modernization Program Common HPC Software Support Initiative.

Contents

I Introduction 15

1 Introduction 17

1.1 Software Design . 18

1.2 Changes from Release 1.0 . 21

1.3 Changes from Release 2.0 . 21

II Utility Objects and Methods 23

2 A2: Real or complex 2-D array 25

2.1 Data Structure . 25

2.2 Prototypes and descriptions of A2 methods . 25

2.2.1 Basic methods . 26

2.2.2 Instance methods . 26

2.2.3 Initialize methods . 28

2.2.4 Methods used in the QR factorization . 28

2.2.5 Norm methods . 29

2.2.6 Sort methods . 30

2.2.7 Utility methods . 30

2.2.8 IO methods . 33

2.3 Driver programs for the A2 object . 34

3 Coords: Coordinates Object 36

3.1 Data Structure . 36

3.2 Prototypes and descriptions of Coords methods . 36

3.2.1 Basic methods . 36

3.2.2 Initializer methods . 37

3.2.3 Utility methods . 38

3.2.4 IO methods . 38

3.3 Driver programs for the Coords object . 39

2

SPOOLES 2.2 : January 26, 1999 3

4 DV: Double Vector Object 41

4.1 Data Structure . 41

4.2 Prototypes and descriptions of DV methods . 42

4.2.1 Basic methods . 42

4.2.2 Instance methods . 42

4.2.3 Initializer methods . 43

4.2.4 Utility methods . 44

4.2.5 IO methods . 45

4.3 Driver programs for the DV object . 47

5 Drand:
Simple Random Number Generator 48

5.1 Data Structure . 48

5.2 Prototypes and descriptions of Drand methods . 48

5.2.1 Basic methods . 49

5.2.2 Initializer methods . 49

5.2.3 Utility methods . 50

5.3 Driver programs for the Drand object . 50

6 I2Ohash: Two Key Hash Table 52

6.1 Data Structure . 52

6.2 Prototypes and descriptions of I2Ohash methods . 53

6.2.1 Basic methods . 53

6.2.2 Initializer methods . 53

6.2.3 Utility methods . 54

6.2.4 IO methods . 54

6.3 Driver programs for the I2Ohash object . 54

7 IIheap: (Key, Value) Heap 56

7.1 Data Structure . 56

7.2 Prototypes and descriptions of IIheap methods . 56

7.2.1 Basic methods . 56

7.2.2 Initializer methods . 57

7.2.3 Utility methods . 57

8 IV: Integer Vector Object 58

8.1 Data Structure . 58

8.2 Prototypes and descriptions of IV methods . 59

8.2.1 Basic methods . 59

8.2.2 Instance methods . 59

8.2.3 Initializer methods . 60

8.2.4 Utility methods . 61

8.2.5 IO methods . 63

8.3 Driver programs for the IV object . 65

4 SPOOLES 2.2 : January 26, 1999

9 IVL: Integer Vector List Object 66

9.1 Data Structure . 66

9.2 Prototypes and descriptions of IVL methods . 67

9.2.1 Basic methods . 67

9.2.2 Instance methods . 68

9.2.3 Initialization and resizing methods . 68

9.2.4 List manipulation methods . 69

9.2.5 Utility methods . 70

9.2.6 Miscellaneous methods . 71

9.2.7 IO methods . 72

9.3 Driver programs for the IVL object . 73

10 Ideq: Integer Dequeue 74

10.1 Data Structure . 74

10.2 Prototypes and descriptions of Ideq methods . 74

10.2.1 Basic methods . 74

10.2.2 Initializer methods . 75

10.2.3 Utility methods . 75

10.2.4 IO methods . 76

11 Lock: Mutual Exclusion Lock object 77

11.1 Data Structure . 77

11.2 Prototypes and descriptions of Lock methods . 77

11.2.1 Basic methods . 77

11.2.2 Initializer method . 78

11.2.3 Utility methods . 78

12 Perm: Permutation Object 79

12.1 Data Structure . 79

12.2 Prototypes and descriptions of Perm methods . 79

12.2.1 Basic methods . 79

12.2.2 Initializer methods . 80

12.2.3 Utility methods . 80

12.2.4 IO methods . 81

13 Utilities directory 83

13.1 Data Structures . 83

13.2 Prototypes and descriptions of Utilities methods . 83

13.2.1 CV : char vector methods . 84

13.2.2 DV : double vector methods . 84

13.2.3 ZV : double complex vector methods . 90

13.2.4 IV : int vector methods . 96

13.2.5 FV : float vector methods . 98

SPOOLES 2.2 : January 26, 1999 5

13.2.6 PCV : char * vector methods . 101

13.2.7 PDV : double * vector methods . 101

13.2.8 PFV : float * vector methods . 102

13.2.9 Sorting routines . 102

13.2.10Sort and compress routines . 104

13.2.11IP : (int, pointer) singly linked-list methods . 105

13.2.12I2OP : (int, int, void*, pointer) singly linked-list methods 106

13.3 Driver programs . 107

14 ZV: Double Complex Vector Object 108

14.1 Data Structure . 108

14.2 Prototypes and descriptions of ZV methods . 109

14.2.1 Basic methods . 109

14.2.2 Instance methods . 109

14.2.3 Initializer methods . 110

14.2.4 Utility methods . 111

14.2.5 IO methods . 112

14.3 Driver programs for the ZV object . 113

III Ordering Objects and Methods 115

15 BKL: Block Kernighan-Lin Object 117

15.1 Data Structure . 117

15.2 Prototypes and descriptions of BKL methods . 118

15.3 Basic methods . 118

15.3.1 Initializer methods . 118

15.3.2 Utility methods . 119

15.3.3 Partition evaluation methods . 120

15.3.4 Partition improvement methods . 120

16 BPG: Bipartite Graph Object 122

16.1 Data Structure . 124

16.2 Prototypes and descriptions of BPG methods . 124

16.2.1 Basic methods . 124

16.2.2 Initializer methods . 125

16.2.3 Generate induced graphs . 125

16.2.4 Utility methods . 125

16.2.5 Dulmage-Mendelsohn decomposition method . 126

16.2.6 IO methods . 126

16.3 Driver programs for the BPG object . 127

6 SPOOLES 2.2 : January 26, 1999

17 DSTree:
A Domain/Separator Tree Object 129

17.1 Data Structure . 129

17.2 Prototypes and descriptions of DSTree methods . 129

17.2.1 Basic methods . 130

17.2.2 Instance methods . 130

17.2.3 Initializer methods . 130

17.2.4 Stage methods . 131

17.2.5 Utility methods . 132

17.2.6 IO methods . 132

17.3 Driver programs for the DSTree object . 133

18 EGraph: Element Graph Object 135

18.1 Data Structure . 135

18.2 Prototypes and descriptions of EGraph methods . 135

18.2.1 Basic methods . 136

18.2.2 Initializer methods . 136

18.2.3 Utility methods . 136

18.2.4 IO methods . 137

18.3 Driver programs for the EGraph object . 138

19 ETree: Elimination and Front Trees 140

19.1 Data Structure . 140

19.2 Prototypes and descriptions of ETree methods . 141

19.2.1 Basic methods . 141

19.2.2 Instance methods . 141

19.2.3 Initializer methods . 143

19.2.4 Utility methods . 144

19.2.5 Metrics methods . 146

19.2.6 Compression methods . 146

19.2.7 Justification methods . 147

19.2.8 Permutation methods . 148

19.2.9 Multisector methods . 148

19.2.10Transformation methods . 150

19.2.11Parallel factorization map methods . 151

19.2.12Storage profile methods . 152

19.2.13 IO methods . 153

19.3 Driver programs for the ETree object . 154

20 GPart: Graph Partitioning Object 165

20.1 Data Structures . 166

20.2 Prototypes and descriptions of GPart methods . 167

SPOOLES 2.2 : January 26, 1999 7

20.2.1 Basic methods . 167

20.2.2 Initializer methods . 168

20.2.3 Utility methods . 168

20.2.4 Domain decomposition methods . 169

20.2.5 Methods to generate a 2-set partition . 170

20.2.6 Methods to improve a 2-set partition . 170

20.2.7 Recursive Bisection method . 172

20.2.8 DDsepInfo methods . 172

20.3 Driver programs for the GPart object . 173

21 Graph: A Graph object 177

21.1 Data Structure . 178

21.2 Prototypes and descriptions of Graph methods . 178

21.2.1 Basic methods . 178

21.2.2 Initializer methods . 179

21.2.3 Compress and Expand methods . 180

21.2.4 Wirebasket domain decomposition ordering . 180

21.2.5 Utility methods . 181

21.2.6 IO methods . 182

21.3 Driver programs for the Graph object . 183

22 MSMD:
Multi-Stage Minimum Degree Object 187

22.1 Data Structure . 188

22.1.1 MSMDinfo : define your algorithm . 189

22.1.2 MSMD : driver object . 190

22.1.3 MSMDstageInfo : statistics object for a stage of the elimination 190

22.1.4 MSMDvtx : vertex object . 191

22.2 Prototypes and descriptions of MSMDinfo methods . 191

22.2.1 Basic methods . 191

22.2.2 Utility methods . 192

22.3 Prototypes and descriptions of MSMD methods . 192

22.3.1 Basic methods — public . 192

22.3.2 Initialization methods — public . 193

22.3.3 Ordering methods — public . 193

22.3.4 Extraction methods — public . 193

22.3.5 Internal methods — private . 194

22.4 Prototypes and descriptions of MSMDvtx methods . 195

22.5 Driver programs for the MSMD object . 195

8 SPOOLES 2.2 : January 26, 1999

23 Network: Simple Max-flow solver 198

23.1 Data Structure . 199

23.2 Prototypes and descriptions of Network methods . 200

23.2.1 Basic methods . 200

23.2.2 Initializer methods . 201

23.2.3 Utility methods . 201

23.2.4 IO methods . 202

24 SolveMap: Forward and Backsolve Map 203

24.1 Data Structure . 203

24.2 Prototypes and descriptions of SolveMap methods . 204

24.2.1 Basic methods . 204

24.2.2 Instance methods . 204

24.2.3 Initialization method . 205

24.2.4 Map creation methods . 206

24.2.5 Solve setup methods . 206

24.2.6 Utility methods . 206

24.2.7 IO methods . 207

25 Tree: A Tree Object 209

25.1 Data Structure . 209

25.2 Prototypes and descriptions of Tree methods . 209

25.2.1 Basic methods . 210

25.2.2 Instance methods . 210

25.2.3 Initializer methods . 211

25.2.4 Utility methods . 211

25.2.5 Metrics methods . 213

25.2.6 Compression methods . 214

25.2.7 Justification methods . 214

25.2.8 Permutation methods . 214

25.2.9 Drawing method . 215

25.2.10 IO methods . 216

25.3 Driver programs for the Tree object . 217

IV Numeric Objects and Methods 219

26 Chv: Block chevron 221

26.1 Data Structure . 223

26.2 Prototypes and descriptions of Chv methods . 223

26.2.1 Basic methods . 224

26.2.2 Instance methods . 224

26.2.3 Initialization methods . 226

SPOOLES 2.2 : January 26, 1999 9

26.2.4 Search methods . 227

26.2.5 Pivot methods . 228

26.2.6 Update methods . 228

26.2.7 Assembly methods . 229

26.2.8 Factorization methods . 229

26.2.9 Copy methods . 230

26.2.10Swap methods . 232

26.2.11Utility methods . 233

26.2.12 IO methods . 234

26.3 Driver programs for the Chv object . 235

27 ChvList: Chv list object 240

27.1 Data Structure . 241

27.2 Prototypes and descriptions of ChvList methods . 241

27.2.1 Basic methods . 241

27.2.2 Initialization methods . 242

27.2.3 Utility methods . 242

27.2.4 IO methods . 242

28 ChvManager: Chv manager object 243

28.1 Data Structure . 244

28.2 Prototypes and descriptions of ChvManager methods . 244

28.2.1 Basic methods . 244

28.2.2 Initialization methods . 245

28.2.3 Utility methods . 245

28.2.4 IO methods . 245

29 DenseMtx: Dense matrix object 246

29.1 Data Structure . 246

29.2 Prototypes and descriptions of DenseMtx methods . 247

29.2.1 Basic methods . 247

29.2.2 Instance methods . 247

29.2.3 Initialization methods . 249

29.2.4 Utility methods . 250

29.2.5 IO methods . 252

30 FrontMtx: Front matrix 254

30.1 Data Structures . 257

30.2 Prototypes and descriptions of FrontMtx methods . 259

30.2.1 Basic methods . 259

30.2.2 Instance methods . 259

30.2.3 Initialization methods . 261

30.2.4 Utility Factorization methods . 262

10 SPOOLES 2.2 : January 26, 1999

30.2.5 Serial Factorization method . 264

30.2.6 QR factorization utility methods . 265

30.2.7 Serial QR Factorization method . 266

30.2.8 Postprocessing methods . 266

30.2.9 Utility Solve methods . 267

30.2.10Serial Solve method . 268

30.2.11Serial QR Solve method . 269

30.2.12Utility methods . 269

30.2.13 IO methods . 270

30.3 Driver programs for the DFrontMtx object . 271

31 ILUMtx: Incomplete LU Matrix Object 273

31.1 Data Structure . 273

31.2 Prototypes and descriptions of ILUMtx methods . 274

31.2.1 Basic methods . 274

31.2.2 Initialization Methods . 275

31.2.3 Factorization Methods . 275

31.2.4 Solve Methods . 275

31.2.5 Utility methods . 276

31.2.6 IO methods . 276

31.3 Driver programs for the ILUMtx object . 277

32 InpMtx: Input Matrix Object 278

32.1 Data Structure . 279

32.2 Prototypes and descriptions of InpMtx methods . 281

32.2.1 Basic methods . 281

32.2.2 Instance Methods . 281

32.2.3 Methods to initialize and change state . 284

32.2.4 Input methods . 285

32.2.5 Permutation, map and support methods . 286

32.2.6 Matrix-matrix multiply methods . 287

32.2.7 Graph construction methods . 289

32.2.8 Submatrix extraction method . 290

32.2.9 Utility methods . 290

32.2.10 IO methods . 292

32.3 Driver programs for the InpMtx object . 293

33 Iter: Iterative Methods 301

33.1 Data Structure . 301

33.2 Prototypes and descriptions of Iter methods . 301

33.2.1 Utility methods . 301

33.2.2 Iterative methods . 303

33.3 Driver programs . 306

SPOOLES 2.2 : January 26, 1999 11

34 PatchAndGoInfo: Pivot Modification Object 311

34.1 Data Structure . 312

34.2 Prototypes and descriptions of PatchAndGoInfo methods . 312

34.2.1 Basic methods . 312

34.2.2 Initializer methods . 313

35 Pencil: Matrix pencil 314

35.1 Data Structure . 314

35.2 Prototypes and descriptions of Pencil methods . 314

35.2.1 Basic methods . 314

35.2.2 Initialization methods . 315

35.2.3 Utility methods . 315

35.2.4 IO methods . 316

36 SemiImplMtx: Semi-Implicit Factorization 317

36.1 Data Structure . 318

36.2 Prototypes and descriptions of SemiImplMtx methods . 318

36.2.1 Basic methods . 318

36.2.2 Initialization Methods . 319

36.2.3 Solve Methods . 319

36.2.4 Utility methods . 320

36.2.5 IO methods . 320

36.3 Driver programs for the SemiImplMtx object . 320

37 SubMtx: Submatrix object 322

37.1 Data Structure . 323

37.2 Prototypes and descriptions of SubMtx methods . 324

37.2.1 Basic methods . 325

37.2.2 Instance methods . 325

37.2.3 Initialization methods . 328

37.2.4 Vector scaling methods . 329

37.2.5 Solve methods . 329

37.2.6 Utility methods . 330

37.2.7 IO methods . 331

37.3 Driver programs for the SubMtx object . 333

38 SubMtxList: SubMtx list object 337

38.1 Data Structure . 338

38.2 Prototypes and descriptions of SubMtxList methods . 338

38.2.1 Basic methods . 338

38.2.2 Initialization methods . 339

38.2.3 Utility methods . 339

38.2.4 IO methods . 339

12 SPOOLES 2.2 : January 26, 1999

39 SubMtxManager: SubMtx object manager 340

39.1 Data Structure . 341

39.2 Prototypes and descriptions of SubMtxManager methods . 341

39.2.1 Basic methods . 341

39.2.2 Initialization methods . 342

39.2.3 Utility methods . 342

39.2.4 IO methods . 342

40 SymbFac: Symbolic Factorization 343

40.1 Data Structure . 343

40.2 Prototypes and descriptions of SymbFac methods . 343

40.2.1 Symbolic factorization methods . 343

40.3 Driver programs . 344

V Miscellaneous Methods 346

41 Misc directory 348

41.1 Prototypes and descriptions of methods in the Misc directory 348

41.1.1 Theoretical nested dissection methods . 348

41.1.2 Multiple minimum degree, Nested dissection and multisection wrapper methods 350

41.1.3 Graph drawing method . 351

41.1.4 Linear system construction . 351

41.2 Driver programs found in the Misc directory . 352

VI Multithreaded Methods 361

42 MT directory 363

42.1 Data Structure . 364

42.2 Prototypes and descriptions of MT methods . 364

42.2.1 Matrix-matrix multiply methods . 364

42.2.2 Multithreaded Factorization methods . 365

42.2.3 Multithreaded QR Factorization method . 366

42.2.4 Multithreaded Solve method . 366

42.2.5 Multithreaded QR Solve method . 367

42.3 Driver programs for the multithreaded functions . 367

VII MPI Methods 373

43 MPI directory 375

43.1 Data Structure . 375

43.1.1 MatMulInfo : Matrix-matrix multiply information object 375

SPOOLES 2.2 : January 26, 1999 13

43.2 Prototypes and descriptions of MPI methods . 376

43.2.1 Split and redistribution methods . 376

43.2.2 Gather and scatter methods . 379

43.2.3 Symbolic Factorization methods . 379

43.2.4 Numeric Factorization methods . 380

43.2.5 Post-processing methods . 381

43.2.6 Numeric Solve methods . 382

43.2.7 Matrix-matrix multiply methods . 383

43.2.8 Broadcast methods . 384

43.2.9 Utility methods . 385

43.3 Driver programs . 386

List of Figures

19.1 GRD7x7: Working storage for the forward sparse factorization of the nested dissection or-
dering. On the left is the storage required to factor Ĵ and its update matrix. On the right is
the storage required to factor J and all of its ancestors. Both plots have the same scale. . . . 158

19.2 GRD7x7x7: Four tree plots for a 7× 7× 7 grid matrix ordered using nested dissection. The
top left tree measure number of original matrix entries in a front. The top right tree measure
number of factor matrix entries in a front. The bottom left tree measure number of factor
operations in a front for a forward looking factorization, e.g., forward sparse. The bottom
right tree measure number of factor operations in a front for a backward looking factorization,
e.g., general sparse. 162

25.1 R2D100: domain/separator tree. On the left heightflag = ’H’ and coordflag = ’C’, on
the right heightflag = ’D’ and coordflag = ’C’. 218

25.2 R2D100: domain/separator tree. On the left heightflag = ’H’ and coordflag = ’P’, on
the right heightflag = ’D’ and coordflag = ’P’. 218

41.1 R2D100 . 355

41.2 R2D100: fishnet domain decomposition . 356

14

Part I

Introduction

15

Chapter 1

Introduction

The SPOOLES package is used to solve two types of real or complex linear systems:

• AX = Y or (A + σB)X = Y where A and B are square. A and B can be real or complex, symmetric,
Hermitian or nonsymmetric. The factorization can proceed with or without pivoting for numerical
stability. The factor matrices can be stored with or without dropping small entries.

• Minimize ‖AX∗,j−Y∗,j‖2 for each column of the solution matrix X and right hand side matrix Y . This
is done by computing a QR factorization of A and then solving RT RX = AT Y or RHRX = AHY .

In both cases, the linear systems can be permuted to reduce the fill in the factor matrices.

The SPOOLES software is written in an object oriented fashion in the C language. Parts of the software
run in serial mode, multithreading using Solaris or POSIX threads, and with MPI.

The software objects are naturally partitioned into three families of objects.

Utility objects
A2 dense two dimensional array
Coords object to hold coordinates in any number of dimensions
DV double precision vector
Drand random number generator
I2Ohash hash table for the factor submatrices
IIheap simple heap object
IV int vector
IVL int list object
Ideq simple dequeue object
Lock abstract mutual exclusion lock
Perm permutation vector object
Utilities various vector and linked list utility methods
ZV double precision complex vector

17

18

Ordering objects
BKL Block Kernihan-Lin algorithm object
BPG bipartite graph object
DSTree domain/separator tree object
EGraph element graph object
ETree front tree object
GPart graph partitioning algorithm object
Graph graph object
MSMD multi-stage minimum degree algorithm object
Network network object for solving max flow problems
SolveMap map of submatrices to processes for solves
Tree tree object

Numeric objects
Chv block chevron object for fronts
ChvList object to hold lists of Chv objects
ChvManager object to manager instances of Chv objects
DenseMtx dense matrix object
FrontMtx front matrix object
ILUMtx simple preconditioner matrix object
InpMtx sparse matrix object
Iter Krylov methods for iterative solves
PatchAndGoInfo modified factors in the presence of zero or small pivots
Pencil object to contain A + σB
SemiImplMtx semi-implicit factorization matrix object
SubMtx object for dense or sparse submatrices
SubMtxList object to hold lists of SubMtx objects
SubMtxManager object to manager instances of SubMtx objects
SymbFac algorithm object to compute a symbolic factorization

The MT directory contains all the multithreaded methods and drivers programs. The MPI directory contains
all the MPI methods and drivers. The misc directory contains miscellaneous methods and drivers.

Each of the following objects that hold numeric entries — A2, Chv, DenseMtx, FrontMtx, ILUMtx, InpMtx,
Pencil, SemiImplMtx and SubMtx — can hold real or complex entries. An object knows its type, 1 for real
(define’d constant SPOOLES REAL) or 2 for complex (define’d constant SPOOLES COMPLEX). Since C does not
yet have a standard structure for complex numbers, we have followed the FORTRAN convention of storing
the real and imaginary parts of a complex number in consecutive memory locations. Internally, we unroll
the complex arithmetic into real arithmetic. The user need not be burdened by this process if (s)he uses the
input/output methods for the different object. For example, DenseMtx setRealEntry() sets an entry of a
real dense matrix, while DenseMtx setComplexEntry() sets an entry of a complex dense matrix.

All the heavily used computational tasks have been expanded where possible into BLAS2 or BLAS3
kernels, for both the real and complex cases. There are a multitude of driver programs that test the
functionality of the objects. A common output of a driver program is a file that can be input into Matlab
to check the errors of the computations. This convention inspires confidence in the correctness of the kernel
computations.

1.1 Software Design

The SPOOLES library is written in the C language and uses object oriented design. There are some routines
that manipulate native C data types such as vectors, but the vast bulk of the code is centered around objects,

19

data objects and algorithm objects. By necessity, the implementation of an object is through the C struct

data type. We use the following naming convention — a method (i.e., function) associated with an object
of type Object has the form

(return value type) Object methodName(Object * obj, . . .);

The method’s name begins with the name of the object it is associated with and the first parameter in
the calling sequence is a pointer to the instance of the object. Virtually the only exception to this rule is
the constructor method.

Object * Object new(void) ;

Two objects, the Chv and DenseMtx objects, have methods that return the number of bytes needed to hold
their data, e.g.,

int Chv nbytesNeeded(int nD, int nL, int nU, int type, int symflag) ;

Scan the directory structure of the source code and you will notice a number of subdirectories — each
deals with an object. For example, the Graph directory holds code and documentation for an object that
represents a graph: its doc subdirectory holds LATEXfiles with documentation; its src subdirectory holds C
files that contain methods associated with the object ; and its driver subdirectory holds driver programs
to test or validate some behavior of the object.

The directory structure is fairly flat — no object directory contains another — because the C language
does not support inheritance. This can be inelegant at times. For example, a bipartite graph (a BPG object)
is–a graph (a Graph object), but instead of BPG inheriting from Graph data fields and methods from Graph,
we must use the has–a relation. A BPG object contains a pointer to a Graph object that represents the
adjacency structure. The situation is even more cumbersome for the objects that deal with trees of one
form or another: an elimination tree ETree and a domain/separator tree DSTree each contain a pointer to
a generic tree object Tree in their structure.

Predecessors to this library were written in C++ and Objective-C.1 The port to the present C library
was painless, almost mechanical. We expect the port back to C++ and/or Objective-C to be simple.

Objects are one of two types: data objects whose primary function is to store data and algorithm objects
whose function is to manipulate some data object(s) and return new information. Naturally this distinction
can be fuzzy — algorithm objects have their own data that may be persistent and data objects can execute
some simple functionality — but it holds in general. To be more explicit, data objects have the following
properties:

• There is a delicate balance between encapsulation and openness. The C language does not support
any private or protected data fields, so the C struct that holds the data for an object is completely
open. As an example, the Graph object has a function to return the size of and pointers to a vector
that contains an adjacency list, namely

void Graph_adjAndSize(Graph *g, int v, int *psize, int **padj)

where the pointers psize and padj are filled with the size of the adjacency structure and a pointer to
its vector. One can get this same information by chasing pointers as follows.

vsize = g->adjIVL->sizes[v] ;

vadj = g->adjIVL->p_ind[v] ;

One can do the latter but we encourage the former. As an experiment we replaced every instance of
Graph adjAndSize() with the appropriate pointer chasing (and a similar operation for the IVL object)
and achieved around a ten per cent reduction in the ordering time. For a production code, this savings
might drive the change in code, but for our research code we kept the function call.

1The knowledgeable reader is encouraged to peruse the source to discover the prejudices both pro and con towards these

two languages.

20

• Persistent storage needs to be supported. Each data object has eight different methods to deal with file
I/O. Two methods deal with reading from and writing to a file whose suffix is associated with the object
name, e.g., *graph{f,b} for a formatted or binary file to hold a Graph object. Four methods deal with
reading and writing objects from and to a file that is already opened and positioned, necessary for
composite objects (e.g., a Graph object contains an IVL object). Two methods deal with writing the
objects to a formatted file to be examined by the user. We strongly encourage any new data object
added to the library to supply this functionality.

• Some data objects need to have compact storage requirements. Two examples are our Chv and SubMtx

objects. Both objects need to be communicated between processes in the MPI implementation, the
former during the factorization, the latter during the solve. Each has a workspace buffer that contains
all the information needed to regenerate the object upon reception by another process.

• By and large, data objects have simple methods. A Graph object does not have methods to find a good
bisector; this is a sufficiently sophisticated function that it should be implemented by an algorithm
object. The major exception to this rule is that our FrontMtx object contains the factorization data
but also performs the factorization, forward and backsolves. In the future we intend to separate these
two functionalities. For example, one can implement an alternative forward and backsolve by using
methods to access the factor data stored in the FrontMtx object. As a second example, massive changes
to the storage format, e.g., in an out-of-core implementation, can be encapsulated in the access methods
for the data, and any changes to the factorization or solve functions could be minimal.

Algorithm objects have these properties.

• Algorithm objects use data objects. Some data objects are created within an algorithm objects method;
these are owned by the algorithm object and free’d by that object. Data objects that are passed to
algorithm objects can be queried or temporarily changed.

• They do not destroy or free data objects that are passed to them. Any side effects on the data objects
should be innocent, e.g., when a Graph object is passed to the graph partitioning object (GPart) or
the multistage minimum degree object (MSMD), on return the adjacency lists may not be in the input
order, but they contain the values they had on input.

• Algorithm objects should support diagnostic, logfile and debug output. This convention is not entirely
thought out or supported at present. The rationale is that an algorithm object should be able to
respond to its environment to a greater degree than a data object.

Data and algorithm objects share two common properties.

• Each object has four basic methods: to allocate storage for an object, set the default fields of an object,
clear the data fields of an object, and free the storage occupied and owned by an object.

• Ownership of data is very rigidly defined. In most cases, an object owns all data that is allocated
inside one of its methods, and when this does not hold it is very plainly documented. For example,
the bipartite graph object BPG has a data field that points to a Graph object. One of its initialization
methods has a Graph pointer in its calling sequence. The BPG object then owns the Graph object and
when it is free’d or has its data cleared, the Graph object is free’d by a call to its appropriate method.

By and large these conventions hold throughout the library. There are fuzzy areas and objects still “under
construction”. Here are two examples.

• We have an IIheap object that maintains integer 〈 key, value 〉 pairs in a priority heap. Normally we
think of a heap as a data structure, but another perspective is that of a continuously running algorithm
that supports insert, delete and identification of a minimum pair.

21

• Our BPG bipartite graph object is a data object, but it has a method to find the Dulmage-Mendelsohn
decomposition, a fairly involved algorithm used to refine a separator of a graph. At present, we are
not willing to create a new algorithm object just to find the Dulmage-Mendelsohn decomposition, so
we leave this method to the domain of the data object. The desired functionality, identifying minimal
weight separators for a region of a graph, can be modeled using max flow techniques from network
optimization. We also provide a BPG method that finds this Dulmage-Mendelsohn decomposition by
solving a max flow problem on a bipartite network. Both these methods have been superceded by the
Network object that contains a method to find a max flow and one or more min-cuts of a network (not
necessarily bipartite).

The SPOOLES software library is continuously evolving in an almost organic fashion. Growth and
change are to be expected, and welcomed, but some discipline is required to keep the complexity, both code
and human understanding, under control. The guidelines we have just presented have two purposes: to
let the user and researcher get a better understanding of the design of the library, and to point out some
conventions to be used in extending the library.

1.2 Changes from Release 1.0

There are two major changes from the first release of the SPOOLES package: we now support complex
linear systems, and the storage format of the sparse factor matrices has changed from a one-dimensional
data decomposition to a two-dimensional decomposition. The factors are now submatrix based, and thus
allow a parallel solve to be much faster than in Release 1.0.

In the first release, all numeric objects had a ‘D‘ as the leading letter in their name, e.g., DA2, DChv, etc.
A natural way to implement complex data types would be to write “parallel” objects, e.g., ZA2, ZChv, etc,
as is done in LINPACK and LAPACK for subroutine names. However, a DA2 and ZA2 object share so much
common code that it is a better decision to combine the real and complex functionality into one object.
This is even more pronounced for the FrontMtx object where there is virtually no code that is dependent on
whether or not the matrix is real or complex.

Virtually no new work has been done on the ordering objects and methods. Their algorithms were state
of the art two years ago, but a recent comparison with the EXTREME [13] and METIS [14] packages on
a large collection of finite element problems shows that the SPOOLES orderings are still competitive.

The serial, multithreaded and MPI code has been modified to force greater sharing of code between the
environments. “What” is done is identical in the three cases. The multithreaded and MPI codes share the
same “choreography”, in other words, who does what and how. The main differences between multithreaded
and MPI are that the data structures are global versus local, and that explicit message passing is done in
the latter. This common structure of the codes has a nonzero impact on the speed and efficiency of the
individual codes, but the gains from a common code base are well worth the cost.

The MPI methods have been extensively reworked since the first release. A number of bugs and logic
errors have been detected and fixed. The code appears to be more robust than the first release.

1.3 Changes from Release 2.0

Release 2.2 is partly a maintenance release. Some bugs were found and fixed in the MPI factors and solves.
Some minor new methods were added to the DenseMtx, FrontMtx, InpMtx and Utilities directories. The
multithreaded methods and drivers have been removed from the FrontMtx directory and placed in a new MT

directory, much like the MPI methods have their own directory.

Some new functionality has been added.

22

• There are now multithreaded and distributed matrix-matrix multiply methods. See the MT and MPI

directories.

• The FrontMtx object now supports more robust reporting of errors encountered during the factoriza-
tion. There is one additional parameter in the factorization calling sequences, an error return that
signals that the factorization has failed.

• In response to customer requirements, we have added some “patch-and-go” functionality to the sparse
LU and UT DU factorizations without pivoting. There are applications in optimization and structural
analysis where pivoting is not necessary for stabilty, but where the location of small or zero pivots on
the diagonal is meaningful. Normally the factorization would be ustable or stop, but special action is
taken, the factors are “patched” and the factorization continues.

There is a new PatchAndGoInfo object that encapsulates the “patch-and-go” strategy and gathers
optional statistics about the action that was taken during the factorization. This object is attached to
the FrontMtx object which passes it unchanged to the Chv object that performs the factorization of
each front. If the user does not need this functionality, no changes are necessary to their code, i.e., no
calling sequences are affected.

• New MPI broadcast methods for the Graph, IVL and ETree objects have been added to the library.

• The Iter directory contains the following Krylov accelerators for the iterative solution of linear systems:
Block GMRES, BiCGStab, conjugate gradient and transpose-free QMR. Each is available in both left-
and right-preconditioned forms. The preconditioner that these methods use is a FrontMtx object that
contains a drop tolerance approximate factorization. The ILUMtx object contains a simple vector-based
drop tolerance factorization object. (The FrontMtx approximate factorization is submatrix-based in
both its data structures and computational kernels, and supports pivoting for numerical stability, which
the ILUMtx object does not.) We have not written Krylov methods that use the ILUMtx object, but it
would be simple to replace the FrontMtx preconditioner with the ILUMtx preconditioner.

• The SemiImplMtx object contains a semi-implicit factorization, a technique that can require less storage
and solve operations than the present explicit factorization. It is based on the equation

[
A0,0 A0,1

A1,0 A1,1

]
=

[
L0,0 0
L1,0 L1,1

] [
U0,0 U0,1

0 U1,1

]
,=

[
L0,0 0

A1,0U
−1
0,0 L1,1

] [
U0,0 L−1

0,0U0,1

0 U1,1

]
.

A solve of AX = B with the explicit factorization does the following steps

– solve L0,0Y0 = B0

– solve L1,1U1,1X1 = B1 − L1,0Y0

– solve U0,0X0 = Y0 − U0,1X1

while an implicit factorization has the following form.

– solve L0,0U0,0Z0 = B0

– solve L1,1U1,1X1 = B1 −A1,0Z0

– solve L0,0U0,0X0 = B0 −A0,1X1

The difference is that the semi-implicit factorization stores and computes with A1,0 and A0,1 instead of
L1,0 and U0,1, (this can be a modest savings in storage and operation count), and performs two solves
with L0,0 and U0,0 instead of one. This technique works with either a direct or approximate factorization
of A. The semi-implicit factorization is constructed via a post-processing of any factorization computed
by the FrontMtx object.

Part II

Utility Objects and Methods

23

Chapter 2

A2: Real or complex 2-D array

The A2 object is one way to store and operate on and with a dense matrix. The matrix can contain either
double precision real or complex entries. It is used as a lower level object for the DenseMtx object, and
during the QR factorization to hold a staircase matrix.

2.1 Data Structure

The A2 structure has six fields.

• int type : type of entries, SPOOLES REAL or SPOOLES COMPLEX

• int n1 : size in first dimension, number of rows

• int n2 : size in second dimension, number of columns

• int inc1 : increment or stride in first dimension

• int inc2 : increment or stride in second dimension

• int nowned : the number of entries that are “owned” by this object. When nowned > 0, entries
points to storage for nowned entries, (nowned double’s for the real case, 2*nowned double’s for the
complex case), that have been allocated by this object and can be free’d by the object. When nowned

== 0 but n1 > 0 and n2 > 0, this object points to entries that have been allocated elsewhere, and
these entries will not be free’d by this object.

• double *entries : pointer to the base address of the double vector

One can query the properties of the front matrix object using these simple macros.

• A2 IS REAL(mtx) is 1 if mtx has real entries and 0 otherwise.

• A2 IS COMPLEX(mtx) is 1 if mtx has complex entries and 0 otherwise.

The A2 copyEntriesToVector()method uses the following constants: A2 STRICT LOWER, A2 LOWER, A2 DIAGONAL,
A2 UPPER, A2 STRICT UPPER, A2 ALL ENTRIES, A2 BY ROWS and A2 BY COLUMNS.

2.2 Prototypes and descriptions of A2 methods

This section contains brief descriptions including prototypes of all methods that belong to the A2 object.

25

26

2.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. A2 * A2_new (void) ;

This method simply allocates storage for the A2 structure and then sets the default fields by a call to
A2 setDefaultFields().

2. void A2_setDefaultFields (A2 *mtx) ;

The structure’s fields are set to default values: type = SPOOLES REAL, n1 = inc1 = n2 = inc2 =
nowned = 0 and entries = NULL .

Error checking: If mtx is NULL, an error message is printed and the program exits.

3. void A2_clearData (A2 *mtx) ;

This method clears the object and free’s any owned data. If nowned > 0 and entries is not NULL,
then DVfree(entries) is called to free the storage. It calls A2 setDefaultFields().

Error checking: If mtx is NULL, an error message is printed and the program exits.

4. void A2_free (A2 *mtx) ;

This method releases any storage by a call to A2 clearData() and then free the space for mtx.

Error checking: If mtx is NULL, an error message is printed and the program exits.

2.2.2 Instance methods

1. int A2_nrow (A2 *mtx) ;

This method returns the number of rows in the matrix.

Error checking: If mtx is NULL, an error message is printed and the program exits.

2. int A2_ncol (A2 *mtx) ;

This method returns the number of columns in the matrix.

Error checking: If mtx is NULL, an error message is printed and the program exits.

3. int A2_inc1 (A2 *mtx) ;

This method returns the primary increment, the stride in memory (with respect to real or complex
entries) between adjacent entries in the same column.

Error checking: If mtx is NULL, an error message is printed and the program exits.

4. int A2_inc2 (A2 *mtx) ;

This method returns the secondary increment, the stride in memory (with respect to real or complex
entries) between adjacent entries in the same row.

Error checking: If mtx is NULL, an error message is printed and the program exits.

5. double * A2_entries (A2 *mtx) ;

This method returns a pointer to the base address of the entries.

Error checking: If mtx is NULL, an error message is printed and the program exits.

27

6. double * A2_row (A2 *mtx, int irow) ;

This method returns a pointer to the leading element of row irow.

Error checking: If mtx or entries is NULL, or if irow is not in [0,n1-1], an error message is printed
and the program exits.

7. double * A2_column (A2 *mtx, int jcol) ;

This method returns a pointer to the leading element of column jcol.

Error checking: If mtx or entries is NULL, or if jcol is not in [0,n2-1], an error message is printed
and the program exits.

8. void A2_realEntry (A2 *mtx, int irow, int jcol, double *pValue) ;

This method fills *pValue with the entry in location (irow, jcol).

Error checking: If mtx or pValue is NULL, or if the matrix is not real, or irow is not in [0,n1-1], or if
jcol is not in [0,n2-1], an error message is printed and the program exits.

9. void A2_complexEntry (A2 *mtx, int irow, int jcol,

double *pReal, double *pImag) ;

This method fills (*pReal,*pImag) with the entry in location (irow, jcol).

Error checking: If mtx, pReal or pImag is NULL, or if the matrix is not complex, or irow is not in
[0,n1-1], or if jcol is not in [0,n2-1], an error message is printed and the program exits.

10. void A2_setRealEntry (A2 *mtx, int irow, int jcol, double value) ;

This method sets entry (irow,jcol) to value.

Error checking: If mtx is NULL, or if the matrix is not real, or irow is not in [0,n1-1] or if jcol is not
in [0,n2-1], an error message is printed and the program exits.

11. void A2_setComplexEntry (A2 *mtx, int irow, int jcol,

double real, double imag) ;

This method sets entry (irow,jcol) to (real,imag).

Error checking: If mtx is NULL, or if the matrix is not complex, or irow is not in [0,n1-1] or if jcol
is not in [0,n2-1], an error message is printed and the program exits.

12. void A2_pointerToRealEntry (A2 *mtx, int irow, int jcol, double **ppValue) ;

This method sets *ppValue to the pointer of the (irow,jcol) entry.

Error checking: If mtx or ppValue is NULL, or if the matrix is not real, or if irow is not in [0,n1-1],
or if jcol is not in [0,n2-1], an error message is printed and the program exits.

13. void A2_pointerToComplexEntry (A2 *mtx, int irow, int jcol,

double **ppReal, double **ppImag) ;

This method sets *ppReal to the pointer to the real part of the (irow,jcol) entry, and sets *ppImag
to the pointer to the imaginary part of the (irow,jcol) entry.

Error checking: If mtx, ppReal or ppImag is NULL, or if the matrix is not complex, or if irow is not in
[0,n1-1], or if jcol is not in [0,n2-1], an error message is printed and the program exits.

28

2.2.3 Initialize methods

1. void A2_init (A2 *mtx, int type, int n1, int n2, int inc1, int inc2,

double *entries) ;

This is the basic initializer method. We require that mtx not be NULL, type be either SPOOLES REAL

or SPOOLES COMPLEX, n1 and n2 both be positive, and both inc1 and inc2 both be positive and that
one of them be equal to one. Also, we only initialize a full matrix, i.e., one of inc1 = 1 and inc2 =

nrow or inc1 = ncol and inc2 = 1 must hold.

The object is first cleared with a call to A2 clearData(). If entries is NULL then n1*n2 new entries
are found, mtx->entries is set to this address and nowned is set to n1*n2. If entries is not NULL,
then mtx->entries is set to entries and nowned is set to zero.

Error checking: If mtx is NULL, or if n1, n2, inc1 or inc2 are less than or equal to zero, or if the matrix
is not full matrix (i.e., inc1 must be 1 and inc2 must be n1, or inc1 must be n2 and inc2 must be
1), an error message is printed and zero is returned.

2. void A2_subA2 (A2 *mtxA, A2 *mtxB,

int firstrow, int lastrow, int firstcol, int lastcol) ;

This initializer method makes the object mtxA point into a submatrix of object mtxB, as

A(0:lastrow-firstrow,0:lastcol-firstcol) = B(firstrow:lastrow, firstcol:lastcol)

Note, firstrow, lastrow, firstcol and lastcolmust satisfy 0 <= firstrow <= lastrow < mtxB->n1

and 0 <= firstcol <= lastcol < mtxB->n2. Object mtxA does not own its entries, but points into
the entries of mtxB.

Error checking: If mtxA or mtxB are NULL, or if firstrow or lastrow are out of range, or if firstcol
or lastcol are out of range, an error message is printed and zero is returned.

2.2.4 Methods used in the QR factorization

1. void A2_makeStaircase (A2 *A) ;

This method permutes the rows of A by the location of the leading nonzero of each row. Upon return,
the matrix is in staircase form.

Error checking: If A is NULL, an error message is printed and the program exits.

2. double A2_QRreduce (A2 *A, DV *workDV, int msglvl, FILE *msgFile) ;

This method computes A = QR factorization. On return, the matrix Q is not available, and R is
found in the upper triangle or upper trapezoid of A. The Householder vectors are stored in the lower
triangle of mtxA, with vj(j) = 1.0. The return value is the number of floating point operations that
were executed.

Error checking: If A or workDV is NULL, or if msglvl > 0 and msgFile if NULL, an error message is
printed and the program exits.

3. void A2_computeQ (A2 *Q, A2 *A, DV *workDV, int msglvl, FILE *msgFile) ;

This method computes Q from the A = QR factorization computed in A2 QRreduce(). Note: A and Q

must be column major.

Error checking: If Q, A or workDV is NULL, or if msglvl > 0 and msgFile if NULL, an error message is
printed and the program exits.

29

4. void A2_applyQT (A2 *Y, A2 *A, A2 *X, DV *workDV, int msglvl, FILE *msgFile) ;

This method computes Y = QT X (if real) or Y = QHX (if complex), where Q is stored in Householder
vectors inside A. We assume that A2 reduce() has been previously called with A as an argument. Since
Y is computed column-by-column, X and Y can be the same A2 object. The workDV object is resized
as necessary. Note: Y, A and X must be column major.

Error checking: If Y, A, X or workDV is NULL, or if msglvl > 0 and msgFile if NULL, or if Y, A or X is
not column major, or if the types of Y, A and X are not the same, an error message is printed and the
program exits.

2.2.5 Norm methods

These methods return a norm of a row or a column, or the easily computable norms of the matrix.

1. double A2_maxabs (A2 *mtx) ;

This method returns magnitude of the entry with largest magnitude.

Error checking: If mtx is NULL, an error message is printed and the program exits.

2. double A2_frobNorm (A2 *mtx) ;

This method returns the Frobenius norm of the matrix.

Error checking: If mtx is NULL, an error message is printed and the program exits.

3. double A2_oneNorm (A2 *mtx) ;

This method returns the one norm of the matrix.

Error checking: If mtx is NULL, an error message is printed and the program exits.

4. double A2_infinityNorm (A2 *mtx) ;

This method returns the infinity norm of the matrix.

Error checking: If mtx is NULL, an error message is printed and the program exits.

5. double A2_oneNormOfColumn (A2 *mtx, int jcol) ;

This method returns the one-norm of column jcol of the matrix.

Error checking: If mtx is NULL, or jcol is not in [0,n2-1], an error message is printed and the program
exits.

6. double A2_twoNormOfColumn (A2 *mtx, int jcol) ;

This method returns the two-norm of column jcol of the matrix.

Error checking: If mtx is NULL, or jcol is not in [0,n2-1], an error message is printed and the program
exits.

7. double A2_infinityNormOfColumn (A2 *mtx, int jcol) ;

This method returns the infinity-norm of column jcol of the matrix.

Error checking: If mtx is NULL, or jcol is not in [0,n2-1], an error message is printed and the program
exits.

8. double A2_oneNormOfRow (A2 *mtx, int irow) ;

This method returns the one-norm of row irow of the matrix.

Error checking: If mtx is NULL, or irow is not in [0,n1-1], an error message is printed and the program
exits.

30

9. double A2_twoNormOfRow (A2 *mtx, int irow) ;

This method returns the two-norm of row irow of the matrix.

Error checking: If mtx is NULL, or irow is not in [0,n1-1], an error message is printed and the program
exits.

10. double A2_infinityNormOfRow (A2 *mtx, int irow) ;

This method returns the infinity-norm of row irow of the matrix.

Error checking: If mtx is NULL, or irow is not in [0,n1-1], an error message is printed and the program
exits.

2.2.6 Sort methods

1. void A2_permuteRows (A2 *mtx, int nrow, int index[]) ;

The index[] vector contains the row ids of the leading nrow rows. This method permutes the lead-
ing nrow rows of the matrix so that the index[] vector is in ascending order. This method calls
A2 permuteRows() but does not overwrite the index[] vector.

Error checking: If mtx or index[] is NULL, or if nrow < 0 or nrow > n1, an error message is printed
and the program exits.

2. void A2_permuteColumns (A2 *mtx, int nrow, int index[]) ;

The index[] vector contains the column ids of the leading ncol rows. This method permutes the
leading ncol columns of the matrix so that the index[] vector is in ascending order. This method
calls A2 permuteColumns() but does not overwrite the index[] vector.

Error checking: If mtx or index[] is NULL, or if ncol < 0 or ncol > n2, an error message is printed
and the program exits.

3. int A2_sortRowsUp (A2 *mtx, int nrow, int rowids[]) ;

This method sorts the leading nrow rows of the matrix into ascending order with respect to the
rowids[] vector. The return value is the number of row swaps made.

Error checking: If mtx or rowids is NULL, or if nrow < 0 or nrow > n1, an error message is printed
and the program exits.

4. int A2_sortColumnsUp (A2 *mtx, int ncol, int colids[]) ;

This method sorts the leading ncol columnss of the matrix into ascending order with respect to the
colids[] vector. The return value is the number of column swaps made.

Error checking: If mtx or colids is NULL, or if ncol < 0 or ncol > n2, an error message is printed
and the program exits.

2.2.7 Utility methods

1. int A2_sizeOf (A2 *mtx) ;

This method returns the number of bytes owned by this object.

Error checking: If mtx is NULL an error message is printed and the program exits.

2. void A2_shiftBase (A2 *mtx, int rowoff, int coloff) ;

This method is used to shift the base of the entries and adjust dimensions of the A2 object.

mtx(0:n1-rowoff-1,0:n2-coloff-1) := mtx(rowoff:n1-1,coloff:n2-1)

31

Error checking: If mtx is NULL an error message is printed and the program exits.

3. int A2_rowMajor (A2 *mtx) ;

This method returns 1 if the storage is row major, otherwise it returns zero.

Error checking: If mtx is NULL, an error message is printed and the program exits.

4. int A2_columnMajor (A2 *mtx) ;

This method returns 1 if the storage is column major, otherwise it returns zero.

Error checking: If mtx is NULL, an error message is printed and the program exits.

5. void A2_transpose (A2 *mtx) ;

This method replaces mtx with its transpose. Note, this takes O(1) operations since we just swap
dimensions and increments.

Error checking: If mtx is NULL, an error message is printed and the program exits.

6. void A2_extractRow (A2 *mtx, double row[], int irow) ;

This method fills the row[] vector with row irow of the matrix.

Error checking: If mtx, entries or row are NULL, or if irow is not in [0,n1-1], an error message is
printed and the program exits.

7. void A2_extractRowDV (A2 *mtx, DV *rowDV, int irow) ;

This method fills the rowDV object with row irow of the matrix.

Error checking: If mtx or rowDV are NULL, or if the matrix is not real, or if irow is not in [0,n1-1],
an error message is printed and the program exits.

8. void A2_extractRowZV (A2 *mtx, ZV *rowZV, int irow) ;

This method fills the rowZV object with row irow of the matrix.

Error checking: If mtx or rowZV are NULL, or if the matrix is not complex, or if irow is not in [0,n1-1],
an error message is printed and the program exits.

9. void A2_extractColumn (A2 *mtx, double col[], int jcol) ;

This method fills the col[] vector with column jcol of the matrix.

Error checking: If mtx, entries or col are NULL, or if jcol is not in [0,n2-1], an error message is
printed and the program exits.

10. void A2_extractColumnDV (A2 *mtx, DV *colDV, int jcol) ;

This method fills the colDV object with column jcol of the matrix.

Error checking: If mtx or colDV are NULL, or if the matrix is not complex, or if jcol is not in [0,n2-1],
an error message is printed and the program exits.

11. void A2_extractColumnZV (A2 *mtx, ZV *colZV, int jcol) ;

This method fills the colZV object with column jcol of the matrix.

Error checking: If mtx or colZV are NULL, or if the matrix is not complex, or if jcol is not in [0,n2-1],
an error message is printed and the program exits.

12. void A2_setRow (A2 *mtx, double row[], int irow) ;

This method fills row irow of the matrix with the entries in the row[] vector.

Error checking: If mtx, entries or row[] are NULL, or if irow is not in [0,n1-1], an error message is
printed and the program exits.

32

13. void A2_setRowDV (A2 *mtx, DV rowDV, int irow) ;

This method fills row irow of the matrix with the entries in the rowDV object.

Error checking: If mtx or rowDV are NULL, or if the matrix is not real, or if irow is not in [0,n1-1],
an error message is printed and the program exits.

14. void A2_setRowZV (A2 *mtx, ZV rowZV, int irow) ;

This method fills row irow of the matrix with the entries in the rowZV object.

Error checking: If mtx or rowZV are NULL, or if the matrix is not complex, or if irow is not in [0,n1-1],
an error message is printed and the program exits.

15. void A2_setColumn (A2 *mtx, double col[], int jcol) ;

This method fills column jcol of the matrix with the entries in the col[] vector.

Error checking: If mtx or colZV are NULL, or if jcol is not in [0,n2-1], an error message is printed
and the program exits.

16. void A2_setColumnDV (A2 *mtx, DV colDV, int jcol) ;

This method fills column jcol of the matrix with the entries in the colDV object.

Error checking: If mtx or colDV are NULL, or if the matrix is not complex, or if jcol is not in [0,n2-1],
an error message is printed and the program exits.

17. void A2_setColumnZV (A2 *mtx, ZV colZV, int jcol) ;

This method fills column jcol of the matrix with the entries in the colZV object.

Error checking: If mtx or colZV are NULL, or if the matrix is not complex, or if jcol is not in [0,n2-1],
an error message is printed and the program exits.

18. void A2_fillRandomUniform (A2 *mtx, double lower, double upper, int seed) ;

This method fills the matrix with random numbers taken from a uniform distribution on [lower,upper]

using the Drand object.

Error checking: If mtx is NULL, an error message is printed and the program exits.

19. void A2_fillRandomNormal (A2 *mtx, double mean, double variance, int seed) ;

This method fills the matrix with random numbers taken from a normal distribution with mean mean

and variance variance using the Drand object.

Error checking: If mtx is NULL, an error message is printed and the program exits.

20. void A2_fillWithIdentity (A2 *mtx) ;

This method fills the matrix with the identity matrix.

Error checking: If mtx is NULL or if n1 != n2, an error message is printed and the program exits.

21. void A2_zero (A2 *mtx) ;

This method fills the matrix with zeros.

Error checking: If mtx is NULL, an error message is printed and the program exits.

22. void A2_copy (A2 *mtxA, A2 *mtxB) ;

This method copies entries from matrix mtxB into matrix mtxA. Note, mtxA and mtxB need not be of
the same size, the leading min(mtxA->n1,mtxB->n1) rows and min(mtxA->n2,mtxB->n2) columns are
copied.

Error checking: If mtxA or mtxB is NULL, or if the matrices are not of the same type, an error message
is printed and the program exits.

33

23. void A2_sub (A2 *mtxA, A2 *mtxB) ;

This method subtracts entries in matrix mtxB from entries in matrix mtxA. Note, mtxA and mtxB need
not be of the same size, the leading min(mtxA->n1,mtxB->n1) rows and min(mtxA->n2,mtxB->n2)

columns are subtracted.

Error checking: If mtxA or mtxB is NULL, or if the matrices are not of the same type, an error message
is printed and the program exits.

24. void A2_swapRows (A2 *mtx, int irow1, int irow2) ;

This method swaps rows irow1 and irow2 of the matrix.

Error checking: If mtxA or mtxB is NULL, or if irow1 or irow2 are out of range, an error message is
printed and the program exits.

25. void A2_swapColumns (A2 *mtx, int irow1, int irow2) ;

This method swaps columns jcol1 and jcol2 of the matrix.

Error checking: If mtxA or mtxB is NULL, or if jcol1 or jcol1 are out of range, an error message is
printed and the program exits.

26. int A2_copyEntriesToVector (A2 *mtx, int length, double dvec[],

int copyflag, int storeflag) ;

This method copies selected entries from mtx into the vector dvec[] with length length. The return
value is the number of entries copied. This method is used during the QR factorization to extract
factor entries and update matrix entries from a front. All entries may be copied, or only the diagonal,
lower or upper entries, and the entries may be copied to dvec[] by rows or by columns.

Error checking: If mtx or dvec is NULL, or if length is not as large as the number of entries to be copied,
or if copyflag is not one of A2 STRICT LOWER, A2 LOWER, A2 DIAGONAL, A2 UPPER, A2 STRICT UPPER

or A2 ALL ENTRIES, or if storeflag is not one of A2 BY ROWS or A2 BY COLUMNS, an error message is
printed and the program exits.

2.2.8 IO methods

There are the usual eight IO routines plus a method to write the object to a Matlab file.

1. int A2_readFromFile (A2 *mtx, char *fn) ;

This method reads a A2 object from a file. It tries to open the file and if it is successful, it then calls
A2 readFromFormattedFile() or A2 readFromBinaryFile(), closes the file and returns the value
returned from the called routine.

Error checking: If mtx or fn are NULL, or if fn is not of the form *.a2f (for a formatted file) or *.a2b
(for a binary file), an error message is printed and the method returns zero.

2. int A2_readFromFormattedFile (A2 *mtx, FILE *fp) ;

This method reads a A2 object from a formatted file whose pointer is fp. If there are no errors in
reading the data, the value 1 is returned. If an IO error is encountered from fscanf, zero is returned.

Error checking: If mtx or fp are NULL, an error message is printed and zero is returned.

3. int A2_readFromBinaryFile (A2 *mtx, FILE *fp) ;

This method reads a A2 object from a binary file whose pointer is fp. If there are no errors in reading
the data, the value 1 is returned. If an IO error is encountered from fread, zero is returned.

Error checking: If mtx or fp are NULL, an error message is printed and zero is returned.

34

4. int A2_writeToFile (A2 *mtx, char *fn) ;

This method writes a A2 object to a file. It tries to open the file and if it is successful, it then calls
A2 writeFromFormattedFile() or A2 writeFromBinaryFile(), closes the file and returns the value
returned from the called routine.

Error checking: If mtx or fn are NULL, or if fn is not of the form *.a2f (for a formatted file) or *.a2b
(for a binary file), an error message is printed and the method returns zero.

5. int A2_writeToFormattedFile (A2 *mtx, FILE *fp) ;

This method writes a A2 object to a formatted file whose pointer is fp. If there are no errors in writing
the data, the value 1 is returned. If an IO error is encountered from fprintf, zero is returned.

Error checking: If mtx or fp are NULL, an error message is printed and zero is returned.

6. int A2_writeToBinaryFile (A2 *mtx, FILE *fp) ;

This method writes a A2 object to a binary file whose pointer is fp. If there are no errors in writing
the data, the value 1 is returned. If an IO error is encountered from fwrite, zero is returned.

Error checking: If mtx or fp are NULL, an error message is printed and zero is returned.

7. void A2_writeForHumanEye (A2 *mtx, FILE *fp) ;

This method writes a A2 object to a file in an easily readable format. The method A2 writeStats()

is called to write out the header and statistics.

Error checking: If mtx or fp are NULL, an error message is printed and zero is returned.

8. void A2_writeStats (A2 *mtx, FILE *fp) ;

This method writes a header and some statistics to a file.

Error checking: If mtx or fp are NULL, an error message is printed and zero is returned.

9. void A2_writeForMatlab (A2 *mtx, char *mtxname, FILE *fp) ;

This method writes the entries of the matrix to a file in Matlab format. The name of the matrix is
mtxname.

Error checking: If mtx, mtxname or fp are NULL, an error message is printed and zero is returned.

2.3 Driver programs for the A2 object

1. test_norms msglvl msgFile type nrow ncol inc1 inc2 seed

This driver program tests the A2 norm methods. Use the script file do norms for testing. When the
output file is loaded into matlab, the last two lines contain matrices whose entries should all be around
machine epsilon.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX

• The nrow parameter is the number of rows.

• The ncol parameter is the number of rows.

• The inc1 parameter is the row increment.

• The inc2 parameter is the column increment.

35

• The seed parameter is a random number seed.

2. test_QR msglvl msgFile type nrow ncol inc1 inc2 seed

This driver program tests the A2 QRreduce() and A2 QRreduce2() methods which reduce A to QR via
rank-1 and rank-2 updates. Use the script file do QR for testing. When msglvl > 1, the matrix A and
matrices R1 and R2 (computed from A2 QRreduce() and A2 QRreduce2(), respectively) are printed to
the message file. When the output file is loaded into matlab, the errors AT A−RT

1 R1 and AT A−RT
2 R2

(if A is real) or the errors AHA−RH
1 R1 and AHA−RH

2 R2 (if A is complex) are computed.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX

• The nrow parameter is the number of rows.

• The ncol parameter is the number of rows.

• The inc1 parameter is the row increment.

• The inc2 parameter is the column increment.

• The seed parameter is a random number seed.

Chapter 3

Coords: Coordinates Object

The Coords object is used to hold (x, y), (x, y, z) or larger dimensional coordinates. We use it to visualize
two- and three-dimensional graphs.

3.1 Data Structure

The Coords object has four fields.

• int type : coordinate type. When type = 1, coordinates are stored by tuples, (x0, y0, . . .) first,
(x1, y1, . . .) next, etc. When type = 2, coordinates are stored by x-coordinates first, y-coordinates
next, etc.

• int ndim : number of dimensions for the coordinates, e.g., for (x, y) coordinates ndim = 2, for (x, y, z)
coordinates ndim = 3.

• int ncoor : number of coordinates (i.e., number of grid points).

• float *coors : pointer to a float vector that holds the coordinates

A correctly initialized and nontrivial Coords object will have type be 1 or 2, positive ndim and ncoor values,
and a non-NULL coors field.

3.2 Prototypes and descriptions of Coords methods

This section contains brief descriptions including prototypes of all methods that belong to the Coords object.

3.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. Coords * Coords_new (void) ;

This method simply allocates storage for the Coords structure and then sets the default fields by a call
to Coords setDefaultFields().

36

37

2. void Coords_setDefaultFields (Coords *coords) ;

This method sets the structure’s fields are set to default values: type = COORDS BY TUPLE, ndim =

ncoor = 0 and coors = NULL.

Error checking: If coords is NULL, an error message is printed and the program exits.

3. void Coords_clearData (Coords *coords) ;

This method clears data and releases any storage allocated by the object. If coords->coors is not
NULL, then FVfree(coords->coors) is called to free the float vector. It then sets the structure’s
default fields with a call to Coords setDefaultFields().

Error checking: If coords is NULL, an error message is printed and the program exits.

4. void Coords_free (Coords *coords) ;

This method releases any storage by a call to Coords clearData() then free’s the storage for the
structure with a call to free().

Error checking: If coords is NULL, an error message is printed and the program exits.

3.2.2 Initializer methods

1. void Coords_init (Coords *coords, int type, int ndim, int ncoor) ;

This method initializes a Coords object given the type, number of dimensions and number of grid
points. It clears any previous data with a call to Coords clearData(). The float vector is initialized
by a call to FVinit().

Error checking: If coords is NULL or type is not COORDS BY TUPLE or COORDS BY COORD, or if either
ndim or ncoor are nonpositive, an error message is printed and the program exits.

2. void Coords_init9P (Coords *coords, float bbox[], int type,

int n1, int n2, int ncomp) ;

This method initializes a Coords object for a 9-point operator on a n1× n2 grid with ncomp degrees
of freedom at a grid point. The grid’s location is given by the bounding box vector, bbox[0] =
x-coordinate of the southwest point, bbox[1] = y-coordinate of the southwest point, bbox[2] = x-
coordinate of the northeast point, and bbox[3] = y-coordinate of the northeast point.

Error checking: If coords bbox is NULL, or if type is not COORDS BY TUPLE or COORDS BY COORD, or if
any of n1, n2 or ncomp are nonpositive, an error message is printed and the program exits.

3. void Coords_init27P (Coords *coords, float bbox[], int type,

int n1, int n2, int n3, int ncomp) ;

This method initializes a Coords object for a 27-point operator on a n1 × n2 × n3 grid with ncomp

degrees of freedom at a grid point. The grid’s location is given by the bounding box vector, bbox[0]
= x-coordinate of the southwest point, bbox[1] = y-coordinate of the southwest point, bbox[2] =
z-coordinate of the southwest point, bbox[3] = x-coordinate of the northeast point, bbox[4] = y-
coordinate of the northeast point, and bbox[5] = z-coordinate of the northeast point.

Error checking: If coords bbox is NULL, or if type is not COORDS BY TUPLE or COORDS BY COORD, or if
any of n1, n2, n3 or ncomp are nonpositive, an error message is printed and the program exits.

38

3.2.3 Utility methods

There are three utility methods.

1. int Coords_sizeOf (Coords *coords) ;

This method returns the number of bytes that the object occupies.

Error checking: If coords is NULL, an error message is printed and the program exits.

2. float Coords_min (Coords *coords, int dim)

This method returns the minimum coordinate value for the dim’th entry in the coordinates. For exam-
ple, Coords min(coords, 1) is the minimum x-value and Coords min(coords, 2) is the minimum
y-value.

Error checking: If coords is NULL, or if idim does not lie in the range [1,ndim], an error message is
printed and the program exits.

3. float Coords_max (Coords *coords, int dim)

This method returns the maximum coordinate value for the dim’th entry in the coordinates. For exam-
ple, Coords max(coords, 1) is the maximum x-value and Coords max(coords, 2) is the maximum
y-value.

Error checking: If coords is NULL, or if idim does not lie in the range [1,ndim], an error message is
printed and the program exits.

4. float Coords_value (Coords *coords, int idim, int icoor) ;

This method returns the float value of the idim-th coordinate of the icoor-th grid point. For
example, Coords value(coords, 1, 27) returns x27, Coords value(coords, 2, 16) returns y16,
and Coords value(coords, 3, 118) returns z118.

Error checking: If coords is NULL, or if idim does not lie in the range [1,ndim], or if icoor does not
lie in the range [0,ncoor), an error message is printed and the program exits.

5. void Coords_setValue (Coords *coords, int idim, int icoor, float val) ;

This method sets the float value of the idim-th coordinate of the icoor-th grid point. For example,
Coords setValue(coords, 1, 27, 1.2) sets x27 = 1.2, Coords setValue(coords, 2, 16, 3.3)

sets y16 = 3.3, and Coords setValue(coords, 3, 118, 0) sets z118 = 0.

Error checking: If coords is NULL, or if idim does not lie in the range [1,ndim], or if icoor does not
lie in the range [0,ncoor), an error message is printed and the program exits.

3.2.4 IO methods

There are the usual eight IO routines. The file structure of a Coords object is simple: type, ndim, ncoor
followed by the coors[] vector.

1. int Coords_readFromFile (Coords *coords, char *filename) ;

This method read a Coords object from a file. It tries to open the file and if it is successful, it then calls
Coords readFromFormattedFile() or Coords readFromBinaryFile(), closes the file and returns the
value returned from the called routine.

Error checking: If coords or filename is NULL, or if filename is not of the form *.coordsf (for a
formatted file) or *.coordsb (for a binary file), an error message is printed and the method returns
zero.

39

2. int Coords_readFromFormattedFile (Coords *coords, FILE *fp) ;

This method reads in a Coords object from a formatted file. If there are no errors in reading the data,
the value 1 is returned. If an IO error is encountered from fscanf, zero is returned.

Error checking: If coords or fp are NULL an error message is printed and zero is returned.

3. int Coords_readFromBinaryFile (Coords *coords, FILE *fp) ;

This method reads in a Coords object from a binary file. If there are no errors in reading the data,
the value 1 is returned. If an IO error is encountered from fread, zero is returned.

Error checking: If coords or fp are NULL an error message is printed and zero is returned.

4. int Coords_writeToFile (Coords *coords, char *fn) ;

This method write a Coords object to a file. The method tries to open the file and if it is successful,
it then calls Coords writeFromFormattedFile() or Coords writeFromBinaryFile(), closes the file
and returns the value returned from the called routine.

Error checking: If coords or fn is NULL, or if fn is not of the form *.coordsf (for a formatted file) or
*.coordsb (for a binary file), an error message is printed and the method returns zero.

5. int Coords_writeToFormattedFile (Coords *coords, FILE *fp) ;

This method writes a Coords object to a formatted file. If there are no errors in writing the data, the
value 1 is returned. If an IO error is encountered from fprintf, zero is returned.

Error checking: If coords or fp are NULL an error message is printed and zero is returned.

6. int Coords_writeToBinaryFile (Coords *coords, FILE *fp) ;

This method writes a Coords object to a binary file. If there are no errors in writing the data, the
value 1 is returned. If an IO error is encountered from fwrite, zero is returned.

Error checking: If coords or fp are NULL an error message is printed and zero is returned.

7. int Coords_writeForHumanEye (Coords *coords, FILE *fp) ;

This method write the Coords object to a file in an easy to read fashion. The method Coords writeStats()

is called to write out the header and statistics. The coors[] vector is then printed out. The value 1

is returned.

Error checking: If coords or fp are NULL an error message is printed and zero is returned.

8. int Coords_writeStats (Coords *coords, FILE *fp) ;

The header and statistics are written. The value 1 is returned.

Error checking: If coords or fp are NULL an error message is printed and zero is returned.

3.3 Driver programs for the Coords object

This section contains brief descriptions of the driver programs.

1. testIO msglvl msgFile inFile outFile

This driver program reads and write Coords files, useful for converting formatted files to binary files
and vice versa. One can also read in a Coords file and print out just the header information (see the
Coords writeStats() method).

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the Coords
object is written to the message file.

40

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inFile parameter is the input file for the Coords object. It must be of the form *.coordsf

or *.coordsb. The Coords object is read from the file via the Coords readFromFile() method.

• The outFile parameter is the output file for the Coords object. If outFile is none then the
Coords object is not written to a file. Otherwise, the Coords writeToFile() method is called
to write the object to a formatted file (if outFile is of the form *.coordsf), or a binary file (if
outFile is of the form *.coordsb).

2. mk9PCoords msglvl msgFile n1 n2 outCoordsFile

This driver program creates a Coords object for 9-point finite difference operator on a n1 × n2 grid
and optionally writes it to a file.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means that all
objects are written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any message data.

• The outCoordsFile parameter is the output file for the Coords object. If outCoordsFile is none
then the Coords object is not written to a file. Otherwise, the Coords writeToFile() method is
called to write the object to a formatted file (if outCoordsFile is of the form *.coordsf), or a
binary file (if outCoordsFile is of the form *.coordsb).

Chapter 4

DV: Double Vector Object

The DV object is a wrapper around a double vector, thus the acronym Double Vector. The driving force
for its creation is more convenience than performance. There are three cases that led to its development.

• Often a method will create a vector (allocate storage for and fill the entries) whose size is not known
before the method call. Instead of having a pointer to int and a pointer to double* in the calling
sequence, we can return a pointer to an DV object that contains the newly created vector and its size.

• In many cases we need a persistent double vector object, and file IO is simplified if we have an object
to deal with. The filename is of the form *.dvf for a formatted file or *.dvb for a binary file.

• Prototyping can go much faster with this object as opposed to working with an double array. Consider
the case when one wants to accumulate a list of doubles, but one doesn’t know how large the list will
be. The method DV setSize() can be used to set the size of the vector to zero. Another method
DV push() appends an element to the vector, growing the storage if necessary.

• Sometimes an object needs to change its size, i.e., vectors need to grow or shrink. It is easier and more
robust to tell an DV object to resize itself (see the DV setSize() and DV setMaxsize() methods) than
it is to duplicate code to work on an double vector.

One must choose where to use this object. There is a substantial performance penalty for doing the simplest
operations, and so when we need to manipulate an double vector inside a loop, we extract out the size and
pointer to the base array from the DV object. On the other hand, the convenience makes it a widely used
object.

4.1 Data Structure

The DV structure has three fields.

• int size : present size of the vector.

• int maxsize : maximum size of the vector.

• int owned : owner flag for the data. When owned = 1, storage for owned double’s has been allocated
by this object and can be free’d by the object. When owned == 0 but size > 0 , this object points
to entries that have been allocated elsewhere, and these entries will not be free’d by this object.

• double *vec : pointer to the base address of the double vector

The size, maxsize, nowned and vec fields need never be accessed directly — see the DV size(), DV maxsize(),
DV owned(), DV entries(), DV sizeAndEntries() methods.

41

42

4.2 Prototypes and descriptions of DV methods

This section contains brief descriptions including prototypes of all methods that belong to the DV object.

4.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. DV * DV_new (void) ;

This method simply allocates storage for the DV structure and then sets the default fields by a call to
DV setDefaultFields().

2. void DV_setDefaultFields (DV *dv) ;

This method sets the default fields of the object, size = maxsize = owned = 0 and vec = NULL.

Error checking: If dv is NULL an error message is printed and the program exits.

3. void DV_clearData (DV *dv) ;

This method releases any data owned by the object. If vec is not NULL and owned = 1, then the
storage for vec is free’d by a call to DVfree(). The structure’s default fields are then set with a call
to DV setDefaultFields().

Error checking: If dv is NULL an error message is printed and the program exits.

4. void DV_free (DV *dv) ;

This method releases any storage by a call to DV clearData() then free’s the storage for the structure
with a call to free().

Error checking: If dv is NULL an error message is printed and the program exits.

4.2.2 Instance methods

These method allow access to information in the data fields without explicitly following pointers. There is
overhead involved with these method due to the function call and error checking inside the methods.

1. int DV_owned (DV *dv) ;

This method returns the value of owned. If owned > 0, then the object owns the data pointed to by
vec and will free this data with a call to DVfree() when its data is cleared by a call to DV free() or
DV clearData().

Error checking: If dv is NULL an error message is printed and the program exits.

2. int DV_size (DV *dv) ;

This method returns the value of size, the present size of the vector.

Error checking: If dv is NULL an error message is printed and the program exits.

3. int DV_maxsize (DV *dv) ;

This method returns the value of size, the maximum size of the vector.

Error checking: If dv is NULL an error message is printed and the program exits.

43

4. double DV_entry (DV *dv, int loc) ;

This method returns the value of the loc’th entry in the vector. If loc < 0 or loc >= size, i.e., if
the location is out of range, we return 0.0. This design feature is handy when a list terminates with
a 0.0 value.

Error checking: If dv or vec is NULL, an error message is printed and the program exits.

5. double * DV_entries (DV *dv) ;

This method returns vec, a pointer to the base address of the vector.

Error checking: If dv is NULL, an error message is printed and the program exits.

6. void DV_sizeAndEntries (DV *dv, int *psize, double **pentries) ;

This method fills *psize with the size of the vector and **pentries with the base address of the
vector.

Error checking: If dv, psize or pentries is NULL, an error message is printed and the program exits.

7. void DV_setEntry (DV *dv, int loc, double value) ;

This method sets the loc’th entry of the vector to value.

Error checking: If dv is NULL or loc < 0, an error message is printed and the program exits.

4.2.3 Initializer methods

There are three initializer methods.

1. void DV_init (DV *dv, int size, double *entries) ;

This method initializes the object given a size for the vector and a possible pointer to the vectors’
storage. Any previous data is cleared with a call to DV clearData(). If entries != NULL then the
vec field is set to entries, the size and maxsize fields are set to size, and owned is set to zero because
the object does not own the entries. If entries is NULL and size > 0 then a vector is allocated by
the object, and the object owns this storage.

Error checking: If dv is NULL or size < 0, an error message is printed and the program exits.

2. void DV_init1 (DV *dv, int size) ;

This method initializes the object given a size size for the vector via a call to DV init().

Error checking: Error checking is done with the call to ⁀DV init().

3. void DV_init2 (DV *dv, int size, int maxsize, int owned, double *vec) ;

This is the total initialization method. The data is cleared with a call to DV clearData(). If vec is
NULL, the object is initialized via a call to DV init1(). Otherwise, the objects remaining fields are set
to the input parameters. and if owned is not 1, the data is not owned, so the object cannot grow.

Error checking: If dv is NULL, or if size < 0, or if maxsize < size, or if owned is not equal to 0 or 1,
of if owned = 1 and vec = NULL, an error message is printed and the program exits.

4. void DV_setMaxsize (DV *dv, int newmaxsize) ;

This method sets the maximum size of the vector. If maxsize, the present maximum size of the vector,
is not equal to newmaxsize, then new storage is allocated. Only size entries of the old data are copied
into the new storage, so if size > newmaxsize then data will be lost. The size field is set to the
minimum of size and newmaxsize.

Error checking: If dv is NULL or newmaxsize < 0, or if 0 < maxsize and owned == 0, an error message
is printed and the program exits.

44

5. void DV_setSize (DV *dv, int newsize) ;

This method sets the size of the vector. If newsize > maxsize, the length of the vector is increased
with a call to DV setMaxsize(). The size field is set to newsize.

Error checking: If dv is NULL, or newsize < 0, or if 0 < maxsize < newsize and owned = 0, an error
message is printed and the program exits.

4.2.4 Utility methods

1. void DV_shiftBase (DV *dv, int offset) ;

This method shifts the base entries of the vector and decrements the present size and maximum size of
the vector by offset. This is a dangerous method to use because the state of the vector is lost, namely
vec, the base of the entries, is corrupted. If the object owns its entries and DV free(), DV setSize() or
DV setMaxsize() is called before the base has been shifted back to its original position, a segmentation
violation will likely result. This is a very useful method, but use with caution.

Error checking: If dv is NULL, an error message is printed and the program exits.

2. void DV_push (DV *dv, double val) ;

This method pushes an entry onto the vector. If the vector is full, i.e., if size == maxsize - 1, then
the size of the vector is doubled if possible. If the storage cannot grow, i.e., if the object does not own
its storage, an error message is printed and the program exits.

Error checking: If dv is NULL, an error message is printed and the program exits.

3. double DV_min (DV *dv) ;

double DV_max (DV *dv) ;

double DV_sun (DV *dv) ;

These methods simply return the minimum entry, the maximum entry and the sum of the entries in
the vector.

Error checking: If dv is NULL, size <= 0 or if vec == NULL, an error message is printed and the
program exits.

4. void DV_sortUp (DV *dv) ;

void DV_sortDown (DV *dv) ;

This method sorts the entries in the vector into ascending or descending order via calls to DVqsortUp()

and DVqsortDown().

Error checking: If dv is NULL, size <= 0 or if vec == NULL, an error message is printed and the
program exits.

5. void DV_ramp (DV *dv, double base, int double) ;

This method fills the object with a ramp vector, i.e., entry i is base + i*incr.

Error checking: If dv is NULL, size <= 0 or if vec == NULL, an error message is printed and the
program exits.

6. void DV_shuffle (DV *dv, int seed) ;

This method shuffles the entries in the vector using seed as a seed to a random number generator.

Error checking: If dv is NULL, size <= 0 or if vec == NULL, an error message is printed and the
program exits.

45

7. int DV_sizeOf (DV *dv) ;

This method returns the number of bytes taken by the object.

Error checking: If dv is NULL an error message is printed and the program exits.

8. double * DV_first (DV *dv) ;

double * DV_next (DV *dv, int *pd) ;

These two methods are used as iterators, e.g.,

for (pd = DV_first(dv) ; pd != NULL ; pd = DV_next(dv, pd)) {

do something with entry *pd

}

Each method checks to see if dv or pd is NULL, if so an error message is printed and the program exits.
In method DV next(), if pd is not in the valid range, an error message is printed and the program
exits.

Error checking: If dv is NULL an error message is printed and the program exits.

9. void DV_fill (DV *dv, double value) ;

This method fills the vector with a scalar value.

Error checking: If dv is NULL, an error message is printed and the program exits.

10. void DV_zero (DV *dv) ;

This method fills the vector with zeros.

Error checking: If dv is NULL, an error message is printed and the program exits.

11. void DV_copy (DV *dv1, DV *dv2) ;

This method fills the dv1 object with entries in the iv2 object. Note, this is a mapped copy, dv1 and
dv2 need not have the same size. The number of entries that are copied is the smaller of the two sizes.

Error checking: If dv1 or dv2 is NULL, an error message is printed and the program exits.

12. void DV_log10profile (DV *dv, int npts, DV *xDV, DV *yDV, double tausmall,

double taubig, int *pnzero, int *pnsmall, int *pnbig) ;

This method scans the entries in the DV object and fills xDV and yDV with data that allows a simple log10

distribution plot. Only entries whose magnitudes lie in the range [tausmall, taubig] contribute to
the distribution. The number of entries whose magnitudes are zero, smaller than tausmall, or larger
than taubig are placed into pnzero, *pnsmall and *pnbig, respectively. On return, the size of the
xDV and yDV objects is npts.

Error checking: If dv, xDV, yDV, pnsmall or pnbig are NULL, or if npts ≤ 0, or if taubig < 0.0 or if
tausmall > taubig, an error message is printed and the program exits.

4.2.5 IO methods

There are the usual eight IO routines. The file structure of a DV object is simple: the first entry is size,
followed by the size entries found in vec[].

1. int DV_readFromFile (DV *dv, char *fn) ;

This method reads a DV object from a file. It tries to open the file and if it is successful, it then calls
DV readFromFormattedFile() or DV readFromBinaryFile(), closes the file and returns the value
returned from the called routine.

46

Error checking: If dv or fn are NULL, or if fn is not of the form *.dvf (for a formatted file) or *.dvb
(for a binary file), an error message is printed and the method returns zero.

2. int DV_readFromFormattedFile (DV *dv, FILE *fp) ;

This method reads in a DV object from a formatted file. If there are no errors in reading the data, the
value 1 is returned. If an IO error is encountered from fscanf, zero is returned.

Error checking: If dv or fp are NULL, an error message is printed and zero is returned.

3. int DV_readFromBinaryFile (DV *dv, FILE *fp) ;

This method reads in a DV object from a binary file. If there are no errors in reading the data, the
value 1 is returned. If an IO error is encountered from fread, zero is returned.

Error checking: If dv or fp are NULL, an error message is printed and zero is returned.

4. int DV_writeToFile (DV *dv, char *fn) ;

This method writes a DV object from a file. It tries to open the file and if it is successful, it then calls
DV writeFromFormattedFile() or DV writeFromBinaryFile(), closes the file and returns the value
returned from the called routine.

Error checking: If dv or fn are NULL, or if fn is not of the form *.dvf (for a formatted file) or *.dvb
(for a binary file), an error message is printed and the method returns zero.

5. int DV_writeToFormattedFile (DV *dv, FILE *fp) ;

This method writes a DV object to a formatted file. If there are no errors in writing the data, the value
1 is returned. If an IO error is encountered from fprintf, zero is returned.

Error checking: If dv or fp are NULL, an error message is printed and zero is returned.

6. int DV_writeToBinaryFile (DV *dv, FILE *fp) ;

This method writes a DV object to a binary file. If there are no errors in writing the data, the value 1

is returned. If an IO error is encountered from fwrite, zero is returned.

Error checking: If dv or fp are NULL, an error message is printed and zero is returned.

7. int DV_writeForHumanEye (DV *dv, FILE *fp) ;

This method writes a DV object to a file in a human readable format. is called to write out the header
and statistics. The entries of the vector then follow in eighty column format using the DVfprintf()

method. The value 1 is returned.

Error checking: If dv or fp are NULL, an error message is printed and zero is returned.

8. int DV_writeStats (DV *dv, FILE *fp) ;

This method writes the header and statistics to a file. The value 1 is returned.

Error checking: If dv or fp are NULL, an error message is printed and zero is returned.

9. int DV_writeForMatlab (DV *dv, char *name, FILE *fp) ;

This method writes the entries of the vector to a file suitable to be read by Matlab. The character
string name is the name of the vector, e.g, if name = "A", then we have lines of the form

A(1) = 1.000000000000e0 ;

A(2) = 2.000000000000e0 ;

...

for each entry in the vector. Note, the output indexing is 1-based, not 0-based. The value 1 is returned.

Error checking: If dv or fp are NULL, an error message is printed and zero is returned.

47

4.3 Driver programs for the DV object

1. testIO msglvl msgFile inFile outFile

This driver program tests the DV IO methods, and is useful for translating between the formatted *.dvf

and binary *.dvb files.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inFile parameter is the name of the file from which to read in the object. inFile must be
of the form *.dvf for a formatted file or *.dvb for a binary file.

• The outFile parameter is the name of the file to which to write out the object. If outfile is of
the form *.dvf, the object is written to a formatted file. If outfile is of the form *.dvb, the
object is written to a binary file. When outFile is not "none", the object is written to the file
in a human readable format. When outFile is "none", the object is not written out.

Chapter 5

Drand:
Simple Random Number Generator

Finding the same random number generator on a variety of UNIX systems is not guaranteed to be a success.
Therefore, we wrote a simple random number generator object taken from [2]. The Drand object provides
both normally distributed and uniformly distributed random numbers.

5.1 Data Structure

The Drand object has nine fields.

• double seed1 : first seed

• double seed2 : second seed

• double base1 : first base

• double base2 : second base

• double lower : lower bound for a uniform distribution

• double upper : upper bound for a uniform distribution

• double mean : mean for a normal distribution

• double sigma : variation for a normal distribution

• int mode: mode of the object, uniform is 1, normal is 2

5.2 Prototypes and descriptions of Drand methods

This section contains brief descriptions including prototypes of all methods that belong to the Drand object.

48

49

5.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. Drand * Drand_new (void) ;

This method simply allocates storage for the Drand structure and then sets the default fields by a call
to Drand setDefaultFields().

2. void Drand_setDefaultFields (Drand *drand) ;

This method sets the structure’s fields to default values.

drand->seed1 = 123456789.0 ; drand->seed2 = 987654321.0 ;

drand->base1 = 2147483563.0 ; drand->base2 = 2147483399.0 ;

drand->lower = 0.0 ; drand->upper = 1.0 ;

drand->mean = 0.0 ; drand->sigma = 1.0 ;

drand->mode = 1 ;

The default mode is a uniform distribution on [0,1].

Error checking: If drand is NULL, an error message is printed and the program exits.

3. void Drand_clearData (Drand *drand) ;

This method clears any data owned by the object. It then sets the default fields with a call to
Drand setDefaultFields().

Error checking: If drand is NULL, an error message is printed and the program exits.

4. void Drand_free (Drand *drand) ;

This method frees the object. It releases any storage by a call to Drand clearData() then free’s the
storage for the structure with a call to free().

Error checking: If drand is NULL, an error message is printed and the program exits.

5.2.2 Initializer methods

1. void Drand_init (Drand *drand) ;

This initializer simply sets the default fields with a call to Drand setDefaultFields().

Error checking: If drand is NULL, an error message is printed and the program exits.

2. void Drand_setSeed (Drand *drand, int seed1) ;

This method sets the random number seeds using a single input seed.

Error checking: If drand is NULL, or if seed1 ≤ 0, or if seed1 ≥ 2147483563, an error message is
printed and the program exits.

3. void Drand_setSeeds (Drand *drand, int seed1, int seed2) ;

This method sets the random number seeds using two input seeds.

Error checking: If drand is NULL, an error message is printed and the program exits.

Error checking: If drand is NULL, or if seed1 ≤ 0, or if seed1 ≥ 2147483563, or if seed2 ≤ 0, or if
seed2 ≥ 2147483399, an error message is printed and the program exits.

50

4. void Drand_setNormal (Drand *drand, double mean, double sigma) ;

This method sets the mode to be a normal distribution with mean mean and variation sigma.

Error checking: If drand is NULL, or if sigma ≤ 0, an error message is printed and the program exits.

5. void Drand_setUniform (Drand *drand, double lower, double upper) ;

This method sets the mode to be a uniform distribution over the interval [lower,upper] ;

Error checking: If drand is NULL, or if lower ≥ upper, an error message is printed and the program
exits.

5.2.3 Utility methods

1. double Drand_value (Drand *drand) ;

This method returns a double precision random number.

Error checking: If drand is NULL, an error message is printed and the program exits.

2. void Drand_fillZvector (Drand *drand, int n, double vec[]) ;

This method fills a double precision complex vector vec[] with n complex random numbers.

Error checking: If drand or vec are NULL or if n < 0 , an error message is printed and the program
exits.

3. void Drand_fillDvector (Drand *drand, int n, double vec[]) ;

This method fills double precision vector vec[] with n random numbers.

Error checking: If drand or vec are NULL or if n < 0 , an error message is printed and the program
exits.

4. void Drand_fillIvector (Drand *drand, int n, int vec[]) ;

This method fills vec[] with n int random numbers.

Error checking: If drand or vec are NULL or if n < 0 , an error message is printed and the program
exits.

5.3 Driver programs for the Drand object

This section contains brief descriptions of the driver programs.

1. testDrand msglvl msgFile distribution param1 param2 seed1 seed2 n

This driver program test the Drand random number generator.

• The msglvl parameter determines the amount of output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The distribution parameter specifies the mode of the object. If 1, the distribution is uniform.
If 2, the distribution is normal.

• When distribution = 1, param1 is the lower bound for the interval. When distribution = 2,
param1 is the mean for the normal distribution.

• When distribution = 1, param2 is the upper bound for the interval. When distribution =

2, param2 is the variance for the normal distribution.

51

• seed1 is the first random number seed.

• seed2 is the second random number seed.

• n is the length of the vector of random numbers to be generated.

Chapter 6

I2Ohash: Two Key Hash Table

The I2Ohash is a object that manages a hash table where there are two integer keys and the data to be
stored is void * pointer. This object was created to support a block sparse matrix, where each block has
two keys, a row and column id, and the value is a pointer to a SubMtx object.

This is a very simple implementation. Each <key1,key2> is mapped to a list. Each list contains
<key1,key2,value> triples whose keys are mapped to the list, and the triples are in lexicographic or-
der of their <key1,key2> fields. The size of the hash table (the number of lists) is fixed upon initialization.
The number of allowable <key1,key2,value> triples can either be fixed (upon initialization) or can grow
by a user supplied amount.

The methods that are supported are

• insert a <key1,key2,value> triple

• locate a <key1,key2,*> triple and return the value

• remove a <key1,key2,*> triple and return the value

6.1 Data Structure

The I2Ohash object has a number of lists that contain <key1,key2,value> triples. Each triple is stored
in an I2OP object, a simple structure found in the Utilities directory that holds two integer key fields, a
void * data field, and a single pointer field to allow us to use it in singly linked lists.

The I2Ohash object has six fields.

• int nlist : number of lists in the hash table

• int grow : when no I2OP objects are available to insert a new <key1,key2,value> triple, the object
can allocate grow more I2OP objects and put them on the free list.

• nitem : number of items in the hash table.

• I2OP *baseI2OP : pointer to an I2OP object that keeps track of all the I2OP objects that have been
allocated by the hash table.

• I2OP *freeI2OP : pointer to the first I2OP object on the free list.

• I2OP **heads : pointer to a vector of pointers to I2OP objects, used to hold a pointer to the first I2OP
object in each list.

52

53

A correctly initialized and nontrivial I2Ohash object will have nlist > 0. If grow is zero and a new
<key1,key2,value> triple is given to the hash table to be inserted, a fatal error occurs.

6.2 Prototypes and descriptions of I2Ohash methods

This section contains brief descriptions including prototypes of all methods that belong to the I2Ohash

object.

6.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. I2Ohash * I2Ohash_new (void) ;

This method simply allocates storage for the I2Ohash structure and then sets the default fields by a
call to I2Ohash setDefaultFields().

2. void I2Ohash_setDefaultFields (I2Ohash *hashtable) ;

This method sets the structure’s fields to default values: nlist, grow and nitem are zero, baseI2OP,
freeI2OP and heads are NULL.

Error checking: If hashtable is NULL, an error message is printed and the program exits.

3. void I2Ohash_clearData (I2Ohash *hashtable) ;

This method clears any data owned by the object. It releases any I2OP objects that have been allocated
by the hash table, and then free’s the heads[] vector. It then sets the structure’s default fields with
a call to I2Ohash setDefaultFields().

Error checking: If hashtable is NULL, an error message is printed and the program exits.

4. void I2Ohash_free (I2Ohash *hashtable) ;

This method releases any storage by a call to I2Ohash clearData() then free’s the storage for the
structure with a call to free().

Error checking: If hashtable is NULL, an error message is printed and the program exits.

6.2.2 Initializer methods

There is one initializer method.

1. void I2Ohash_init (I2Ohash *hashtable, int nlist, int nobj, int grow) ;

This method is the basic initializer method. It clears any previous data with a call to I2Ohash clearData().
It allocates storage for nlist lists and if nobj is positive, it loads the free list with nobj I2OP objects.

Error checking: If hashtable is NULL, or if nlist ≤ 0, or if nobj and grow are both zero, an error
message is printed and the program exits.

54

6.2.3 Utility methods

1. void I2Ohash_insert (I2Ohash *hashtable, int key1, int key2, void * value) ;

This method inserts the triple (key1,key2,value) into the hash table.

Error checking: If hashtable is NULL, an error message is printed and the program exits.

2. int I2Ohash_locate (I2Ohash *hashtable, int key1, int key2, void **pvalue) ;

If there is a <key1,key2,value> triple in the hash table, *pvalue is set to the value, and 1 is returned.
If there is no <key1,key2,value> triple in the hash table, 0 is returned.

Error checking: If hashtable or pvalue is NULL, an error message is printed and the program exits.

3. int I2Ohash_remove (I2Ohash *hashtable, int key1, int key2, void **pvalue) ;

If there is a <key1,key2,value> triple in the hash table, *pvalue is set to the value, the triple
is removed and its I2OP structure is placed on the free list, and 1 is returned. If there is no
<key1,key2,value> triple in the hash table, 0 is returned.

Error checking: If hashtable or pvalue is NULL, an error message is printed and the program exits.

4. double I2Ohash_measure (I2Ohash *hashtable) ;

This method returns a floating point number that is some measure of how even a distribution of the
<key1,key2,value> triples are made to the lists. We measure the imbalance using

√∑
i count

2
i ,

where i ranges over the lists and counti is the number of triples in list i. If the triples were perfectly
evenly distributed, then each list would have nitem/nlist triples, and this value is nitem/

√
nlist.

We return the ratio of
√∑

i count
2
i over nitem/

√
nlist. A value of 1.0 means that the triples are

perfectly distributed. A value of
√
nlist means that the triples are distributed in the worst possible

way (all are found in one list). In general, if the triples are evenly distributed among nlist/k lists,
the value is

√
k.

Error checking: If hashtable is NULL, an error message is printed and the program exits.

6.2.4 IO methods

1. void I2Ohash_writeForHumanEye (I2Ohash *hashtable, FILE *fp) ;

This method prints the hash table in a human-readable format.

Error checking: If hashtable or fp is NULL, an error message is printed and the program exits.

6.3 Driver programs for the I2Ohash object

1. test_hash msglvl msgFile size grow maxkey nent seed

This driver program tests the I2Ohash insert method. It inserts a number of triples into a hash table
and prints out the “measure” of how well distributed the entries are in the hash table.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The size parameter is the number of lists.

• The grow parameter is how much the pool of I2OP objects can grow. Setting grow to zero is
helpful when the number of items that can be placed into the hash table is known a priori. If one
tries to insert an items when the free pool is empty and grow is zero, an error message is printed
and the program exits.

55

• The maxkey parameter an upper bound on key value.

• The nent parameter is the number of <key1, key2, pointer> triples to insert.

• The seed parameter is a random number seed.

Chapter 7

IIheap: (Key, Value) Heap

The IIheap is a object that manages a heap of data. Both the key and the value are of type int. The heap
has fixed size, each item must be in [0,maxsize-1], where maxsize is set on initialization. The IIheap

object requires three vectors of size maxsize. Three methods are supported: find min, insert and delete
which take O(1), O(log2 n) and O(log2 n) time, respectively, where n is the present size of the heap.

7.1 Data Structure

The IIheap object has five fields.

• int size : present size of the heap, 0 <= size < maxsize

• int maxsize : maximum size of the heap, set on initialization

• int *heapLoc : pointer to an int vector of size maxsize, heapLoc[i] contains the location of item i,
heapLoc[i] = -1 if item i is not in the heap

• int *keys : pointer to an int vector of size maxsize, keys[loc] contains the key at location loc

• int *values : pointer to an int vector of size maxsize, values[loc] contains the value at location
loc

A correctly initialized and nontrivial IIheap object will have maxsize > 0 and 0 <= size < maxsize.

7.2 Prototypes and descriptions of IIheap methods

This section contains brief descriptions including prototypes of all methods that belong to the IIheap object.

7.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. IIheap * IIheap_new (void) ;

This method simply allocates storage for the IIheap structure and then sets the default fields by a call
to IIheap setDefaultFields().

56

57

2. void IIheap_setDefaultFields (IIheap *heap) ;

This method sets the structure’s fields to default values: size and maxsize are zero, heapLoc, keys
and values are NULL.

Error checking: If heap is NULL, an error message is printed and the program exits.

3. void IIheap_clearData (IIheap *heap) ;

This method clears any data owned by the object. It releases any storage held by the heap->heapLoc,
heap->keys and heap->values vectors, then sets the structure’s default fields with a call to IIheap setDefaultFields

Error checking: If heap is NULL, an error message is printed and the program exits.

4. void IIheap_free (IIheap *heap) ;

This method releases any storage by a call to IIheap clearData() then free’s the storage for the
structure with a call to free().

Error checking: If heap is NULL, an error message is printed and the program exits.

7.2.2 Initializer methods

There is one initializer method.

1. void IIheap_init (IIheap *heap, int maxsize) ;

This method is the basic initializer method. It clears any previous data with a call to IIheap clearData(),
and allocates storage for the heapLoc, keys and values vectors using IVinit(). The entries in the
three vectors are set to -1.

Error checking: If heap is NULL, or if maxsize ≤ 0, an error message is printed and the program exits.

7.2.3 Utility methods

1. int IIheap_sizeOf (IIheap *heap) ;

This method returns the number of bytes taken by this object.

Error checking: If heap is NULL, an error message is printed and the program exits.

2. void IIheap_root (IIheap *heap, int *pkey, int *pvalue) ;

This method fills *pid and *pkey with the key and value, respectively, of the root element, an element
with minimum value. If size == 0 then -1 is returned.

Error checking: If heap, pkey or pvalue is NULL, an error message is printed and the program exits.

3. void IIheap_insert (IIheap *heap, int key, int value) ;

This method inserts the pair (key,value) into the heap.

Error checking: If heap is NULL, of if key is out of range, or if key is already in the heap, or if the heap
is full, an error message is printed and the program exits.

4. void IIheap_remove (IIheap *heap, int key) ;

This method removes (key,*) from the heap.

Error checking: If heap is NULL, of if key is out of range, or if key is not in the heap, an error message
is printed and the program exits.

5. void IIheap_print (IIheap *heap, FILE *fp) ;

This method prints the heap in a human-readable format.

Error checking: If heap or fp is NULL, an error message is printed and the program exits.

Chapter 8

IV: Integer Vector Object

The IV object is a wrapper around an int vector, thus the acronym Integer Vector. The driving force for
its creation is more convenience than performance. There are several reasons that led to its development.

• Often a method will create a vector (allocate storage for and fill the entries) whose size is not known
before the method call. Instead of having a pointer to int and a pointer to int* in the calling sequence,
we can return a pointer to an IV object that contains the newly created vector and its size.

• In many cases we need a persistent int vector object, and file IO is simplified if we have an object to
deal with. The filename is of the form *.ivf for a formatted file or *.ivb for a binary file. Another
case is where an object contains one or more int vectors. When they are held as IV objects, (e.g., the
ETree object contains a Tree object and three IV objects), the method to read and write the object is
much cleaner.

• Prototyping can go much faster with this object as opposed to working with an int array. Consider
the case when one wants to accumulate a list of integers, but one doesn’t know how large the list will
be. The method IV setSize() can be used to set the size of the vector to zero. Another method
IV push() appends an element to the vector, growing the storage if necessary.

• Having the size of a vector and a pointer to the base location wrapped together makes it easier to
check for valid input inside a method.

• Sometimes an object needs to change its size, i.e., vectors need to grow or shrink. It is easier and more
robust to tell an IV object to resize itself (see the IV setSize() and IV setMaxsize() methods) than
it is to duplicate code to work on an int vector.

One must choose where to use this object. There is a substantial performance penalty for doing the simplest
operations, and so when we need to manipulate an int vector inside a loop, we extract out the size and
pointer to the base array from the IV object. On the other hand, the convenience makes it a widely used
object. Originally its use was restricted to reading and writing *.iv{f,b} files, but now IV objects appear
much more frequently in new development.

8.1 Data Structure

The IV structure has four fields.

• int size : present size of the vector.

58

59

• int maxsize : maximum size of the vector.

• int owned : owner flag for the data. When owned = 1, storage for maxsize int’s has been allocated
by this object and can be free’d by the object. When nowned = 0 but maxsize > 0, this object points
to entries that have been allocated elsewhere, and these entries will not be free’d by this object.

• int *vec : pointer to the base address of the int vector

The size, maxsize, owned and vec fields need never be accessed directly — see the IV size(), IV maxsize(),
IV owned(), IV entries(), IV sizeAndEntries() methods.

8.2 Prototypes and descriptions of IV methods

This section contains brief descriptions including prototypes of all methods that belong to the IV object.

8.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. IV * IV_new (void) ;

This method simply allocates storage for the IV structure and then sets the default fields by a call to
IV setDefaultFields().

2. void IV_setDefaultFields (IV *iv) ;

This method sets the structure’s fields to default values: size = maxsize = owned = 0 and vec =
NULL .

Error checking: If iv is NULL, an error message is printed and the program exits.

3. void IV_clearData (IV *iv) ;

This method clears any data owned by the object. If vec is not NULL and owned = 1, then the storage
for vec is free’d by a call to IVfree(). The structure’s default fields are then set with a call to
IV setDefaultFields().

Error checking: If iv is NULL, an error message is printed and the program exits.

4. void IV_free (IV *iv) ;

This method releases any storage by a call to IV clearData() then free’s the storage for the structure
with a call to free().

Error checking: If iv is NULL, an error message is printed and the program exits.

8.2.2 Instance methods

These method allow access to information in the data fields without explicitly following pointers. There is
overhead involved with these method due to the function call and error checking inside the methods.

1. int IV_owned (IV *iv) ;

This method returns the value of owned. If owned = 1, then the object owns the data pointed to by
vec and will free this data with a call to IVfree() when its data is cleared by a call to IV free() or
IV clearData().

Error checking: If iv is NULL, an error message is printed and the program exits.

60

2. int IV_size (IV *iv) ;

This method returns the value of size, the present size of the vector.

Error checking: If iv is NULL, an error message is printed and the program exits.

3. int IV_maxsize (IV *iv) ;

This method returns the value of maxsize, the maximum size of the vector.

Error checking: If iv is NULL, an error message is printed and the program exits.

4. int IV_entry (IV *iv, int loc) ;

This method returns the value of the loc’th entry in the vector. If loc < 0 or loc >= size, i.e., if
the location is out of range, we return -1. This design feature is handy when a list terminates with
a -1 value.

Error checking: If iv is NULL, an error message is printed and the program exits.

5. int * IV_entries (IV *iv) ;

This method returns vec, a pointer to the base address of the vector.

Error checking: If iv is NULL an error message is printed and the program exits.

6. void IV_sizeAndEntries (IV *iv, int *psize, int **pentries) ;

This method fills *psize with the size of the vector and *pentries with the base address of the vector.

Error checking: If iv, psize or pentries is NULL an error message is printed and the program exits.

7. void IV_setEntry (IV *iv, int loc, int value) ;

This method sets the loc’th entry of the vector to value.

Error checking: If iv, loc < 0 or loc >= size, or if vec is NULL an error message is printed and the
program exits.

8.2.3 Initializer methods

1. void IV_init (IV *iv, int size, int *entries) ;

This method initializes the object given a size for the vector and a possible pointer to the vectors
storage. Any previous data with a call to IV clearData(). If entries != NULL then the vec field is
set to entries, the size and maxsize fields are set to size , and owned is set to zero because the
object does not own the entries. If entries is NULL and if size > 0 then a vector is allocated by the
object, and the object owns this storage.

Error checking: If iv is NULL or size < 0, an error message is printed and the program exits.

2. void IV_init1 (IV *iv, int size) ;

This method initializes the object given a size for the vector. Any previous data is cleared with a call
to IV clearData(). Then size and maxsize are set to size. If size > 0, then the vector is created
via a call to IVinit() and owned is set to 1.

Error checking: If iv is NULL or size < 0, an error message is printed and the program exits.

3. void IV_init2 (IV *iv, int size, int maxsize, int owned, int *vec) ;

This is the total initialization method. Any previous data is cleared with a call to IV clearData(). If
vec is NULL, the object is initialized via a call to IV init1(). Otherwise, the object’s remaining fields
are set to the input parameters.

Error checking: If iv is NULL or maxsize < 0 or size < 0, or if owned is not equal to 0 or 1, or if
owned = 0 and vec == NULL, an error message is printed and the program exits.

61

4. void IV_setMaxsize (IV *iv, int newmaxsize) ;

This method sets the maximum size of the vector. If maxsize, the present maximum size, is not equal
to newmaxsize, then new storage is allocated. Only size entries of the old data are copied into the
new storage, so if size > newmaxsize then data will be lost. The size field is set to the minimum of
size and newmaxsize.

Error checking: If iv is NULL or newmaxsize < 0, or if 0 < maxsize and owned == 0, an error message
is printed and the program exits.

5. void IV_setSize (IV *iv, int newsize) ;

This method sets the size of the vector. If newsize > maxsize, the length of the vector is increased
with a call to IV setMaxsize(). The size field is set to newsize.

Error checking: If iv is NULL or newsize < 0, or if 0 < maxsize < newsize and owned == 0, an error
message is printed and the program exits.

8.2.4 Utility methods

1. void IV_shiftBase (IV *iv, int offset) ;

This method shifts the base entries of the vector and decrements the present size and maximum size of
the vector by offset. This is a dangerous method to use because the state of the vector is lost, namely
vec, the base of the entries, is corrupted. If the object owns its entries and IV free(), IV setSize() or
IV setMaxsize() is called before the base has been shifted back to its original position, a segmentation
violation will likely result. This is a very useful method, but use with caution.

Error checking: If iv is NULL, an error message is printed and the program exits.

2. void IV_push (IV *iv, int val) ;

This method pushes an entry onto the vector. If the vector is full, i.e., if size = maxsize - 1, then
the size of the vector is doubled if possible. If the storage cannot grow, i.e., if the object does not own
its storage, an error message is printed and the program exits.

Error checking: If iv is NULL, an error message is printed and the program exits.

3. int IV_min (IV *iv) ;

int IV_max (IV *iv) ;

These methods simply return the minimum and maximum entries in the vector.

Error checking: If iv is NULL, size <= 0 or if vec == NULL, an error message is printed and the
program exits.

4. void IV_sortUp (IV *iv) ;

void IV_sortDown (IV *iv) ;

This method sorts the entries in the vector into ascending or descending order via calls to IVqsortUp()

and IVqsortDown().

Error checking: If iv is NULL, size <= 0 or if vec == NULL, an error message is printed and the
program exits.

5. void IV_ramp (IV *iv, int base, int incr) ;

This method fill the object with a ramp vector, i.e., entry i is base + i*incr.

Error checking: If iv is NULL, size <= 0 or if vec == NULL, an error message is printed and the
program exits.

62

6. void IV_shuffle (IV *iv, int seed) ;

This method shuffles the entries in the vector using seed as a seed to a random number generator.

Error checking: If iv is NULL, size <= 0 or if vec == NULL, an error message is printed and the
program exits.

7. int IV_sizeOf (IV *iv) ;

This method returns the number of bytes taken by the object.

Error checking: If iv is NULL an error message is printed and the program exits.

8. void IV_filterKeep (IV *iv, int tags[], int keepTag) ;

This method examines the entries in the vector. Let k be entry i in the vector. If tags[k] != keepTag,
the entry is moved to the end of the vector, otherwise it is moved to the beginning of the vector. The
size of the vector is reset to be the number of tagged entries that are now in the leading locations.

Error checking: If iv of tags is NULL an error message is printed and the program exits.

9. void IV_filterPurge (IV *iv, int tags[], int purgeTag) ;

This method examines the entries in the vector. Let k be entry i in the vector. If tags[k] ==

purgeTag, the entry is moved to the end of the vector, otherwise it is moved to the beginning of the
vector. The size of the vector is reset to be the number of untagged entries that are now in the leading
locations.

Error checking: If iv of tags is NULL an error message is printed and the program exits.

10. int * IV_first (IV *iv) ;

int * IV_next (IV *iv, int *pi) ;

These two methods are used as iterators, e.g.,

for (pi = IV_first(iv) ; pi != NULL ; pi = IV_next(iv, pi)) {

do something with entry *pi

}

Error checking: Each method checks to see if iv or pi is NULL. If so an error message is printed and
the program exits. In method IV first(), if pi is not in the valid range, an error message is printed
and the program exits.

11. void IV_fill (IV *iv, int value) ;

This method fills the vector with a scalar value.

Error checking: If iv is NULL, an error message is printed and the program exits.

12. void IV_copy (IV *iv1, IV *iv2) ;

This method fills the iv1 object with entries in the iv2 object. Note, this is a mapped copy, iv1 and
iv2 need not have the same size. The number of entries that are copied is the smaller of the two sizes.

Error checking: If iv1 or iv2 is NULL, an error message is printed and the program exits.

13. int IV_increment (IV *iv, int loc) ;

This method increments the loc’th location of the iv object by one and returns the new value.

Error checking: If iv is NULL or if loc is out of range, an error message is printed and the program
exits.

63

14. int IV_decrement (IV *iv, int loc) ;

This method decrements the loc’th location of the iv object by one and returns the new value.

Error checking: If iv is NULL or if loc is out of range, an error message is printed and the program
exits.

15. int IV_findValue (IV *iv, int value) ;

This method looks for value in its entries. If value is present, the first location is returned, otherwise
-1 is returned. The cost is linear in the number of entries.

Error checking: If iv is NULL, an error message is printed and the program exits.

16. int IV_findValueAscending (IV *iv, int value) ;

This method looks for value in its entries. If value is present, a location is returned, otherwise -1 is
returned. This method assumes that the entries are sorted in ascending order. The cost is logarthmic
in the number of entries.

Error checking: If iv is NULL, an error message is printed and the program exits.

17. int IV_findValueDescending (IV *iv, int value) ;

This method looks for value in its entries. If value is present, a location is returned, otherwise -1 is
returned. This method assumes that the entries are sorted in descending order. The cost is logarthmic
in the number of entries.

Error checking: If iv is NULL, an error message is printed and the program exits.

18. IV * IV_inverseMap (IV *listIV) ;

This method creates and returns an inverse map for a list of nonnegative integers. This function is
used when listIV contains a list of global ids and we need a map from the global ids to their location
in the list. The size of the returned IV object is equal to one plus the largest value found in listIV.
If value is not found in listIV, then the corresponding entry in the returned IV object is -1.

Error checking: If listIV is NULL, or if its size if zero or less or if its entries are NULL, or if one of its
entries is negative, or if any entry in listIV is repeated, an error message is printed and the program
exits.

19. IV * IV_targetEntries (IV *listIV) ;

This method creates and returns a list of locations where target is found in listIV .

Error checking: If listIV is NULL, or if its size if zero or less or if its entries are NULL, an error message
is printed and the program exits.

8.2.5 IO methods

There are the usual eight IO routines. The file structure of an IV object is simple: the first entry is size,
followed by the size entries found in vec[].

1. int IV_readFromFile (IV *iv, char *fn) ;

This method reads an IV object from a formatted file. It tries to open the file and if it is successful,
it then calls IV readFromFormattedFile() or IV readFromBinaryFile(), closes the file and returns
the value returned from the called routine.

Error checking: If iv or fn are NULL, or if fn is not of the form *.ivf (for a formatted file) or *.ivb
(for a binary file), an error message is printed and the method returns zero.

64

2. int IV_readFromFormattedFile (IV *iv, FILE *fp) ;

This method reads in an IV object from a formatted file. If there are no errors in reading the data,
the value 1 is returned. If an IO error is encountered from fscanf, zero is returned.

Error checking: If iv or fp are NULL an error message is printed and zero is returned.

3. int IV_readFromBinaryFile (IV *iv, FILE *fp) ;

This method reads in an IV object from a binary file. If there are no errors in reading the data, the
value 1 is returned. If an IO error is encountered from fread, zero is returned.

Error checking: If iv or fp are NULL an error message is printed and zero is returned.

4. int IV_writeToFile (IV *iv, char *fn) ;

This method writes an IV object to a formatted file. It tries to open the file and if it is successful, it
then calls IV writeFromFormattedFile() or IV writeFromBinaryFile(), closes the file and returns
the value returned from the called routine.

Error checking: If iv or fn are NULL, or if fn is not of the form *.ivf (for a formatted file) or *.ivb
(for a binary file), an error message is printed and the method returns zero.

5. int IV_writeToFormattedFile (IV *iv, FILE *fp) ;

This method writes an IV object to a formatted file. If there are no errors in writing the data, the
value 1 is returned. If an IO error is encountered from fprintf, zero is returned.

Error checking: If iv or fp are NULL an error message is printed and zero is returned.

6. int IV_writeToBinaryFile (IV *iv, FILE *fp) ;

This method writes an IV object to a binary file. If there are no errors in writing the data, the value
1 is returned. If an IO error is encountered from fwrite, zero is returned.

Error checking: If iv or fp are NULL an error message is printed and zero is returned.

7. int IV_writeForHumanEye (IV *iv, FILE *fp) ;

This method writes an IV object to a file in a human readable format. The method IV writeStats()

is called to write out the header and statistics. The entries of the vector then follow in eighty column
format using the IVfp80() method. The value 1 is returned.

Error checking: If iv or fp are NULL an error message is printed and zero is returned.

8. int IV_writeStats (IV *iv, FILE *fp) ;

This method writes the header and statistics to a file. The value 1 is returned.

Error checking: If iv or fp are NULL an error message is printed and zero is returned.

9. int IV_fp80 (IV *iv, FILE *fp, int column, int *pierr) ;

This method is just a wrapper around the IVfp80() method for an int method. The entries in the
vector are found on lines with eighty columns and are separated by a whitespace. The value 1 is
returned.

Error checking: If iv or fp or pierr are NULL, an error message is printed and zero is returned.

10. int IV_writeForMatlab (IV *iv, char *name, FILE *fp) ;

This method writes the entries of the vector to a file suitable to be read by Matlab. The character
string name is the name of the vector, e.g, if name = "A", then we have lines of the form

65

A(1) = 32 ;

A(2) = -433 ;

...

for each entry in the vector. Note, the output indexing is 1-based, not 0-based. The value 1 is returned.

Error checking: If iv or fp are NULL, an error message is printed and zero is returned.

8.3 Driver programs for the IV object

1. testIO msglvl msgFile inFile outFile

This driver program tests the IV IO methods, and is useful for translating between the formatted *.ivf

and binary *.ivb files.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inFile parameter is the name of the file from which to read in the object. inFile must be
of the form *.ivf for a formatted file or *.ivb for a binary file.

• The outFile parameter is the name of the file to which to write out the object. If outfile is of
the form *.ivf, the object is written to a formatted file. If outfile is of the form *.ivb, the
object is written to a binary file. When outFile is not "none", the object is written to the file
in a human readable format. When outFile is "none", the object is not written out.

Chapter 9

IVL: Integer Vector List Object

The IVL object is used to handle a list of int vectors, thus the acronym Integer Vector List. The most
common use is to represent a graph or the adjacency structure of a matrix. We have tried to make this
object easy to use, and much hinges on the ability to create new lists or change the size of a list. In the
interests of efficiency, this object is not a general purpose storage object, i.e., free’d data is not reused.

9.1 Data Structure

The IVL structure has seven fields.

• int type : storage type, one of IVL CHUNKED, IVL SOLO, IVL UNKNOWN, and IVL NOTYPE (which means
the object has not yet been initialized.) Here is a description of the three types of storage management.

– IVL CHUNKED

A chunk of data is allocated by the object and each list occupies contiguous entries in a chunk.
More than one chunk may exist at one time, but only one contains free entries to be used for a
new list. If there is not enough space in the chunk to contain the entries in a new list, another
chunk is allocated to hold the list. When the IVL object is free’d, all the chunks of data are free’d.
The number of entries in a chunk can be set by the user by changing the incr field, whose default
value is 1024. This type of storage is used most often.

– IVL SOLO

Each list is allocated separately using the IVinit() function. When the IVL object is free’d, each
list is free’d separately using the IVfree() function.

– IVL UNKNOWN

This storage mode is available for the cases where storage for a list is aliased to another location.
Absolutely no free’ing of data is done when the IVL object is free’d.

The storage management is handled by IVL setList() and IVL setPointerToList().

• int maxnlist : maximum number of lists.

int nlist : number of lists.

We may not know how many lists we will need for the object — maxnlist is the dimension of the
sizes[] and p vec[] arrays and nlist is the present number of active lists. When we initialize the
object using one of the IVL init{1,2,3}() methods, we set nlist equal to maxnlist. We resize the
object using IVL setMaxnlist().

66

67

• int tsize : total number of list entries.

• int *sizes : pointer to an int vector of size maxnlist.

int **p vec : pointer to an int* vector of size maxnlist.

The size of list ilist is found in sizes[ilist] and p vec[ilist] points to the start of the list. The
sizes and p vec fields need never be accessed directly — see the IVL listAndSize(), IVL setList()

and IVL setPointerToList() methods.

• int incr : increment for a new chunk of data, used for type IVL CHUNKED

• Ichunk *chunk : pointer to the active Ichunk structure, a helper object to manage the allocated
storage. It has the following fields.

– int size : number of entries in the chunk, also the dimension of the array base[].

– int inuse : number of entries in use from this chunk, the number of available entries in size -

inuse.

– int *base : base address of the int vector of size size from which we find storage for the
individual lists.

– Ichunk *next : pointer to the next Ichunk object in the list of active Ichunk objects.

9.2 Prototypes and descriptions of IVL methods

This section contains brief descriptions including prototypes of all methods that belong to the IVL object.

9.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. IVL * IVL_new (void) ;

This method simply allocates storage for the IVL structure and then sets the default fields by a call to
IVL setDefaultFields().

2. void IVL_setDefaultFields (IVL *ivl) ;

This method sets the default fields of the object — type = IVL NOTYPE, maxnlist, nlist and tsize

are zero, incr is 1024, and sizes, p vec and chunk are NULL.

Error checking: If ivl is NULL, an error message is printed and the program exits.

3. void IVL_clearData (IVL *ivl) ;

This method clears any data allocated by this object and then sets the default fields with a call to
IVL setDefaultFields(). Any storage held by the Ichunk structures is free’d, and if sizes or p vec

are not NULL, they are free’d.

Error checking: If ivl is NULL, an error message is printed and the program exits.

4. void IVL_free (IVL *ivl) ;

This method releases any storage by a call to IVL clearData() then free’s the storage for the structure
with a call to free().

Error checking: If ivl is NULL, an error message is printed and the program exits.

68

9.2.2 Instance methods

1. int IVL_type (IVL *ivl) ;

This method returns type, the storage type.

Error checking: If ivl is NULL, an error message is printed and the program exits.

2. int IVL_maxnlist (IVL *ivl) ;

This method returns maxnlist, the maximum number of lists.

Error checking: If ivl is NULL, an error message is printed and the program exits.

3. int IVL_nlist (IVL *ivl) ;

This method returns nlist, the present number of lists.

Error checking: If ivl is NULL, an error message is printed and the program exits.

4. int IVL_tsize (IVL *ivl) ;

This method returns tsize, the present number of list entries.

Error checking: If ivl is NULL, an error message is printed and the program exits.

5. int IVL_incr (IVL *ivl) ;

This method returns incr, the storage increment.

Error checking: If ivl is NULL, an error message is printed and the program exits.

6. int IVL_setincr (IVL *ivl, int incr) ;

This method sets the storage increment to incr.

Error checking: If ivl is NULL or incr is negative, an error message is printed and the program exits.

9.2.3 Initialization and resizing methods

1. void IVL_init1 (IVL *ivl, int type, int maxnlist) ;

This method is used when only the number of lists is known. Any previous data is cleared with a call
to IVL clearData(). The type field is set. If maxnlist > 0, storage is allocated for the sizes[] and
p vec[] arrays and nlist is set to maxnlist.

Error checking: If ivl is NULL or type is invalid or maxnlist is negative, an error message is printed
and the program exits.

2. void IVL_init2 (IVL *ivl, int type, int nlist, int tsize) ;

This method is used when the number of lists and their total size is known — typemust be IVL CHUNKED.
The IVL init1() initializer method is called. If tsize > 0 an Ichunk object with tsize entries is
allocated.

Error checking: If ivl is NULL or type is not IVL CHUNKED or if nlist or tsize are negative, an error
message is printed and the program exits.

3. void IVL_init3 (IVL *ivl, int type, int nlist, int sizes[]) ;

This method is used when the number of lists and the size of each list is known — type must be
IVL CHUNKED or IVL SOLO. If type is IVL CHUNKED, then IVL init2() is called to initialize the object,
else type is IVL SOLO and IVL init1() is called. The size and pointer for each list is then set using
the value from the sizes[] array.

Error checking: If ivl is NULL, or if type is not IVL CHUNKED or IVL SOLO, or if nlist is nonpositive,
or if sizes[] is NULL, an error message is printed and the program exits.

69

4. int IVL_initFromSubIVL (IVL *subIVL, IVL *ivl, IV *keeplistIV, IV *keepentriesIV) ;

This method initializes the subIVL object from the ivl object. The lists found in keeplistIV are
placed into the subIVL object; if keeplistIV is NULL, all lists are included. The list entries found in
keepentriesIV are placed into lists in the the subIVL object; if keepentriesIV is NULL, all entries are
included.

Return values: 1 is a normal return, -1 means subIVL is NULL, -2 means ivl is NULL, -3 means
keeplistIV is invalid.

5. void IVL_setMaxnlist (IVL *ivl, int newmaxnlist) ;

This method is used to resize the object by changing the maximum number of lists. If newmaxnlist
== maxnlist, nothing is done. Otherwise, new storage for sizes[] and p vec[] is allocated, the
information for the first nlist lists is copied over, and the old storage free’d. Note, maxnlist is set to
newmaxnlist and nlist is set to the minimum of nlist and newmaxnlist.

Error checking: If ivl is NULL or if newmaxnlist is negative, an error message is printed and the
program exits.

6. void IVL_setNlist (IVL *ivl, int newnlist) ;

This method is used to change the number of lists. If newnlist > maxnlist, storage for the lists is
increased via a call to the IVL setMaxnlist() method. Then nlist is set to newnlist.

Error checking: If ivl is NULL, or if newnlist is negative, an error message is printed and the program
exits.

9.2.4 List manipulation methods

1. void IVL_listAndSize (IVL *ivl, int ilist, int *psize, int **pivec) ;

This method fills *psize with sizes[ilist] and *pivec with p vec[ilist].

Error checking: If ivl is NULL, or if ilist < 0 or ilist >= nlist or if psize or pivec is NULL, an
error message is printed and the program exits.

2. int * IVL_firstInList (IVL *ivl, int ilist) ;

int * IVL_nextInList (IVL *ivl, int ilist, int *pi) ;

These two methods are used as iterators, e.g.,

for (pi = IVL_firstInList(ivl, ilist) ;

pi != NULL ;

pi = IVL_nextInList(ivl, ilist, pi)) {

do something with entry *pi

}

Error checking: Each method checks to see if ivl is NULL or ilist < 0 or ilist >= nlist, if so an
error message is printed and the program exits. In method IVL firstInList(), if sizes[ilist]

> 0 and p vec[ilist] = NULL, an error message is printed and the program exits. In method
IVL nextInList(), if pi is not in the valid range for list ilist, an error message is printed and
the program exits.

3. void IVL_setList (IVL *ivl, int ilist, int isize, int ivec[]) ;

This method sets the size and (possibly) pointer to a list of entries. The behavior of the method
depends on the type of the ivl object. Here is the flow chart:

70

if ilist >= maxnlist then
the number of lists is increased via a call to IVL setMaxnlist()

endif
if ilist >= nlist then

nlist is increased
endif
if isize = 0 then

release the storage for that list, reclaim storage if possible
else if type is IVL UNKNOWN then

set the pointer
else

if the present size of list ilist is smaller than isize then
get new storage for a new larger list

endif
set the size
if ivec is not NULL then

copy the entries
endif

endif

Error checking: If ivl is NULL or ilist < 0 then an error message is printed and the program exits.

4. void IVL_setPointerToList (IVL *ivl, int ilist, int size, int ivec[]) ;

This method is similar to IVL setList() but is used only with type = IVL CHUNKED. It simply sets a
size and pointer. The maximum number of lists and the number of lists are resized as necessary.

Error checking: If ivl is NULL or type != IVL CHUNKED. or ilist < 0 then an error message is printed
and the program exits.

9.2.5 Utility methods

1. int IVL_sizeOf (IVL *ivl) ;

This method returns the number of bytes taken by this object.

Error checking: If ivl is NULL, an error message is printed and the program exits.

2. int IVL_min (IVL *ivl) ;

int IVL_max (IVL *ivl) ;

int IVL_maxListSize (IVL *ivl) ;

int IVL_sum (IVL *ivl) ;

These methods return some simple information about the object.

Error checking: If ivl is NULL then an error message is printed and the program exits.

3. int IVL_sortUp (IVL *ivl) ;

This method sorts each list into ascending order.

Error checking: If ivl is NULL or nlist < 0 then an error message is printed and the program exits.

4. int * IVL_equivMap1 (IVL *ivl) ;

IV * IVL_equivMap2 (IVL *ivl) ;

Two lists are equivalent if their contents are identical. These methods are used to find the natural
compressed graph of a matrix [3]. The returned int vector or IV object has size ivl->nlist and

71

contains a map from the lists in ivl to the lists in the new IVL object. If nlist is zero, NULL is
returned.

Error checking: As usual, if ivl is NULL or nlist < 0 then an error message is printed and the program
exits.

5. void IVL_overwrite (IVL *ivl, IV *oldToNewIV) ;

This method overwrite the entries in each list using an old-to-new vector. If an entry in a list is out of
range, i.e., it is not in [0,size-1] where size is the size of oldToNewIV, the entry is not changed.

Error checking: If ivl or oldToNewIV is NULL, an error message is printed and the program exits.

6. IVL * IVL_mapEntries (IVL *ivl, IV *mapIV) ;

This method creates and returns a new IVL object. List ilist in the new IVL object contains the
image of the entries in list ilist of the old IVL object, i.e., the old entries are mapped using the mapIV
map vector and duplicates are purged.

Error checking: If ivl or mapIV is NULL, an error message is printed and the program exits.

7. void IVL_absorbIVL (IVL *ivl1, IVL *ivl2, IV *mapIV) ;

In this method, object ivl1 absorbs the lists and entries of object ivl2. List ilist of object ivl1

is mapped into list map[ilist] of object ivl2, where map[] is the vector from the mapIV object. All
Ichunk objects once owned by ivl2 are now owned by ivl1.

Error checking: If ivl1, ivl2 or mapIV is NULL, or if the size pf mapIV is not equal to the number of
lists in ivl2, or if the vector in mapIV is NULL, then an error message is printed and the program exits.

8. IVL * IVL_expand (IVL *ivl, IV *eqmapIV) ;

This method was created in support of a symbolic factorization. An IVL object is constructed using
a compressed graph. it must be expanded to reflect the compressed graph. The number of lists does
not change (there is one list per front) but the size of each list may change. so we create and return a
new IVL object that contains entries for the uncompressed graph.

Error checking: If ivl or eqmapIV is NULL, an error message is printed and the program exits.

9.2.6 Miscellaneous methods

1. IVL * IVL_make9P (int n1, int n2, int ncomp) ;

This method returns an IVL object that contains the full adjacency structure for a 9-point operator on
a n1× n2 grid with ncomp components at each grid point.

Error checking: If n1, n2 or ncomp is less than or equal to zero, an error message is printed and the
program exits.

2. IVL * IVL_make13P (int n1, int n2) ;

This method returns an IVL object that contains the full adjacency structure for a 13-point two
dimensional operator on a n1× n2 grid.

Error checking: If n1 or n2 is less than or equal to zero, an error message is printed and the program
exits.

3. IVL * IVL_make5P (int n1, int n2) ;

This method returns an IVL object that contains the full adjacency structure for a 5-point two dimen-
sional operator on a n1× n2 grid.

Error checking: If n1 or n2 is less than or equal to zero, an error message is printed and the program
exits.

72

4. IVL * IVL_make27P (int n1, int n2, int ncomp) ;

This method returns an IVL object that contains the full adjacency structure for a 27-point operator
on a n1× n2× n3 grid with ncomp components at each grid point.

Error checking: If n1, n2, n3 or ncomp is less than or equal to zero, an error message is printed and
the program exits.

9.2.7 IO methods

There are the usual eight IO routines. The file structure of a IVL object is simple: type, nlist and tsize,
followed by sizes[nlist], followed by the lists pointed to by p vec[].

1. int IVL_readFromFile (IVL *ivl, char *fn) ;

This method reads an IVL object from a file. If the the file can be opened successfully, the method
calls IVL readFromFormattedFile() or IVL readFromBinaryFile(), closes the file and returns the
value returned from the called routine.

Error checking: If ivl or fn are NULL, or if fn is not of the form *.ivlf (for a formatted file) or *.ivlb
(for a binary file), an error message is printed and the method returns zero.

2. int IVL_readFromFormattedFile (IVL *ivl, FILE *fp) ;

This method reads an IVL object from a formatted file. If there are no errors in reading the data, the
value 1 is returned. If an IO error is encountered from fscanf, zero is returned.

Error checking: If ivl or fp are NULL an error message is printed and zero is returned.

3. int IVL_readFromBinaryFile (IVL *ivl, FILE *fp) ;

This method reads an IVL object from a binary file. If there are no errors in reading the data, the
value 1 is returned. If an IO error is encountered from fread, zero is returned.

Error checking: If ivl or fp are NULL an error message is printed and zero is returned.

4. int IVL_writeToFile (IVL *ivl, char *fn) ;

This method writes an IVL object to a file. If the the file can be opened successfully, the method
calls IVL writeFromFormattedFile() or IVL writeFromBinaryFile(), closes the file and returns the
value returned from the called routine.

Error checking: If ivl or fn are NULL, or if fn is not of the form *.ivlf (for a formatted file) or *.ivlb
(for a binary file), an error message is printed and the method returns zero.

5. int IVL_writeToFormattedFile (IVL *ivl, FILE *fp) ;

This method writes an IVL object to a formatted file. If there are no errors in writing the data, the
value 1 is returned. If an IO error is encountered from fprintf, zero is returned.

Error checking: If ivl or fp are NULL an error message is printed and zero is returned.

6. int IVL_writeToBinaryFile (IVL *ivl, FILE *fp) ;

This method writes an IVL object to a binary file. If there are no errors in writing the data, the value
1 is returned. If an IO error is encountered from fwrite, zero is returned.

Error checking: If ivl or fp are NULL an error message is printed and zero is returned.

7. int IVL_writeForHumanEye (IVL *ivl, FILE *fp) ;

This method writes an IVL object to a file in an easily readable format. The method IVL writeStats()

is called to write out the header and statistics. The value 1 is returned.

Error checking: If ivl or fp are NULL an error message is printed and zero is returned.

73

8. int IVL_writeStats (IVL *ivl, FILE *fp) ;

This method writes some statistics about an IVL object to a file. The value 1 is returned.

Error checking: If ivl or fp are NULL, an error message is printed and zero is returned.

9.3 Driver programs for the IVL object

This section contains brief descriptions of six driver programs.

1. testIO msglvl msgFile inFile outFile

This driver program reads in a IVL object from inFile and writes out the object to outFile

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the IVL

object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inFile parameter is the input file for the IVL object. It must be of the form *.ivlf or
*.ivlb. The IVL object is read from the file via the IVL readFromFile() method.

• The outFile parameter is the output file for the IVL object. It must be of the form *.ivlf or
*.ivlb. The IVL object is written to the file via the IVL writeToFile() method.

2. testExpand msglvl msgFile inIVLfile inEqmapFile outIVLfile

This program is used to test the expand function. One application is the symbolic factorization. We
need the adjacency structure of the factor matrix. We could compute it directly from the original
graph, or we could compute the adjacency structure of the compressed graph and then expand it into
the full adjacency structure. The second method is usually faster.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the IVL

object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inIVLfile parameter is the input file for the first, unexpanded IVL object. It must be of
the form *.ivlf or *.ivlb. The IVL object is read from the file via the IVL readFromFile()

method.

• The inEqmapFile parameter is the input file for the map from uncompressed vertices to com-
pressed vertices. It must be of the form *.ivf or *.ivb. The IV object is read from the file via
the IV readFromFile() method.

• The outIVLfile parameter is the output file for the second, expanded IVL object. It must be of
the form *.ivlf or *.ivlb. The IVL object is read from the file via the IVL readFromFile()

method.

Chapter 10

Ideq: Integer Dequeue

The Ideq is a object that manages a dequeue, a list data structure that supports inserts and deletes at both
the head and the tail of the list. We wrote this application in support of a max flow code where visiting an
out-edge put a vertex on the head of the list and visiting an in-edge put a vertex on the tail of the list. The
goal was to be close to a depth first traversal of the network. This object is also used in multithreaded and
MPI factorizations and forward and back solves, where each process must perform a bottom-up or top-down
traversal of a tree. The Ideq object is used to specify which nodes of the tree to visit (possibly repeatedly)
in which order.

The dequeue has fixed size though it can grow using the Ideq resize() method.

10.1 Data Structure

The Ideq object has four fields.

• int maxsize : maximum size of the dequeue.

• int head : head of the list.

• int tail : tail of the list.

• IV iv : an IV object to hold the list vector.

A correctly initialized and nontrivial Ideq object will have maxsize > 0. When the dequeue is empty, head
= tail = -1.

10.2 Prototypes and descriptions of Ideq methods

This section contains brief descriptions including prototypes of all methods that belong to the Ideq object.

10.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

74

75

1. Ideq * Ideq_new (void) ;

This method simply allocates storage for the Ideq structure and then sets the default fields by a call
to Ideq setDefaultFields().

2. void Ideq_setDefaultFields (Ideq *deq) ;

This method sets the structure’s fields to default values: head and tail are set to -1, maxsize is set
to zero, and the fields for iv are set via a call to IV setDefaultFields().

Error checking: If deq is NULL, an error message is printed and the program exits.

3. void Ideq_clearData (Ideq *deq) ;

This method clears any data owned by the object. It releases any storage held by the deq->iv object
with a call to IV clearData(). It then calls Ideq setDefaultFields().

Error checking: If deq is NULL, an error message is printed and the program exits.

4. void Ideq_free (Ideq *deq) ;

This method releases any storage by a call to Ideq clearData() then free’s the storage for the structure
with a call to free().

Error checking: If deq is NULL, an error message is printed and the program exits.

10.2.2 Initializer methods

There is one initializer method.

1. int Ideq_resize (Ideq *deq, int newsize) ;

This method resizes the dequeue list, either increasing the size or decreasing the size (if possible). Since
after Ideq new() the size of the list is zero, this method also serves as an initializer.

If the present size of the list (the number of entries between head and tail inclusive) is larger than
newsize, the method returns -1. Otherwise, a new int vector is allocated and filled with the entries
in the list. The old int vector is free’d, the new vector is spliced into the IV object, and the head,
tail and maxsize fields are set. The method then returns 1.

Error checking: If deq is NULL, or if newsize < 0, an error message is printed and the program exits.

10.2.3 Utility methods

1. void Ideq_clear (Ideq *deq) ;

This method clears the dequeue. The head and tail fields are set to -1.

Error checking: If deq is NULL, an error message is printed and the program exits.

2. int Ideq_head (Ideq *deq) ;

This method returns the value at the head of the list without removing that value. If head == -1 then
-1 is returned. Note, the list may be nonempty and the first value may be -1, so -1 may signal an
empty list or a terminating element.

Error checking: If deq is NULL, an error message is printed and the program exits.

3. int Ideq_removeFromHead (Ideq *deq) ;

This method returns the value at the head of the list and removes that value. If head == -1 then -1

is returned. Note, the list may be nonempty and the first value may be -1, so -1 may signal an empty
list or a terminating element.

Error checking: If deq is NULL, an error message is printed and the program exits.

76

4. int Ideq_insertAtHead (Ideq *deq, int val) ;

This method inserts a value val into the list at the head of the list. If there is no room in the list, -1
is returned and the dequeue must be resized using the Ideq resize() method. Otherwise, the item is
placed into the list and 1 is returned.

Error checking: If deq is NULL, an error message is printed and the program exits.

5. int Ideq_tail (Ideq *deq) ;

This method returns the value at the tail of the list without removing that value. If tail == -1 then
-1 is returned. Note, the list may be nonempty and the first value may be -1, so -1 may signal an
empty list or a terminating element.

Error checking: If deq is NULL, an error message is printed and the program exits.

6. int Ideq_removeFromTail (Ideq *deq) ;

This method returns the value at the tail of the list and removes that value. If tail == -1 then -1 is
returned. Note, the list may be nonempty and the first value may be -1, so -1 may signal an empty
list or a terminating element.

Error checking: If deq is NULL, an error message is printed and the program exits.

7. int Ideq_insertAtTail (Ideq *deq, int val) ;

This method inserts a value val into the list at the tail of the list. If there is no room in the list, -1
is returned and the dequeue must be resized using the Ideq resize() method. Otherwise, the item is
placed into the list and 1 is returned.

Error checking: If deq is NULL, an error message is printed and the program exits.

10.2.4 IO methods

1. void Ideq_writeForHumanEye (Ideq *deq) ;

This method write the state of the object, (the size, head and tail) and the list of entries to a file.

Error checking: If deq or fp is NULL, an error message is printed and the program exits.

Chapter 11

Lock: Mutual Exclusion Lock object

The Lock object is an object that is used to insulate the rest of the library from the particular thread
package that is active. The FrontMtx, ChvList, ChvManager, SubMtxList and SubMtxManager objects all
may contain a mutual exclusion lock to govern access to their critical sections of code in a multithreaded
environment. Instead of putting the raw code that is specific to a particular thread library into each of these
objects, each has a Lock object. It is this Lock object that contains the code and data structures for the
different thread libraries.

At present we have the Solaris and POSIX thread libraries supported by the Lock object. The header
file Lock.h contains #if/#endif statements that switch over the supported libraries. The THREAD TYPE

parameter is used to make the switch. Porting the library to another thread package requires making
changes to the Lock object. The parallel factor and solve methods that belong to the FrontMtx object also
need to have additional code inserted into them to govern thread creation, joining, etc, but the switch is
made by the THREAD TYPE definition found in the header file Lock.h. It is possible to use the code without
any thread package — simply set THREAD TYPE to TT NONE in the Lock.h file.

11.1 Data Structure

The Lock structure has three fields.

• int nlocks : number of locks made.

• int nunlocks : number of unlocks made.

• the mutual exclusion lock

For Solaris threads we have mutex t *mutex.

For POSIX threads we have pthread mutex t *mutex.

For no threads we have void *mutex.

11.2 Prototypes and descriptions of Lock methods

11.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

77

78

1. Lock * Lock_new (void) ;

This method simply allocates storage for the Lock structure and then sets the default fields by a call
to Lock setDefaultFields().

2. void Lock_setDefaultFields (Lock *lock) ;

This method sets the structure’s fields to default values: nlocks and nunlocks are zero, and mutex is
NULL.

Error checking: If lock is NULL, an error message is printed and the program exits.

3. void Lock_clearData (Lock *lock) ;

This method clears the data for the object. If lock->mutex is not NULL, then mutex destroy(lock->mutex)

is called (for the Solaris thread package) or pthread mutex destroy(lock->mutex) is called (for the
POSIX thread package), The method concludes with a call to Lock setDefaultFields().

Error checking: If lock is NULL, an error message is printed and the program exits.

4. void Lock_free (Lock *lock) ;

This method releases any storage by a call to Lock clearData() then free’s the storage for the structure
with a call to free().

Error checking: If lock is NULL, an error message is printed and the program exits.

11.2.2 Initializer method

1. void Lock_init (Lock *lock, int lockflag) ;

This is the basic initializer method. Any previous data is cleared with a call to Lock clearData(). If
lockflag = 0, then no lock is initialized. For the Solaris thread package, lockflag = 1 means the
lock will be initialized to synchronize only threads in this process, while lockflag = 2 means the lock
will be initialized to synchronize threads across processes. For the POSIX thread package, lockflag
!= 0 means the lock will be initialized to synchronize only threads in this process.

Error checking: If lock is NULL, an error message is printed and the program exits.

11.2.3 Utility methods

1. void Lock_lock (Lock *lock) ;

This method locks the lock.

Error checking: If lock is NULL, an error message is printed and the program exits.

2. void Lock_unlock (Lock *lock) ;

This method unlocks the lock.

Error checking: If lock is NULL, an error message is printed and the program exits.

Chapter 12

Perm: Permutation Object

The Perm object is used to store a pair of permutation vectors. The main function of this object is to read
and write permutations from and to files.

12.1 Data Structure

The Perm object can contain two permutation vectors, an old-to-new and a new-to-old permutation. One or
both may be present in the structure.

The Perm structure has four fields.

• int isPresent : flag to tell which vectors are present

– 0 −→ neither is present

– 1 −→ newToOld is present, oldToNew is not

– 2 −→ oldToNew is present, newToOld is not

– 3 −→ both newToOld and oldToNew are present

• int size : dimension of the vectors

• int *newToOld : pointer to the new-to-old vector

• int *oldToNew : pointer to the old-to-new vector

12.2 Prototypes and descriptions of Perm methods

This section contains brief descriptions including prototypes of all methods that belong to the Perm object.

12.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. Perm * Perm_new (void) ;

This method simply allocates storage for the Perm structure and then sets the default fields by a call
to Perm setDefaultFields().

79

80

2. void Perm_setDefaultFields (Perm *perm) ;

This method sets the structure’s fields to default values.

Error checking: If perm is NULL, an error message is printed and the program exits.

3. void Perm_clearData (Perm *perm) ;

This method clears data owned by the object. If perm->newToOld is not NULL, its storage is free’d with
a call to IVfree(). If perm->oldToNew is not NULL, its storage is free’d with a call to IVfree(). The
structure’s default fields are then set with a call to Perm setDefaultFields().

Error checking: If perm is NULL, an error message is printed and the program exits.

4. void Perm_free (Perm *perm) ;

This method releases any storage by a call to Perm clearData() then free’s the storage for the structure
with a call to free().

Error checking: If perm is NULL, an error message is printed and the program exits.

12.2.2 Initializer methods

There is one initializer method.

1. void Perm_initWithTypeAndSize (Perm *perm, int isPresent, int size) ;

This method is the primary initializer. It clears any previous data with a call to Perm clearData().
Then the isPresent and size fields are set. If isPresent == 1 then newToOld is set with a call to
IVinit(). If isPresent == 2 then oldToNew is set with a call to IVinit(). If isPresent == 3 then
newToOld and newToOld are set with calls to IVinit().

Error checking: If perm is NULL, or if isPresent is invalid, or if size <= 0, an error message is printed
and the program exits.

12.2.3 Utility methods

1. int Perm_sizeOf (Perm *perm) ;

This method returns the number of bytes taken by this object.

Error checking: If perm is NULL, an error message is printed and the program exits.

2. int Perm_checkPerm (Perm *perm) ;

This method checks the validity of the Perm object. If oldToNew is present, it is checked to see that it is
a true permutation vector, i.e., a one-one and onto map from [0,size) to [0,size), and similarly for
newToOld if it is present. If the permutation vector(s) are valid, 1 is returned, otherwise 0 is returned.

Error checking: If perm is NULL, an error message is printed and the program exits.

3. void Perm_fillOldToNew (Perm *perm) ;

If oldToNew is already present, the function returns. Otherwise, oldToNew is initialized with a call to
IVinit() and has its values set from newToOld.

Error checking: If perm is NULL, an error message is printed and the program exits.

4. void Perm_fillNewToOld (Perm *perm) ;

If NewToOld is already present, the function returns. Otherwise, NewToOld is initialized with a call to
IVinit() and has its values set from oldToNew.

Error checking: If perm is NULL, an error message is printed and the program exits.

81

5. void Perm_releaseOldToNew (Perm *perm) ;

If oldToNew is not present, the function returns. Otherwise, the storage for oldToNew is released with
a call to IVfree() the isPresent field is changed appropriately.

Error checking: If perm is NULL, an error message is printed and the program exits.

6. void Perm_releaseNewToOld (Perm *perm) ;

If NewToOld is not present, the function returns. Otherwise, the storage for NewToOld is released with
a call to IVfree() the isPresent field is changed appropriately.

Error checking: If perm is NULL, an error message is printed and the program exits.

7. Perm * Perm_compress (Perm *perm, IV *eqmapIV) ;

This method takes as input a Perm object and an equivalence map IV object (they must be the same
size). The equivalence map is from vertices to indistinguishable vertices in a compressed graph. A
second Perm object is produced that contains the equivalent permutation on the compressed graph.

Error checking: If perm or eqmapIV are NULL, an error message is printed and zero is returned.

12.2.4 IO methods

There are the usual eight IO routines. The file structure of a Perm object is simple:

isPresent size

oldToNew[size] (if present)
newToOld[size] (if present)

1. int Perm_readFromFile (Perm *perm, char *fn) ;

This method reads a Perm object from a file. It tries to open the file and if it is successful, it then
calls Perm readFromFormattedFile() or Perm readFromBinaryFile(), closes the file and returns the
value returned from the called routine.

Error checking: If perm or fn are NULL, or if fn is not of the form *.permf (for a formatted file) or
*.permb (for a binary file), an error message is printed and the method returns zero.

2. int Perm_readFromFormattedFile (Perm *perm, FILE *fp) ;

This method reads in a Perm object from a formatted file. If there are no errors in reading the data,
the value 1 is returned. If an IO error is encountered from fscanf, zero is returned. Note, if the
permutation vectors are one-based (as for Fortran), they are converted to zero-based vectors.

Error checking: If perm or fp are NULL, an error message is printed and zero is returned.

3. int Perm_readFromBinaryFile (Perm *perm, FILE *fp) ;

This method reads in a Perm object from a binary file. If there are no errors in reading the data, the
value 1 is returned. If an IO error is encountered from fread, zero is returned. Note, if the permutation
vectors are one-based (as for Fortran), they are converted to zero-based vectors.

Error checking: If perm or fp are NULL, an error message is printed and zero is returned.

4. int Perm_writeToFile (Perm *perm, char *fn) ;

This method writes a Perm object to a file. It tries to open the file and if it is successful, it then calls
Perm writeFromFormattedFile() or Perm writeFromBinaryFile(), closes the file and returns the
value returned from the called routine.

Error checking: If perm or fn are NULL, or if fn is not of the form *.permf (for a formatted file) or
*.permb (for a binary file), an error message is printed and the method returns zero.

82

5. int Perm_writeToFormattedFile (Perm *perm, FILE *fp) ;

This method writes out a Perm object to a formatted file. If there are no errors in writing the data,
the value 1 is returned. If an IO error is encountered from fprintf, zero is returned.

Error checking: If perm or fp are NULL, an error message is printed and zero is returned.

6. int Perm_writeToBinaryFile (Perm *perm, FILE *fp) ;

This method writes out a Perm object to a binary file. If there are no errors in writing the data, the
value 1 is returned. If an IO error is encountered from fwrite, zero is returned.

Error checking: If perm or fp are NULL, an error message is printed and zero is returned.

7. int Perm_writeForHumanEye (Perm *perm, FILE *fp) ;

This method writes out a Perm object to a file in a human readable format. The method Perm writeStats()

is called to write out the header and statistics. The value 1 is returned.

Error checking: If perm or fp are NULL, an error message is printed and zero is returned.

8. int Perm_writeStats (Perm *perm, FILE *fp) ;

This method writes out a header and statistics to a file. The value 1 is returned.

Error checking: If perm or fp are NULL, an error message is printed and zero is returned.

Chapter 13

Utilities directory

The Utilities directory contains a multitude of routines that manipulate vectors: char, int, float, double
and double vectors that are used to contain double precision complex entries. There are a variety of routines
to sort vectors with and without companion vectors. Our sort routines are based on [7], a quicksort algorithm
that uses the “nither” function (a median of three medians) to select the partition element, and tripartite
partitioning.

Aside from vector routines, the Utilities directory contains some methods used to manipulate elements
in singly linked lists. The IP structure (an int data element and a pointer) is used by several objects to
manage singly linked lists. The I2OP structure (two int and one void * data elements) is used in a two-keyed
hash table.

13.1 Data Structures

There are two data structures used in singly linked lists.

• IP: a singly linked list element with an int data field.

typedef struct _IP IP ;

struct _IP {

int val ;

IP *next ;

} ;

• I2OP: a singly linked list element with two int and one void * data fields.

typedef struct _I2OP I2OP ;

struct _I2OP {

int value0 ;

int value1 ;

void *value2 ;

I2OP *next ;

} ;

13.2 Prototypes and descriptions of Utilities methods

This section contains brief descriptions including prototypes of all methods that belong to the Utilities

directory.

83

84

13.2.1 CV : char vector methods

1. char * CVinit (int n, char c) ;

This is the allocator and initializer method for char vectors. Storage for an array with size n is found
and each entry is filled with character c. A pointer to the array is returned.

2. char * CVinit2 (int n) ;

This is an allocator method for char vectors. Storage for an array with size n is found. A pointer to
the array is returned. Note, on return, there will likely be garbage in the array.

3. void CVfree (char cvec[]) ;

This method releases the storage taken by cvec[].

4. void CVcopy (int n, char y[], char x[]) ;

This method copies n entries from x[] to y[], i.e., y[i] = x[i] for 0 <= i < n.

5. void CVfill (int n, char y[], char c) ;

This method fills n entries in y[] with the character c, i.e., y[i] = c for 0 <= i < n.

6. void CVfprintf (FILE *fp, int n, char y[]) ;

This method prints n entries in y[] to file fp. The format is new line followed by lines of eighty
columns of single characters.

7. int CVfp80 (FILE *fp, int n, char y[], int column, int *pierr) ;

This method prints n entries in y[] to file fp. The method splices vectors together or naturally breaks
the large vectors into lines. The column value is the present location, one can add (80 − column)
more characters before having to form a new line. The number of the present character in the line is
returned. If *pierr < 0, an IO error has occured.

8. int CVfscanf (FILE *fp, int n, char y[]) ;

This method scans in characters from file fp and places them in the array y[]. It tries to read in n

characters, and returns the number that were actually read.

13.2.2 DV : double vector methods

1. double * DVinit (int n, double val) ;

This is the allocator and initializer method for double vectors. Storage for an array with size n is
found and each entry is filled with val. A pointer to the array is returned.

2. double * DVinit2 (int n) ;

This is an allocator method for double vectors. Storage for an array with size n is found. A pointer
to the array is returned. Note, on return, there will likely be garbage in the array.

3. void DVfree (int vec[]) ;

This method releases the storage taken by vec[].

4. void DVfprintf (FILE *fp, int n, double y[]) ;

This method prints n entries in y[] to file fp. The format is new line followed by lines of six double’s
in "%12.4e" format.

85

5. int DVfscanf (FILE *fp, int n, double y[]) ;

This method scans in double’s from file fp and places them in the array y[]. It tries to read in n

double’s, and returns the number that were actually read.

6. void DVadd (int n, double y[], double x[]) ;

This method adds n entries from x[] to y[], i.e., y[i] += x[i] for 0 <= i < n.

7. void DVaxpy (int n, double y[], double alpha, double x[]) ;

This method adds a scaled multiple of n entries from x[] into y[], i.e., y[i] += alpha * x[i] for 0
<= i < n.

8. void DVaxpy2 (int n, double z[], double a, double x[],

double b, double y[]) ;

This method adds a scaled multiple of two vectors x[] and y[] to another vector z[], i.e., i.e., z[i]
+= a * x[i] + b * y[i] for 0 <= i < n.

9. void DVaxpy33 (int n, double y0[], double y1[], double y2[],

double alpha, double x0[], double x1[], double x2[]) ;

This method computes this computation.

y0[] = y0[] + alpha[0] * x0[] + alpha[1] * x1[] + alpha[2] * x2[]

y1[] = y1[] + alpha[3] * x0[] + alpha[4] * x1[] + alpha[5] * x2[]

y2[] = y2[] + alpha[6] * x0[] + alpha[7] * x1[] + alpha[8] * x2[]

10. void DVaxpy32 (int n, double y0[], double y1[], double y2[],

double alpha, double x0[], double x1[]) ;

This method computes this computation.

y0[] = y0[] + alpha[0] * x0[] + alpha[1] * x1[]

y1[] = y1[] + alpha[2] * x0[] + alpha[3] * x1[]

y2[] = y2[] + alpha[4] * x0[] + alpha[5] * x1[]

11. void DVaxpy31 (int n, double y0[], double y1[], double y2[],

double alpha, double x0[], double x1[]) ;

This method computes this computation.

y0[] = y0[] + alpha[0] * x0[]

y1[] = y1[] + alpha[1] * x0[]

y2[] = y2[] + alpha[2] * x0[]

12. void DVaxpy23 (int n, double y0[], double y1[],

double alpha, double x0[], double x1[], double x2[]) ;

This method computes this computation.

y0[] = y0[] + alpha[0] * x0[] + alpha[1] * x1[] + alpha[2] * x2[]

y1[] = y1[] + alpha[3] * x0[] + alpha[4] * x1[] + alpha[5] * x2[]

13. void DVaxpy22 (int n, double y0[], double y1[],

double alpha, double x0[], double x1[]) ;

This method computes this computation.

86

y0[] = y0[] + alpha[0] * x0[] + alpha[1] * x1[]

y1[] = y1[] + alpha[2] * x0[] + alpha[3] * x1[]

14. void DVaxpy21 (int n, double y0[], double y1[], double alpha, double x0[]) ;

This method computes this computation.

y0[] = y0[] + alpha[0] * x0[]

y1[] = y1[] + alpha[1] * x0[]

15. void DVaxpy13 (int n, double y0[],

double alpha, double x0[], double x1[], double x2[]) ;

This method computes this computation.

y0[] = y0[] + alpha[0] * x0[] + alpha[1] * x1[] + alpha[2] * x2[]

16. void DVaxpy12 (int n, double y0[], double alpha, double x0[], double x1[]) ;

This method computes this computation.

y0[] = y0[] + alpha[0] * x0[] + alpha[1] * x1[]

17. void DVaxpy11 (int n, double y0[], double alpha, double x0[]) ;

This method computes this computation.

y0[] = y0[] + alpha[0] * x0[]

18. void DVaxpyi (int n, double y[], int index[], double alpha, double x[]) ;

This method scatteradds a scaled multiple of n entries from x[] into y[], i.e., y[index[i]] += alpha

* x[i] for 0 <= i < n.

19. void DVcompress (int n1, double x1[], double y1[],

int n2, double x2[], double y2[]) ;

Given a pair of arrays x1[n1] and y1[n1], fill x2[n2] and y2[n2] with a subset of the (x1[j],y1[j]

entries whose distribution is an approximation.

20. void DVcopy (int n, double y[], double x[]) ;

This method copies n entries from x[] to y[], i.e., y[i] = x[i] for 0 <= i < n.

21. int DVdot (int n, double y[], double x[]) ;

This method returns the dot product of the vector x[] and y[], i.e., return
∑n−1

i=0(x[i] ∗ y[i]).

22. int DVdot33 (int n, double row0[], double row1[], double row2[],

double col0[], double col1[], double col2[], double sums[]) ;

This method computes nine dot products.

sums[0] =
n−1∑

i=0

row0[i] ∗ col0[i] sums[1] =
n−1∑

i=0

row0[i] ∗ col1[i] sums[2] =
n−1∑

i=0

row0[i] ∗ col2[i]

sums[3] =
n−1∑

i=0

row1[i] ∗ col0[i] sums[4] =
n−1∑

i=0

row1[i] ∗ col1[i] sums[5] =
n−1∑

i=0

row1[i] ∗ col2[i]

sums[6] =
n−1∑

i=0

row2[i] ∗ col0[i] sums[7] =
n−1∑

i=0

row2[i] ∗ col1[i] sums[8] =
n−1∑

i=0

row2[i] ∗ col2[i]

87

23. int DVdot32 (int n, double row0[], double row1[], double row2[],

double col0[], double col1[], double sums[]) ;

This method computes six dot products.

sums[0] =
n−1∑

i=0

row0[i] ∗ col0[i] sums[1] =
n−1∑

i=0

row0[i] ∗ col1[i]

sums[2] =
n−1∑

i=0

row1[i] ∗ col0[i] sums[3] =
n−1∑

i=0

row1[i] ∗ col1[i]

sums[4] =
n−1∑

i=0

row2[i] ∗ col0[i] sums[5] =
n−1∑

i=0

row2[i] ∗ col1[i]

24. int DVdot31 (int n, double row0[], double row1[], double row2[],

double col0[], double sums[]) ;

This method computes three dot products.

sums[0] =
n−1∑

i=0

row0[i] ∗ col0[i]

sums[1] =
n−1∑

i=0

row1[i] ∗ col0[i]

sums[2] =
n−1∑

i=0

row2[i] ∗ col0[i]

25. int DVdot23 (int n, double row0[], double row1[],

double col0[], double col1[], double col2[], double sums[]) ;

This method computes six dot products.

sums[0] =
n−1∑

i=0

row0[i] ∗ col0[i] sums[1] =
n−1∑

i=0

row0[i] ∗ col1[i] sums[2] =
n−1∑

i=0

row0[i] ∗ col2[i]

sums[3] =
n−1∑

i=0

row1[i] ∗ col0[i] sums[4] =
n−1∑

i=0

row1[i] ∗ col1[i] sums[5] =
n−1∑

i=0

row1[i] ∗ col2[i]

26. int DVdot22 (int n, double row0[], double row1[],

double col0[], double col1[], double sums[]) ;

This method computes four dot products.

sums[0] =
n−1∑

i=0

row0[i] ∗ col0[i] sums[1] =
n−1∑

i=0

row0[i] ∗ col1[i]

sums[2] =
n−1∑

i=0

row1[i] ∗ col0[i] sums[3] =
n−1∑

i=0

row1[i] ∗ col1[i]

27. int DVdot21 (int n, double row0[], double row1[],

double col0[], double sums[]) ;

This method computes two dot products.

sums[0] =
n−1∑

i=0

row0[i] ∗ col0[i]

sums[1] =
n−1∑

i=0

row1[i] ∗ col0[i]

88

28. int DVdot13 (int n, double row0[],

double col0[], double col1[], double col2[], double sums[]) ;

This method computes six dot products.

sums[0] =
n−1∑

i=0

row0[i] ∗ col0[i] sums[1] =
n−1∑

i=0

row0[i] ∗ col1[i] sums[2] =
n−1∑

i=0

row0[i] ∗ col2[i]

29. int DVdot12 (int n, double row0[], double row1[],

double col0[], double col1[], double sums[]) ;

This method computes two dot products.

sums[0] =
n−1∑

i=0

row0[i] ∗ col0[i] sums[1] =
n−1∑

i=0

row0[i] ∗ col1[i]

30. int DVdot11 (int n, double row0[], double col0[], double sums[]) ;

This method computes one dot product.

sums[0] =
n−1∑

i=0

row0[i] ∗ col0[i]

31. int DVdoti (int n, double y[], int index[], double x[]) ;

This method returns the indexed dot product
n−1∑

i=0

y[index[i]] ∗ x[i].

32. void DVfill (int n, double y[], double val) ;

This method fills n entries in y[] with val, i.e., y[i] = val for 0 <= i < n.

33. void DVgather (int n, double y[], double x[], int index[]) ;

y[i] = x[index[i]] for 0 <= i < n.

34. void DVgatherAddZero (int n, double y[], double x[], int index[]) ;

y[i] += x[index[i]] and x[index[i]] = 0 for 0 <= i < n.

35. void DVgatherZero (int n, double y[], double x[], int index[]) ;

y[i] = x[index[i]] and x[index[i]] = 0

36. void DVinvPerm (int n, double y[], int index[]) ;

This method permutes the vector y as follows. i.e., y[index[i]] := y[i]. See DVperm() for a similar
function.

37. double DVmax (int n, double y[], int *ploc) ;

This method returns the maximum entry in y[0:n-1] and puts the first location where it was found
into the address ploc.

38. double DVmaxabs (int n, double y[], int *ploc) ;

This method returns the maximum magnitude of entries in y[0:n-1] and puts the first location where
it was found into the address ploc.

39. double DVmin (int n, double y[], int *ploc) ;

This method returns the minimum entry in y[0:n-1] and puts the first location where it was found
into the address ploc.

89

40. double DVminabs (int n, double y[], int *ploc) ;

This method returns the minimum magnitude of entries in y[0:n-1] and puts the first location where
it was found into the address ploc.

41. void DVperm (int n, double y[], int index[]) ;

This method permutes the vector y as follows. i.e., y[i] := y[index[i]]. See DVinvPerm() for a
similar function.

42. void DVramp (int n, double y[], double start, double inc) ;

This method fills n entries in y[] with values start, start + inc, start + 2*inc, start + 3*inc,
etc.

43. void DVscale (int n, double y[], double alpha) ;

This method scales a vector y[] by alpha, i.e., y[i] *= alpha. for 0 <= i < n.

44. void DVscale2 (int n, double x[], double y[],

double a, double b, double c, double d) ;

This method scales two vectors y[] by a 2× 2 matrix, i.e.,

[
x[0] . . . x[n− 1]
y[0] . . . y[n− 1]

]
:=

[
a b

c d

] [
x[0] . . . x[n− 1]
y[0] . . . y[n− 1]

]
.

45. void DVscatter (int n, double y[], int index[], double x[]) ;

This method scatters n entries of x[] into y[] as follows, y[index[i]] = x[i] for 0 <= i < n.

46. void DVscatterAdd (int n, double y[], int index[], double x[]) ;

This method scatters/adds n entries of x[] into y[] as follows, y[index[i]] += x[i] for 0 <= i <

n.

47. void DVscatterAddZero (int n, double y[], int index[], double x[]) ;

This method scatters/adds n entries of x[] into y[] as follows, y[index[i]] += x[i] for 0 <= i <

n, and then zeros the entries in x[*].

48. void DVscatterZero (int n, double y[], int index[], double x[]) ;

This method scatters n entries of x[] into y[] as follows, y[index[i]] = x[i] for 0 <= i < n and
then zeros the entries in x[*].

49. void DVsub (int n, double y[], double x[]) ;

This method subtracts n entries from x[] to y[], i.e., y[i] -= x[i] for 0 <= i < n.

50. double DVsum (int n, double y[]) ;

This method returns the sum of the first n entries in the vector x[], i.e., return
∑n−1

i=0 x[i].

51. double DVsumabs (int n, double y[]) ;

This method returns the sum of the absolute values of the first n entries in the vector x[], i.e., return∑n−1
i=0 abs(x[i]).

52. void DVswap (int n, double y[], double x[]) ;

This method swaps the x[] and y[] vectors as follows. i.e., y[i] := x[i] and x[i] := y[i] for 0

<= i < n.

90

53. void DVzero (int n, double y[]) ;

This method zeroes n entries in y[], i.e., y[i] = 0 for 0 <= i < n.

54. void DVshuffle (int n, double y[], int seed) ;

This method shuffles the first n entries in y[]. The value seed is the seed to a random number
generator, and one can get repeatable behavior by repeating seed.

13.2.3 ZV : double complex vector methods

A double precision complex vector of length n is simply a double precision vector of length 2n. There is a
separate ZVinit() allocator and initializer method, since it requires a real and imaginary part to fill the
vector. However, there is no ZVinit2() method (which allocates without initializing the entries) nor a
ZVfree() method to free the entries; the DVinit2() and DVfree() methods can be used. Similarly, there is
no ZVfscanf() method, instead the DVfscanf() method can be used.

1. double * ZVinit (int n, double real, double imag) ;

This is the allocator and initializer method for double complex vectors. Storage for an array with size
n is found and each entry is filled with (real,imag). A pointer to the array is returned.

2. void ZVfprintf (FILE *fp, int n, double y[]) ;

This method prints n entries in y[] to file fp. The format is new line followed by "< %12.4e, %12.4e

>" format.

3. double Zabs (double real, double imag) ;

This method returns the magnitude of (real,imag).

4. int Zrecip (double areal, double aimag, double *pbreal, double *pbimag) ;

This method fills *pbreal and *pbimagwith the real and imaginary parts of the reciprocal of (areal,aimag).
The return value is 0 if areal and aimag are zero, otherwise the return value is 1.

5. int Zrecip2 (double areal, double aimag, double breal, double bimag,

double creal, double cimag, double dreal, double dimag,

double *pereal, double *peimag, double *pfreal, double *pfimag,

double *pgreal, double *pgimag, double *phreal, double *phimag) ;

This method computes

[
e f
g h

]
=

[
a b
c d

]−1

. If pereal is not NULL, then *pereal is loaded with

the real part of e. If peimag is not NULL, then *peimag is loaded with the imaginary part of e. Similarly
for f , g and h. The return value is 0 if 2× 2 matrix is singular, otherwise the return value is 1.

6. void ZVaxpy (int n, double y[], double areal, double aimag, double x[]) ;

This method adds a scaled multiple of n entries from x[] into y[], i.e., y[i] += (areal,aimag) *

x[i] for 0 <= i < n.

7. void ZVaxpy2 (int n, double z[], double areal, double aimag,

double x[], double breal, double bimag, double y[]) ;

This method adds a scaled multiple of two vectors x[] and y[] to another vector z[], i.e., i.e., z[i]
+= (areal,aimag) * x[i] + (breal,bimag) * y[i] for 0 <= i < n.

8. void ZVaxpy33 (int n, double y0[], double y1[], double y2[],

double alpha[], double x0[], double x1[], double x2[]) ;

This method computes the following.

91

y0[] = y0[] + alpha[0:1] * x0[] + alpha[2:3] * x1[] + alpha[4:5] * x2[]

y1[] = y1[] + alpha[6:7] * x0[] + alpha[8:9] * x1[] + alpha[10:11] * x2[]

y2[] = y2[] + alpha[12:13] * x0[] + alpha[14:15] * x1[] + alpha[16:17] * x2[]

9. void ZVaxpy32 (int n, double y0[], double y1[], double y2[],

double alpha[], double x0[], double x1[]) ;

This method computes the following.

y0[] = y0[] + alpha[0:1] * x0[] + alpha[2:3] * x1[]

y1[] = y1[] + alpha[4:5] * x0[] + alpha[6:7] * x1[]

y2[] = y2[] + alpha[8:9] * x0[] + alpha[10:11] * x1[]

10. void ZVaxpy31 (int n, double y0[], double y1[], double y2[],

double alpha[], double x0[]) ;

This method computes the following.

y0[] = y0[] + alpha[0:1] * x0[]

y1[] = y1[] + alpha[2:3] * x0[]

y2[] = y2[] + alpha[4:5] * x0[]

11. void ZVaxpy23 (int n, double y0[], double y1[],

double alpha[], double x0[], double x1[], double x2[]) ;

This method computes the following.

y0[] = y0[] + alpha[0:1] * x0[] + alpha[2:3] * x1[] + alpha[4:5] * x2[]

y1[] = y1[] + alpha[6:7] * x0[] + alpha[8:9] * x1[] + alpha[10:11] * x2[]

12. void ZVaxpy22 (int n, double y0[], double y1[],

double alpha[], double x0[], double x1[]) ;

This method computes the following.

y0[] = y0[] + alpha[0:1] * x0[] + alpha[2:3] * x1[]

y1[] = y1[] + alpha[4:5] * x0[] + alpha[6:7] * x1[]

13. void ZVaxpy21 (int n, double y0[], double y1[],

double alpha[], double x0[]) ;

This method computes the following.

y0[] = y0[] + alpha[0:1] * x0[]

y1[] = y1[] + alpha[2:3] * x0[]

14. void ZVaxpy13 (int n, double y0[],

double alpha[], double x0[], double x1[], double x2[]) ;

This method computes the following.

y0[] = y0[] + alpha[0:1] * x0[] + alpha[2:3] * x1[] + alpha[4:5] * x2[]

15. void ZVaxpy12 (int n, double y0[], double alpha[], double x0[], double x1[]) ;

This method computes the following.

92

y0[] = y0[] + alpha[0:1] * x0[] + alpha[2:3] * x1[]

16. void ZVaxpy11 (int n, double y0[], double alpha[], double x0[]) ;

This method computes the following.

y0[] = y0[] + alpha[0:1] * x0[]

17. void ZVcopy (int n, double y[], double x[]) ;

This method copies n entries from x[] to y[], i.e., y[i] = x[i] for 0 <= i < n.

18. void ZVdotU (int n, double y[], double x[], double *prdot, double *pidot) ;

This method fills *prdot and *pidot with the real and imaginary part of yTx, the dot product of the
vector x[] and y[].

19. void ZVdotC (int n, double y[], double x[], double *prdot, double *pidot) ;

This method fills *prdot and *pidot with the real and imaginary part of yHx, the dot product of the
vector x[] and y[].

20. void ZVdotiU (int n, double y[], int index[], double x[],

double *prdot, double *pidot) ;

This method fills *prdot and *pidot with the real and imaginary parts of the indexed dot product
n−1∑

i=0

y[index[i]] ∗ x[i].

21. void ZVdotiC (int n, double y[], int index[], double x[],

double *prdot, double *pidot) ;

This method fills *prdot and *pidot with the real and imaginary parts of the indexed dot product
n−1∑

i=0

y[index[i]] ∗ x[i].

22. int ZVdotU33 (int n, double row0[], double row1[], double row2[],

double col0[], double col1[], double col2[], double sums[]) ;

This method computes nine dot products.

sums[0; 1] =
n−1∑

i=0

row0[i] ∗ col0[i] sums[2 : 3] =
n−1∑

i=0

row0[i] ∗ col1[i]

sums[4 : 5] =
n−1∑

i=0

row0[i] ∗ col2[i] sums[6 : 7] =
n−1∑

i=0

row1[i] ∗ col0[i]

sums[8 : 9] =
n−1∑

i=0

row1[i] ∗ col1[i] sums[10 : 11] =
n−1∑

i=0

row1[i] ∗ col2[i]

sums[12 : 13] =
n−1∑

i=0

row2[i] ∗ col0[i] sums[14 : 15] =
n−1∑

i=0

row2[i] ∗ col1[i]

sums[16 : 17] =
n−1∑

i=0

row2[i] ∗ col2[i]

23. int ZVdotU32 (int n, double row0[], double row1[], double row2[],

double col0[], double col1[], double sums[]) ;

This method computes six dot products.

93

sums[0 : 1] =
n−1∑

i=0

row0[i] ∗ col0[i] sums[2 : 3] =
n−1∑

i=0

row0[i] ∗ col1[i]

sums[4 : 5] =
n−1∑

i=0

row1[i] ∗ col0[i] sums[6 : 7] =
n−1∑

i=0

row1[i] ∗ col1[i]

sums[8 : 9] =
n−1∑

i=0

row2[i] ∗ col0[i] sums[10 : 11] =
n−1∑

i=0

row2[i] ∗ col1[i]

24. int ZVdotU31 (int n, double row0[], double row1[], double row2[],

double col0[], double sums[]) ;

This method computes three dot products.

sums[0 : 1] =
n−1∑

i=0

row0[i] ∗ col0[i]

sums[2 : 3] =
n−1∑

i=0

row1[i] ∗ col0[i]

sums[4 : 5] =
n−1∑

i=0

row2[i] ∗ col0[i]

25. int ZVdotU23 (int n, double row0[], double row1[],

double col0[], double col1[], double col2[], double sums[]) ;

This method computes six dot products.

sums[0 : 1] =
n−1∑

i=0

row0[i] ∗ col0[i] sums[2 : 3] =
n−1∑

i=0

row0[i] ∗ col1[i]

sums[4 : 5] =
n−1∑

i=0

row0[i] ∗ col2[i] sums[6 : 7] =
n−1∑

i=0

row1[i] ∗ col0[i]

sums[8 : 9] =
n−1∑

i=0

row1[i] ∗ col1[i] sums[10 : 11] =
n−1∑

i=0

row1[i] ∗ col2[i]

26. int ZVdotU22 (int n, double row0[], double row1[],

double col0[], double col1[], double sums[]) ;

This method computes four dot products.

sums[0 : 1] =
n−1∑

i=0

row0[i] ∗ col0[i] sums[2 : 3] =
n−1∑

i=0

row0[i] ∗ col1[i]

sums[4 : 5] =
n−1∑

i=0

row1[i] ∗ col0[i] sums[6 : 7] =
n−1∑

i=0

row1[i] ∗ col1[i]

27. int ZVdotU21 (int n, double row0[], double row1[],

double col0[], double sums[]) ;

This method computes two dot products.

sums[0 : 1] =
n−1∑

i=0

row0[i] ∗ col0[i]

sums[2 : 3] =
n−1∑

i=0

row1[i] ∗ col0[i]

94

28. int ZVdotU13 (int n, double row0[],

double col0[], double col1[], double col2[], double sums[]) ;

This method computes six dot products.

sums[0 : 1] =
n−1∑

i=0

row0[i] ∗ col0[i] sums[2 : 3] =
n−1∑

i=0

row0[i] ∗ col1[i]

sums[4 : 5] =
n−1∑

i=0

row0[i] ∗ col2[i]

29. int ZVdotU12 (int n, double row0[], double row1[],

double col0[], double col1[], double sums[]) ;

This method computes two dot products.

sums[0 : 1] =
n−1∑

i=0

row0[i] ∗ col0[i] sums[2 : 3] =
n−1∑

i=0

row0[i] ∗ col1[i]

30. int ZVdotU11 (int n, double row0[], double col0[], double sums[]) ;

This method computes one dot product.

sums[0 : 1] =
n−1∑

i=0

row0[i] ∗ col0[i]

31. int ZVdotC33 (int n, double row0[], double row1[], double row2[],

double col0[], double col1[], double col2[], double sums[]) ;

This method computes nine dot products.

sums[0; 1] =
n−1∑

i=0

row0[i] ∗ col0[i] sums[2 : 3] =
n−1∑

i=0

row0[i] ∗ col1[i]

sums[4 : 5] =
n−1∑

i=0

row0[i] ∗ col2[i] sums[6 : 7] =
n−1∑

i=0

row1[i] ∗ col0[i]

sums[8 : 9] =
n−1∑

i=0

row1[i] ∗ col1[i] sums[10 : 11] =
n−1∑

i=0

row1[i] ∗ col2[i]

sums[12 : 13] =
n−1∑

i=0

row2[i] ∗ col0[i] sums[14 : 15] =
n−1∑

i=0

row2[i] ∗ col1[i]

sums[16 : 17] =
n−1∑

i=0

row2[i] ∗ col2[i]

32. int ZVdotC32 (int n, double row0[], double row1[], double row2[],

double col0[], double col1[], double sums[]) ;

This method computes six dot products.

sums[0 : 1] =
n−1∑

i=0

row0[i] ∗ col0[i] sums[2 : 3] =
n−1∑

i=0

row0[i] ∗ col1[i]

sums[4 : 5] =
n−1∑

i=0

row1[i] ∗ col0[i] sums[6 : 7] =
n−1∑

i=0

row1[i] ∗ col1[i]

sums[8 : 9] =
n−1∑

i=0

row2[i] ∗ col0[i] sums[10 : 11] =
n−1∑

i=0

row2[i] ∗ col1[i]

95

33. int ZVdotC31 (int n, double row0[], double row1[], double row2[],

double col0[], double sums[]) ;

This method computes three dot products.

sums[0 : 1] =
n−1∑

i=0

row0[i] ∗ col0[i]

sums[2 : 3] =
n−1∑

i=0

row1[i] ∗ col0[i]

sums[4 : 5] =
n−1∑

i=0

row2[i] ∗ col0[i]

34. int ZVdotC23 (int n, double row0[], double row1[],

double col0[], double col1[], double col2[], double sums[]) ;

This method computes six dot products.

sums[0 : 1] =
n−1∑

i=0

row0[i] ∗ col0[i] sums[2 : 3] =
n−1∑

i=0

row0[i] ∗ col1[i]

sums[4 : 5] =
n−1∑

i=0

row0[i] ∗ col2[i] sums[6 : 7] =
n−1∑

i=0

row1[i] ∗ col0[i]

sums[8 : 9] =
n−1∑

i=0

row1[i] ∗ col1[i] sums[10 : 11] =
n−1∑

i=0

row1[i] ∗ col2[i]

35. int ZVdotC22 (int n, double row0[], double row1[],

double col0[], double col1[], double sums[]) ;

This method computes four dot products.

sums[0 : 1] =
n−1∑

i=0

row0[i] ∗ col0[i] sums[2 : 3] =
n−1∑

i=0

row0[i] ∗ col1[i]

sums[4 : 5] =
n−1∑

i=0

row1[i] ∗ col0[i] sums[6 : 7] =
n−1∑

i=0

row1[i] ∗ col1[i]

36. int ZVdotC21 (int n, double row0[], double row1[],

double col0[], double sums[]) ;

This method computes two dot products.

sums[0 : 1] =
n−1∑

i=0

row0[i] ∗ col0[i]

sums[2 : 3] =
n−1∑

i=0

row1[i] ∗ col0[i]

37. int ZVdotC13 (int n, double row0[],

double col0[], double col1[], double col2[], double sums[]) ;

This method computes six dot products.

sums[0 : 1] =
n−1∑

i=0

row0[i] ∗ col0[i] sums[2 : 3] =
n−1∑

i=0

row0[i] ∗ col1[i]

sums[4 : 5] =
n−1∑

i=0

row0[i] ∗ col2[i]

96

38. int ZVdotC12 (int n, double row0[], double row1[],

double col0[], double col1[], double sums[]) ;

This method computes two dot products.

sums[0 : 1] =
n−1∑

i=0

row0[i] ∗ col0[i] sums[2 : 3] =
n−1∑

i=0

row0[i] ∗ col1[i]

39. int ZVdotC11 (int n, double row0[], double col0[], double sums[]) ;

This method computes one dot product.

sums[0 : 1] =
n−1∑

i=0

row0[i] ∗ col0[i]

40. void ZVgather (int n, double y[], double x[], int index[]) ;

y[i] = x[index[i]] for 0 <= i < n.

41. double ZVmaxabs (int n, double y[]) ;

This method returns the maximum magnitude of entries in y[0:n-1].

42. double ZVminabs (int n, double y[]) ;

This method returns the minimum magnitude of entries in y[0:n-1].

43. void ZVscale (int n, double y[], double areal, double aimag) ;

This method scales a vector y[] by (areal,aimag), i.e., y[i] *= (areal,aimag). for 0 <= i < n.

44. void ZVscale2 (int n, double x[], double y[],

double areal, double aimag, double breal, double bimag,

double creal, double cimag, double dreal, double dimag) ;

This method scales two vectors y[] by a 2× 2 matrix, i.e.,

[
x[0] . . . x[n− 1]
y[0] . . . y[n− 1]

]
:=

[
(areal, aimag) (breal, bimag)
(creal, cimag) (dreal, dimag)

][
x[0] . . . x[n− 1]
y[0] . . . y[n− 1]

]
.

45. void ZVscatter (int n, double y[], int index[], double x[]) ;

This method scatters n entries of x[] into y[] as follows, y[index[i]] = x[i] for 0 <= i < n.

46. void ZVsub (int n, double y[], double x[]) ;

This method subtracts n entries from x[] to y[], i.e., y[i] -= x[i] for 0 <= i < n.

47. void ZVzero (int n, double y[]) ;

This method zeroes n entries in y[], i.e., y[i] = 0 for 0 <= i < n.

13.2.4 IV : int vector methods

1. int * IVinit (int n, int val) ;

This is the allocator and initializer method for int vectors. Storage for an array with size n is found
and each entry is filled with val. A pointer to the array is returned.

2. int * IVinit2 (int n) ;

This is an allocator method for int vectors. Storage for an array with size n is found. A pointer to
the array is returned. Note, on return, there will likely be garbage in the array.

97

3. void IVfree (int vec[]) ;

This method releases the storage taken by vec[].

4. void IVfprintf (FILE *fp, int n, int y[]) ;

This method prints n entries in y[] to file fp. The format is new line followed by lines of five int’s in
" %4d" format.

5. int IVfp80 (FILE *fp, int n, int y[], int column, int *pierr) ;

This method prints n entries in y[] to file fp. The method splices vectors together or naturally breaks
the large vectors into lines. The column value is the present location. If the printed value of an array
entry will not fit within the eighty columns of the present line, a newline character is written and the
value starts a new line. The number of the present column in the line is returned. If *pierr < 0, an
IO error has occured.

6. int IVfscanf (FILE *fp, int n, int y[]) ;

This method scans in int’s from file fp and places them in the array y[]. It tries to read in n int’s,
and returns the number that were actually read.

7. void IVcompress (int n1, int x1[], int y1[],

int n2, int x2[], int y2[]) ;

Given a pair of arrays x1[n1] and y1[n1], fill x2[n2] and y2[n2] with a subset of the (x1[j],y1[j]

entries whose distribution is an approximation.

8. void IVcopy (int n, int y[], int x[]) ;

This method copies n entries from x[] to y[], i.e., y[i] = x[i] for 0 <= i < n.

9. void IVfill (int n, int y[], int val) ;

This method fills n entries in y[] with val, i.e., y[i] = val for 0 <= i < n.

10. void IVgather (int n, int y[], int x[], int index[]) ;

y[i] = x[index[i]] for 0 <= i < n.

11. int * IVinverse (int n, int y[]) ;

This method allocates and returns a vector of size n that it is the inverse of y[], a permutation vector.
The new vector x[] has the property that x[y[i]] = y[x[i]] = i; If y[] is not truly a permutation
vector, an error message will be printed and the program exits.

12. void IVinvPerm (int n, int y[], int index[]) ;

This method permutes the vector y as follows. i.e., y[index[i]] := y[i]. See IVperm() for a similar
function.

13. int IVlocateViaBinarySearch (int n, int y[], int target) ;

The n entries of y[] must be in nondecreasing order. If target is found in y[], this method returns a
location where target is found. If target is not in y[], -1 is returned.

14. int IVmax (int n, int y[], int *ploc) ;

This method returns the maximum entry in y[0:n-1] and puts the first location where it was found
into the address ploc.

15. int IVmaxabs (int n, int y[], int *ploc) ;

This method returns the maximum magnitude of entries in y[0:n-1] and puts the first location where
it was found into the address ploc.

98

16. int IVmin (int n, int y[], int *ploc) ;

This method returns the minimum entry in y[0:n-1] and puts the first location where it was found
into the address ploc.

17. int IVminabs (int n, int y[], int *ploc) ;

This method returns the minimum magnitude of entries in y[0:n-1] and puts the first location where
it was found into the address ploc.

18. void IVperm (int n, int y[], int index[]) ;

This method permutes the vector y as follows. i.e., y[i] := y[index[i]]. See IVinvPerm() for a
similar function.

19. void IVramp (int n, int y[], int start, int inc) ;

This method fills n entries in y[] with values start, start + inc, start + 2*inc, start + 3*inc,
etc.

20. void IVscatter (int n, int y[], int index[], int x[]) ;

This method scatters n entries of x[] into y[] as follows, y[index[i]] = x[i] for 0 <= i < n.

21. int IVsum (int n, int y[]) ;

This method returns the sum of the first n entries in the vector x[], i.e., return
∑n−1

i=0 x[i].

22. int IVsumabs (int n, int y[]) ;

This method returns the sum of the absolute values of the first n entries in the vector x[], i.e., return∑n−1
i=0 abs(x[i]).

23. void IVswap (int n, int y[], int x[]) ;

This method swaps the x[] and y[] vectors as follows. i.e., y[i] := x[i] and x[i] := y[i] for 0

<= i < n.

24. void IVzero (int n, int y[]) ;

This method zeroes n entries in y[], i.e., y[i] = 0 for 0 <= i < n.

25. void IVshuffle (int n, int y[], int seed) ;

This method shuffles the first n entries in y[]. The value seed is the seed to a random number
generator, and one can get repeatable behavior by repeating seed.

13.2.5 FV : float vector methods

1. float * FVinit (int n, float val) ;

This is the allocator and initializer method for float vectors. Storage for an array with size n is found
and each entry is filled with val. A pointer to the array is returned.

2. float * FVinit2 (int n) ;

This is an allocator method for float vectors. Storage for an array with size n is found. A pointer to
the array is returned. Note, on return, there will likely be garbage in the array.

3. void FVfree (int vec[]) ;

This method releases the storage taken by vec[].

99

4. void FVfprintf (FILE *fp, int n, float y[]) ;

This method prints n entries in y[] to file fp. The format is new line followed by lines of six float’s
in " %12.4e" format.

5. int FVfscanf (FILE *fp, int n, float y[]) ;

This method scans in float’s from file fp and places them in the array y[]. It tries to read in n

float’s, and returns the number that were actually read.

6. void FVadd (int n, float y[], float x[]) ;

This method adds n entries from x[] to y[], i.e., y[i] += x[i] for 0 <= i < n.

7. void FVaxpy (int n, float y[], float alpha, float x[]) ;

This method adds a scaled multiple of n entries from x[] into y[], i.e., y[i] += alpha * x[i] for 0
<= i < n.

8. void FVaxpyi (int n, float y[], int index[], float alpha, float x[]) ;

This method scatteradds a scaled multiple of n entries from x[] into y[], i.e., y[index[i]] += alpha

* x[i] for 0 <= i < n.

9. void FVcompress (int n1, double x1[], double y1[],

int n2, double x2[], double y2[]) ;

Given a pair of arrays x1[n1] and y1[n1], fill x2[n2] and y2[n2] with a subset of the (x1[j],y1[j]

entries whose distribution is an approximation.

10. void FVcopy (int n, float y[], float x[]) ;

This method copies n entries from x[] to y[], i.e., y[i] = x[i] for 0 <= i < n.

11. float FVdot (int n, float y[], float x[]) ;

This method returns the dot product of the vector x[] and y[], i.e., return
∑n−1

i=0(x[i] ∗ y[i]).

12. void FVfill (int n, float y[], float val) ;

This method fills n entries in y[] with val, i.e., y[i] = val for 0 <= i < n.

13. void FVgather (int n, float y[], float x[], int index[]) ;

y[i] = x[index[i]] for 0 <= i < n.

14. void FVgatherAddZero (int n, float y[], float x[], int index[]) ;

y[i] += x[index[i]] and x[index[i]] = 0 for 0 <= i < n.

15. void FVgatherZero (int n, float y[], float x[], int index[]) ;

y[i] = x[index[i]] and x[index[i]] = 0

16. void FVinvPerm (int n, float y[], int index[]) ;

This method permutes the vector y as follows. i.e., y[index[i]] := y[i]. See FVperm() for a similar
function.

17. float FVmax (int n, float y[], int *ploc) ;

This method returns the maximum entry in y[0:n-1] and puts the first location where it was found
into the address ploc.

100

18. float FVmaxabs (int n, float y[], int *ploc) ;

This method returns the maximum magnitude of entries in y[0:n-1] and puts the first location where
it was found into the address ploc.

19. float FVmin (int n, float y[], int *ploc) ;

This method returns the minimum entry in y[0:n-1] and puts the first location where it was found
into the address ploc.

20. float FVminabs (int n, float y[], int *ploc) ;

This method returns the minimum magnitude of entries in y[0:n-1] and puts the first location where
it was found into the address ploc.

21. void FVperm (int n, float y[], int index[]) ;

This method permutes the vector y as follows. i.e., y[i] := y[index[i]]. See FVinvPerm() for a
similar function.

22. void FVramp (int n, float y[], float start, float inc) ;

This method fills n entries in y[] with values start, start + inc, start + 2*inc, start + 3*inc,
etc.

23. void FVscale (int n, float y[], float alpha) ;

This method scales a vector y[] by alpha, i.e., y[i] *= alpha. for 0 <= i < n.

24. void FVscatter (int n, float y[], int index[], float x[]) ;

This method scatters n entries of x[] into y[] as follows, y[index[i]] = x[i] for 0 <= i < n.

25. void FVscatterAddZero (int n, float y[], int index[], float x[]) ;

This method scatters/adds n entries of x[] into y[] as follows, y[index[i]] += x[i] and x[i] for 0
<= i < n.

26. void FVscatterZero (int n, float y[], int index[], float x[]) ;

This method scatters n entries of x[] into y[] as follows, y[index[i]] = x[i] and x[i] for 0 <= i

< n.

27. void FVsub (int n, float y[], float x[]) ;

This method subtracts n entries from x[] to y[], i.e., y[i] -= x[i] for 0 <= i < n.

28. float FVsum (int n, float y[]) ;

This method returns the sum of the first n entries in the vector x[], i.e., return
∑n−1

i=0 x[i].

29. float FVsumabs (int n, float y[]) ;

This method returns the sum of the absolute values of the first n entries in the vector x[], i.e., return∑n−1
i=0 abs(x[i]).

30. void FVswap (int n, float y[], float x[]) ;

This method swaps the x[] and y[] vectors as follows. i.e., y[i] := x[i] and x[i] := y[i] for 0

<= i < n.

31. void FVzero (int n, float y[]) ;

This method zeroes n entries in y[], i.e., y[i] = 0 for 0 <= i < n.

32. void FVshuffle (int n, float y[], int seed) ;

This method shuffles the first n entries in y[]. The value seed is the seed to a random number
generator, and one can get repeatable behavior by repeating seed.

101

13.2.6 PCV : char * vector methods

1. char ** PCVinit (int n) ;

This is the allocator and initializer method for char* vectors. Storage for an array with size n is found
and each entry is filled with NULL. A pointer to the array is returned.

2. void PCVfree (char **p_vec) ;

This method releases the storage taken by p vec[].

3. void PCVcopy (int n, char *p_y[], char *p_x[]) ;

This method copies n entries from p x[] to p y[], i.e., p y[i] = p x[i] for 0 <= i < n.

4. void PCVsetup (int n, int sizes[], char vec[], char *p_vec[]) ;

This method sets the entries of p vec[] as pointers into vec[] given by the sizes[] vector, i.e.,
p vec[0] = vec, and p vec[i] = p vec[i-1] + sizes[i-1] for 0 < i < n.

13.2.7 PDV : double * vector methods

1. double ** PDVinit (int n) ;

This is the allocator and initializer method for double* vectors. Storage for an array with size n is
found and each entry is filled with NULL. A pointer to the array is returned.

2. void PDVfree (double **p_vec) ;

This method releases the storage taken by p vec[].

3. void PDVcopy (int n, double *p_y[], double *p_x[]) ;

This method copies n entries from p x[] to p y[], i.e., p y[i] = p x[i] for 0 <= i < n.

4. void PDVsetup (int n, int sizes[], double vec[], double *p_vec[]) ;

This method sets the entries of p vec[] as pointers into vec[] given by the sizes[] vector, i.e.,
p vec[0] = vec, and p vec[i] = p vec[i-1] + sizes[i-1] for 0 < i < n.

PIV : int * vector methods

1. int ** PIVinit (int n) ;

This is the allocator and initializer method for int* vectors. Storage for an array with size n is found
and each entry is filled with NULL. A pointer to the array is returned.

2. void PIVfree (int **p_vec) ;

This method releases the storage taken by p vec[].

3. void PIVcopy (int n, int *p_y[], int *p_x[]) ;

This method copies n entries from p x[] to p y[], i.e., p y[i] = p x[i] for 0 <= i < n.

4. void PIVsetup (int n, int sizes[], int vec[], int *p_vec[]) ;

This method sets the entries of p vec[] as pointers into vec[] given by the sizes[] vector, i.e.,
p vec[0] = vec, and p vec[i] = p vec[i-1] + sizes[i-1] for 0 < i < n.

102

13.2.8 PFV : float * vector methods

1. float ** PFVinit (int n) ;

This is the allocator and initializer method for float* vectors. Storage for an array with size n is
found and each entry is filled with NULL. A pointer to the array is returned.

2. void PFVfree (float **p_vec) ;

This method releases the storage taken by p vec[].

3. void PFVcopy (int n, float *p_y[], float *p_x[]) ;

This method copies n entries from p x[] to p y[], i.e., p y[i] = p x[i] for 0 <= i < n.

4. void PFVsetup (int n, int sizes[], float vec[], float *p_vec[]) ;

This method sets the entries of p vec[] as pointers into vec[] given by the sizes[] vector, i.e.,
p vec[0] = vec, and p vec[i] = p vec[i-1] + sizes[i-1] for 0 < i < n.

13.2.9 Sorting routines

Validation routines

1. int IVisascending (int n, int ivec[]) ;

int IVisdescending (int n, int ivec[]) ;

These methods returns 1 if the array ivec[] is in ascending or descending order and returns 0 otherwise.

2. int DVisascending (int n, double dvec[]) ;

int DVisdescending (int n, double dvec[]) ;

These methods returns 1 if the array dvec[] is in ascending or descending order and returns 0 otherwise.

Insert sort routines

1. void IVisortUp (int n, int ivec[]) ;

void IVisortDown (int n, int ivec[]) ;

These methods sort an int array into ascending or descending order using an insertion sort.

2. void IV2isortUp (int n, int ivec1[], int ivec2[]) ;

void IV2isortDown (int n, int ivec1[], int ivec2[]) ;

These methods sort the array ivec1[] into ascending or descending order using an insertion sort and
permutes the int companion array ivec2[] in the same fashion.

3. void IVDVisortUp (int n, int ivec[], double dvec[]) ;

void IVDVisortDown (int n, int ivec[], double dvec[]) ;

This sorts the array ivec[] into ascending or descending order using an insertion sort and permutes
the companion array dvec[] in the same fashion.

4. void IV2DVisortUp (int n, int ivec1[], int ivec2[], double dvec[]) ;

void IV2DVisortDown (int n, int ivec1[], int ivec2[], double dvec[]) ;

These methods sort the array ivec1[] into ascending or descending order using an insertion sort and
permutes the int and double companion array ivec2[] and dvec[] in the same fashion.

103

5. void IVZVisortUp (int n, int ivec[], double dvec[]) ;

void IVZVisortDown (int n, int ivec[], double dvec[]) ;

This sorts the array ivec[] into ascending or descending order using an insertion sort and permutes
the double precision complex companion array dvec[] in the same fashion.

6. void IV2ZVisortUp (int n, int ivec1[], int ivec2[], double dvec[]) ;

void IV2ZVisortDown (int n, int ivec1[], int ivec2[], double dvec[]) ;

These methods sort the array ivec1[] into ascending or descending order using an insertion sort and
permutes the companion arrays ivec2[] and dvec[] in the same fashion. The dvec[] array is double
precision complex.

7. void DVisortUp (int n, double dvec[]) ;

void DVisortDown (int n, double dvec[]) ;

These methods sort a double array into ascending or descending order using an insertion sort.

8. void DV2isortUp (int n, double dvec1[], double dvec2[]) ;

void DV2isortDown (int n, double dvec1[], double dvec2[]) ;

These methods sort the array dvec1[] into ascending or descending order using an insertion sort and
permutes the companion array dvec2[] in the same fashion.

9. void DVIVisortUp (int n, double dvec[], int ivec[]) ;

void DVIVisortDown (int n, double dvec[], int ivec[]) ;

These methods sort the array dvec[] into ascending or descending order using an insertion sort and
permutes the companion array ivec[] in the same fashion.

Quicksort routines

1. void IVqsortUp (int n, int ivec[]) ;

void IVqsortDown (int n, int ivec[]) ;

These methods sort an int array into ascending or descending order using a quick sort.

2. void IV2qsortUp (int n, int ivec1[], int ivec2[]) ;

void IV2qsortDown (int n, int ivec1[], int ivec2[]) ;

These methods sort the array ivec1[] into ascending or descending order using a quick sort and
permutes the companion array ivec2[] in the same fashion.

3. void IVDVqsortUp (int n, int ivec[], double dvec[]) ;

void IVDVqsortDown (int n, int ivec[], double dvec[]) ;

These methods sort the array ivec[] into ascending or descending order using a quick sort and per-
mutes the companion array dvec[] in the same fashion.

4. void IV2DVqsortUp (int n, int ivec1[], int ivec2[], double dvec[]) ;

void IV2DVqsortDown (int n, int ivec1[], int ivec2[], double dvec[]) ;

These methods sort the array ivec1[] into ascending or descending order using a quick sort and
permutes the companion arrays ivec2[] and dvec[] in the same fashion.

5. void IVZVqsortUp (int n, int ivec[], double dvec[]) ;

void IVZVqsortDown (int n, int ivec[], double dvec[]) ;

These methods sort the array ivec[] into ascending or descending order using a quick sort and per-
mutes the double precision complex companion array dvec[] in the same fashion.

104

6. void IV2ZVqsortUp (int n, int ivec1[], int ivec2[], double dvec[]) ;

void IV2ZVqsortDown (int n, int ivec1[], int ivec2[], double dvec[]) ;

These methods sort the array ivec1[] into ascending or descending order using a quick sort and
permutes the companion arrays ivec2[] and dvec[] in the same fashion. The dvec[] array is double
precision complex.

7. void DVqsortUp (int n, double dvec[]) ;

void DVqsortDown (int n, double dvec[]) ;

Thes methods sort a double array into ascending or descending order using a quick sort.

8. void DV2qsortUp (int n, double dvec1[], double dvec2[]) ;

void DV2qsortDown (int n, double dvec1[], double dvec2[]) ;

These methods sort the array dvec1[] into ascending or descending order using a quick sort and
permutes the companion array dvec2[] in the same fashion.

9. void DVIVqsortUp (int n, double dvec[], int ivec[]) ;

void DVIVqsortDown (int n, double dvec[], int ivec[]) ;

These methods sort the array dvec[] into ascending or descending order using a quick sort and per-
mutes the companion array ivec[] in the same fashion.

13.2.10 Sort and compress routines

1. int IVsortUpAndCompress (int n, int ivec[]) ;

This method sorts ivec[] into ascending order, and removes (compresses) any duplicate entries. The
return value is the number of unique entries stored in the leading locations of the vector ivec[].

Error checking: If n < 0 or ivec is NULL, an error message is printed and the program exits.

2. int IVDVsortUpAndCompress (int n, int ivec[], double dvec[]) ;

This method sorts ivec[] into ascending order with dvec[] as a companion vector. It then compresses
the pairs, adding the dvec[] entries together when their ivec[] values are identical. The return value
is the number of unique entries stored in the leading locations of the vectors ivec[] and dvec[].

Error checking: If n < 0, or if ivec or dvec is NULL, an error message is printed and the program exits.

3. int IVZVsortUpAndCompress (int n, int ivec[], double dvec[]) ;

This method sorts ivec[] into ascending order with the double precision complex dvec[] companion
vector. It then compresses the pairs, adding the complex dvec[] entries together when their ivec[]

values are identical. The return value is the number of unique entries stored in the leading locations
of the vectors ivec[] and dvec[].

Error checking: If n < 0, or if ivec or dvec is NULL, an error message is printed and the program exits.

4. int IV2sortUpAndCompress (int n, int ivec1[], int ivec2[]) ;

This method sorts ivec1[] into ascending order with ivec2[] as a companion vector. It then com-
presses the pairs, dropping all but one of identical pairs. The return value is the number of unique
entries stored in the leading locations of the vectors ivec1[] and ivec2[].

Error checking: If n < 0, or if ivec1 or ivec2 is NULL, an error message is printed and the program
exits.

105

5. int IV2DVsortUpAndCompress (int n, int ivec1[], int ivec2[], double dvec[]) ;

This method sorts ivec1[] into ascending order with ivec2[] and dvec[] as companion vectors. It
then compresses the pairs, summing the dvec[] entries for identical (ivec1[], ivec2[]) pairs. The
return value is the number of unique entries stored in the leading locations of the vectors ivec1[],
ivec2[] and dvec[].

Error checking: If n < 0, or if ivec1, ivec2 or dvec is NULL, an error message is printed and the
program exits.

6. int IV2ZVsortUpAndCompress (int n, int ivec1[], int ivec2[], double dvec[]) ;

This method sorts ivec1[] into ascending order with ivec2[] and the double precision dvec[] as
companion vectors. It then compresses the pairs, summing the complex dvec[] entries for identical
(ivec1[], ivec2[]) pairs. The return value is the number of unique entries stored in the leading
locations of the vectors ivec1[], ivec2[] and dvec[].

Error checking: If n < 0, or if ivec1, ivec2 or dvec is NULL, an error message is printed and the
program exits.

13.2.11 IP : (int, pointer) singly linked-list methods

typedef struct _IP IP ;

struct _IP {

int val ;

IP *next ;

} ;

1. IP * IP_init (int n, int flag) ;

This is the allocator and initializer method for a vector of (int,pointer) structures. Storage for an
array with size n is found. A pointer to an array ips[] is returned with ips[i].val = 0 for 0 <= i

< n. The flag parameter determines how the next field is filled.

• If flag = 0, the elements are not linked, i.e., ips[i].next = NULL for 0 <= i < n.

• If flag = 1, the elements are linked in a forward manner, i.e., ips[i].next = &ips[i+1] for 0
<= i < n-1 and ips[n-1].next = NULL.

• If flag = 2, the elements are linked in a backward manner, i.e., ips[i].next = &ips[i-1] for
0 < i < n and ips[0].next = NULL.

2. void IP_free (IP *ip) ;

This method releases the storage based at *ip.

3. void IP_fprintf (FILE *fp, IP *ip) ;

This method prints the singly linked list that starts with ip.

4. int IP_fp80 (FILE *fp, int n, int y[], int column, int *pierr) ;

This method prints the singly linked list that starts with ip. See IVfp80() for a description of how
the entries are placed on a line.

5. IP * IP_mergeUp (IP *ip1, IP *ip2) ;

This method merges two singly linked lists into one. If the two lists are in ascending order, the new
list is also in ascending order. The head of the new list is returned.

106

6. IP * IP_mergeSortUp (IP *ip) ;

This method sorts a list into ascending order using a merge sort.

7. IP * IP_radixSortUp (IP *ip) ;

This method sorts a list into ascending order using a radix sort.

8. IP * IP_radixSortDown (IP *ip) ;

This method sorts a list into descending order using a radix sort.

13.2.12 I2OP : (int, int, void*, pointer) singly linked-list methods

typedef struct _I2OP I2OP ;

struct _I2OP {

int value0 ;

int value1 ;

void value2 ;

I2OP *next ;

} ;

1. I2OP * I2OP_init (int n, int flag) ;

This is the allocator and initializer method for a vector of I2OP structures. Storage for an array with
size n is found. A pointer to an array ips[] is returned with ips[i].val = 0 for 0 <= i < n. The
flag parameter determines how the next field is filled.

• If flag = I2OP NULL, the elements are not linked, i.e., ips[i].next = NULL for 0 <= i < n.

• If flag = I2OP FORWARD, the elements are linked in a forward manner, i.e., ips[i].next =

&ips[i+1] for 0 <= i < n-1 and ips[n-1].next = NULL.

• If flag = I2OP BACKWARD, the elements are linked in a backward manner, i.e., ips[i].next =

&ips[i-1] for 0 < i < n and ips[0].next = NULL.

2. I2OP * I2OP_initStorage (int n, int flag, I2OP *base) ;

This is an initializer method for a vector of I2OP structures. We set base[i].value0 = base[i].value1

= -1. The flag parameter determines how the next field is filled.

• If flag = I2OP NULL, the elements are not linked, i.e., ips[i].next = NULL for 0 <= i < n.

• If flag = I2OP FORWARD, the elements are linked in a forward manner, i.e., ips[i].next =

&ips[i+1] for 0 <= i < n-1 and ips[n-1].next = NULL.

• If flag = I2OP BACKWARD, the elements are linked in a backward manner, i.e., ips[i].next =

&ips[i-1] for 0 < i < n and ips[0].next = NULL.

3. void I2OP_free (I2OP *i2op) ;

This method releases the storage based at *i2op.

4. void I2OP_fprintf (FILE *fp, I2OP *i2op) ;

This method prints the singly linked list that starts with i2op.

107

13.3 Driver programs

1. test_sort msglvl msgFile target sortType n range mod seed

This driver program tests the sort methods. Use the script file do test sort for testing.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The target parameter denotes the type of vector(s) to be sorted.

– IV — int vector sort

– IV2 — (int, int) vector sort

– IVDV — (int, double) vector sort

– IV2DV — (int, int, double) vector sort

– IVZV — (int, complex) vector sort

– IV2ZV — (int, int, complex) vector sort

– DV — double vector sort

– DV2 — (double, double) vector sort

– DVIV — (double, int) vector sort

• The sortType parameter denotes the type of sort.

– IU — ascending insert sort

– ID — descending insert sort

– QU — ascending quick sort

– QD — descending quick sort

• The n parameter is the length of the vector(s).

• Integer entries are of the form k mod mod, where k in [0,range].

• The seed parameter is a random number seed.

2. test_sortUpAndCompress msglvl msgFile target n range mod seed

This driver program tests the “sort in ascending order and compress” methods. Use the script file
do test sortUpAndCompress for testing.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The target parameter denotes the type of vector(s) to be sorted.

– IV — int vector sort

– IV2 — (int, int) vector sort

– IVDV — (int, double) vector sort

– IV2DV — (int, int, double) vector sort

– IVZV — (int, complex) vector sort

– IV2ZV — (int, int, complex) vector sort

• The n parameter is the length of the vector(s).

• Integer entries are of the form k mod mod, where k in [0,range].

• The seed parameter is a random number seed.

Chapter 14

ZV: Double Complex Vector Object

The ZV object is a wrapper around a double precision complex vector. In Fortran’s LINPACK and LAPACK
libraries, a leading Z denotes double precision complex, and we have followed this convention. The driving
force for its creation of this object is more convenience than performance. There are three cases that led to
its development.

• Often a method will create a vector (allocate storage for and fill the entries) whose size is not known
before the method call. Instead of having a pointer to int and a pointer to double* in the calling
sequence, we can return a pointer to an ZV object that contains the newly created vector and its size.

• In many cases we need a persistent double vector object, and file IO is simplified if we have an object
to deal with. The filename is of the form *.zvf for a formatted file or *.zvb for a binary file.

• Prototyping can go much faster with this object as opposed to working with an double array. Consider
the case when one wants to accumulate a list of doubles, but one doesn’t know how large the list will
be. The method ZV setSize() can be used to set the size of the vector to zero. Another method
ZV push() appends an element to the vector, growing the storage if necessary.

• Sometimes an object needs to change its size, i.e., vectors need to grow or shrink. It is easier and more
robust to tell an ZV object to resize itself (see the ZV setSize() and ZV setMaxsize() methods) than
it is to duplicate code to work on an double vector.

One must choose where to use this object. There is a substantial performance penalty for doing the simplest
operations, and so when we need to manipulate an double vector inside a loop, we extract out the size and
pointer to the base array from the ZV object. On the other hand, the convenience makes it a widely used
object.

14.1 Data Structure

The ZV structure has three fields.

• int size : present size of the vector.

• int maxsize : maximum size of the vector.

• int owned : owner flag for the data. When owned = 1, storage for owned double’s has been allocated
by this object and can be free’d by the object. When owned == 0 but size > 0 , this object points
to entries that have been allocated elsewhere, and these entries will not be free’d by this object.

108

109

• double *vec : pointer to the base address of the double vector

The size, maxsize, nowned and vec fields need never be accessed directly — see the ZV size(), ZV maxsize(),
ZV owned(), ZV entries(), ZV sizeAndEntries() methods.

14.2 Prototypes and descriptions of ZV methods

This section contains brief descriptions including prototypes of all methods that belong to the ZV object.

14.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. ZV * ZV_new (void) ;

This method simply allocates storage for the ZV structure and then sets the default fields by a call to
ZV setDefaultFields().

2. void ZV_setDefaultFields (ZV *zv) ;

This method sets the default fields of the object, size = maxsize = owned = 0 and vec = NULL.

Error checking: If zv is NULL an error message is printed and the program exits.

3. void ZV_clearData (ZV *zv) ;

This method releases any data owned by the object. If vec is not NULL and owned = 1, then the
storage for vec is free’d by a call to ZVfree(). The structure’s default fields are then set with a call
to ZV setDefaultFields().

Error checking: If zv is NULL an error message is printed and the program exits.

4. void ZV_free (ZV *zv) ;

This method releases any storage by a call to ZV clearData() then free’s the storage for the structure
with a call to free().

Error checking: If zv is NULL an error message is printed and the program exits.

14.2.2 Instance methods

These method allow access to information in the data fields without explicitly following pointers. There is
overhead involved with these method due to the function call and error checking inside the methods.

1. int ZV_owned (ZV *zv) ;

This method returns the value of owned. If owned > 0, then the object owns the data pointed to by
vec and will free this data with a call to ZVfree() when its data is cleared by a call to ZV free() or
ZV clearData().

Error checking: If zv is NULL an error message is printed and the program exits.

2. int ZV_size (ZV *zv) ;

This method returns the value of size, the present size of the vector.

Error checking: If zv is NULL an error message is printed and the program exits.

110

3. int ZV_maxsize (ZV *zv) ;

This method returns the value of size, the maximum size of the vector.

Error checking: If zv is NULL an error message is printed and the program exits.

4. void ZV_entry (ZV *zv, int loc, double *pReal, double *pImag) ;

This method fills *pReal with the real part and *pImag with the imaginary part of the loc’th entry in
the vector. If loc < 0 or loc >= size, i.e., if the location is out of range, we return 0.0. This design
feature is handy when a list terminates with a 0.0 value.

Error checking: If zv, pReal or pImag is NULL, an error message is printed and the program exits.

5. void ZV_pointersToEntry (ZV *zv, int loc, double **ppReal, double **ppImag) ;

This method fills **ppRealwith a pointer to the real part and **ppImagwith a pointer to the imaginary
part of the loc’th entry in the vector. If loc < 0 or loc >= size, i.e., if the location is out of range,
we return 0.0. This design feature is handy when a list terminates with a 0.0 value.

Error checking: If zv, pReal or pImag is NULL, an error message is printed and the program exits.

6. double * ZV_entries (ZV *zv) ;

This method returns vec, a pointer to the base address of the vector.

Error checking: If zv is NULL, an error message is printed and the program exits.

7. void ZV_sizeAndEntries (ZV *zv, int *psize, double **pentries) ;

This method fills *psize with the size of the vector and **pentries with the base address of the
vector.

Error checking: If zv, psize or pentries is NULL, an error message is printed and the program exits.

8. void ZV_setEntry (ZV *zv, int loc, double real, double imag) ;

This method sets the loc’th entry of the vector to (real,imag).

Error checking: If zv is NULL or loc < 0, an error message is printed and the program exits.

14.2.3 Initializer methods

There are three initializer methods.

1. void ZV_init (ZV *zv, int size, double *entries) ;

This method initializes the object given a size for the vector and a possible pointer to the vectors’
storage. Any previous data is cleared with a call to ZV clearData(). If entries != NULL then the
vec field is set to entries, the size and maxsize fields are set to size, and owned is set to zero because
the object does not own the entries. If entries is NULL and size > 0 then a vector is allocated by
the object, and the object owns this storage.

Error checking: If zv is NULL or size < 0, an error message is printed and the program exits.

2. void ZV_init1 (ZV *zv, int size) ;

This method initializes the object given a size size for the vector via a call to ZV init().

Error checking: Error checking is done with the call to ⁀ZV init().

111

3. void ZV_init2 (ZV *zv, int size, int maxsize, int owned, double *vec) ;

This is the total initialization method. The data is cleared with a call to ZV clearData(). If vec is
NULL, the object is initialized via a call to ZV init1(). Otherwise, the objects remaining fields are set
to the input parameters. and if owned is not 1, the data is not owned, so the object cannot grow.

Error checking: If zv is NULL, or if size < 0, or if maxsize < size, or if owned is not equal to 0 or 1,
of if owned = 1 and vec = NULL, an error message is printed and the program exits.

4. void ZV_setMaxsize (ZV *zv, int newmaxsize) ;

This method sets the maximum size of the vector. If maxsize, the present maximum size of the vector,
is not equal to newmaxsize, then new storage is allocated. Only size entries of the old data are copied
into the new storage, so if size > newmaxsize then data will be lost. The size field is set to the
minimum of size and newmaxsize.

Error checking: If zv is NULL or newmaxsize < 0, or if 0 < maxsize and owned == 0, an error message
is printed and the program exits.

5. void ZV_setSize (ZV *zv, int newsize) ;

This method sets the size of the vector. If newsize > maxsize, the length of the vector is increased
with a call to ZV setMaxsize(). The size field is set to newsize.

Error checking: If zv is NULL, or newsize < 0, or if 0 < maxsize < newsize and owned = 0, an error
message is printed and the program exits.

14.2.4 Utility methods

1. void ZV_shiftBase (ZV *zv, int offset) ;

This method shifts the base entries of the vector and decrements the present size and maximum size of
the vector by offset. This is a dangerous method to use because the state of the vector is lost, namely
vec, the base of the entries, is corrupted. If the object owns its entries and ZV free(), ZV setSize() or
ZV setMaxsize() is called before the base has been shifted back to its original position, a segmentation
violation will likely result. This is a very useful method, but use with caution.

Error checking: If zv is NULL, an error message is printed and the program exits.

2. void ZV_push (ZV *zv, double val) ;

This method pushes an entry onto the vector. If the vector is full, i.e., if size == maxsize - 1, then
the size of the vector is doubled if possible. If the storage cannot grow, i.e., if the object does not own
its storage, an error message is printed and the program exits.

Error checking: If zv is NULL, an error message is printed and the program exits.

3. double ZV_minabs (ZV *zv) ;

double ZV_maxabs (ZV *zv) ;

This method simply returns the minimum and maximum magnitudes of entries in the vector.

Error checking: If zv is NULL, size <= 0 or if vec == NULL, an error message is printed and the
program exits.

4. int ZV_sizeOf (ZV *zv) ;

This method returns the number of bytes taken by the object.

Error checking: If zv is NULL an error message is printed and the program exits.

112

5. void ZV_fill (ZV *zv, double real, double imag) ;

This method fills the vector with a scalar value.

Error checking: If zv is NULL, an error message is printed and the program exits.

6. void ZV_zero (ZV *zv) ;

This method fills the vector with zeros.

Error checking: If zv is NULL, an error message is printed and the program exits.

7. void ZV_copy (ZV *zv1, ZV *zv2) ;

This method fills the zv1 object with entries in the iv2 object. Note, this is a mapped copy, zv1 and
zv2 need not have the same size. The number of entries that are copied is the smaller of the two sizes.

Error checking: If zv1 or zv2 is NULL, an error message is printed and the program exits.

8. void ZV_log10profile (ZV *zv, int npts, DV *xDV, DV *yDV, double tausmall,

double taubig, int *pnzero, int *pnsmall, int *pnbig) ;

This method scans the entries in the ZV object and fills xDV and yDV with data that allows a simple log10

distribution plot. Only entries whose magnitudes lie in the range [tausmall, taubig] contribute to
the distribution. The number of entries whose magnitudes are zero, smaller than tausmall, or larger
than taubig are placed into pnzero, *pnsmall and *pnbig, respectively. On return, the size of the
xDV and yDV objects is npts.

Error checking: If zv, xDV, yDV, pnsmall or pnbig are NULL, or if npts ≤ 0, or if taubig < 0.0 or if
tausmall > taubig, an error message is printed and the program exits.

14.2.5 IO methods

There are the usual eight IO routines. The file structure of a ZV object is simple: the first entry is size,
followed by the size entries found in vec[].

1. int ZV_readFromFile (ZV *zv, char *fn) ;

This method reads a ZV object from a file. It tries to open the file and if it is successful, it then calls
ZV readFromFormattedFile() or ZV readFromBinaryFile(), closes the file and returns the value
returned from the called routine.

Error checking: If zv or fn are NULL, or if fn is not of the form *.zvf (for a formatted file) or *.zvb
(for a binary file), an error message is printed and the method returns zero.

2. int ZV_readFromFormattedFile (ZV *zv, FILE *fp) ;

This method reads in a ZV object from a formatted file. If there are no errors in reading the data, the
value 1 is returned. If an IO error is encountered from fscanf, zero is returned.

Error checking: If zv or fp are NULL, an error message is printed and zero is returned.

3. int ZV_readFromBinaryFile (ZV *zv, FILE *fp) ;

This method reads in a ZV object from a binary file. If there are no errors in reading the data, the
value 1 is returned. If an IO error is encountered from fread, zero is returned.

Error checking: If zv or fp are NULL, an error message is printed and zero is returned.

113

4. int ZV_writeToFile (ZV *zv, char *fn) ;

This method writes a ZV object from a file. It tries to open the file and if it is successful, it then calls
ZV writeFromFormattedFile() or ZV writeFromBinaryFile(), closes the file and returns the value
returned from the called routine.

Error checking: If zv or fn are NULL, or if fn is not of the form *.zvf (for a formatted file) or *.zvb
(for a binary file), an error message is printed and the method returns zero.

5. int ZV_writeToFormattedFile (ZV *zv, FILE *fp) ;

This method writes a ZV object to a formatted file. If there are no errors in writing the data, the value
1 is returned. If an IO error is encountered from fprintf, zero is returned.

Error checking: If zv or fp are NULL, an error message is printed and zero is returned.

6. int ZV_writeToBinaryFile (ZV *zv, FILE *fp) ;

This method writes a ZV object to a binary file. If there are no errors in writing the data, the value 1

is returned. If an IO error is encountered from fwrite, zero is returned.

Error checking: If zv or fp are NULL, an error message is printed and zero is returned.

7. int ZV_writeForHumanEye (ZV *zv, FILE *fp) ;

This method writes a ZV object to a file in a human readable format. is called to write out the header
and statistics. The entries of the vector then follow in eighty column format using the ZVfprintf()

method. The value 1 is returned.

Error checking: If zv or fp are NULL, an error message is printed and zero is returned.

8. int ZV_writeStats (ZV *zv, FILE *fp) ;

This method writes the header and statistics to a file. The value 1 is returned.

Error checking: If zv or fp are NULL, an error message is printed and zero is returned.

9. int ZV_writeForMatlab (ZV *zv, char *name, FILE *fp) ;

This method writes the entries of the vector to a file suitable to be read by Matlab. The character
string name is the name of the vector, e.g, if name = "A", then we have lines of the form

A(1) = 1.000000000000e0 + 2.000000000000e0*i;

A(2) = 3.463738459493e0 + 2.728482384840e0*i;

for each entry in the vector. Note, the output indexing is 1-based, not 0-based. The value 1 is returned.

Error checking: If zv or fp are NULL, an error message is printed and zero is returned.

14.3 Driver programs for the ZV object

1. testIO msglvl msgFile inFile outFile

This driver program tests the ZV IO methods, and is useful for translating between the formatted *.zvf

and binary *.zvb files.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inFile parameter is the name of the file from which to read in the object. inFile must be
of the form *.zvf for a formatted file or *.zvb for a binary file.

114

• The outFile parameter is the name of the file to which to write out the object. If outfile is of
the form *.zvf, the object is written to a formatted file. If outfile is of the form *.zvb, the
object is written to a binary file. When outFile is not "none", the object is written to the file
in a human readable format. When outFile is "none", the object is not written out.

Part III

Ordering Objects and Methods

115

Chapter 15

BKL: Block Kernighan-Lin Object

Our BKL object is used to find an initial separator of a graph. Its input is a BPG bipartite graph object
that represents the domain-segment graph of a domain decomposition of the graph. After a call to the
BKL fidmat() method, the object contains a two-color partition of the graph that is accessible via the
colors[] and cweights[] vectors of the object.

15.1 Data Structure

The BKL object has the following fields.

• BPG *bpg : pointer to a BPG bipartite graph object, not owned by the BKL object.

• int ndom : number of domains, domain ids are in [0,ndom)

• int nseg : number of segments, segment ids are in [ndom,ndom + nseg)

• int nreg : number of regions, equal to ndom + nseg

• int totweight : total weight of the domains and segments

• int npass : number of Fiduccia-Mattheyes passes

• int npatch : number of patches evaluated, not used during the Fiduccia-Mattheyes algorithm

• int nflips : number of domains that were flipped

• int nimprove : number of improvements in the partition

• int ngaineval : number of gain evaluations, roughly equivalent to the number of degree evaluations
in the minimum degree algorithm

• int *colors : pointer to an int vector of size nreg, colors[idom] is 1 or 2 for domain idom,
colors[iseg] is 0, 1 or 2 for segment iseg.

• int *cweights : pointer to an int vector of size 3, cweights[0] contains the weight of the separator,
cweights[1] and cweights[2] contains the weights of the two components

• int *regwghts : pointer to an int vector of size nreg, used to store the weights of the domains and
segments

117

118

• float alpha : number used to store the partition evaluation parameter, the cost of the partition is

balance = max(cweights[1], cweights[2])/min(cweights[1], cweights[2]) ;

cost = cweights[0]*(1. + alpha*balance) ;

15.2 Prototypes and descriptions of BKL methods

This section contains brief descriptions including prototypes of all methods that belong to the BKL object.

15.3 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. BKL * BKL_new (void) ;

This method simply allocates storage for the BKL structure and then sets the default fields by a call to
BKL setDefaultFields().

2. void BKL_setDefaultFields (BKL *bkl) ;

This method sets the fields of the structure to their default values: bpg, colors and regwghts are set
to NULL, the int parameters are set to zero, and the cweights vector is filled with zeros.

Error checking: If bkl is NULL, an error message is printed and the program exits.

3. void BKL_clearData (BKL *bkl) ;

This method clears any data allocated by the object, namely the colors and regwghts vectors. It
then fills the structure’s fields with default values with a call to BKL setDefaultFields().

Error checking: If bkl is NULL, an error message is printed and the program exits.

4. void BKL_free (BKL *bkl) ;

This method releases any storage by a call to BKL clearData() then free’s the storage for the structure
with a call to free().

Error checking: If bkl is NULL, an error message is printed and the program exits.

15.3.1 Initializer methods

1. void BKL_init (BKL *bkl, BPG *bpg, float alpha) ;

This method initializes the BKL object given a bipartite graph object and cost function parameter as
input. Any previous data is cleared with a call to BKL clearData(). The ndom, nseg and nreg scalars
are set, the regwghts[] vector allocated and filled, and the colors[] vector allocated and filled with
zeros.

Error checking: If bkl or bpg is NULL, an error message is printed and the program exits.

119

15.3.2 Utility methods

1. void BKL_setRandomColors (BKL *bkl, int seed) ;

If seed > 0 a random number generator is set using seed. The domains are then colored 1 or 2

randomly and BKL setColorWeights() is called to set the segment weights.

Error checking: If bkl or bkl->bpg is NULL, an error message is printed and the program exits.

2. void BKL_setColorWeights (BKL *bkl) ;

This method sets the color weights for the region. It assumes that all domains are colored 1 or 2. The
segments are then colored. If a segment is adjacent only to domains of one color, its color is that color,
otherwise its color is 0.

Error checking: If bkl or bkl->bpg is NULL, an error message is printed and the program exits. The
colors of the domains are checked to ensure they are 1 or 2.

3. int BKL_segColor (BKL *bkl, int iseg) ;

This method returns the color of segment iseg.

Error checking: If bkl is NULL, or if iseg is not in [bkl->ndom, bkl->nreg), an error message is
printed and the program exits.

4. void BKL_flipDomain (BKL *bkl, int idom) ;

This method flips the color of domain idom, adjusts the colors of neighboring segments and the
cweights[] vector.

Error checking: If bkl is NULL, or if idom is not in [0,bkl->ndom), an error message is printed and
the program exits.

5. int BKL_greyCodeDomain (BKL *bkl, int count) ;

This method returns the next domain id in a grey code sequence, used to exhaustively search of a
subspace of partitions defined by set of candidate domains to flip. The value count ranges from 1 to
2ndom.

Error checking: If bkl is NULL, an error message is printed and the program exits.

6. float BKL_setInitPart (BKL *bkl, int flag, int seed, int domcolors[]) ;

This method sets the initial partition by coloring the domains and segments. The flag parameter has
the following values.

• flag = 1 −→ random coloring of the domains

• flag = 2 −→ one black domain, (seed % ndom), rest are white

• flag = 3 −→ one black pseudoperipheral domain, found using domain (seed % ndom) as root,
rest are white

• flag = 4 −→ roughly half-half split, breadth first search of domains, (seed % ndom) as root

• flag = 5 −→ roughly half-half split, breadth first search of domains, (seed % ndom) as root to
find a pseudoperipheral domain as root

• flag = 6 −→ use domcolors[] to seed the colors[] array

The seed input parameter is for a random number generator. The domcolors[] input array is used
only for flag = 6.

Error checking: If bkl is NULL, or if flag = 6 and domcolors is NULL, or if flag is not in [1,6], an
error message is printed and the program exits.

120

7. int BKL_domAdjToSep (BKL *bkl, int dom) ;

This method returns 1 if domain dom is adjacent to the separator and 0 otherwise.

Error checking: If bkl is NULL, or if dom is not in [0,ndom), an error message is printed and the
program exits.

15.3.3 Partition evaluation methods

There are three functions that evaluate the cost of a partition.

1. void BKL_evalgain (BKL *bkl, int dom, int *pdeltaS, int *pdeltaB, int *pdeltaW) ;

This method evaluates the change in the components ∆S, ∆B and ∆W that would occur if domain
dom were to be flipped. These gain values are put into the storage pointed to by pdeltaS, pdeltaB and
pdeltaW. The method checks that bkl, pdeltaS, pdeltaB and pdeltaW are not NULL and that idom is
in [0,bkl->ndom).

Error checking: If bkl, pdeltaS, pdeltaB or pdeltaW is NULL, or if dom is not in [0,ndom), an error
message is printed and the program exits.

2. float BKL_evalfcn (BKL *bkl) ;

The |S|, |B| and |W | values are taken from the cweights[] vector. If min(|B|, |W |) > 0, this function
returns

|S|
(

1 + α ∗ max(|B|, |W |)
min(|B|, |W |)

)
,

otherwise it returns (|S|+ |B|+ |W |)2.
Error checking: If bkl is NULL, an error message is printed and the program exits.

3. float BKL_eval (BKL *bkl, int Sweight, int Bweight, int Wweight) ;

The |S|, |B| and |W | values are taken from the Sweight, Bweight and Wweight parameters. If
min(|B|, |W |) > 0, this function returns

|S|
(

1 + α ∗ max(|B|, |W |)
min(|B|, |W |)

)
,

otherwise it returns (|S|+ |B|+ |W |)2. The method checks that bkl is not NULL.

Error checking: If bkl is NULL, an error message is printed and the program exits.

15.3.4 Partition improvement methods

There are two functions that take a given partition and some input parameters and return a (hopefully)
improved partition.

1. float BKL_exhSearch (BKL *bkl, int mdom, int domids[], int tcolors[]) ;

This method performs an exhaustive search of a subspace of partitions and returns the best partition.
The starting partition is given by the BKL object’s colors[] vector. The subspace of domains to flip is
defined by the domids[mdom] vector. The tcolors[] vector is a work vector. There are 2mdom distinct
partitions in the subspace to be explored. We flip the domains using a grey code sequence so a total
of 2mdom domain flips are performed. The bkl->colors[] vector is filled with the colors of the best
partition and its cost is returned.

Error checking: If bkl, domids or tcolors is NULL, or if mdom < 1, an error message is printed and
the program exits.

121

2. float BKL_fidmat (BKL *bkl) ;

If the number of domains is eight or less, an exhaustive search is made. Otherwise, this method finds
a good partition using a variant of the Fiduccia-Mattheyes algorithm. At any step, only the domains
that are adjacent to the separator are eligible to be flipped. For each eligible domain, we maintain ∆S,
∆B and ∆W , the change in the three component weights if this domain were to be flipped. These
values must be updated whenever a neighboring domain has been flipped, and so is local information.
The cost of the partition that would result if a domain were to be flipped is a function of the local
information ∆S, ∆B and ∆W , as well as the present weights of the components (global information).
At each step we evaluate the cost of the resulting partition for each domain that is eligible to be flipped.
This is relatively expensive when compared to using a heap to contain ∆S for each domain, but we
have found the resulting partitions to be better. The eligible domains are kept on a doubly linked list
to allow easy insertions and deletions.

Error checking: If bkl is NULL, an error message is printed and the program exits.

Chapter 16

BPG: Bipartite Graph Object

The BPG object is used to represent a bipartite graph. A bipartite graph naturally is-a graph, but since we
are working in C, without inheritance, we have chosen to use the has-a relationship, i.e., our BPG bipartite
graph object has-a Graph object inside itself.

A bipartite graph is a triple H = (X,Y,E) where X and Y are two disjoint sets of vertices and the edge
set E is a subset of X ×Y . In other words, nodes in X are adjacent to node in Y , but no edge connects two
vertices in X or two vertices in Y .

We do not support bipartite graphs that are subgraphs of other bipartite graphs (in the sense that there
are Graph objects that are subgraphs of other Graph objects) because we haven’t found any reason to do so.

This bipartite graph object is very rudimentary. We have used it in two instances.

• Given a domain decomposition of a graph, we want to find a bisector of the graph that is a subset of
the interface vertices. To do this we construct a bipartite graph such that the X nodes are the domains
and the Y nodes are the segments (a partition of the interface vertices). We then apply a variant of
the Kernighan-Lin algorithm to find an edge separator that is a subset of the segments. (Details are
found in [5].)

• Given a 2-set partition of a graph [S,B,W] where S is the separator and B and W are the two

components, we want to find an improved partition [Ŝ, B̂, Ŵ]. One way to do this is to construct
a bipartite graph where X = S and Y = Adj(S) ∩ B or Y = Adj(S) ∩ W and the edge set E is
constructed naturally from the appropriate edges in the graph. We then find the Dulmage-Mendelsohn
decomposition of this bipartite graph to look for a better 2-set partition. (Details are found in [6].)

Our bipartite graph object illustrates software in evolution. In both cases, our desired output is a separator
and the problem can be formulated as a bipartite graph. Does the data (the bipartite graph) own the process
(the Kernighan-Lin algorithm or the Dulmage-Mendelsohn decomposition)? Or does the process operate on
the data? There is no cut and dried answer. In fact, we did it both ways.

To find a separator from a domain decomposition, we took the approach that the process works on the
data. (See the BKL block Kernighan-Lin object.) The process was sufficiently involved that soon the BKL

code for the process outweighed (outline’d?) the BPG code for the data. Now if someone wants to modify
(and hopefully improve) the Kernighan-Lin process, they won’t alter the behavior of the bipartite graph
object.

Finding the Dulmage-Mendelsohn decomposition of a bipartite graph is a little less clear cut. When the
vertices in the bipartite graph have unit weight, the process is straightforward.

• Find a maximum matching.

122

123

• Drop an alternating level structure from exposed nodes in X .

• Drop an alternating level structure from exposed nodes in Y .

• Based on the two previous steps, partition X into three pieces and Y into three pieces and form a new
separator from the pieces.

(If these terms are not familiar, see [6]; our present purpose is a discussion of software design, not algorithms.)
A matching is a very common operation on a bipartite graph, so it is not unreasonable to expand the data
object to include some mechanism for matching, e.g., a mate[] vector. Finding a maximum matching is
a bit more tricky for there are a number of algorithms to do so, some fast, some slow, some simple, some
complex. Which to choose?

If we only worked with unit weight bipartite graphs, then we probably would have added methods to find
a maximum matching, and dropping alternating level structures, and then to find the Dulmage-Mendelsohn
decomposition. If someone wanted to use a faster algorithm to find a maximum matching it would be a
simple case of replacing a method. However, one of the strengths of this software package is that we do not
work on unit weight graphs unless we have to, we work on the natural compressed graph.

The Dulmage-Mendelsohn decomposition was not defined for non-unit weight graphs. We were in new
territory, at least to us. We could always expand the weighted bipartite compressed graph into a larger
unit weight graph, find the Dulmage-Mendelsohn decomposition and map it back to the weighted graph. (It
turns out that the DM partition is conformal with the compressed graph, i.e., a weighted vertex is completely
contained inside one of the six sets.) This would have been a very ugly feature of an otherwise clean code.

Our first remedy was to design a method that found the DM decomposition of the unit weight graph
while using the compressed graph plus a work vector whose size was the sum of the vertex weights. See
the method BPG DMdecomposition(). The code is appreciably faster than expanding the weighted graph to
a unit weight graph, finding the decomposition and then mapping back. It is not really a method, but a
module, for the fourteen hundred lines of code contain many static functions. Though the code is adequately
documented, this isn’t an algorithm that we felt like publicizing, so we export the method but not the
internals.

After some time, thought and reflection, we came to realize that we can find the decomposition by solving
a max flow problem. In some sense this is obvious, for bipartite graph matching is nothing more than a
special case of max flow. Just how to formulate the max flow problem is what eluded us for an embarassing
amount of time. Once we were able to formulate the problem as max flow, we wrote a new method to
find the decomposition for a weighted graph. The line count for BPG DMviaMaxFlow() is about one half
that of BPG DMdecomposition() and it is easier to understand. Both methods use a simple Ford-Fulkerson
augmenting flow approach.

At this time we thought about writing an object to solve max flow problems and shifting most of the
responsibility of finding the decomposition to a specialized object that solves a max flow problem on a
bipartite network. Had we more time, we would have done so. The advantages are clear. In fact, that is the
approach we have taken, but in a different context. To explain, we must return to our original problem.

The goal is to improve a 2-set partition [S,B,W]. Let B be the larger of B and W . We look at the
subgraph induced by S ∪ (Adj(S)∩B). The goal is to find a set Z ⊆ S that will be absorbed by the smaller
component W that results in a smaller separator. As a result, some nodes in Adj(S) ∩B move from B into
the separator set. The DM decomposition lets us identify a set Z that results in the largest decrease in the
separator size. But, if we consider S ∪ (Adj(S) ∩ B) to be a wide separator, the resulting separator Ŝ need
not be a separator with minimal weight that is found within the wide separator. The trick is that some
nodes in Adj(S) ∩B might be absorbed into W .

One can find a separator with minimal weight from the wide separator S∪ (Adj(S)∩B), in fact from any
wide separator that contains S, by solving a max flow problem. The drawback is that the network induced
by S ∪ (Adj(S)∩B) need not be bipartite. In other words, a bipartite induced graph necessarily implies two

124

layers to the wide separator, but the converse does not hold. We were then free to examine wide separators
that had more than two layers from which to find a minimal weight separator. It turns out that three layers
is better than two, in practice.

We did write a separate object to solve our max flow problem; see the Network object. To smooth a
separator, i.e., to improve a 2-set partition, we no longer have need of the bipartite graph object. We leave
the two Dulmage-Mendelsohn methods in the BPG object for historical and sentimental reasons.

16.1 Data Structure

A bipartite graph is a triple (X,Y,E) where X and Y are disjoint sets of vertices and E ⊆ X × Y is a set
of edges connecting vertices in X and Y . The BPG structure has three fields.

• int nX : number of vertices in X

• int nY : number of vertices in Y

• Graph *graph : pointer to a graph object G = (X ∪ Y), E).

16.2 Prototypes and descriptions of BPG methods

This section contains brief descriptions including prototypes of all methods that belong to the BPG object.

16.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. BPG * BPG_new (void) ;

This method simply allocates storage for the BPG structure and then sets the default fields by a call to
BPG setDefaultFields().

2. void BPG_setDefaultFields (BPG *bpg) ;

This method sets the fields of the structure to their default values: nX = nY = 0 and graph = NULL.

Error checking: If bpg is NULL, an error message is printed and the program exits.

3. void BPG_clearData (BPG *bpg) ;

This method releases the storage for graph via a call to Graph clearData(), and then the structure’s
fields are then set to their default values with a call to BPG setDefaultFields().

Error checking: If bpg is NULL, an error message is printed and the program exits.

4. void BPG_free (BPG *bpg) ;

This method releases any storage by a call to BPG clearData() then free’s the storage for the structure
with a call to free().

Error checking: If bpg is NULL, an error message is printed and the program exits.

125

16.2.2 Initializer methods

There are two initializer methods.

1. void BPG_init (BPG *bpg, int nX, int nY, Graph *graph) ;

This method initializes the BPG object when all three of its fields are given in the calling sequence. The
Graph object has nX + nY vertices. Note, the BPG object now “owns” the Graph object and so will free
the Graph object when it is free’d. The Graph object may contains edges between nodes in X and Y,
but these edges are swapped to the end of each adjacency list and the size of each list is then set.

Error checking: If bpg or graph are NULL, or if nX ≤ 0, or if nY ≤ 0, an error message is printed and
the program exits.

2. void BPG_initFromColoring (BPG *bpg, Graph *graph, int colors[], int cX,

int cY, int cmap[], int indX[], int indY[]) ;

This method extracts a bipartite graph from a Graph object where the X vertices are those with cmap[]

value equal to cX and the Y vertices are those with cmap[] value equal to cY. The vectors indX[] and
indY[] hold the global vertex ids of the X and Y vertices respectively.

Error checking: If bpg, graph, colors or cmap are NULL, or if cX ≤ 0, or if cY ≤ 0, or if cX = cY, an
error message is printed and the program exits.

16.2.3 Generate induced graphs

Sometimes we need to know which X or Y vertices share an edge, e.g., in the BKL object we need the domain-
domain adjacency graph (the domains are the X vertices) to efficiently implement the Fiduccia-Mattheyses
algorithm. We have two methods to generate the two induced graphs.

1. Graph * BPG_makeGraphXbyX (BPG *bpg) ;

This method constructs and returns a Graph object whose vertices are X and an edge (x1,x2) is in
the graph when there is a Y vertex y such that (x1,y) and (x2,y) are in the bipartite graph.

Error checking: If bpg is NULL, an error message is printed and the program exits.

2. Graph * BPG_makeGraphYbyY (BPG *bpg) ;

This method constructs and returns a Graph object whose vertices are Y and an edge (y1,y2) is in
the graph when there is a X vertex x such that (x,y1) and (x,y2) are in the bipartite graph.

Error checking: If bpg is NULL, an error message is printed and the program exits.

16.2.4 Utility methods

1. int BPG_pseudoperipheralnode (BPG *bpg, int seed) ;

This method finds and returns a pseudoperipheral node for the bipartite graph.

Error checking: If bpg is NULL, an error message is printed and the program exits.

2. int BPG_levelStructure (BPG *bpg, int root, int list[], int dist[],

int mark[], int tag) ;

This method drops a level structure from vertex root, fills the dist[] vector with the distances from
root, and returns the number of levels created. The mark[] vector is used to mark nodes with the tag
value as they are placed in the level structure. The list[] vector is used to accumulate the nodes as
they are placed in the level structure.

Error checking: If bpg, list, dist or mark is NULL, or if root is not in [0, nX+nY), an error message
is printed and the program exits.

126

16.2.5 Dulmage-Mendelsohn decomposition method

There is one method to find the Dulmage-Mendelsohn decomposition that uses matching when the graph
is unit weight and a generalized matching technique otherwise. There is a second method to find the
decomposition using a Ford-Fulkerson algorithm to find a max flow and a min-cut on a bipartite network.
This has largely been superceded by the Network object.

1. void BPG_DMdecomposition (BPG *bpg, int dmflags[], int stats[],

int msglvl, FILE *msgFile)

This method constructs and returns the Dulmage-Mendelsohn decomposition for a unit weight graph
and its generalization for a non-unit weight graph. On return, the dmflags[] vector is filled with the
following values:

dmflags[x] =






0 if x ∈ XR

1 if x ∈ XI

2 if x ∈ XE

dmflags[y] =






0 if y ∈ YR

1 if y ∈ YI

2 if y ∈ YE

The set XI ∪ YE contains all nodes that are reachable via alternating paths starting from exposed
nodes in X . The set YI ∪XE contains all nodes that are reachable via alternating paths starting from
exposed nodes in Y . The remaining two sets are XR = X \ (XI ∪XE) and YR = Y \ (YI ∪ YE). On
return, the stats[] vector is filled with the following values:

stats[0] — weight of XI stats[3] — weight of YI

stats[1] — weight of XE stats[4] — weight of YE

stats[2] — weight of XR stats[5] — weight of YR

Error checking: If bpg, dmflags or stats is NULL, or if msglvl > 0 and msgFile is NULL, an error
message is printed and the program exits.

2. void BPG_DMviaMaxFlow (BPG *bpg, int dmflags[], int stats[],

int msglvl, FILE *msgFile) ;

This method has the same functionality, calling sequence and returned values as the preceding BPG DMdecomposition()

method.

Error checking: If bpg, dmflags or stats is NULL, or if msglvl > 0 and msgFile is NULL, an error
message is printed and the program exits.

16.2.6 IO methods

There are the usual eight IO routines. The file structure of a BPG object is simple: the two scalar fields nX

and nY come first and the Graph object follows.

1. int BPG_readFromFile (BPG *bpg, char *fn) ;

This method reads a BPG object from a file. The method tries to open the file and if it is successful, it
then calls BPG readFromFormattedFile() or BPG readFromBinaryFile(), closes the file and returns
the value returned from the called routine.

Error checking: If bpg or fn is NULL, or if fn is not of the form *.bpgf (for a formatted file) or *.bpgb
(for a binary file), an error message is printed and the method returns zero.

2. int BPG_readFromFormattedFile (BPG *bpg, FILE *fp) ;

This method reads a BPG object from a formatted file. If there are no errors in reading the data, the
value 1 is returned. If an IO error is encountered from fscanf, zero is returned.

Error checking: If bpg or fp is NULL an error message is printed and zero is returned.

127

3. int BPG_readFromBinaryFile (BPG *bpg, FILE *fp) ;

This method reads a BPG object from a binary file. If there are no errors in reading the data, the value
1 is returned. If an IO error is encountered from fread, zero is returned.

Error checking: If bpg or fp is NULL an error message is printed and zero is returned.

4. int BPG_writeToFile (BPG *bpg, char *fn) ;

This method writes a BPG object to a file. The method tries to open the file and if it is successful, it then
calls BPG writeFromFormattedFile() or BPG writeFromBinaryFile(), closes the file and returns the
value returned from the called routine.

Error checking: If bpg or fn is NULL, or if fn is not of the form *.bpgf (for a formatted file) or *.bpgb
(for a binary file), an error message is printed and the method returns zero.

5. int BPG_writeToFormattedFile (BPG *bpg, FILE *fp) ;

This method writes a BPG object to a formatted file. If there are no errors in writing the data, the
value 1 is returned. If an IO error is encountered from fprintf, zero is returned.

Error checking: If bpg or fp is NULL, an error message is printed and zero is returned.

6. int BPG_writeToBinaryFile (BPG *bpg, FILE *fp) ;

This method writes a BPG object to a binary file. If there are no errors in writing the data, the value
1 is returned. If an IO error is encountered from fwrite, zero is returned.

Error checking: If bpg or fp is NULL, an error message is printed and zero is returned.

7. int BPG_writeForHumanEye (BPG *bpg, FILE *fp) ;

This method writes a BPG object to a file in a human readable format. The method BPG writeStats()

is called to write out the header and statistics. Then the bpg->graph object is written via a call to
Graph writeForHumanEye(). The value 1 is returned.

Error checking: If bpg or fp is NULL, an error message is printed and zero is returned.

8. int BPG_writeStats (BPG *bpg, FILE *fp) ;

This method writes a header with statistics to a file. A header is written and the value 1 is returned.

Error checking: If bpg or fp is NULL, an error message is printed and zero is returned.

16.3 Driver programs for the BPG object

This section contains brief descriptions of the driver programs.

1. testIO msglvl msgFile inFile outFile

This driver program reads and write BPG files, useful for converting formatted files to binary files
and vice versa. One can also read in a BPG file and print out just the header information (see the
BPG writeStats() method).

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the BPG

object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inFile parameter is the input file for the BPG object. It must be of the form *.bpgf or
*.bpgb. The BPG object is read from the file via the BPG readFromFile() method.

128

• The outFile parameter is the output file for the BPG object. If outFile is none then the BPG

object is not written to a file. Otherwise, the BPG writeToFile() method is called to write the
graph to a formatted file (if outFile is of the form *.bpgf), or a binary file (if outFile is of the
form *.bpgb).

2. extractBPG msglvl msgFile inGraphFile inCompidsIVfile

icomp outMapFile outBPGfile

This driver program reads in a Graph object and an IV object that contains the component ids. (A
separator vertex has component id zero; other vertices have positive component ids to identify the
subgraph that contains them.) It then extracts out the bipartite graph formed by the separator and
nodes in the target component that are adjacent to the separator.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means that all
objects are written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any message data.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The inCompidsIVfile parameter is the input file for the IV object that contains the compo-
nent ids. It must be of the form *.ivf or *.ivb. The IV object is read from the file via the
IV readFromFile() method.

• The icomp parameter defines the target component to form the Y nodes of the bipartite graph.
(The separator nodes, component zero, form the X nodes.)

• The outMapFile parameter is the output file for the IV object that holds the map from vertices
in the bipartite graph to vertices in the original graph. If outMapFile is none then the IV object
is not written to a file. Otherwise, the IV writeToFile() method is called to write the IV object
to a formatted file (if outMapFile is of the form *.ivf), or a binary file (if outMapFile is of the
form *.ivb).

• The outBPGFile parameter is the output file for the compressed BPG object. If outBPGFile is
none then the BPG object is not written to a file. Otherwise, the BPG writeToFile() method is
called to write the graph to a formatted file (if outBPGFile is of the form *.graphf), or a binary
file (if outBPGFile is of the form *.graphb).

3. testDM msglvl msgFile inBPGfile

This driver program reads in a BPG object from a file. It then finds the Dulmage-Mendelsohn decom-
position using two methods.

• BPG DMdecomposition() which uses matching techniques on the weighted graph.

• BPG DMviaMaxFlow() which forms bipartite network and solves the max flow problem using a
simple Ford-Fulkerson algorithm.

This provides a good check on the two programs (they must have the same output) and writes their
execution times.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means that all
objects are written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any message data.

• The inBPGFile parameter is the input file for the BPG object. It must be of the form *.graphf

or *.graphb. The BPG object is read from the file via the BPG readFromFile() method.

Chapter 17

DSTree:
A Domain/Separator Tree Object

The DSTree object represents a recursive partition of a graph, as is constructed during a nested dissection
procedure. The graph is split by a vertex separator into subgraphs, and this process continues recursively
up to some point. A subgraph which is not split is a domain. The DSTree object is normally created by
the GPart graph partitioning object and then used to determine the stages vector used as input to the MSMD

multistage minimum degree object.

The DSTree object contains a Tree object that stores the natural tree links between separators and
domains. The top level separator has no parent. Once a separator S splits a graph, each subgraph is either
split again (in this case S is the parent of the separator that splits the subgraph) or S is the parent of the
subgraph (which is a domain). The DSTree object also contains an IV object that stores a map from the
vertices to the domains and separators.

The DSTree object is a natural output from a nested dissection or other graph partitioning algorithm
that uses vertex separators. Presently it has only one active function — it creates a map from the vertices to
the stages needed as input for the multi-stage minimum degree algorithm (see the MSMD object). Multisection
orders the vertices in two stages: all vertices in the domains first, then the vertices in the separators. Nested
dissection orders the vertices in as many stages as there are levels in the DSTree object.

17.1 Data Structure

The DSTree object has a very simple data structure. It contains a Tree object to represent the tree fields
of the domains and separators, and an IV object to hold the map from the vertices to the domains and
separators.

• Tree *tree : pointer to the Tree object

• IV *mapIV : pointer to the IV object that holds the map from vertices to domains and separators.

17.2 Prototypes and descriptions of DSTree methods

This section contains brief descriptions including prototypes of all methods that belong to the DSTree object.

129

130

17.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. DSTree * DSTree_new (void) ;

This method allocates storage for an instance of the DSTree object. The default fields are set by a call
to DSTree setDefaultFields().

2. void DSTree_setDefaultFields (DSTree *dstree) ;

This method sets the data fields to default values: tree and mapIV are set to NULL ;

Error checking: If dstree is NULL, an error message is printed and the program exits.

3. void DSTree_clearData (DSTree *dstree) ;

This method clears the data fields, free’ing storage that has been allocated by the object and free’ing
objects that it owns. This method checks to see whether dstree is NULL. If tree is not NULL, then
Tree free(tree) is called. If mapIV is not NULL, then IV free(mapIV) is called. Then the structure’s
default fields are set via a call to DSTree setDefaultFields().

Error checking: If dstree is NULL, an error message is printed and the program exits.

4. void DSTree_free (DSTree *dstree) ;

This method checks to see whether dstree is NULL. If so, an error message is printed and the program
exits. Otherwise, it releases any storage by a call to DSTree clearData() then free’s the storage for
the structure with a call to free().

Error checking: If dstree is NULL, an error message is printed and the program exits.

17.2.2 Instance methods

1. Tree * DSTree_tree (DSTree *dstree) ;

This method returns a pointer to its Tree object.

Error checking: If dstree is NULL, an error message is printed and the program exits.

2. IV * DSTree_mapIV (DSTree *dstree) ;

This method returns a pointer to its IV object that maps vertices to domains and separators.

Error checking: If dstree is NULL, an error message is printed and the program exits.

17.2.3 Initializer methods

There are three initializers and two helper functions to set the dimensions of the dstree, allocate the three
vectors, and fill the information.

1. void DSTree_init1 (DSTree *dstree, int ndomsep, int nvtx) ;

This method initializes an object given the number of vertices, (the dimension of mapIV) and do-
mains and separators (the number of nodes in tree). It then clears any previous data with a call to
DSTree clearData(). The tree field is created and initialized via a call to Tree init1(). The mapIV

field is created and initialized via a call to IV init1().

Error checking: If dstree is NULL, or ndomsep or nvtx are negative, an error message is printed and
the program exits.

131

2. void DSTree_init2 (DSTree *dstree, Tree *tree, IV *mapIV) ;

Any previous data is cleared with a call to DSTree clearData(). Then the tree and mapIV fields are
set to the pointers in the calling sequence.

Error checking: If dstree, tree or mapIV are NULL, an error message is printed and the program exits.

17.2.4 Stage methods

The only active function of a DSTree object is to construct the stages vector needed as input to the multi-
stage minimum degree MSMD object. Each domain and separator has a particular level associated with it.
A domain is a leaf of the domain/separator tree, and has level zero. Each separator has a level that is one
greater than the maximum level of its children.

1. IV * DSTree_NDstages (DSTree *dstree) ;

This method returns the stages for natural nested dissection. The levels of the domains and separators
are obtained via a call to Tree setHeightImetric(). A stagesIV IV object is created of size nvtx =

mapIV->size, filled and then returned. The stage of a vertex is the level of the domain or separator
which contains the vertex.

Error checking: If dstree is NULL, or if the object has not been initialized, an error message is printed
and the program exits.

2. IV * DSTree_ND2stages (DSTree *dstree) ;

This method returns the stages for a nested dissection variant, separators on two adjacent levels
are put into the same stage. The levels of the domains and separators are obtained via a call to
Tree setHeightImetric(). A stagesIV IV object is created of size nvtx = mapIV->size, filled and
then returned. If a vertex is found in a domain, its stage is zero. If a vertex is found in a separator at
level k, its stage is ⌈k/2⌉.
Error checking: If dstree is NULL, or if the object has not been initialized, an error message is printed
and the program exits.

3. IV * DSTree_MS2stages (DSTree *dstree) ;

This method returns the stages for the standard multisection ordering. The levels of the domains and
separators are obtained via a call to Tree setHeightImetric(). A stagesIV IV object is created of
size nvtx = mapIV->size, filled and then returned. If a vertex is found in a domain, its stage is zero.
If a vertex is found in a separator, its stage is one.

Error checking: If dstree is NULL, or if the object has not been initialized, an error message is printed
and the program exits.

4. IV * DSTree_MS3stages (DSTree *dstree) ;

This method returns the stages for a three-stage variant of the multisection ordering. The levels of the
domains and separators are obtained via a call to Tree setHeightImetric(). A stagesIV IV object
is created of size nvtx = mapIV->size, filled and then returned. If a vertex is found in a domain, its
stage is zero. The levels of the separators are split into two sets, the lower levels and the upper levels.
The stage of a vertex that is found in a separator is either one (if the separator is in the lower levels)
or two (if the separator is in the upper levels).

Error checking: If dstree is NULL, or if the object has not been initialized, an error message is printed
and the program exits.

132

5. IV * DSTree_stagesViaDomainWeight (DSTree *dstree,

int *vwghts, DV *cutoffDV) ;

This method sets the stages vector based on subtree (or domain) weights. Each vertex is mapped to
a node in the tree. We generate the subtree weights for each subtree, the fraction of the total vertex
weight (based on vwghts[]) that is contained in the subtree. For each node in the tree, its fraction of
the node weights lies between two consectutive values in the cutoff[] vector, and that is the stage
for all vertices contained in the node.

Error checking: If dstree or cutoffDV is NULL, or if the object has not been initialized, an error
message is printed and the program exits.

17.2.5 Utility methods

There is one utility method that returns the number of bytes taken by the object.

1. int DSTree_sizeOf (DSTree *dstree) ;

If dstree is NULL, an error message is printed and the program exits. Otherwise, the number of bytes
taken by this object is returned.

Error checking: If dstree is NULL, an error message is printed and the program exits.

2. void DSTree_renumberViaPostOT (DSTree *dstree) ;

This method renumbers the fronts in the tree via a post-order traversal.

Error checking: If dstree is NULL, or if the object has not been initialized, an error message is printed
and the program exits.

3. int DSTree_domainWeight (DSTree *dstree, int vwghts[]) ;

This method returns the weight of the vertices in the domains. If vwghts is NULL, the vertices have
unit weight.

Error checking: If dstree is NULL, an error message is printed and the program exits.

4. int DSTree_separatorWeight (DSTree *dstree, int vwghts[]) ;

This method returns the weight of the vertices in the separators. If vwghts is NULL, the vertices have
unit weight.

Error checking: If dstree is NULL, an error message is printed and the program exits.

17.2.6 IO methods

There are the usual eight IO routines. The file structure of a dstree object is simple: the structure for a
Tree object followed by the structure for an IV object.

1. int DSTree_readFromFile (DSTree *dstree, char *fn) ;

This method reads a DSTree object from a file. It tries to open the file and if it is successful, it then calls
DSTree readFromFormattedFile() or DSTree readFromBinaryFile(), closes the file and returns the
value returned from the called routine.

Error checking: If dstree or fn are NULL, or if fn is not of the form *.dstreef (for a formatted file)
or *.dstreeb (for a binary file), an error message is printed and the method returns zero.

133

2. int DSTree_readFromFormattedFile (DSTree *dstree, FILE *fp) ;

This method reads in a DSTree object from a formatted file. If there are no errors in reading the data,
the value 1 is returned. If an IO error is encountered from fscanf, zero is returned.

Error checking: If dstree or fp is NULL, an error message is printed and zero is returned.

3. int DSTree_readFromBinaryFile (DSTree *dstree, FILE *fp) ;

This method reads in a DSTree object from a binary file. If there are no errors in reading the data,
the value 1 is returned. If an IO error is encountered from fread, zero is returned.

Error checking: If dstree or fp is NULL, an error message is printed and zero is returned.

4. int DSTree_writeToFile (DSTree *dstree, char *fn) ;

This method writes a DSTree object to a file. It tries to open the file and if it is successful, it then calls
DSTree writeFromFormattedFile() or DSTree writeFromBinaryFile(), closes the file and returns
the value returned from the called routine.

Error checking: If dstree or fn are NULL, or if fn is not of the form *.dstreef (for a formatted file)
or *.dstreeb (for a binary file), an error message is printed and the method returns zero.

5. int DSTree_writeToFormattedFile (DSTree *dstree, FILE *fp) ;

This method writes a DSTree object to a formatted file. If there are no errors in writing the data, the
value 1 is returned. If an IO error is encountered from fprintf, zero is returned.

Error checking: If dstree or fp is NULL, an error message is printed and zero is returned.

6. int DSTree_writeToBinaryFile (DSTree *dstree, FILE *fp) ;

This method writes a DSTree object to a binary file. If there are no errors in writing the data, the
value 1 is returned. If an IO error is encountered from fwrite, zero is returned.

Error checking: If dstree or fp is NULL, an error message is printed and zero is returned.

7. int DSTree_writeForHumanEye (DSTree *dstree, FILE *fp) ;

This method writes a DSTree object to a file in a human readable format. The method DSTree writeStats()

is called to write out the header and statistics. Then the tree structure is printed via a call to
Tree writeForHumanEye, followed by the map structure via a call to IV writeForHumanEye. The
value 1 is returned.

Error checking: If dstree or fp is NULL, an error message is printed and zero is returned.

8. int DSTree_writeStats (DSTree *dstree, FILE *fp) ;

This method write the header and statistics to a file. The value 1 is returned.

Error checking: If dstree or fp is NULL, an error message is printed and zero is returned.

17.3 Driver programs for the DSTree object

This section contains brief descriptions of the driver programs.

1. testIO msglvl msgFile inFile outFile

This driver program reads and write DSTree files, useful for converting formatted files to binary files
and vice versa. One can also read in a DSTree file and print out just the header information (see the
DSTree writeStats() method).

134

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the DSTree
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inFile parameter is the input file for the DSTree object. It must be of the form *.dinpmtxf

or *.dinpmtxb. The DSTree object is read from the file via the DSTree readFromFile() method.

• The outFile parameter is the output file for the DSTree object. If outFile is none then the
DSTree object is not written to a file. Otherwise, the DSTree writeToFile() method is called
to write the object to a formatted file (if outFile is of the form *.dinpmtxf), or a binary file (if
outFile is of the form *.dinpmtxb).

2. writeStagesIV msglvl msgFile inFile type outFile

This driver program reads in a DSTree from a file, creates a stages IV object and writes it to a file.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the DSTree
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inFile parameter is the input file for the DSTree object. It must be of the form *.dstreef

or *.dstreeb. The DSTree object is read from the file via the DSTree readFromFile() method.

• The type parameter specifies which type of stages vector to create. There are presently four
supported types : ND, ND2, MS2 and ND3. See the stage methods in Section 17.2.4.

• The outFile parameter is the output file for the stages IV object. If outFile is none then the
IV object is not written to a file. Otherwise, the IV writeToFile() method is called to write the
object to a formatted file (if outFile is of the form *.ivf), or a binary file (if outFile is of the
form *.ivb).

3. testDomWeightStages msglvl msgFile

inDSTreeFile inGraphFile inCutoffDVfile outFile

This driver program is used to create a stages vector based on subtree weight. It reads in three objects
from files: a DSTree object, a Graph object and a DV object that contains the cutoff vector, then creates
a stages IV object and writes it to a file.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the DSTree
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inDSTreeFile parameter is the input file for the DSTree object. It must be of the form
*.dstreef or *.dstreeb. The DSTree object is read from the file via the DSTree readFromFile()

method.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The inCutoffDVfile parameter is the input file for the cutoff DV object. It must be of the form
*.dvf or *.dvb. The DV object is read from the file via the DV readFromFile() method.

• The outFile parameter is the output file for the stages IV object. If outFile is none then the
IV object is not written to a file. Otherwise, the IV writeToFile() method is called to write the
object to a formatted file (if outFile is of the form *.ivf), or a binary file (if outFile is of the
form *.ivb).

Chapter 18

EGraph: Element Graph Object

The EGraph object is used to model a graph that has a natural element structure (as from finite elements)
or a natural covering clique structure (e.g., the rows of A are natural cliques for the graph of AT A).

Translating an element graph EGraph object into an adjacency list Graph object is an easy task — we
provide a method to do so — but the process in reverse is much more difficult. Given a Graph object, it is
simple to construct a trivial element graph object, simply take each (i, j) edge to be an element. Constructing
an element graph with a smaller number of elements is more difficult.

Element graphs, when they arise naturally or are constructed from an adjacency graph, have great
potential. The element model for sparse elimination appears to be more powerful than the vertex adjacency
list model in the sense that concepts like indistinguishability, outmatching and deficiency are more naturally
defined with elements. An element graph might be a more natural vehicle for partitioning graphs, because
if one consider elements as the “nodes” in a Kernighan-Lin type algorithm, then the “edge” separators are
formed of vertices of the original graph.

18.1 Data Structure

The EGraph object has five fields.

• int type : type of graph. When type = 0, the vertices have unit weight When type = 1, the vertices
have possibly non-unit weight and the vwghts field is not NULL.

• int nelem : number of elements in the graph

• int nvtx : number of vertices in the graph

• IVL *adjIVL : pointer to a IVL structure that holds the vertex lists for the elements.

• int *vwghts : when type = 1, vwghts points to an int vector of size nvtx that holds the node
weights.

A correctly initialized and nontrivial EGraph object will have positive nelem and nvtx values, a valid adjIVL

field. If type = 1, the vwghts will be non-NULL.

18.2 Prototypes and descriptions of EGraph methods

This section contains brief descriptions including prototypes of all methods that belong to the EGraph object.

135

136

18.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. EGraph * EGraph_new (void) ;

This method simply allocates storage for the EGraph structure and then sets the default fields by a call
to EGraph setDefaultFields().

2. void EGraph_setDefaultFields (EGraph *egraph) ;

This method sets the structure’s fields are set to default values: type = nelem = nvtx = 0, adjIVL
= vwghts = NULL.

Error checking: If egraph is NULL an error message is printed and the program exits.

3. void EGraph_clearData (EGraph *egraph) ;

This method clears data and releases any storage allocated by the object. If egraph->adjIVL is not
NULL, then IVL free(egraph->adjIVL) is called to free the IVL object. If egraph->vwghts is not
NULL, then IVfree(egraph->vwghts) is called to free the int vector. It then sets the structure’s
default fields with a call to EGraph setDefaultFields().

Error checking: If egraph is NULL an error message is printed and the program exits.

4. void EGraph_free (EGraph *egraph) ;

This method releases any storage by a call to EGraph clearData() then free’s the storage for the
structure with a call to free().

Error checking: If egraph is NULL an error message is printed and the program exits.

18.2.2 Initializer methods

1. void EGraph_init (EGraph *egraph, int type, int nelem, int nvtx,

int IVL_type) ;

This method initializes an EGraph object given the type of vertices, number of elements, number of
vertices, and storage type for the IVL element list object. It then clears any previous data with a call to
EGraph clearData(). The IVL object is initialized by a call to IVL init1(). If type = 1, the vwghts
is initialized via a call to IVinit(). See the IVL object for a description of the IVL type parameter.

Error checking: If egraph is NULL or type is not zero or one, or if either nelem or nvtx are nonpositive,
an error message is printed and the program exits.

18.2.3 Utility methods

1. Graph EGraph_mkAdjGraph (EGraph *egraph) ;

This method creates and returns a Graph object with vertex adjacency lists from the element graph
object.

Error checking: If egraph is NULL, an error message is printed and the program exits.

2. EGraph * EGraph_make9P (int n1, int n2, int ncomp) ;

This method creates and returns a EGraph object for a n1 × n2 grid for a 9-point operator matrix.
Each element is a linear quadrilateral finite element with ncomp degrees of freedom at the grid points.
The resulting graph has n1*n2*ncomp vertices and (n1-1)*(n2-1) elements.

Error checking: If n1, n2 or ncomp is less than or equal to zero, an error message is printed and the
program exits.

137

3. EGraph * EGraph_make27P (int n1, int n2, int n3, int ncomp) ;

This method creates and returns a EGraph object for a n1×n2×n3 grid for a 27-point operator matrix.
Each element is a linear hexahedral finite element with ncomp degrees of freedom at the grid points.
The resulting graph has n1*n2*n3*ncomp vertices and (n1-1)*(n2-1)*(n3-1) elements.

Error checking: If n1, n2, n3 or ncomp is less than or equal to zero, an error message is printed and
the program exits.

18.2.4 IO methods

There are the usual eight IO routines. The file structure of a EGraph object is simple: type, nelem, nvtx,
an IVL object, and an int vector if vwghts is not NULL.

1. int EGraph_readFromFile (EGraph *egraph, char *fn) ;

This method reads an EGraph object from a file. It tries to open the file and if it is successful, it
then calls EGraph readFromFormattedFile() or EGraph readFromBinaryFile(), closes the file and
returns the value returned from the called routine.

Error checking: If egraph or fn are NULL, or if fn is not of the form *.egraphf (for a formatted file)
or *.egraphb (for a binary file), an error message is printed and the method returns zero.

2. int EGraph_readFromFormattedFile (EGraph *egraph, FILE *fp) ;

This method reads in an EGraph object from a formatted file. If there are no errors in reading the
data, the value 1 is returned. If an IO error is encountered from fscanf, zero is returned.

Error checking: If egraph or fp are NULL an error message is printed and zero is returned.

3. int EGraph_readFromBinaryFile (EGraph *egraph, FILE *fp) ;

This method reads in an EGraph object from a binary file. If there are no errors in reading the data,
the value 1 is returned. If an IO error is encountered from fread, zero is returned.

Error checking: If egraph or fp are NULL an error message is printed and zero is returned.

4. int EGraph_writeToFile (EGraph *egraph, char *fn) ;

This method writes an EGraph object to a file. It tries to open the file and if it is successful, it then calls
EGraph writeFromFormattedFile() or EGraph writeFromBinaryFile(), closes the file and returns
the value returned from the called routine.

Error checking: If egraph or fn are NULL, or if fn is not of the form *.egraphf (for a formatted file)
or *.egraphb (for a binary file), an error message is printed and the method returns zero.

5. int EGraph_writeToFormattedFile (EGraph *egraph, FILE *fp) ;

This method writes an EGraph object to a formatted file. If there are no errors in writing the data,
the value 1 is returned. If an IO error is encountered from fprintf, zero is returned.

Error checking: If egraph or fp are NULL an error message is printed and zero is returned.

6. int EGraph_writeToBinaryFile (EGraph *egraph, FILE *fp) ;

This method writes an EGraph object to a binary file. If there are no errors in writing the data, the
value 1 is returned. If an IO error is encountered from fwrite, zero is returned.

Error checking: If egraph or fp are NULL an error message is printed and zero is returned.

138

7. int EGraph_writeForHumanEye (EGraph *egraph, FILE *fp) ;

This method writes an EGraph object to a file in a human readable format. The method EGraph writeStats()

is called to write out the header and statistics. Then the adjIVL object is written out using IVL writeForHumanEye()

If the vwghts vector is present, the vertex weights are written out. The value 1 is returned.

Error checking: If egraph or fp are NULL an error message is printed and zero is returned.

8. int EGraph_writeStats (EGraph *egraph, FILE *fp) ;

This method writes a header and statistics to a file. The value 1 is returned.

Error checking: If egraph or fp are NULL an error message is printed and zero is returned.

18.3 Driver programs for the EGraph object

This section contains brief descriptions of the driver programs.

1. testIO msglvl msgFile inFile outFile

This driver program reads and writes EGraph files, useful for converting formatted files to binary files
and vice versa. One can also read in a EGraph file and print out just the header information (see the
EGraph writeStats() method).

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the EGraph
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inFile parameter is the input file for the EGraph object. It must be of the form *.egraphf

or *.egraphb. The EGraph object is read from the file via the EGraph readFromFile() method.

• The outFile parameter is the output file for the EGraph object. If outFile is none then the
EGraph object is not written to a file. Otherwise, the EGraph writeToFile() method is called
to write the object to a formatted file (if outFile is of the form *.egraphf), or a binary file (if
outFile is of the form *.egraphb).

2. mkGraph msglvl msgFile inEGraphFile outGraphFile

This driver program reads in an EGraph object and creates a Graph object, which is then optionally
written out to a file.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the EGraph
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inEGraphFile parameter is the input file for the EGraph object. It must be of the form
*.egraphf or *.egraphb. The EGraph object is read from the file via the EGraph readFromFile()

method.

• The outGraphFile parameter is the output file for the Graph object. If outGraphFile is none

then the Graph object is not written to a file. Otherwise, the Graph writeToFile() method is
called to write the object to a formatted file (if outGraphFile is of the form *.graphf), or a
binary file (if outGraphFile is of the form *.graphb).

139

3. mkGridEGraph msglvl msgFile n1 n2 n3 ncomp outEGraphFile

This driver program creates an element graph for linear quadrilateral elements if n3 = 1 or for linear
hexahedral elements if n3 > 1. There are ncomp degrees of freedom at each grid point. The EGraph

object is optionally written out to a file.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means that all
objects are written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any message data.

• n1 is the number of grid points in the first direction, must be greater than one.

• n2 is the number of grid points in the second direction, must be greater than one.

• n3 is the number of grid points in the third direction, must be greater than or equal to one.

• ncomp is the number of components (i.e., the number of degrees of freedom) at each grid point,
must be greater than or equal to one.

• The outEGraphFile parameter is the output file for the EGraph object. If outEGraphFile is none
then the EGraph object is not written to a file. Otherwise, the EGraph writeToFile() method is
called to write the object to a formatted file (if outEGraphFile is of the form *.egraphf), or a
binary file (if outEGraphFile is of the form *.egraphb).

Chapter 19

ETree: Elimination and Front Trees

The ETree object is used to model an elimination tree or a front tree for a sparse factorization with symmetric
structure. The tree is defined over a set of vertices in a graph — the graph can be unit weight or non-unit
weight. A “node” in the tree can be a single vertex (in the context of an elimination tree) or a group of
vertices (as for a front tree).

The tree information is stored as a Tree object. In addition there are three IV objects. One stores the
total size of the nodes in the fronts, one stores the size of the boundaries of the fronts, and one stores the
map from the vertices to the fronts.

There is a great deal of functionality embodied into the ETree object. Given an elimination tree or a
front tree, one can extract the permutation vectors (for the fronts or the vertices), extract a multisector
based on several criteria, compress the front tree in several ways, justify the tree (order children of a node
in meaningful ways), evaluate metric vectors on the tree (heights, depths, subtree accumulators).

The front tree we obtain from a low-fill matrix ordering is usually not the front tree that drives the
factorization. We provide three methods that transform the former into the latter. One method merges
the fronts together in a way that adds logical zeros to their structure. One method splits large fronts into
smaller fronts. One method combines these two functionalities.

19.1 Data Structure

The ETree object has six fields.

• int nfront : number of fronts in the tree

• int nvtx : number of vertices in the tree

• Tree *tree : pointer to a Tree structure

• IV *nodwghtsIV : pointer to an IV object to hold front weights, size nfront

• IV *bndwghtsIV : pointer to an IV object to hold the weights of the fronts’ boundaries, size nfront

• IV *vtxToFrontIV : pointer to an IV object to hold the map from vertices to fronts, size nfront

A correctly initialized and nontrivial ETree object will have positive nfront and nvtx values, a valid tree

field and non-NULL nodwghtsIV, bndwghtsIV and vtxToFrontIV pointers.

140

141

19.2 Prototypes and descriptions of ETree methods

This section contains brief descriptions including prototypes of all methods that belong to the ETree object.

19.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. ETree * ETree_new (void) ;

This method simply allocates storage for the ETree structure and then sets the default fields by a call
to ETree setDefaultFields().

2. void ETree_setDefaultFields (ETree *etree) ;

This method sets the structure’s fields are set to default values: nfront = nvtx = 0, tree = nodwghtsIV

= bndwghtsIV = vtxToFrontIV = NULL.

Error checking: If etree is NULL, an error message is printed and the program exits.

3. void ETree_clearData (ETree *etree) ;

This method clears data and releases any storage allocated by the object. If tree is not NULL, then
Tree free(tree) is called to free the Tree object. It releases any storage held by the nodwghtsIV,
bndwghtsIV and vtxToFrontIV IV objects via calls to IV free(). It then sets the structure’s default
fields with a call to ETree setDefaultFields().

Error checking: If etree is NULL, an error message is printed and the program exits.

4. void ETree_free (ETree *etree) ;

This method releases any storage by a call to ETree clearData() then free’s the storage for the
structure with a call to free().

Error checking: If etree is NULL, an error message is printed and the program exits.

19.2.2 Instance methods

1. int ETree_nfront (ETree *etree) ;

This method returns the number of fronts.

Error checking: If etree is NULL, an error message is printed and the program exits.

2. int ETree_nvtx (ETree *etree) ;

This method returns the number of vertices.

Error checking: If etree is NULL, an error message is printed and the program exits.

3. Tree * ETree_tree (ETree *etree) ;

This method returns a pointer to the Tree object.

Error checking: If etree is NULL, an error message is printed and the program exits.

4. int ETree_root (ETree *etree) ;

This method returns the id of the root node.

Error checking: If etree or etree->tree is NULL, an error message is printed and the program exits.

142

5. int * ETree_par (ETree *etree) ;

This method returns the pointer to the parent vector.

Error checking: If etree or etree->tree is NULL, an error message is printed and the program exits.

6. int * ETree_fch (ETree *etree) ;

This method returns the pointer to the first child vector.

Error checking: If etree or etree->tree is NULL, an error message is printed and the program exits.

7. int * ETree_sib (ETree *etree) ;

This method returns the pointer to the sibling vector.

Error checking: If etree or etree->tree is NULL, an error message is printed and the program exits.

8. IV * ETree_nodwghtsIV (ETree *etree) ;

This method returns a pointer to the nodwghtsIV object.

Error checking: If etree is NULL, an error message is printed and the program exits.

9. int * ETree_nodwghts (ETree *etree) ;

This method returns a pointer to the nodwghts vector.

Error checking: If etree or etree->nodwghtsIV is NULL, an error message is printed and the program
exits.

10. IV * ETree_bndwghtsIV (ETree *etree) ;

This method returns a pointer to the bndwghtsIV object.

Error checking: If etree is NULL, an error message is printed and the program exits.

11. int * ETree_bndwghts (ETree *etree) ;

This method returns a pointer to the bndwghts vector.

Error checking: If etree or etree->bndwghtsIV is NULL, an error message is printed and the program
exits.

12. IV * ETree_vtxToFrontIV (ETree *etree) ;

This method returns a pointer to the vtxToFrontIV object.

Error checking: If etree is NULL, an error message is printed and the program exits.

13. int * ETree_vtxToFront (ETree *etree) ;

This method returns a pointer to the vtxToFront vector.

Error checking: If etree or etree->vtxToFrontIV is NULL, an error message is printed and the program
exits.

14. int ETree_frontSize (ETree *etree, int J) ;

This method returns the number of internal degrees of freedom in front J.

Error checking: If etree is NULL, or if J is out of range, an error message is printed and the program
exits.

15. int ETree_frontBoundarySize (ETree *etree, int J) ;

This method returns the number of external or boundary degrees of freedom in front J.

Error checking: If etree is NULL, or if J is out of range, an error message is printed and the program
exits.

143

16. void ETree_maxNindAndNent (ETree *etree, int symflag,

int *pmaxnind, int *pmaxnent) ;

This method fills *pmaxnind with the maximum number of indices for a front (just column indices
if symmetric front, row and column indices if nonsymmetric front) and *pmaxnent with the max-
imum number of entries for a front (just upper entries if symmetric front, all entries if nonsym-
metric front). The symflag parameter must be one of SPOOLES SYMMETRIC, SPOOLES HERMITIAN or
SPOOLES NONSYMMETRIC. The entries in the (2,2) block of the front are not counted.

Error checking: If etree is NULL, or if symflag is invalid, an error message is printed and the program
exits.

19.2.3 Initializer methods

There are four initializer methods.

1. void ETree_init1 (ETree *etree, int nfront, int nvtx) ;

This method initializes an ETree object given the number of fronts and number of vertices. Any
previous data is cleared with a call to ETree clearData(), The Tree object is initialized with a call to
Tree init1(). The nodwghtsIV, bndwghtsIV and vtxToFrontIV objects are initialized with calls to
IV init(). The entries in nodwghtsIV and bndwghtsIV are set to 0, while the entries in vtxToFrontIV

are set to -1.

Error checking: If etree is NULL, or if nfront is negative, or if nvtx < nfront, an error message is
printed and the program exits.

2. void ETree_initFromGraph (ETree *etree, Graph *g) ;

This method generates an elimination tree from a graph. The nodwghtsIV vector object is filled with
the weights of the vertices in the graph. The tree->par vector and bndwghtsIV vector object are filled
using the simple O(|L|) algorithm from [16]. The fch[], sib[] and root fields of the included Tree

object are then set. vtxToFrontIV, the IV object that holds the map from vertices to fronts, is set to
the identity.

Error checking: If etree or g is NULL or g->nvtx is negative, an error message is printed and the
program exits.

3. void ETree_initFromGraphWithPerms (ETree *etree, Graph *g) ;

int newToOld[], int oldToNew[]) ;

This method generates an elimination tree from a graph using two permutation vectors. The behavior
of the method is exactly the same as the initializer ETree initFromGraph(), with the exception that
vtxToFrontIV, the IV object that holds the map from vertices to fronts, is set to the oldToNew[] map.

Error checking: If etree or g is NULL or g->nvtx is negative, an error message is printed and the
program exits.

4. void ETree_initFromDenseMatrix (ETree *etree, int n, int option, int param) ;

This method initializes a front tree to factor a n x n dense matrix. If option == 1, then all fronts
(save possibly the last) have the same number of internal vertices, namely param. If option == 2,
then we try to make all fronts have the same number of entries in their (1,1), (1,2) and (2,1) blocks,
namely param entries.

Error checking: If etree is NULL or if n <= 0, or if option < 1, or if 2 < option , or if param ≤ 0, an
error message is printed and the program exits.

144

5. IV * ETree_initFromFile (ETree *etree, char *inETreeFileName,

int msglvl, FILE *msgFile) ;

This method reads in an ETree object from a file, gets the old-to-new vertex permutation, permutes
to vertex-to-front map, and returns an IV object that contains the old-to-new permutation.

Error checking: If etree is NULL or inETreeFileName is “none”, an error message is printed and the
program exits.

6. int ETree_initFromSubtree (ETree *subtree, IV *nodeidsIV, ETree *etree, IV *vtxIV) ;

This method initializes subtree from tree using the nodes of etree that are found in nodeidsIV. The
map from nodes in subtree to nodes in etree is returned in vtxIV.

Return code: 1 for a normal return, -1 if subtree is NULL, -2 if nodeidsIV is NULL, -3 if etree is NULL,
-4 if nodeidsIV is invalid, -5 if vtxIV is NULL.

19.2.4 Utility methods

The utility methods return the number of bytes taken by the object, or the number of factor indices, entries
or operations required by the object.

1. int ETree_sizeOf (ETree *etree) ;

This method returns the number of bytes taken by this object (which includes the bytes taken by the
internal Tree structure).

Error checking: If etree is NULL, an error message is printed and the program exits.

2. int ETree_nFactorIndices (ETree *etree) ;

This method returns the number of indices taken by the factor matrix that the tree represents. Note,
if the ETree object is a vertex elimination tree, the number of indices is equal to the number of
entries. If the number of compressed indices is required, create an ETree object to represent the tree
of fundamental supernodes and then call this method with this compressed tree.

Error checking: If etree or tree is NULL or if nfront < 1, or if nvtx < 1, an error message is printed
and the program exits.

3. int ETree_nFactorEntries (ETree *etree, int symflag) ;

This method returns the number of entries taken by the factor matrix that the tree represents. The
symflag parameter can be one of SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC.

Error checking: If etree or tree is NULL, or if nfront < 1, or if nvtx < 1, or if symflag is invalid, an
error message is printed and the program exits.

4. double ETree_nFactorOps (ETree *etree, int type, int symflag) ;

This method returns the number of operations taken by the factor matrix that the tree represents.
The type parameter can be one of SPOOLES REAL or SPOOLES COMPLEX. The symflag parameter can
be one of SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC.

Error checking: If etree or tree is NULL, or if nfront < 1, or if nvtx < 1, or if type or symflag is
invalid, an error message is printed and the program exits.

5. double ETree_nFactorEntriesInFront (ETree *etree, int symflag, int J) ;

This method returns the number of entries in front J for an LU factorization. The symflag parameter
can be one of SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC.

Error checking: If etree or tree is NULL, or if nfront < 1, or if symflag is invalid, or if J < 0, or if
J ≥ nfront, an error message is printed and the program exits.

145

6. double ETree_nInternalOpsInFront (ETree *etree, int type, int symflag, int J) ;

This method returns the number of internal operations performed by front J on its (1, 1), (2, 1), and
(1, 2) blocks during a factorization. The type parameter can be one of SPOOLES REAL or SPOOLES COMPLEX.
symflag must be one of SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC.

Error checking: If etree or tree is NULL, or if nfront < 1, or if type or symflag is invalid, or if J < 0,
or if J ≥ nfront, an error message is printed and the program exits.

7. double ETree_nExternalOpsInFront (ETree *etree, int type, int symflag, int J) ;

This method returns the number of operations performed by front J on its (2, 2) block for an LU
factorization. The type parameter can be one of SPOOLES REAL or SPOOLES COMPLEX. symflag must
be one of SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC.

Error checking: If etree or tree is NULL, or if nfront < 1, or if type or symflag is invalid, or if J < 0,
or if J ≥ nfront, an error message is printed and the program exits.

8. IV * ETree_factorEntriesIV (ETree *etree, int symflag) ;

This method creates and returns an IV object that is filled with the number of entries for the fronts. The
symflag parameter can be one of SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC.

Error checking: If etree is NULL, or if symflag is invalid, an error message is printed and the program
exits.

9. DV * ETree_backwardOps (ETree *etree, int type, int symflag,

int vwghts[], IV *symbfacIVL) ;

This method creates and returns a DV object that is filled with the backward operations (left-looking)
for the fronts. The type parameter can be one of SPOOLES REAL or SPOOLES COMPLEX. symflag must
be one of SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC.

Error checking: If etree or symbfacIVL is NULL, or if type or symflag is invalid, an error message is
printed and the program exits.

10. DV * ETree_forwardOps (ETree *etree, int type, int symflag) ;

This method creates and returns a DV object that is filled with the forward operations (right-looking)
for the fronts. The type parameter can be one of SPOOLES REAL or SPOOLES COMPLEX. symflag must
be one of SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC.

Error checking: If etree is NULL, or if type or symflag is invalid, an error message is printed and the
program exits.

11. ETree * ETree_expand (ETree *etree, IV *eqmapIV) ;

This method creates and returns an ETree object for an uncompressed graph. The map from com-
pressed vertices to uncompressed vertices is found in the eqmapIV object.

Error checking: If etree or eqmapIV is NULL, an error message is printed and the program exits.

12. ETree * ETree_spliceTwoEtrees (ETree *etree0, Graph *graph, IV *mapIV, ETree *etree1) ;

This method creates and returns an ETree object that is formed by splicing together two front trees,
etree0 for the vertices the eliminated domains, etree1 for the vertices the Schur complement. The
mapIV object maps vertices to domains or the Schur complement — if the entry is 0, the vertex is in
the Schur complement, otherwise it is in a domain.

Error checking: If etree0, graph, mapIV or etree1 is NULL, an error message is printed and the
program exits.

146

19.2.5 Metrics methods

Many operations need to know some metric defined on the nodes in a etree. Here are three examples:

• the weight of each front in the tree (this is just the nodwghtsIV object);

• the number of factor entries in each front

• the number of factor operations associated with each front in a forward looking factorization.

Other metrics based on height, depth or subtree accumulation can be evaluated using the Tree metric
methods on the Tree object contained in the ETree object.

1. IV * ETree_nvtxMetric (ETree *etree) ;

An IV object of size nvtx is created, filled with the entries from etree->nodwghtsIV, and returned.

Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, an error message is printed and the
program exits.

2. IV * ETree_nentMetric (ETree *etree, int symflag) ;

An IV object of size nfront is created and returned. Each entry of the vector is filled with the
number of factor entries associated with the corresponding front. The symflag parameter can be one
of SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC.

Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, an error message is printed and the
program exits.

3. DV * ETree_nopsMetric (ETree *etree, int type, int symflag) ;

An DV object of size nfront is created and returned. Each entry of the vector is filled with the
number of factor operations associated with the corresponding front. The type parameter can be one
of SPOOLES REAL or SPOOLES COMPLEX. The symflag parameter can be one of SPOOLES SYMMETRIC,
SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC.

Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, or if type or symflag is invalid, an
error message is printed and the program exits.

19.2.6 Compression methods

Frequently an ETree object will need to be compressed in some manner. Elimination trees usually have
long chains of vertices at the higher levels, where each chain of vertices corresponds to a supernode. Liu’s
generalized row envelope methods partition the vertices by longest chains [17]. In both cases, we can construct
a map from each node to a set of nodes to define a smaller, more compact ETree object. Given such a map,
we construct the smaller etree.

A fundamental chain is a set of vertices v1, . . . , vm such that

1. v1 is a leaf or has two or more children,

2. vi is the only child of vi+1 for 1 ≤ i < m,

3. vm is either a root or has a sibling.

The set of fundamental chains is uniquely defined. In the context of elimination etrees, a fundamental chain
is very close to a fundamental supernode, and in many cases, fundamental chains can be used to contruct
the fronts with little added fill and factor operations.

A fundamental supernode [4] is a set of vertices v1, . . . , vm such that

147

1. v1 is a leaf or has two or more children,

2. vi is the only child of vi+1 for 1 ≤ i < m,

3. vm is either a root or has a sibling, and

4. the structures of vi and vi+1 are nested, i.e., bndwght[vi] = nodwght[vi+1] + bndwght[vi+1] for
1 ≤ i < m.

The set of fundamental supernodes is uniquely defined.

Once a map from the nodes in a tree to nodes in a compressed tree is known, the compressed tree can be
created using the ETree compress() method. In this way, a vertex elimination tree can be used to generate
a front tree.

1. IV * ETree_fundChainMap (ETree *etree) ;

An IV object of size nfront is created, filled via a call to Tree fundChainMap, then returned.

Error checking: If etree or tree is NULL, or if nfront < 1, or if nvtx < 1, an error message is printed
and the program exits.

2. IV * ETree_fundSupernodeMap (ETree *etree) ;

An IV object of size nfront is created, filled with the map from vertices to fundamental supernodes,
then returned.

Error checking: If etree or tree is NULL, or if nfront < 1, or if nvtx < 1, an error message is printed
and the program exits.

3. ETree * ETree_compress (ETree *etree, IV *frontMapIV) ;

Using frontMapIV, a new ETree object is created and returned. If frontMapIV does not define each
inverse map of a new node to be connected set of nodes in the old ETree object, the new ETree object
will not be well defined.

Error checking: If etree or frontMapIV is NULL, or if nfront < 1, or if nvtx < 1, an error message is
printed and the program exits.

19.2.7 Justification methods

Given an ETree object, how should the children of a node be ordered? This “justification” can have a large
impact in the working storage for the front etree in the multifrontal algorithm [15]. Justification also is useful
when displaying trees. These methods simply check for errors and then call the appropriate Tree method.

1. void ETree_leftJustify (ETree *etree) ;

If u and v are siblings, and u comes before v in a post-order traversal, then the size of the subtree
rooted at u is as large or larger than the size of the subtree rooted at v.

Error checking: If etree or tree is NULL, an error message is printed and the program exits.

2. void ETree_leftJustifyI (ETree *etree, IV *metricIV) ;

void ETree_leftJustifyD (ETree *etree, DV *metricDV) ;

Otherwise, if u and v are siblings, and u comes before v in a post-order traversal, then the weight of
the subtree rooted at u is as large or larger than the weight of the subtree rooted at v.

Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, or if metricIV is NULL or invalid
(wrong size or NULL vector inside), an error message is printed and the program exits.

148

19.2.8 Permutation methods

Often we need to extract a permutation from an ETree object, e.g., a post-order traversal of a front tree gives
an ordering of the fronts for a factorization or forward solve, the inverse gives an ordering for a backward
solve.

1. IV * ETree_newToOldFrontPerm (ETree *etree) ;

IV * ETree_oldToNewFrontPerm (ETree *etree) ;

An IV object is created with size nfront. A post-order traversal of the Tree object fills the new-to-
old permutation. A reversal of the new-to-old permutation gives the old-to-new permutation. Both
methods are simply wrappers around the respective Tree methods.

Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, an error message is printed and the
program exits.

2. IV * ETree_newToOldVtxPerm (ETree *etree) ;

IV * ETree_oldToNewVtxPerm (ETree *etree) ;

An IV object is created with size nvtx. First we find a new-to-old permutation of the fronts. Then
we search over the fronts in their new order to fill the vertex new-to-old permutation vector. The old-
to-new vertex permutation vector is found by first finding the new-to-old vertex permutation vector,
then inverting it.

Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, an error message is printed and the
program exits.

3. void ETree_permuteVertices (ETree *etree, IV *vtxOldToNewIV) ;

This method permutes the vertices — the vtxToFrontIV map is updated to reflect the new vertex
numbering.

Error checking: If etree or vtxOldToNewIV is NULL, or if nvtx < 1, an error message is printed and
the program exits.

19.2.9 Multisector methods

One of our goals is to improve a matrix ordering using the multisection ordering algorithm. To do this, we
need to extract a multisector from the vertices, i.e., a set of nodes that when removed from the graph, break
the remaining vertices into more than one (typically many) components. The following two methods create
and return an IV integer vector object that contains the nodes in the multisector.

1. IV * ETree_msByDepth (ETree *etree, int depth) ;

An IV object is created to hold the multisector nodes and returned. Multisector nodes have their
component id zero, domain nodes have their component id one. A vertex is in the multisector if the
depth of the front to which it belongs is less than or equal to depth.

Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, or if depth ≤ 0, an error message
is printed and the program exits.

2. IV * ETree_msByNvtxCutoff (ETree *etree, double cutoff) ;

An IV object is created to hold the multisector nodes and returned. Multisector nodes have their
component id zero, domain nodes have their component id one. Inclusion in the multisector is based
on the number of vertices in the subtree that a vertex belongs, or strictly speaking, the number of
vertices in the subtree of the front to which a vertex belongs. If weight of the subtree is more than
cutoff times the vertex weight, the vertex is in the multisector.

149

Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, an error message is printed and the
program exits.

3. IV * ETree_msByNentCutoff (ETree *etree, double cutoff, int symflag) ;

An IV object is created to hold the multisector nodes and returned. Multisector nodes have their
component id zero, domain nodes have their component id one. Inclusion in the multisector is based
on the number of factor entries in the subtree that a vertex belongs, or strictly speaking, the number of
factor entries in the subtree of the front to which a vertex belongs. If weight of the subtree is more than
cutoff times the number of factor entries, the vertex is in the multisector. The symflag parameter
can be one of SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC.

Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, or if symflag is invalid, an error
message is printed and the program exits.

4. IV * ETree_msByNopsCutoff (ETree *etree, double cutoff, int type, int symflag) ;

An IV object is created to hold the multisector nodes and returned. Multisector nodes have their
component id zero, domain nodes have their component id one. Inclusion in the multisector is based
on the number of right-looking factor operations in the subtree that a vertex belongs, or strictly
speaking, the number of factor operations in the subtree of the front to which a vertex belongs. If
weight of the subtree is more than cutoff times the number of factor operations, the vertex is in
the multisector. The type parameter can be one of SPOOLES REAL or SPOOLES COMPLEX. The symflag

parameter can be one of SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC.

Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, or if type or symflag is invalid, an
error message is printed and the program exits.

5. void ETree_msStats (ETree *etree, IV *msIV, IV *nvtxIV, IV *nzfIV,

DV *opsDV, int type, int symflag) ;

This method is used to generate some statistics about a domain decomposition. On input, msIV is a
flag vector, i.e., ms[v] = 0 means that v is in the Schur complement, otherwise v is in domain. On
output, msIV is a map from nodes to regions, i.e., ms[v] = 0 means that v is in the Schur complement,
otherwise v is in domain ms[v]. On output, nvtxIV contains the number of vertices in each of the
regions, nzfIV contains the number of factor entries in each of the regions, and opsIV contains the
number of factor operations in each of the regions. The type parameter can be one of SPOOLES REAL

or SPOOLES COMPLEX. The symflag parameter can be one of SPOOLES SYMMETRIC, SPOOLES HERMITIAN

or SPOOLES NONSYMMETRIC.

Error checking: If etree, msIV, nvtxIV, nzfIV or opsIV is NULL, an error message is printed and the
program exits.

6. IV * ETree_optPart (ETree *etree, Graph *graph, IVL *symbfacIVL,

double alpha, int *ptotalgain, int msglvl, FILE *msgFile) ;

This method is used to find the optimal domain/Schur complement partition for a semi-implicit fac-

torization. The gain of a subtree Ĵ is equal to |L
∂J, bJ
| − |A

∂J, bJ
| − α|L

bJ, bJ
|. When α = 0, we minimize

active storage, when α = 1, we minimize solve operations. On return, *ptotalgain is filled with the
total gain. The return value is a pointer to compidsIV, where compids[J] = 0 means that J is in the
Schur complement, and compids[J] != 0 means that J is in domain compids[J].

Error checking: If etree, graph or symbfacIVL is NULL, an error message is printed and the program
exits.

150

19.2.10 Transformation methods

Often the elimination tree or front tree that we obtain from an ordering of the graph is not as appropriate
for a factorization as we would like. There are two important cases.

• Near the leaves of the tree the fronts are typically small in size. There is an overhead associated
with each front, and though the overhead varies with regard to the factorization algorithm, it can
be beneficial to group small subtrees together into one front. The expense is added storage for the
logically zero entries and the factor operations on them. In this library, the technique we use to merge
fronts together is node amalgamation [10], or more specifically supernode relaxation [4].

• Near the root of the tree the fronts can be very large, large enough that special techniques are necessary
to handle the large dense frontal matrices that might not be able to exist in-core. Another consideration
is a parallel setting where the design decision is to have each front be factored by a single thread of
computation. Large fronts dictate a long critical path in the factorization task graph. We try to split
a large front into two or more smaller fronts that form a chain in the front tree. Breaking the front
into smaller fronts will reduce core storage requirements and have better cache reuse and reduce the
critical path through the task graph.

We provide three methods to merge fronts together and one method to break fronts apart, and one method
that is a wrapper around all these. Let us describe the differences between the methods that merge fronts
together. Each method performs a post-order traversal of the front tree. They differ on the decision process
when visiting a front.

• The method ETree mergeFrontsAny() is taken from [4]. When visiting a front it tries to merge that
front with one of its children if it will not add too many zero entries to that front. If successful, it
tries to merge the front with another child. This approach has served well for over a decade in a serial
environment, but we discovered that it has a negative effect on nested dissection orderings when we
want a parallel factorization. Often it merges the top level separator with one of its children, and thus
reduces parallelism in the front tree.

• The method ETree mergeFrontsOne() only tries to merge a front when it has only one child. This
method is very useful if one has a vertex elimination tree (where the number of fronts is equal to the
number of vertices), for the fundamental supernode tree can be created using maxzeros = 0. This
method has some affect for minimum degree or fill orderings, where chains of nodes can occur in two
ways: aggregation (where a vertex is eliminated that is adjacent to only one subtree) or when the
indistinguishabilty test fails. In general, this method does not effectively reduce the number of fronts
because it has the “parent-only child” restriction.

• The method ETree mergeFrontsAll() tries to merge a front with all of its children, if the resulting
front does not contain too many zero entries. This has the effect of merging small bushy subtrees, but
will not merge a top level separator with one of its children.

For a serial application, ETree mergeFrontsAny() is suitable. For a parallel application, we recommend first
using ETree mergeFrontsOne() followed by ETree mergeFrontsAll(). See the driver programs testTransform
and mkNDETree for examples of how to call the methods.

1. ETree * ETree_mergeFrontsOne (ETree *etree, int maxzeros, IV *nzerosIV) ;

This method only tries to merge a front with its only child. It returns an ETree object where one or
more subtrees that contain multiple fronts have been merged into single fronts. The parameter that
governs the merging process is maxzeros, the number of zero entries that can be introduced by merging
a child and parent front together. On input, nzerosIV contains the number of zeros presently in each

151

front. It is modified on output to correspond with the new front tree. This method only tries to merge
a front with its only child.

Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, an error message is printed and the
program exits.

2. ETree * ETree_mergeFrontsAll (ETree *etree, int maxzeros) ;

This method only tries to merge a front with all of its children. It returns an ETree object where a
front has either been merged with none or all of its children. The parameter that governs the merging
process is maxzeros, the number of zero entries that can be introduced by merging the children and
parent front together. On input, nzerosIV contains the number of zeros presently in each front. It is
modified on output to correspond with the new front tree.

Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, an error message is printed and the
program exits.

3. ETree * ETree_mergeFrontsAny (ETree *etree, int maxzeros) ;

This method only tries to merge a front with any subset of its children. It returns an ETree object
where a front has possibly merged with any of its children. The parameter that governs the merging
process is maxzeros, the number of zero entries that can be introduced by merging the children and
parent front together. On input, nzerosIV contains the number of zeros presently in each front. It is
modified on output to correspond with the new front tree.

Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, an error message is printed and the
program exits.

4. ETree * ETree_splitFronts (ETree *etree, int vwghts[],

int maxfrontsize, int seed) ;

This method returns an ETree object where one or more large fronts have been split into smaller fronts.
Only an interior front (a front that is not a leaf in the tree) can be split. No front in the returned
ETree object has more than maxfrontsize rows and columns. The vwghts[] vector stores the number
of degrees of freedom associated with a vertex; if vwghts is NULL, then the vertices have unit weight.
The way the vertices in a front to be split are assigned to smaller fronts is random; the seed parameter
is a seed to a random number generator that permutes the vertices in a front.

Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, or if maxfrontsize ≤ 0, an error
message is printed and the program exits.

5. ETree * ETree_transform (ETree *etree, int vwghts[], int maxzeros,

int maxfrontsize, int seed) ;

ETree * ETree_transform2 (ETree *etree, int vwghts[], int maxzeros,

int maxfrontsize, int seed) ;

These methods returns an ETree object where one or more subtrees that contain multiple fronts have
been merged into single fronts and where one or more large fronts have been split into smaller fronts.
The two methods differ slightly. ETree transform2() is better suited for parallel computing because
it tends to preserve the tree branching properties. (A front is merged with either an only child or all
children. ETree transform() can merge a front with any subset of its children.)

Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, or if maxfrontsize ≤ 0, an error
message is printed and the program exits.

19.2.11 Parallel factorization map methods

This family of methods create a map from the fronts to processors or threads, used in a parallel factorization.

152

1. IV * ETree_wrapMap (ETree *etree, int type, int symflag, DV *cumopsDV) ;

IV * ETree_balancedMap (ETree *etree, int type,

int symflag, DV *cumopsDV) ;

IV * ETree_subtreeSubsetMap (ETree *etree, int type,

int symflag,DV *cumopsDV) ;

IV * ETree_ddMap (ETree *etree, int type, int symflag,

DV *cumopsDV, double cutoff) ;

IV * ETree_ddMapNew (ETree *etree, int type, int symflag,

IV *msIV, DV *cumopsDV) ;

These methods construct and return an IV object that contains the map from fronts to threads. The
size of the input cumopsDV object is the number of threads or processors. On output, cumopsDV

contains the number of factor operations performed by the threads or processors for a fan-in factoriza-
tion. The type parameter can be one of SPOOLES REAL or SPOOLES COMPLEX. symflag must be one of
SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC.

• The simplest map is the wrap map, where front J is assigned to thread or processor J % nthread.

• The balanced map attempts to balance the computations across the threads or processes, where
the fronts are visited in a post-order traversal of the tree and a front is assigned to a thread or
processor with the least number of accumulated operations thus far.

• The subtree-subset map is the most complex, where subsets of threads or processors are assigned
to subtrees via a pre-order traversal of the tree. (Each root of the tree can be assigned to all
processors.) The tree is then visited in a post-order traversal, and each front is assigned to an
eligible thread or processor with the least number of accumulated ops so far.

• The domain decomposition map is also complex, where domains are mapped to threads, then the
fronts in the schur complement are mapped to threads, both using independent balanced maps.
The method ETree ddMapNew() is more robust than ETree ddMap(), and is more general in the
sense that it takes a multisector vector as input. The msIV object is a map from the vertices to
{0, 1}. A vertex mapped to 0 lies in the Schur complement, a vertex mapped to 1 lies in a domain.

Error checking: If etree or cumopsDV is NULL, or if type or symflag is invalid, an error message is
printed and the program exits.

19.2.12 Storage profile methods

These methods fill a vector with the total amount of working storage necessary during the factor and solves.

1. void ETree_MFstackProfile (ETree *etree, int type, double dvec[]) ;

On return, dvec[J] contains the amount of active storage to eliminate J using the multifrontal method
and the natural post-order traversal. The symflag parameter can be one of SPOOLES SYMMETRIC,
SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC.

Error checking: If etree or dvec are NULL, or if symflag is invalid, an error message is printed and
the program exits.

2. void ETree_GSstorageProfile (ETree *etree, int type, IVL *symbfacIVL,

int *vwghts, double dvec[]) ;

On return, dvec[J] contains the amount of active storage to eliminate J using the left-looking gen-
eral sparse method and the natural post-order traversal. The symflag parameter can be one of
SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC.

Error checking: If etree or dvec are NULL, or if symflag is invalid, an error message is printed and
the program exits.

153

3. void ETree_FSstorageProfile (ETree *etree, int type, IVL *symbfacIVL,

double dvec[]) ;

On return, dvec[J] contains the amount of active storage to eliminate J using the right-looking
forward sparse method and the natural post-order traversal. The symflag parameter can be one of
SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC.

Error checking: If etree or dvec are NULL, or if symflag is invalid, an error message is printed and
the program exits.

4. void ETree_forwSolveProfile (ETree *etree, double dvec[]) ;

On return, dvec[J] contains the amount of stack storage to solve for J using the multifrontal-based
forward solve.

Error checking: If etree or dvec are NULL, an error message is printed and the program exits.

5. void ETree_backSolveProfile (ETree *etree, double dvec[]) ;

On return, dvec[J] contains the amount of stack storage to solve for J using the multifrontal-based
backward solve.

Error checking: If etree or dvec are NULL, an error message is printed and the program exits.

19.2.13 IO methods

There are the usual eight IO routines. The file structure of a tree object is simple: nfront, nvtx, a Tree

object followed by the nodwghtsIV, bndwghtsIV and vtxToFrontIV objects.

1. int ETree_readFromFile (ETree *etree, char *fn) ;

This method reads an ETree object from a file whose name is stored in *fn. It tries to open the file and
if it is successful, it then calls ETree readFromFormattedFile() or ETree readFromBinaryFile(),
closes the file and returns the value returned from the called routine.

Error checking: If etree or fn are NULL, or if fn is not of the form *.etreef (for a formatted file) or
*.etreeb (for a binary file), an error message is printed and the method returns zero.

2. int ETree_readFromFormattedFile (ETree *etree, FILE *fp) ;

This method reads an ETree object from a formatted file. If there are no errors in reading the data,
the value 1 is returned. If an IO error is encountered from fscanf, zero is returned.

Error checking: If etree or fp are NULL an error message is printed and zero is returned.

3. int ETree_readFromBinaryFile (ETree *etree, FILE *fp) ;

This method reads an ETree object from a formatted file. If there are no errors in reading the data,
the value 1 is returned. If an IO error is encountered from fread, zero is returned.

Error checking: If etree or fp are NULL an error message is printed and zero is returned.

4. int ETree_writeToFile (ETree *etree, char *fn) ;

This method writes an ETree object to a file whose name is stored in *fn. An attempt is made to
open the file and if successful, it then calls ETree writeFromFormattedFile() for a formatted file,
or ETree writeFromBinaryFile() for a binary file. The method then closes the file and returns the
value returned from the called routine.

Error checking: If etree or fn are NULL, or if fn is not of the form *.etreef (for a formatted file) or
*.etreeb (for a binary file), an error message is printed and the method returns zero.

154

5. int ETree_writeToFormattedFile (ETree *etree, FILE *fp) ;

This method writes an ETree object to a formatted file. Otherwise, the data is written to the file. If
there are no errors in writing the data, the value 1 is returned. If an IO error is encountered from
fprintf, zero is returned.

Error checking: If etree or fp are NULL, an error message is printed and zero is returned.

6. int ETree_writeToBinaryFile (ETree *etree, FILE *fp) ;

This method writes an ETree object to a binary file. If there are no errors in writing the data, the
value 1 is returned. If an IO error is encountered from fwrite, zero is returned.

Error checking: If etree or fp are NULL, an error message is printed and zero is returned.

7. int ETree_writeForHumanEye (ETree *etree, FILE *fp) ;

This method writes an ETree object to a file in a readable format. Otherwise, the method ETree writeStats()

is called to write out the header and statistics. Then the parent, first child, sibling, node weight and
boundary weight values are printed out in five columns. The value 1 is returned.

Error checking: If etree or fp are NULL an error message is printed and zero is returned.

8. int ETree_writeStats (ETree *etree, FILE *fp) ;

This method write a header and some statistics to a file. The value 1 is returned.

Error checking: If etree or fp are NULL an error message is printed and zero is returned.

19.3 Driver programs for the ETree object

This section contains brief descriptions of the driver programs.

1. createETree msglvl msgFile inGraphFile inPermFile outIVfile outETreeFile

This driver program reads in a Graph object and a Perm permutation object and creates a front tree
ETree object. The map from vertices to fronts is optionally written out to outIVfile. The ETree

object is optionally written out to outETreeFile.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the ETree
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The inPermFile parameter is the input file for the Perm object. It must be of the form *.permf

or *.permb. The Perm object is read from the file via the Perm readFromFile() method.

• The outIVfile parameter is the output file for the vertex-to-front map IV object. If outIVfile
is none then the IV object is not written to a file. Otherwise, the IV writeToFile() method is
called to write the object to a formatted file (if outIVfile is of the form *.ivf), or a binary file
(if outIVfile is of the form *.ivb).

• The outETreeFile parameter is the output file for the ETree object. If outETreeFile is none

then the ETree object is not written to a file. Otherwise, the ETree writeToFile() method is
called to write the object to a formatted file (if outETreeFile is of the form *.etreef), or a
binary file (if outETreeFile is of the form *.etreeb).

155

2. extractTopSep msglvl msgFile inETreeFile outIVfile

This driver program creates an IV object that contains a compids[] vector, where compids[v] = 0 if
vertex v is in the top level separator and -1 otherwise. The IV object is optionally written out to a
file.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means that all
objects are written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any message data.

• The inETreeFile parameter is the input file for the ETree object. It must be of the form *.etreef

or *.etreeb. The ETree object is read from the file via the ETree readFromFile() method.

• The outIVfile parameter is the output file for the vertex-to-front map IV object. If outIVfile
is none then the IV object is not written to a file. Otherwise, the IV writeToFile() method is
called to write the object to a formatted file (if outIVfile is of the form *.ivf), or a binary file
(if outIVfile is of the form *.ivb).

3. mkNDETree msglvl msgFile n1 n2 n3 maxzeros maxsize outFile

This program constructs a front tree for a Laplacian operator on a regular grid ordered using nested
dissection. When n3 = 1, the problem is two dimensional and a 9-point operator is used. When n3 >

1, the problem is three dimensional and a 27-point operator is used. A sequence of five ETree objects
are produced:

• vertex elimination tree

• fundamental supernode front tree

• front tree after trying to merge with an only child

• front tree after trying to merge with all children

• front tree after splitting large fronts

The merging and splitting process are controlled by the maxzeros and maxsize parameters. Here is
some typical output for a 15× 15× 15 grid matrix with maxzeros = 64 and maxsize = 32.

vtx tree : 3375 fronts, 367237 indices, 367237 |L|, 63215265 ops

fs tree : 1023 fronts, 39661 indices, 367237 |L|, 63215265 ops

merge1 : 1023 fronts, 39661 indices, 367237 |L|, 63215265 ops

merge2 : 511 fronts, 29525 indices, 373757 |L|, 63590185 ops

split : 536 fronts, 34484 indices, 373757 |L|, 63590185 ops

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the ETree
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• n1 is the number of grid points in the first direction.

• n2 is the number of grid points in the second direction.

• n3 is the number of grid points in the third direction.

• The maxzeros parameter is an upper bound on the number of logically zero entries that will be
allowed in a new front.

• The maxsize parameter is an upper bound on the number of vertices in a front — any original
front that contains more than maxsize vertices will be broken up into smaller fronts.

156

• The outFile parameter is the output file for the ETree object. If outFile is none then the ETree
object is not written to a file. Otherwise, the ETree writeToFile() method is called to write the
object to a formatted file (if outFile is of the form *.etreef), or a binary file (if outFile is of
the form *.etreeb).

4. mkNDoutput msglvl msgFile n1 n2 n3 maxzeros maxsize

nthread maptype cutoff outETreeFile outMapFile

This program constructs a front tree for a Laplacian operator on a regular grid ordered using nested
dissection. When n3 = 1, the problem is two dimensional and a 9-point operator is used. When n3 >

1, the problem is three dimensional and a 27-point operator is used. The front tree is generated in the
same fashion as done by the mkNDETree driver program. Using this front tree, an IV object that maps
fronts to processors is then created using one of four different kinds of maps.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the ETree
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• n1 is the number of grid points in the first direction.

• n2 is the number of grid points in the second direction.

• n3 is the number of grid points in the third direction.

• The maxzeros parameter is an upper bound on the number of logically zero entries that will be
allowed in a new front.

• The maxsize parameter is an upper bound on the number of vertices in a front — any original
front that contains more than maxsize vertices will be broken up into smaller fronts.

• The nthread parameter is the number of threads.

• The maptype parameter is the type of map.

– 1 — wrap map

– 2 — balanced map

– 3 — subtree-subset map

– 4 — domain decomposition map

• The cutoff parameter is used by the domain decomposition map only. Try setting cutoff =

1/nthread or cutoff = 1/(2*nthread).

• The outETreeFile parameter is the output file for the ETree object. If outETreeFile is none

then the ETree object is not written to a file. Otherwise, the ETree writeToFile() method is
called to write the object to a formatted file (if outETreeFile is of the form *.etreef), or a
binary file (if outETreeFile is of the form *.etreeb).

• The outMapFile parameter is the output file for the IV map object. If outMapFile is none then
the IV object is not written to a file. Otherwise, the IV writeToFile() method is called to write
the object to a formatted file (if outMapFile is of the form *.ivf), or a binary file (if outMapFile
is of the form *.ivb).

5. permuteETree msglvl msgFile inETreeFile inEqmapIVfile outETreeFile outIVfile

This driver program is used to get an old-to-new permutation vector from an ETree object and permute
the vertices in the ETree object. The program has the ability to handle an ETree object that is defined
on a compressed graph. If inEqmapIVfile is not none, the program reads in an IV object that contains
the equivalence map, i.e., the map from the degrees of freedom to the vertices in the compressed graph.
This map is used to expand the ETree object.

157

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the ETree
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inETreeFile parameter is the input file for the ETree object. It must be of the form *.etreef

or *.etreeb. The ETree object is read from the file via the ETree readFromFile() method.

• The inEqmapIVfile parameter is the input file for the equivalence map IV object. It must be of
the form *.ivf, *.ivb, or none. If inEqmapIVfile is not none, the IV object is read from the
file via the IV readFromFile() method.

• The outETreeFile parameter is the output file for the ETree object. If outETreeFile is none

then the ETree object is not written to a file. Otherwise, the ETree writeToFile() method is
called to write the object to a formatted file (if outETreeFile is of the form *.etreef), or a
binary file (if outETreeFile is of the form *.etreeb).

• The outIVFile parameter is the output file for the old-to-new IV object. If outIVFile is none

then the IV object is not written to a file. Otherwise, the IV writeToFile() method is called
to write the object to a formatted file (if outIVFile is of the form *.ivf), or a binary file (if
outIVFile is of the form *.ivb).

6. testExpand msglvl msgFile inETreeFile inEqmapFile outETreeFile

This driver program is used to translate an ETree object for a compressed graph into an ETree object
for the unit weight graph.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the ETree
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inETreeFile parameter is the input file for the ETree object for the compressed graph.
It must be of the form *.etreef or *.etreeb. The ETree object is read from the file via the
ETree readFromFile() method.

• The inEqmapFile parameter contains the map from vertices in the unit weight graph into vertices
in the compressed graph. It must be of the form *.ivf or *.ivb. The IV object is read from the
file via the IV readFromFile() method.

• The outETreeFile parameter is the output file for the ETree object for the unit weight graph. If
outETreeFile is none then the ETree object is not written to a file. Otherwise, the ETree writeToFile()

method is called to write the object to a formatted file (if outETreeFile is of the form *.etreef),
or a binary file (if outETreeFile is of the form *.etreeb).

7. testFS msglvl msgFile inETreeFile labelflag radius firstEPSfile secondEPSfile

This driver program investigates the storage requirements for a limited storage forward sparse factor-
ization. It first reads in a front tree object and for each front J , it determines two quantities: (1)

the amount of in-core storage necessary to factor Ĵ and its boundary, and (2) the amount of in-core
storage necessary to factor J , par(J), par2(J), etc. The program then creates two EPS files, written
to firstEPSfile and secondEPSfile. See Figure 19.1 for an example.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the ETree
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

158

• The inETreeFile parameter is the input file for the ETree object. It must be of the form *.etreef

or *.etreeb. The ETree object is read from the file via the ETree readFromFile() method.

• If labelflag = 1, the node ids are written on the nodes in the two plots.

• Each node will have a circle with radius radius.

• The firstEPSfile and secondEPSfile parameters is the output EPS file for the two plots.

Figure 19.1: GRD7x7: Working storage for the forward sparse factorization of the nested dissection ordering.
On the left is the storage required to factor Ĵ and its update matrix. On the right is the storage required to
factor J and all of its ancestors. Both plots have the same scale.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 30

0
1

2

3
4

5

6

7
8

9

10
11

12

13

14

15
16

1718
19

20

21

22
23

24
25

26

27

28

29

30

8. testHeight msglvl msgFile inETreeFile

This driver program computes the height of the front tree with respect to factor storage. This quantity
is the minimum amount of working storage for a forward sparse factorization.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the ETree
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inETreeFile parameter is the input file for the ETree object. It must be of the form *.etreef

or *.etreeb. The ETree object is read from the file via the ETree readFromFile() method.

9. testIO msglvl msgFile inFile outFile

This driver program reads and writes ETree files, useful for converting formatted files to binary files
and vice versa. One can also read in a ETree file and print out just the header information (see the
ETree writeStats() method).

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the ETree
object is written to the message file.

159

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inFile parameter is the input file for the ETree object. It must be of the form *.etreef or
*.etreeb. The ETree object is read from the file via the ETree readFromFile() method.

• The outFile parameter is the output file for the ETree object. If outFile is none then the ETree
object is not written to a file. Otherwise, the ETree writeToFile() method is called to write the
object to a formatted file (if outFile is of the form *.etreef), or a binary file (if outFile is of
the form *.etreeb).

10. testMaps msglvl msgFile inETreeFile outIVfile nthread type cutoff

This program is used to construct an owners IV that maps a front to its owning thread or process.
The owners map IV object is optionally written to a file.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the ETree
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inETreeFile parameter is the input file for the ETree object. It must be of the form *.etreef

or *.etreeb. The ETree object is read from the file via the ETree readFromFile() method.

• The outIVFile parameter is the output file for the owners map IV object. If outIVFile is none
then the IV object is not written to a file. Otherwise, the IV writeToFile() method is called
to write the object to a formatted file (if outIVFile is of the form *.ivf), or a binary file (if
outIVFile is of the form *.ivb).

• The nthread parameter specifies the number of threads or processes to be used.

• The type parameter specifies the type of multisector.

– type == 1 — use ETree wrapMap() to compute a wrap mapping.

– type == 2 — use ETree balancedMap() to compute a balanced mapping.

– type == 3 — use ETree subtreeSubset() to compute a subtree-subset mapping.

– type == 4 — use ETree ddMap() to compute a domain decomposition map.

• cutoff is a cutoff value for the multisector used only for the domain decomposition map. The
cutoff defines the multisector, 0 ≤ cutoff ≤ 1. If front J has a subtree metric based on forward
operations that is greater than or equalt to cutoff times the total number of operations, then
front J belongs to the multisector.

11. testMS msglvl msgFile inETreeFile outIVfile flag cutoff

This program is used to extract a multisector from a front tree ETree object. It partitions the ver-
tices into domains and a multisector, where each domain is a subtree of the elimination tree and the
multisector is the rest of the vertices. The choice of the subtrees depends on the flag and cutoff

parameters — it can be based on depth of a subtree or the number of vertices, factor entries or factor
operations associated with the subtree. The component ids IV object is optionally written to a file.
Here is some sample output for BCSSTK30 ordered by nested dissection, where the multisector is defined
by subtree vertex weight (flag = 2) with cutoff = 0.125.

region vertices entries operations metric/(avg domain)

0 1671 597058 255691396 0.797 2.201 3.967

1 3104 255341 33205237 1.481 0.941 0.515

2 3222 457255 116441261 1.537 1.685 1.806

3 1514 194916 41940202 0.722 0.718 0.651

160

4 2057 333186 100212056 0.981 1.228 1.555

5 77 5040 356454 0.037 0.019 0.006

6 1750 266166 62607526 0.835 0.981 0.971

7 1887 325977 101994905 0.900 1.202 1.582

8 3405 492662 125496320 1.624 1.816 1.947

9 3413 501150 141423868 1.628 1.847 2.194

10 3242 320220 51679456 1.546 1.180 0.802

11 2118 238011 44427959 1.010 0.877 0.689

12 1454 136777 18166107 0.694 0.504 0.282

13 10 106 1168 0.005 0.000 0.000

nvtx % nzf % ops %

domains 27253 94.22 3526807 85.52 837952519 76.620

schur complement 1671 5.78 597058 14.48 255691396 23.380

total 28924 4123865 1093643915

Region 0 is the Schur complement, and there are thirteen domains, eleven of good size. A perfectly
balanced tree would have eight domains using cutoff equal to 1/8. It is interesting to see that the
Schur complment contains only six per cent of the vertices but almost one quarter the number of
operations.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the ETree
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inETreeFile parameter is the input file for the ETree object. It must be of the form *.etreef

or *.etreeb. The ETree object is read from the file via the ETree readFromFile() method.

• The outIVFile parameter is the output file for the IV object. If outIVFile is none then the IV

object is not written to a file. Otherwise, the IV writeToFile() method is called to write the
object to a formatted file (if outIVFile is of the form *.ivf), or a binary file (if outIVFile is of
the form *.ivb).

• The flag parameter specifies the type of multisector.

– flag == 1 — the multisector is based on the depth of the front, i.e., if the front is more than
depth steps removed from the root, it forms the root of a domain.

– flag == 2 — the multisector is based on the number of vertices in a subtree, i.e., if the
subtree rooted at a front contains more than cutoff times the total number of vertices, it is
a domain.

– flag == 3 — the multisector is based on the number of factor entries in a subtree, i.e., if the
subtree rooted at a front contains more than cutoff times the total number of factor entries,
it is a domain.

– flag == 4 — the multisector is based on the number of factor operations in a subtree, i.e.,
if the subtree rooted at a front contains more than cutoff times the total number of factor
operations, it is a domain.

• cutoff is a cutoff value for the multisector, see above description when flag equals 1, 2 or 3.

12. testStats msglvl msgFile inETreeFile labelflag radius firstEPSfile secondEPSfile

This driver program computes one of five metrics associated with a front tree and writes an EPS file
that illustrates the metric overlaid on the tree structure. It first reads in a front tree object and a
graph file. There are six possible plots:

161

metricType type of metric
0 no metric, just a tree plot
1 # of nodes in a front
2 # of original matrix entries in a front
3 # of factor matrix entries in a front
4 # of forward factor operations in a front
5 # of backward factor operations in a front

The maximum value of the metric creates a circle with radius rmax, and all other nodes have circles
with their area relative to this largest circle. See Figure 19.2 contains four plots, each used heightflag

= ’D’, coordflag = ’P’, rmax = 20 and labelflag = 0.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the ETree
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inETreeFile parameter is the input file for the ETree object. It must be of the form *.etreef

or *.etreeb. The ETree object is read from the file via the ETree readFromFile() method.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The outEPSfile parameter is the name of the EPS file to hold the tree.

• The metricType parameter defines the type of metric to be illustrated. See above for values.

• For information about the heightflag and coordflag parameters, see Section 25.2.9.

• If labelflag = 1, the node ids are written on the nodes in the two plots.

• The fontscale parameter is the font size when labels are drawn.

13. testStorage msglvl msgFile inETreeFile inGraphFile

This driver program is used to evaluate the working storage for the left-looking general sparse and
multifrontal algorithms using the natural post-order traversal of the front tree. The output is in
matlab format to produce a plot. An example is found below.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 fraction of total operations

 f
ra

c
ti
o
n
 o

f
e
n
tr

ie
s
 i
n
 L

 a
n
d
 U

 BCSSTK24, multisection ordering, working storage study

multifrontal

general sparse

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the ETree
object is written to the message file.

162

Figure 19.2: GRD7x7x7: Four tree plots for a 7×7×7 grid matrix ordered using nested dissection. The top
left tree measure number of original matrix entries in a front. The top right tree measure number of factor
matrix entries in a front. The bottom left tree measure number of factor operations in a front for a forward
looking factorization, e.g., forward sparse. The bottom right tree measure number of factor operations in a
front for a backward looking factorization, e.g., general sparse.

163

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inETreeFile parameter is the input file for the ETree object. It must be of the form *.etreef

or *.etreeb. The ETree object is read from the file via the ETree readFromFile() method.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

14. testTransform msglvl msgFile inETreeFile inGraphFile

outETreeFile maxzeros maxsize seed

This driver program is used to transform a front tree ETree object into a (possibly) merged and
(possibly) split front tree. Merging the front tree means combining fronts together that do not introduce
more than maxzeros zero entries in a front. (See [4] and [10] for a description of this supernode
amalgamation or relaxation.) Splitting a front means breaking a front up into a chain of smaller fronts;
this allows more processors to work on the original front in a straightforward manner. The new front
tree is optionally written to a file. Here is some output for the R3D13824 matrix using maxzeros =

1000 and maxsize = 64.

CPU #fronts #indices #entries #ops

original : 6001 326858 3459359 1981403337

merge one : 0.209 3477 158834 3497139 2000297117

merge all : 0.136 748 95306 3690546 2021347776

merge any : 0.073 597 85366 3753241 2035158539

split : 0.202 643 115139 3753241 2035158539

final : 3.216 643 115128 3752694 2034396840

Note how the number of fronts, front indices, factor entries and factor operations change after each
step. Merging chains (the merge one line) halves the number of fronts while increasing operations by
1%. Merging all children when possible (the merge all line) reduces the number of fronts by a factor
of 5 while increasing operations by another 1%. Merging any other children (the merge any line) has
another additional effect. Splitting the fronts increases the number of fronts slightly, but appears not
to change the factor entries or operation counts. This is false, as the final step computes the symbolic
factorization for the last front tree and updates the boundary sizes of the fronts. We see that the
number of indices, entries and factor operations actually decrease slightly due to the split fronts.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the ETree
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inETreeFile parameter is the input file for the ETree object. It must be of the form *.etreef

or *.etreeb. The ETree object is read from the file via the ETree readFromFile() method.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The outETreeFile parameter is the output file for the ETree object. If outETreeFile is none

then the ETree object is not written to a file. Otherwise, the ETree writeToFile() method is
called to write the object to a formatted file (if outETreeFile is of the form *.etreef), or a
binary file (if outETreeFile is of the form *.etreeb).

• The maxzeros parameter is an upper bound on the number of logically zero entries that will be
allowed in a new front.

164

• The maxsize parameter is an upper bound on the number of vertices in a front — any original
front that contains more than maxsize vertices will be broken up into smaller fronts.

• seed is a seed for a random number generator.

Chapter 20

GPart: Graph Partitioning Object

The GPart object is used to create a partition of a graph. We use an explicit vertex separator to split a
graph (or a subgraph) into the separator and two or more connected components. This process proceeds
recursively until the subgraphs are too small to split (given by some user-supplied parameter).

At present, there is one path for splitting a graph (or a subgraph).

• Find a domain decomposition of the graph. The graph’s vertices V are partitioned into domains,
Ω1, . . . ,Ωm, each a connected component, and the interface vertices Φ. The boundary of a domain
Ωi (those vertices not in the domain but adjacent to a vertex in the domain), written adj(Ωi), are a
subset of Φ, the interface vertices. We use the term multisector for Φ, for it generalizes the notion of
bisector.

We currently find the domain decomposition by growing domains from random seed vertices. Upper
and lower bounds are placed on the weights of the domains.

• Given a domain decomposition of the graph 〈Φ,Ω1, . . . ,Ωm〉, we find a 2-set partition [S,B,W] of the
vertices, where S ⊆ Φ, Adj(B) ⊆ S and Adj(W) ⊆ S. Note, it may be the case that B and/or W are
not connected components.

We currently find a 2-set partition by forming a domain-segment bipartite graph where the segments
partition the interface nodes Φ. We use a block Kernighan-Lin method to find an edge separator of
this domain-segment graph. Since the “edges” are segments, an edge separator of the domain-segment
graph is truly a vertex separator of the original graph.

• Given a 2-set decomposition [S,B,W] of the graph, we improve the partition by smoothing S. The
goal is to decrease the size of S, or improve the balance of the two sets (minimize ||B| − |W ||, or both.

Our present approach is to generate a wide separator Y where S ⊆ Y and try to find a separator Ŝ ⊆ Y
that induces a better partition [Ŝ, B̂, Ŵ].

To do this, we form a network and solve a max flow problem. The nodes in B \ Y are condensed into
the source while the nodes in W \ Y are condensed into the sink. The rest of the network is formed
using the structure of the subgraph induced by Y . Given a min-cut of the network we can identify a
separator Ŝ ⊆ Y that has minimal weight. We examine two (possibly) different min-cuts and evaluate
the partitions induced via their minimal weight separators, and accept a better partition if present.

This process we call DDSEP, which is short for Domain Decomposition SEParator, explained in more detail in
[5] and [6].

165

166

20.1 Data Structures

The GPart structure has a pointer to a Graph object and other fields that contain information about the
partition of the graph.

The following fields are always active.

• Graph *graph : pointer to the Graph object

• int nvtx : number of internal vertices of the graph

• int nvbnd : number of boundary vertices of the graph

• int ncomp : number of components in the graph

• IV compidsIV : an IV object that holds the component ids of the internal vertices — compids[v] ==

0 means that the vertex is in the separator or multisector.

• IV cweightsIV : an IV object that holds the component weights — cweights[icomp] stores the weight
of component icomp, cweights[0] is the separator or multisector weight.

• int msglvl : message level parameter. When msglvl = 0, no output is produced. When msglvl =

1, only “scalar” output is provided, no vectors are printed or any print statements in a loop. When
msglvl > 1, beware, there can be a fair amount of output.

• FILE *msgFile : message file pointer, default value is stdout.

The following fields are used when building a domain/separator tree during the recursive dissection process.

• int id : id of the partition object

• GPart *par : pointer to a parent GPart object

• GPart *fch : pointer to a first child GPart object

• GPart *sib : pointer to a sibling GPart object

• IV vtxMapIV : an IV object of size nvtx + nvbnd, contains a map from the vertices of the graph to
either the vertices of its parent or to the vertices of the root graph

The DDsepInfo helper-object is used during the DDSEP recursive bisection process. It contains input
parameters for the different stages of the DDSEP algorithm, and collects statistics about the CPU time spent
in each stage.

• These parameters are used to generate the domain decomposition.

– int minweight: minimum target weight for a domain

– int maxweight: maximum target weight for a domain

– double freeze: multiplier used to freeze vertices of high degree into the multisector. If the
degree of v is more than freeze times the median degree, v is placed into the multisector.

– int seed: random number seed

– int DDoption: If 1, a new domain decomposition is constructed for each subgraph. If 2, a domain
decomposition is constructed for the original graph, and its projection onto a subgraph is used to
define the domain decomposition on the subgraph.

• These parameters are used to find the initial and final bisectors.

167

– double alpha: cost function parameter

– int seed: random number seed

– int nlayer: number of layers to use to form a wide separator Y from a 2-set partition [S,B,W].
If nlayer = 1 or 2, Y = S ∪ (Adj(S) ∩ B) or Y = S ∪ (Adj(S) ∩W). When nlayer = 1 the
network is forced to be bipartite. If nlayer = 3, Y3 = S ∪ Adj(S), and for nlayer = 2k+1,
Y2k+1 = Y2k−1 ∪Adj(Y2k−1).

• These parameters accumulate CPU times.

– double cpuDD: time to construct the domain decompositions

– double cpuMap: time to construct the maps from vertices to domains and segments

– double cpuBPG: time to construct the domain/segment bipartite graphs

– double cpuBKL: time to find the initial separators via the Block Kernighan-Lin algorithm on the
domain/segment graphs

– double cpuSmooth: time to smooth the bisectors

– double cpuSplit: time to split the subgraphs

– double cpuTotal: total cpu time

• Miscellaneous parameters.

– int maxcompweight: an attempt is made to split any subgraph that has weight greater than
maxcompweight.

– int ntreeobj: number of tree objects in the tree, used to set gpart->id and used to initialize
the DSTree object.

– int msglvl : message level

– FILE *msgFile : message file pointer

20.2 Prototypes and descriptions of GPart methods

This section contains brief descriptions including prototypes of all methods that belong to the GPart object.
There are no IO methods.

20.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. GPart * GPart_new (void) ;

This method simply allocates storage for the GPart structure and then sets the default fields by a call
to GPart setDefaultFields().

2. void GPart_setDefaultFields (GPart *gpart) ;

This method sets the structure’s fields to default values: id = -1, nvtx = nvbnd = ncomp = 0, g =
par = fch = sib = NULL, and the default fields for compidsIV, cweightsIV and vtxMapIV are set via
calls to IV setDefaultFields().

Error checking: If gpart is NULL, an error message is printed and the program exits.

168

3. void GPart_clearData (GPart *gpart) ;

The IV clearData() method is called for the compidsIV, cweightsIV and vtxMapIV objects. The
structure’s fields are then set with a call to GPart setDefaultFields(). Note, storage for the Graph

object gpart->graph is not free’d. The GPart object does not own its Graph object, it only uses it.

Error checking: If gpart is NULL, an error message is printed and the program exits.

4. void GPart_free (GPart *gpart) ;

This method releases any storage by a call to GPart clearData() then free’s the storage for the
structure with a call to free().

Error checking: If gpart is NULL, an error message is printed and the program exits.

20.2.2 Initializer methods

There are two initializer methods.

1. void GPart_init (GPart *gpart, Graph *graph) ;

This method initializes the Gpart object given a Graph object as input. Any previous data is cleared
with a call to GPart clearData(). The graph, nvtx, nvbnd fields are set. The compidsIV and
cweightsIV IV objects are initialized. The remaining fields are not changed from their default values.

Error checking: If gpart or g is NULL, or if g->nvtx ≤ 0, an error message is printed and the program
exits.

2. void GPart_setMessageInfo (GPart *gpart, int msglvl, FILE *msgFile) ;

This method sets the msglvl and msgFile fields.

Error checking: If gpart is NULL, an error message is printed and the program exits.

20.2.3 Utility methods

1. void GPart_setCweights (GPart *gpart) ;

This method sets the component weights vector cweightsIV. We assume that the compidsIV vector
has been set prior to entering this method. The weight of a component is not simply the sum of
the weights of the vertices with that component’s id. We accept the separator or multisector vertices
(those v with compids[v] == 0) but then find the connected components of the remaining vertices,
renumbering the compidsIV vector where necessary. Thus, ncomp and compidsIV may be updated,
and cweightsIV is set.

Error checking: If gpart is NULL, an error message is printed and the program exits.

2. int GPart_sizeOf (GPart *gpart) ;

This method returns the number of bytes owned by the object. This includes the structure itself, the
compidsIV, cweightsIV and vtxMapIV arrays (if present), but not the Graph object.

Error checking: If gpart is NULL, an error message is printed and the program exits.

3. int GPart_validVtxSep (GPart *gpart) ;

This method returns 1 if the partition defined by the compidsIV vector has a valid vertex separator
and zero otherwise. When there is a valid vertex separator, there are no adjacent vertices not in the
multisector that belong to different components (as defined by the compidsIV vector).

Error checking: If gpart is NULL, an error message is printed and the program exits.

169

4. void GPart_split (GPart *gpart) ;

This method is used to split a subgraph during the nested dissection process that builds a tree of
GPart objects. We first generate a valid partition via the GPart setCweights() method, and then
split the graph into its component subgraphs. Each subgraph is assigned to a new child GPart object.
The Graph object for each subgraph is formed from the parent graph using the Graph subGraph()

method. This means that the storage for the adjacency lists of the subgraph is taken from the storage
for the parent graph — the lists are mapped into the local ordering via the vtxMap vector. After
GPart split(gpart) is called, the adjacency lists for the vertices in gpart->g are no longer valid.

Error checking: If gpart or g is NULL, or if gpart->fch is not NULL (meaning that the subgraph has
already been split), an error message is printed and the program exits.

5. int GPart_vtxIsAdjToOneDomain (GPart *gpart, int v, int *pdomid) ;

This method determines whether the vertex v is adjacent to just one domain or not. We use this
method to make a separator or multisector minimal. If the vertex is adjacent to only one domain, the
return value is 1 and *pdomid is set to the domain’s id. If a vertex is adjacent to zero or two or more
domains, the return value is zero. If a vertex belongs to a domain, it is considered adjacent to that
domain.

Error checking: If gpart, g or domid is NULL, or if v is out of range (i.e., v < 0 or nvtx ≤ v), an error
message is printed and the program exits.

6. IV * GPart_bndWeightsIV (GPart *gpart) ;

This method returns an IV object that contains the weights of the vertices on the boundaries of the
components.

Error checking: If gpart or g is NULL, an error message is printed and the program exits.

20.2.4 Domain decomposition methods

There are presently two methods that create a domain decomposition of a graph or a subgraph.

1. void GPart_DDviaFishnet (GPart *gpart, double frac, int minweight,

int maxweight, int seed) ;

This method generates a domain decomposition of a graph using the fishnet algorithm (see [5] for
details). On return, the compidsIV vector is filled with component ids and ncomp is set with the
number of domains. The frac parameter governs the exclusion of nodes of high degree from the
domain sets. We have found this to be useful for some graphs. Nodes of very high degree (relative to
the average or mean degree) can severely distort a domain decomposition. We have found that setting
frac to four works well in practice. The minweight and maxweight parameters are the minimum
target weight and maximum target weight for a domain. The seed parameter is used to insert a degree
of randomness into the algorithm. This allows us to make several runs and take the best partition.

Error checking: If gpart or g is NULL, or if freeze ≤ 0.0, or if minweight < 0, or if maxweight < 0,
or if minweight ≥ maxweight, an error message is printed and the program exits.

2. void GPart_DDviaProjection (GPart *gpart, IV *DDmapIV) ;

This method generates a domain decomposition for a subgraph by projecting an existing domain
decoposition for the original graph onto the subgraph. Using this method (as opposed to generating a
domain decomposition for each subgraph) can typically save 15% of the overall time to find the graph
decomposition, though the resulting partition is usually not as good.

Error checking: If gpart or DDmapIV is NULL, an error message is printed and the program exits.

170

20.2.5 Methods to generate a 2-set partition

These two methods are used to generate a 2-set partition [S,B,W] from a domain decomposition.

1. double GPart_TwoSetViaBKL (GPart *gpart, double alpha, int seed,

double cpus[]) ;

This method takes a domain decomposition {Φ,Ω1, . . . ,Ωm} defined by the compidsIV vector and
generates a two set partition [S,B,W]. We first compute the map from vertices to domains and
segments (the segments partition the interface nodes Φ). We then construct the bipartite graph that
represents the connectivity of the domains and segments. Each segment is an “edge” that connects two
“adjacent” domains. This allows us to use a variant of the Kernighan-Lin algorithm to find an “edge”
separator formed of segments, which is really a vertex separator, a subset of Φ. The alpha parameter

is used in the cost function evaluation for the partition, cost([S,B,W]) = |S|
(

1 + α
max{|B|, |W |}
min{|B|, |W |}

)
.

The seed parameter is used to randomize the algorithm. One can make several runs with different
seeds and chose the best partition. The cpus[] array is used to store execution times for segments
of the algorithm: cpus[0] stores the time to compute the domain/segment map; cpus[2] stores the
time to create the domain/segment bipartite graph; cpus[3] stores the time to find the bisector using
the block Kernighan-Lin algorithm.

Error checking: If gpart or cpus is NULL, an error message is printed and the program exits.

2. IV * GPart_domSegMap (GPart *gpart, int *pndom, int *pnseg) ;

This method takes a domain decomposition as defined by the compidsIV vector and generates the map
from the vertices to the domains and segments that are used in the Block Kernighan-Lin procedure
to find an initial separator. The map is returned in an IV object, and the numbers of domains and
segments are set in the pndom and pnseg addresses. This method is called by GPart TwoSetViaBKL.

Error checking: If gpart, g, pndom or pnseg is NULL, an error message is printed and the program
exits.

20.2.6 Methods to improve a 2-set partition

These methods are used to improve a 2-set partition [S,B,W]. They hinge on finding a wide separator Y and

constructing a better separator Ŝ ⊆ Y . The alpha parameter is used in the cost function cost([S,B,W]) =

|S|
(

1 + α
max{|B|, |W |}
min{|B|, |W |}

)
.

1. IV * GPart_identifyWideSep (GPart *gpart, int nlayer1, int nlayer2) ;

This method takes a 2-set partition [S,B,W] and identifies a wide separator Y that contains S. The
portions of B and W that are included in Y are specified using the nlayer1 and nlayer2 parameters.
If both are zero, then Y is simply S. If nlayer1 > 0, then Y contains all vertices in the first component
whose distance is nlayer1 or less from S, and similarly for nlayer2 > 0. The vertices in Y are placed
in an IV object which is then returned.

Error checking: If gpart or g is NULL, or if nlevel1 < 0 or nlevel2 < 0, an error message is printed
and the program exits.

2. IV * GPart_makeYCmap (GPart *gpart, IV *YVmapIV) ;

171

This method contructs and returns an IV object that is the blueprint used to form the network. The
wide separator Y can be partitioned into four disjoint sets (though some may be empty):

Y0 = {y ∈ Y | y /∈ Adj(B \ Y) and y /∈ Adj(W \ Y)}
Y1 = {y ∈ Y | y ∈ Adj(B \ Y) and y /∈ Adj(W \ Y)}
Y2 = {y ∈ Y | y /∈ Adj(B \ Y) and y ∈ Adj(W \ Y)}
Y3 = {y ∈ Y | y ∈ Adj(B \ Y) and y ∈ Adj(W \ Y)}

The YVmapIV object contains the list of vertices in the wide separator Y . The IV object that is returned,
(called YCmapIV in the calling method) contains the subscripts of the Y0, Y1, Y2 or Y3 sets that contains
each vertex.

Error checking: If gpart, g or YVmapIV is NULL, or if nvtx ≤ 0, or if YVmapIV is empty, an error message
is printed and the program exits.

3. void * GPart_smoothBy2layers (GPart *gpart, int bipartite, float alpha) ;

This method forms the wide separator Y from two layers of vertices, either YB = S ∪ (Adj(S) ∩ B)
or YW = S ∪ (Adj(S) ∩W). (If |B| ≥ |W |, we first look at YB and if no improvement can be made
we look at YW , and the reverse if |W | > |B|.) The bipartite parameter defines the type of network
problem we solve. The network induced by the wide separator Y need not be bipartite, and will not
be bipartite if Y0 6= ∅ or Y3 6= ∅, (Y0 and Y3 are defined immediately above). The Y3 set is not

important, since it must be included in any separator Ŝ ⊆ Y . When Y0 is not empty, it forms a layer
between Y1 and Y2, and so the network is not bipartite. We can force the network to be bipartite
(set bipartite to 1) by moving all nodes in Y0 to the appropriate Y1 or Y2. When the graph is
unit-weight and the network is bipartite, we can use the Dulmage-Mendelsohn decomposition to find
one or more separators of minimum weight. In general, forcing a non-bipartite network to be bipartite
results in possibly a larger separator, so we do not recommend this option. The capability is there to
compare the Dulmage-Mendelsohn decomposition smoothers with the more general (and robust) max
flow smoothers.

Error checking: If gpart is NULL, or if alpha < 0.0, an error message is printed and the program exits.

4. float * GPart_smoothYSep (GPart *gpart, IV *YVmapIV,

IV *YCmapIV, float alpha) ;

This methods takes as input a 2-set partition [S,B,W] (defined by gpart->compidsIV), a wide sepa-
rator Y (defined by YVmapIV) and a 〈Y0, Y1, Y2, Y3〉 partition of Y (defined by YCmapIV) and attempts
to find a better partition. A max flow problem is solved on a network induced by 〈Y0, Y1, Y2, Y3〉. Two
min-cuts and the partitions they induce are examined and the better partition is accepted if better
than [S,B,W]. The parameter alpha is used in the partition’s cost function, and the cost of the best
partition is returned.

Error checking: If gpart, YVmapIV or YCmapIV is NULL, or if alpha < 0.0, an error message is printed
and the program exits.

5. float * GPart_smoothBisector (GPart *gpart, int nlayer, float alpha) ;

This method takes a two-set partition [S,B,W] as defined by the compidsIV vector and improves it (if

possible). The methods returns the cost of a (possibly) new two-set partition [Ŝ, B̂, Ŵ] defined by the
compidsIV vector. The wide separator Y that is constructed is centered around S, i.e., Y includes all
nodes in B and W that are nlayer distance or less from S. This method calls GPart smoothYSep().

Error checking: If gpart is NULL, or if nlevel < 0, or if alpha < 0.0, an error message is printed and
the program exits.

172

20.2.7 Recursive Bisection method

There is presently one method to construct the domain/separator tree.

1. DSTree * GPart_RBviaDDsep (GPart *gpart, DDsepInfo *info) ;

This method performs a recursive bisection of the graph using the DDSEP algorithm and returns a
DSTree object that represents the domain/separator tree and the map from vertices to domains and
separators. The DDsepInfo structure contains all the parameters to the different steps of the DDSEP

algorithm (the fishnet method to find the domain decomposition, the Block Kernighan-Lin method to
find an initial separator, and solves a max flow problem to improve the separator). An attempt is made
to split a subgraph if the weight of the internal vertices of the subgraph exceeds info->maxcompweight.
The cpu times for the different segments of the algorithm are accumulated in fields of the DDsepInfo

object.

Error checking: If gpart or info is NULL, or if nvtx ≤ 0, an error message is printed and the program
exits.

20.2.8 DDsepInfo methods

The DDsepInfo helper-object is used during the DDSEP recursive bisection process. It stores the necessary
input parameters for the different stages of the DDSEP algorithm and collects statistics about the resulting
partition.

1. DDsepInfo * DDsepInfo_new (void) ;

This method simply allocates storage for the DDsepInfo structure and then sets the default fields by
a call to DDsepInfo setDefaultFields().

2. void DDsepInfo_setDefaultFields (DDsepInfo *info) ;

This method checks to see whether info is NULL. If so, an error message is printed and the program
exits. Otherwise, the structure’s fields are set to the following default values.

info->seed = 1 ; info->cpuDD = 0.0 ;

info->minweight = 40 ; info->cpuMap = 0.0 ;

info->maxweight = 80 ; info->cpuBPG = 0.0 ;

info->frac = 4.0 ; info->cpuBKL = 0.0 ;

info->alpha = 1.0 ; info->cpuSmooth = 0.0 ;

info->maxcompweight = 500 ; info->cpuSplit = 0.0 ;

info->ntreeobj = 0 ; info->cpuTotal = 0.0 ;

info->DDoption = 1 ; info->msglvl = 0 ;

info->nlayer = 3 ; info->msgFile = stdout ;

Error checking: If info is NULL, an error message is printed and the program exits.

3. void DDsepInfo_clearData (DDsepInfo *info) ;

This method checks to see whether info is NULL. DDsepInfo setDefaultFields() is called to set the
default values.

Error checking: If info is NULL, an error message is printed and the program exits.

4. void DDsepInfo_free (DDsepInfo *info) ;

This method checks to see whether info is NULL. If so, an error message is printed and the program
exits. Otherwise, it releases any storage by a call to DDsepInfo clearData() then free’s the storage
for the structure with a call to free().

Error checking: If info is NULL, an error message is printed and the program exits.

173

5. void DDsepInfo_writeCpuTimes (DDsepInfo *info, FILE *msgFile) ;

This method writes a breakdown of the CPU times in a meaningful format. Here is sample output.

CPU breakdown for graph partition

raw CPU per cent

misc : 1.61 1.2%

Split : 24.68 17.7%

find DD : 12.13 8.7%

DomSeg Map : 13.09 9.4%

DomSeg BPG : 4.66 3.3%

BKL : 5.68 4.1%

Smooth : 77.83 55.7%

Total : 139.67 100.0%

Error checking: If info or msgFile is NULL, an error message is printed and the program exits.

20.3 Driver programs for the GPart object

This section contains brief descriptions of four driver programs.

1. testDDviaFishnet msglvl msgFile inGraphFile freeze minweight maxweight

seed outIVfile

This driver program constructs a domain decomposition via the fishnet algorithm [5]. It reads in
a Graph object from a file, finds the domain decomposition using the four input parameters, then
optionally writes out the map from vertices to components to a file.

• The msglvl parameter determines the amount of output.

• The msgFile parameter determines the output file — if msgFile is stdout, then the output file
is stdout, otherwise a file is opened with append status to receive any output data.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The freeze parameter is used to place nodes of high degree into the multisector. If the external
degree of a vertex is freeze times the average degree, then it is placed in the multisector.

• The target minimum weight for a domain is minweight.

• The target maximum weight for a domain is maxweight.

• The seed parameter is a random number seed.

• The outIVfile parameter is the output file for the IV object that contains the map from vertices
to components. If outIVfile is "none", then there is no output, otherwise outIVfile must be
of the form *.ivf or *.ivb.

2. testTwoSetViaBKL msglvl msgFile inGraphFile inIVfile

seed alpha outIVfile

This driver program constructs a two-set partition via the Block Kernighan-Lin algorithm [5]. It reads
in a Graph object and an IV object that holds the map from vertices to components (e.g., the output
from the driver program testDDviaFishet) from two files, constructs the domain-segment graph and
finds an initial separator, then optionally writes out the new map from vertices to components to a
file.

174

• The msglvl parameter determines the amount of output.

• The msgFile parameter determines the output file — if msgFile is stdout, then the output file
is stdout, otherwise a file is opened with append status to receive any output data.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The inIVfile parameter is the input file for the IV object that contains the map from vertices
to domains and multisector. It inIVfile must be of the form *.ivf or *.ivb.

• The seed parameter is a random number seed.

• The alpha parameter controls the partition evaluation function.

• The outIVfile parameter is the output file for the IV object that contains the map from vertices
to separator and the two components. If outIVfile is "none", then there is no output, otherwise
outIVfile must be of the form *.ivf or *.ivb.

3. testSmoothBisector msglvl msgFile inGraphFile inIVfile

option alpha outIVfile

This driver program smooths a bisector of a graph by solving a sequence of max-flow network problems.
It reads in a Graph object and an IV object that holds the map from vertices to components (e.g., the
output from the driver program testTwoSetViaBKL) from two files, smooths the separator and then
optionally writes out the new component ids map to a file.

• The msglvl parameter determines the amount of output.

• The msgFile parameter determines the output file — if msgFile is stdout, then the output file
is stdout, otherwise a file is opened with append status to receive any output data.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The inIVfile parameter is the input file for the IV object that contains the map from vertices
to domains and multisector. It inIVfile must be of the form *.ivf or *.ivb.

• The option parameter specifies the type of network optimization problem that will be solved.

– option = 1 — each network has two layers and is bipartite.

– option = 2 — each network has two layers but need not be bipartite.

– option = 2 — each network has option/2 layers on each side of the separator.

• The alpha parameter controls the partition evaluation function.

• The outIVfile parameter is the output file for the IV object that contains the map from vertices
to separator and the two components. If outIVfile is "none", then there is no output, otherwise
outIVfile must be of the form *.ivf or *.ivb.

4. testRBviaDDsep msglvl msgFile inGraphFile seed minweight maxweight

freeze alpha maxdomweight DDoption nlayer

testRBviaDDsep2 msglvl msgFile inGraphFile nruns seed minweight maxweight

freeze alpha maxdomweight DDoption nlayer

These driver programs construct a multisector via recursive bisection and orders the graph using
nested dissection and multisection using the multisector. testRBviaDDsep executes only one run while
testRBviaDDsep2 executes nruns runs with random permutations of the graph.

• The msglvl parameter determines the amount of output.

• The msgFile parameter determines the output file — if msgFile is stdout, then the output file
is stdout, otherwise a file is opened with append status to receive any output data.

175

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The nruns parameter is the number of runs made with the graph randomly permuted.

• The seed parameter is a random number seed.

• The target minimum weight for a domain is minweight.

• The target maximum weight for a domain is maxweight.

• The freeze parameter is used to place nodes of high degree into the multisector. If the external
degree of a vertex is freeze times the average degree, then it is placed in the multisector.

• The alpha parameter controls the partition evaluation function.

• The maxdomweight parameter controls the recursive bisection — no subgraph with weight less
than maxdomweight is further split.

• The DDoption parameter controls the initial domain/segment partition on each subgraph. When
DDDoption = 1 we use the fishnet algorithm for each subgraph. When DDDoption = 1 we use the
fishnet algorithm once for the entire graph and this is then projected down onto each subgraph.

• The nlayer parameter governs the smoothing process by specifying the type of network optimiza-
tion problem that will be solved.

– nlayer = 1 — each network has two layers and is bipartite.

– nlayer = 2 — each network has two layers but need not be bipartite.

– nlayer > 2 — each network has option/2 layers on each side of the separator.

5. mkDSTree msglvl msgFile inGraphFile seed minweight maxweight

freeze alpha maxdomweight DDoption nlayer outDSTreeFile

This driver program constructs a domain/separator tree using recursive bisection. The DSTree object
is optionally written to a file.

• The msglvl parameter determines the amount of output.

• The msgFile parameter determines the output file — if msgFile is stdout, then the output file
is stdout, otherwise a file is opened with append status to receive any output data.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The seed parameter is a random number seed.

• The target minimum weight for a domain is minweight.

• The target maximum weight for a domain is maxweight.

• The freeze parameter is used to place nodes of high degree into the multisector. If the external
degree of a vertex is freeze times the average degree, then it is placed in the multisector.

• The alpha parameter controls the partition evaluation function.

• The maxdomweight parameter controls the recursive bisection — no subgraph with weight less
than maxdomweight is further split.

• The DDoption parameter controls the initial domain/segment partition on each subgraph. When
DDDoption = 1 we use the fishnet algorithm for each subgraph. When DDDoption = 1 we use the
fishnet algorithm once for the entire graph and this is then projected down onto each subgraph.

• The nlayer parameter governs the smoothing process by specifying the type of network optimiza-
tion problem that will be solved.

– nlayer = 1 — each network has two layers and is bipartite.

176

– nlayer = 2 — each network has two layers but need not be bipartite.

– nlayer > 2 — each network has option/2 layers on each side of the separator.

• The outDSTreeFile parameter is the output file for the DSTree object. It must be of the form
*.dstreef or *.dstreeb. If outDSTreeFile is not "none", the DSTree object is written to the
file via the DSTree writeToFile() method.

Chapter 21

Graph: A Graph object

The Graph object is used to represent the graph of a matrix. The representation uses a set of adjacency
lists, one edge list for each vertex in the graph, and is implemented using an IVL object.1 For the Graph

object, the vertices and the edges can be either unit weight or non-unit weight independently. None of the
algorithms in the package at present use weighted edges, though most use weighted vertices. The weighted
edges capability is there, and the weighted edges are also stored using an IVL object.

The Graph object is not too sophisticated, i.e., we chose not to implement a method to find a separator
of a graph inside this object. Such complex functionality is best left to higher level objects, and our method
based on domain decomposition [5] is found in the GPart object.

A graph can also be a subgraph of another graph — nested dissection is the natural recursive partition
of a graph — and it pays to use the knowledge of the boundary of a subgraph. We chose not to implement
a “sub”-graph object separately from a graph object, thus our Graph object can have a boundary. One
specifies nvtx, the number of internal vertices, and nvbnd, the number of external or boundary vertices.
The labels for internal vertices are found in [0, nvtx) and those for boundary vertices are found in [nvtx,

nvtx+nvbnd).

It is easy to create a Graph object: one specifies the number of internal and boundary vertices, the type
of graph (weighted or unit weight vertices and edges), and then uses the methods for the IVL object to add
adjacency lists and (possibly) lists of edge weights. The Graph object relies strongly on the IVL object.

Weighted graphs are commonly used in partitioning and ordering algorithm, and they normally arise from
compressing the graph in some manner. Let us write the unit weight graph as G(V,E) and the weighted
graph as G(V,E), and let φ : V 7→ V be the map from unit weight vertices to weighted vertices. Let u and
v be vertices and (u, v) be an edge in G(V,E), and let u and v be vertices and (u,v) be an edge in G(V,E).
The weight of a vertex is w(u), the number of unit weight vertices in the weighted vertex. The weight of an
edge is w(u,v), the number of (u, v) edges in the unit weight graph where u ∈ u and v ∈ v.

The natural compressed graph [3], [9] is very important for many matrices from structral analysis and
computational fluid mechanics. This type of graph has one special property:

w(u,v) = w(u) · w(v)

and it is the smallest graph with this property. The compression is loss-less, for given G(V,E) and φ, we
can reconstruct the unit weight graph G(V,E). In effect, we can work with the natural compressed graph
to find separators and orderings and map back to the unit weight graph. The savings in time and space can
be considerable.

The Graph object has a method to find the φ map for the natural compressed graph; it requires O(|V |)
space and O(|E|) time. There is a method to compress a graph (i.e., given G(V,E) and an arbitrary φ,

1The EGraph object represents a graph of the matrix, but stores a list of covering cliques in an IVL object.

177

178

construct G(V,E)) and a method to expand a graph (i.e., given G(V,E) and an arbitrary φ, construct
G(V,E)).

There are several utility methods to return information about the memory in use by the Graph object,
to access adjacency lists and edge weight lists, and to provide information about the connected components
of a graph.

21.1 Data Structure

The Graph structure has nine fields.

• int type : type of graph

type vertices weighted? edges weighted?
0 no no
1 yes no
2 no yes
3 yes yes

• int nvtx : number of internal vertices

• int nvbnd : number of boundary vertices

• int nedges : number of edges

• int totvwght : total vertex weight

• int totewght : total edge weight

• IVL *adjIVL : pointer to IVL object to hold adjacency lists

• int *vwghts : pointer to a vertex to hold vertex weights non-NULL if type % 2 == 1

• IVL *ewghtIVL : pointer to IVL object to hold edge weight lists, non-NULL if type / 2 == 1

21.2 Prototypes and descriptions of Graph methods

This section contains brief descriptions including prototypes of all methods that belong to the Graph object.

21.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. Graph * Graph_new (void) ;

This method simply allocates storage for the Graph structure and then sets the default fields by a call
to Graph setDefaultFields().

2. void Graph_setDefaultFields (Graph *graph) ;

This method sets the structure’s fields to default values: type, nvtx, nvbnd, nedges, totwght and
totewght are all zero, and adjIVL, vwghts and ewghtIVL are all NULL.

Error checking: If graph is NULL, an error message is printed and the program exits.

179

3. void Graph_clearData (Graph *graph) ;

This method clears the data for the object. If adjIVL is not NULL, then IVL free(adjIVL) is called
to free the IVL object. If ewghtIVL is not NULL, then IVL free(ewghtIVL) is called to free the IVL

object. If vwghts is not NULL, then IVfree(vwghts) is called to free the int vector. The structure’s
fields are then set to their default values with a call to Graph setDefaultFields().

Error checking: If graph is NULL, an error message is printed and the program exits.

4. void Graph_free (Graph *graph) ;

This method releases any storage by a call to Graph clearData() then free’s the storage for the
structure with a call to free().

Error checking: If graph is NULL, an error message is printed and the program exits.

21.2.2 Initializer methods

There are three initializer methods. The first is most commonly used, the second is used within the IO
routines, and the third is used to create a Graph object from the offsets[]/adjncy[] format for the
adjacency structure.

1. void Graph_init1 (Graph *graph, int type, int nvtx, int nvbnd, int nedges,

int adjType, int ewghtType) ;

This is the basic initializer method. Any previous data is cleared with a call to Graph clearData().
Then the scalar fields are set and the adjIVL object is initialized. If type is 1 or 3, the vwghts vector
is initialized to zeros. If type is 2 or 3, the ewghtIVL object is initialized.

Error checking: If graph is NULL, type is invalid (type must be in [0,3]), nvtx is non-positive, nvbnd
or nedges is negative, or adjType of ewghtType is invalid (they must be IVL CHUNKED, IVL SOLO or
IVL UNKNOWN). an error message is printed and the program exits.

2. void Graph_init2 (Graph *graph, int type, int nvtx, int nvbnd, int nedges,

int totvwght, int totewght, IVL *adjIVL, int *vwghts, IVL *ewghtIVL)

This method is used by the IO read methods. When a Graph object is read from a file, the IVL object(s)
must be initialized and then read in from the file. Therefore, we need an initialization method that
allows us to set pointers to the IVL objects and the vwghts vector. Note, adjIVL, vwghts and ewghtIVL

are owned by the Graph object and will be free’d when the Graph object is free’d.

Error checking: If graph or adjIVL is NULL, type is invalid (type must be in [0,3]), nvtx is non-
positive, nvbnd or nedges is negative, or if type % 2 = 1 and vwghts is NULL, or if type ≥ 2 and
ewghtIVL is NULL, an error message is printed and the program exits.

3. void Graph_fillFromOffsets (Graph *graph, int neqns, int offsets[],

int adjncy[], int flag)

This method initializes the Graph object using an adjacency structure, as is the storage format for a
Harwell-Boeing matrix. The entries in list v are found in adjncy[i1:i2], where i1 = offsets[v]

and i2 = offsets[v+1]-1. The offsets[] and adjncy[] arrays are assumed to be zero-based (as
are C-arrays), not one-based (as are Fortran arrays). If flag == 0 then the lists are simply loaded
into the Graph object. If flag == 1, the adjacency structure must be upper, meaning that the list for
v contains entries that are greater than or equal to v. The Graph will have a full adjacency structure,
including the (v,v) edges.

Error checking: If graph, offsets or adjncy is NULL, or if neqns ≤ 0, or if flag < 0 or if flag > 1,
an error message is printed and the program exits.

180

4. void Graph_setListsFromOffsets (Graph *graph, int neqns,

int offsets[], int adjncy[]) ;

This method initializes the Graph object using a full adjacency structure. The entries in list v are
found in adjncy[i1:i2], where i1 = offsets[v] and i2 = offsets[v+1]-1. The offsets[] and
adjncy[] arrays are assumed to be zero-based (as are C-arrays), not one-based (as are Fortran arrays).
Use this method with caution — the adjacency list for vertex v must contain v and all vertices it is
adjacent to. Note, new storage for the adjacency lists is not allocated, the Graph object’s IVL object
points into the storage in adjncy[].

Error checking: If graph, offsets or adjncy is NULL, or if neqns ≤ 0, an error message is printed and
the program exits.

21.2.3 Compress and Expand methods

These three methods find an equivalence map for the natural compressed graph, compress a graph, and
expand a graph.

1. IV * Graph_equivMap (Graph *graph) ;

This method constructs the equivalence map from the graph to its natural compressed graph. The
map φ : V 7→ V is then constructed (see the Introduction in this section) and put into an IV object
that is then returned.

Error checking: If graph is NULL or nvtx <= 0, an error message is printed and the program exits.

2. Graph * Graph_compress (Graph *graph, int map[], int coarseType) ;

Graph * Graph_compress2 (Graph *graph, IV *mapIV, int coarseType) ;

This Graph and map objects (map[] or mapIV) are checked and if any errors are found, the appropriate
message is printed and the program exits. The compressed graph object is constructed and returned.
Note, the compressed graph does not have a boundary, even though the original graph may have one.

Error checking: If graph, map or mapIV is NULL, or if nvtx ≤ 0, or if coarseType < 0, or if 3 <
coarseType, an error message is printed and the program exits.

3. Graph * Graph_expand (Graph *graph, int nvtxbig, int map[]) ;

Graph * Graph_expand2 (Graph *graph, IV *mapIV) ;

This Graph and map objects (map[] or mapIV) are checked and if any errors are found, the appropriate
message is printed and the program exits. The expanded unit weight graph object is constructed and
returned.

Error checking: If graph, map or mapIV is NULL, or if nvtxbig ≤ 0, an error message is printed and the
program exits.

21.2.4 Wirebasket domain decomposition ordering

1. void Graph_wirebasketStages (Graph *graph, IV *stagesIV, int radius) ;

This method is used to group the vertices into stages that is suitable for a wirebasket domain de-
composition of a general graph. On input, stages[v] = 0 means that v is in a domain. On output,
stages[v] contains the stage of elimination — zero is for all vertices in the domains. If stages[v] >

0, then it is the number of domains that are found within radius edges of v.

Error checking: If graph or stagesIV is NULL, or if radius < 0, an error message is printed and the
program exits.

181

21.2.5 Utility methods

1. int Graph_sizeOf (Graph *graph) ;

This method returns the number of bytes taken by this object.

Error checking: If graph is NULL, an error message is printed and the program exits.

2. Graph_externalDegree (Graph *graph, int v) ;

This method returns the weight of adj(v).

Error checking: If graph is NULL, or v is out of range, an error message is printed and the program
exits.

3. int Graph_adjAndSize (Graph *graph, int u, int *pusize, int **puadj) ;

This method fills *pusize with the size of the adjacency list for u and *puadj points to the start of
the list vector.

Error checking: If graph is NULL, or if u < 0 or u >= nvtx or if pusize or puadj is NULL, an error
message is printed and the program exits.

4. int Graph_adjAndEweights (Graph *graph, int u, int *pusize,

int **puadj, int **puewghts) ;

This method fills *psize with the size of the adjacency list, *puadj points to the start of the list vector
and *puewghts points to the start of the edge weights vector.

Error checking: If graph is NULL, or if u < 0 or u >= nvtx or if pusize, puadj or puewghts is NULL,
an error message is printed and the program exits.

5. IV * Graph_componentMap (Graph *graph) ;

This method computes and returns an IV object that holds a map from vertices to components. The
values of the map vector are in the range [0, number of components).

Error checking: If graph is NULL then an error message is printed and the program exits.

6. void Graph_componentStats (Graph *graph, int map[],

int counts[], int weights[]) ;

This method computes some statistics about the components. The length of map is nvtx. The number
of components is 1 + max(map), and the length of counts[] and weights[] must be as large as the
number of components. On return, counts[icomp] and weights[icomp] are filled with the number
of vertices and weight of the vertices in component icomp, respectively.

Error checking: If graph, map, counts or weights is NULL, then an error message is printed and the
program exits.

7. Graph * Graph_subGraph (Graph *graph, int icomp, int compids[], int **pmap) ;

This method is used by the graph partitioning methods. For a graph G(V,E), a vertex separator S ⊂ V
is found which separates the subgraph induced by V \ S into two or more connected components. We
construct a new graph object for each component using this method. The compids[] vector maps the
internal vertices of the parent graph into components. This method extracts the subgraph associated
with component icomp.

There is one key design feature. Most of the storage for the adjacency lists of the subgraph is the
same as its parent graph. This keeps us from replicating too much storage. The subgraph has internal
vertices and boundary vertices (the latter contain at least part of S.) Each adjacency list for an internal
vertex of the subgraph points to the corresponding adjacency list for the vertex in the parent graph.
Each adjacency list for a boundary vertex of the subgraph is new storage, and only these lists are free’d

182

when the subgraph is free’d. A map vector is created that maps the subgraphs’s vertices (both internal
and boundary) into the parent graph’s vertices; the address of the map vector is put into *pmap. The
adjacency lists for the subgraph are overwritten by the map[] vector. This renders the graph object
invalid. The graph partitioning methods map the vertices back to their original values. Presently, only
graphs with unit edge weights are allowed as input.

Error checking: If graph is NULL or icomp < 0 or compids or pmap is NULL, an error message is printed
and the program exits.

8. int Graph_isSymmetric (Graph *graph) ;

This method returns 1 if the graph is symmetric (i.e., edge (i,j) is present if and only if edge (j,i)

is present) and 0 otherwise.

Error checking: If graph is NULL, an error message is printed and the program exits.

21.2.6 IO methods

There are the usual eight IO routines. The file structure of a Graph object is simple: The six scalar fields
come first: type, nvtx, nvbnd, nedges, totvwght and totewght. The adjacency IVL structure adjIVL

follows. If the graph has non-unit vertex weights, i.e., type % 2 == 1, the vwghts vector follows. If the
graph has non-unit edge weights, i.e., type / 2 == 1, the IVL structure ewghtIVL follows.

1. int Graph_readFromFile (Graph *graph, char *fn) ;

This method reads a Graph object from a file. It tries to open the file and if it is successful, it then
calls Graph readFromFormattedFile() or Graph readFromBinaryFile(), closes the file and returns
the value returned from the called routine.

Error checking: If graph or fn are NULL, or if fn is not of the form *.graphf (for a formatted file) or
*.graphb (for a binary file), an error message is printed and the method returns zero.

2. int Graph_readFromFormattedFile (Graph *graph, FILE *fp) ;

This method reads a Graph object from a formatted file. If there are no errors in reading the data, the
value 1 is returned. If an IO error is encountered from fscanf, zero is returned.

Error checking: If graph or fp are NULL an error message is printed and zero is returned.

3. int Graph_readFromBinaryFile (Graph *graph, FILE *fp) ;

This method reads a Graph object from a binary file. If there are no errors in reading the data, the
value 1 is returned. If an IO error is encountered from fread, zero is returned.

Error checking: If graph or fp are NULL an error message is printed and zero is returned.

4. int Graph_writeToFile (Graph *graph, char *fn) ;

This method writes a Graph object to a file. It tries to open the file and if it is successful, it then calls
Graph writeFromFormattedFile() or Graph writeFromBinaryFile(), closes the file and returns the
value returned from the called routine.

Error checking: If graph or fn are NULL, or if fn is not of the form *.graphf (for a formatted file) or
*.graphb (for a binary file), an error message is printed and the method returns zero.

5. int Graph_writeToFormattedFile (Graph *graph, FILE *fp) ;

This method writes a Graph object to a formatted file. If there are no errors in writing the data, the
value 1 is returned. If an IO error is encountered from fprintf, zero is returned.

Error checking: If graph or fp are NULL an error message is printed and zero is returned.

183

6. int Graph_writeToBinaryFile (Graph *graph, FILE *fp) ;

This method writes a Graph object to a binary file. If there are no errors in writing the data, the value
1 is returned. If an IO error is encountered from fwrite, zero is returned.

Error checking: If graph or fp are NULL an error message is printed and zero is returned.

7. int Graph_writeForHumanEye (Graph *graph, FILE *fp) ;

This method writes a Graph object to a file in a human readable format. The method Graph writeStats()

is called to write out the header and statistics. The value 1 is returned.

Error checking: If graph or fp are NULL an error message is printed and zero is returned.

8. int Graph_writeStats (Graph *graph, FILE *fp) ;

The header and statistics are written to a file. The value 1 is returned.

Error checking: If graph or fp are NULL an error message is printed and zero is returned.

9. int Graph_writeToMetisFile (Graph *graph, FILE *fp) ;

This method writes a Graph object to a file in the format of the METIS or CHACO packages. The
value 1 is returned.

Error checking: If graph or fp are NULL an error message is printed and zero is returned.

21.3 Driver programs for the Graph object

This section contains brief descriptions of six driver programs.

1. checkComponents msglvl msgFile inGraphFile

This driver program reads in a Graph object from a file, and prints out information about the number
of vertices and weights of the vertices in the components.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means that all
objects are written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

2. compressGraph msglvl msgFile inGraphFile coarseType outMapFile outGraphFile

This driver program reads in a Graph object from a file, computes the equivalence map to its natural
compressed graph (the first graph need not be unit weight), and constructs the natural compressed
graph. The equivalence map and compressed graph are optionally written out to files.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means that all
objects are written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The coarseType parameter defines the type of compressed graph; valid values are in [0,3].

184

• The outMapFile parameter is the output file for the IV object that holds the equivalence map. If
outMapFile is none then the IV object is not written to a file. Otherwise, the IV writeToFile()

method is called to write the IV object to a formatted file (if outMapFile is of the form *.ivf),
or a binary file (if outMapFile is of the form *.ivb).

• The outGraphFile parameter is the output file for the compressed Graph object. If outGraphFile
is none then the Graph object is not written to a file. Otherwise, the Graph writeToFile()

method is called to write the graph to a formatted file (if outGraphFile is of the form *.graphf),
or a binary file (if outGraphFile is of the form *.graphb).

3. expandGraph msglvl msgFile inGraphFile inMapFile outGraphFile

This driver program reads in a Graph object and a map IV object from two files. It then creates a new
Graph object which is the original graph “expanded” by the map, and optionally writes this object to
a file. The program expandGraph is the inverse of compressGraph.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means that all
objects are written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The inMapFile parameter is the input file for the IV object that holds the expansion map. The
IV readFromFile() method is called to read the map from a formatted file (if inMapFile is of
the form *.ivf), or a binary file (if inMapFile is of the form *.ivb).

• The outGraphFile parameter is the output file for the compressed Graph object. If outGraphFile
is none then the Graph object is not written to a file. Otherwise, the Graph writeToFile()

method is called to write the graph to a formatted file (if outGraphFile is of the form *.graphf),
or a binary file (if outGraphFile is of the form *.graphb).

4. mkGridGraph msglvl msgFile stencil n1 n2 n3 outFile

This driver program creates a Graph object for a finite difference operator on a n1× n2× n3 regular
grid.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means that all
objects are written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• Valid stencil values are 5 for a 2-D 5-point operator, 7 for a 3-D 7-point operator, 9 for a 2-D
9-point operator, 13 for a 2-D 13-point operator and 27 for a 3-D 27-point operator.

• n1 is the number of points in the first direction.

• n2 is the number of points in the second direction.

• n3 is the number of points in the third direction, ignored for stencil = 5, 9 and 13.

• The Graph object is written to file outFile. It must be of the form *.graphf or *.graphb. The
Graph object is written to the file via the Graph writeToFile() method.

5. testIO msglvl msgFile inFile outFile

This driver program reads in a Graph object from inFile and writes out the object to outFile

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the Graph
object is written to the message file.

185

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inFile parameter is the input file for the Graph object. It must be of the form *.graphf or
*.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The outFile parameter is the output file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is written to the file via the Graph writeToFile() method.

6. testIsSymmetric msglvl msgFile inFile

This driver program reads in a Graph object and tests whether it is symmetric using the Graph isSymmetric()

method. This was useful in one application where the Graph object was constructed improperly.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the Graph
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inFile parameter is the input file for the Graph object. It must be of the form *.graphf or
*.graphb. The Graph object is read from the file via the Graph readFromFile() method.

7. testWirebasket msglvl msgFile inGraphFile inStagesFile

outStagesFile radius

This driver program reads in a Graph object and and a file that contains the stages ids of the vertices,
(stage equal to zero means the vertex is in the Schur complement), and overwrites the stages vector
to specify the stage that the vertex lies for a wirebasket domain decomposition of the graph. For a
Schur complement vertex, its stage is precisely the number of domains that lie within radius edges of
it. The new stages vector is written to the outStagesFile file.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the Graph
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The inStagesFile parameter is the input file for the IV object that holds the component ids. It
must be of the form *.ivf or *.ivb. The IV object is read from the file via the IV readFromFile()

method.

• The outStagesFile parameter is the output file for the stages IV object. It must be of the form
*.ivf or *.ivb. The IV object is written to the file via the IV writeToFile() method.

• The radius parameter is used to define the stage of a Schur complement vertex, namely the stage
is the number of domains that are found within radius edges of the vertex.

The two plots below illustrate the wirebasket stages for a 15 × 15 grid. They show the stages for
radius = 1 on the left and radius = 2 on the right. The domains are 3× 3 subgrids whose vertices
have labels equal to zero.

186

0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

2 2 2 4 2 2 2 4 2 2 2 4 2 2 2

0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

2 2 2 4 2 2 2 4 2 2 2 4 2 2 2

0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

2 2 2 4 2 2 2 4 2 2 2 4 2 2 2

0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

0 0 0 4 0 0 0 4 0 0 0 4 0 0 0

2 2 4 4 4 2 4 4 4 2 4 4 4 2 2

0 0 0 4 0 0 0 4 0 0 0 4 0 0 0

0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

0 0 0 4 0 0 0 4 0 0 0 4 0 0 0

2 2 4 4 4 2 4 4 4 2 4 4 4 2 2

0 0 0 4 0 0 0 4 0 0 0 4 0 0 0

0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

0 0 0 4 0 0 0 4 0 0 0 4 0 0 0

2 2 4 4 4 2 4 4 4 2 4 4 4 2 2

0 0 0 4 0 0 0 4 0 0 0 4 0 0 0

0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

8. writeMetisFile msglvl msgFile inGraphFile outMetisFile

This driver program reads in an Graph object and write it out to a file in the format required by the
METIS software package.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means that all
objects are written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The outMetisFile parameter is the outfile file for the METIS graph object.

Chapter 22

MSMD:
Multi-Stage Minimum Degree Object

We need an ordering for a sparse matrix. The MSMD object will provide one of three orderings:

• a minimum degree ordering, or

• a multisection ordering if given with a domain/Schur-complement partition, or

• a nested dissection ordering if given a domain/separator tree.

But in what form do we want our ordering? If all we want is a permutation vector, there is a MSMD

method that will fill them. If we want more information, a method returns the ETree object that is a front
tree1 for the ordering.

The MSMD object is complex, at least in its functionality. However, its component methods are simple;
one can put them together in different ways to get a wide variety of algorithms.

There are methods to eliminate a vertex or set of vertices in one of three ways:

• a single vertex, or

• a step of vertices, i.e., an independent set of vertices, or

• a stage of vertices, i.e., a set of vertices defined in a number of consecutive steps.

How to choose a vertex to eliminate is based on a priority, currently one of:

• external degree, or

• approximate external degree, (d̂ from [1]) and [12], or

• half external and half approximate, (d̃ from [1]), or

• a constant priority (to induce maximal independent set elimination).

1The ETree object has the Tree object that defines the connectivity of the fronts, knows the internal and external size of

each front, and has a map from the vertices to the fronts.

187

188

We intend to add more priorities, e.g., approximate deficiency from [18], [19] and [20].

Choose a priority, then specify the definition of a step, how to choose an independent set of vertices to
eliminate at a time. Then provide a map from each vertex to the stage at which it will be eliminated.

Presently there is one ordering method, MSMD order(). It orders the vertices by stages, i.e. vertices in
stage k will be ordered before vertices in stage k + 1. Inside each stage the vertices are ordered by steps. At
each step an independent set of vertices is eliminated, and the choice is based on their priorities. When the
ordering is finished one can extract permutation vectors of a front tree.

Here are three examples of how stages define an ordering method. (These methods are supported by the
present MSMD object).

• Set the stage of each vertex to be zero and we have a simple minimum degree (priority) ordering.

• Given a domain/Schur complement partition or a domain/separator tree, we can find a multisection
ordering by setting the stage of a vertex to be zero if it is a domain or one if it is in a separator.

• Given a domain/separator tree, we can find an incomplete nested dissection ordering by specifying the
stage of a vertex to be the level of the separator or domain that contains it.

Here are three slightly more complicated examples.

• Order the vertices in the domains, then order the Schur complement graph both by nested dissection
and minimum degree, and then splice the better of the two orderings together with the ordering of the
domain vertices.

• Apply the above algorithm to the Schur complement graph recursively.

• Since multisection is nothing more than applying minimum degree to the Schur complement graph,
randomly permute the graph and apply the minimum degree ordering. Repeat several times and take
the best ordering. (Ordering the Schur complement graph is much, much less time consuming than
ordering the vertices in the domains.)

Any of these three algorithms is bound to be better than both nested dissection and multisection. The tools
are largely written so any of these three algorithms can be prototyped in a small amount of time and effort.

22.1 Data Structure

There are four typed objects.

• MSMD : the main object.

• MSMDinfo : an object that communicate parameter choices from the caller to the MSMD object and
information and statistics from the MSMD object to the caller.

• MSMDstageInfo : an object that contains statistics for a stage of elimination, e.g., number of steps,
number of vertices eliminated, weight of vertices eliminated, etc.

• MSMDvtx : an object that models a vertex.

A user needs to understand the MSMDinfo object, so this is where we will start our description.

189

22.1.1 MSMDinfo : define your algorithm

• int compressFlag – define initial and subsequent compressions of the graph.

We compress a graph using a checksum technique. At some point in the elimination, vertices in the reach
set (those adjacent to vertices just eliminated) have a checksum based on their adjacencies computed,
and then vertices with the same checksum are compared to see if they are indistinguishable. This
operation has a cost, and there are classes of vertices for which there is a large amount of compression,
and for other classes there is little. Compression is a powerful tool, but we need a way to control it.

– compressFlag % 4 == 0 — do not perform any compression after each elimination step.

– compressFlag % 4 == 1 — after each elimination step, consider only those nodes that are 2-
adjacent, adjacent to two eliminated subtrees and having no uncovered adjacent edges.

– compressFlag % 4 == 2 — after each elimination step, consider all nodes.

– compressFlag / 4 >= 1 — compress at stage zero before any elimination.

The default value is 1, no initial compression and consider only 2-adjacent nodes after each elimination
step.

• int prioType — define the priority to choose a vertex to eliminate.

– prioType == 0 — zero priority

– prioType == 1 — exact external degree for each vertex

– prioType == 2 — approximate external degree for each vertex (d̂ from [1])

– prioType == 3 — exact external degree for 2-adjacent vertices, approximate external degree for
the others

The default value is 1, exact external degree for each vertex.

• double stepType — define the elimination steps.

– stepType == 0 — only one vertex of minimum priority is eliminated at each step, e.g., as used
in SPARSPAK’s GENQMD, YSMP’s ordering, and AMD [1].

– stepType == 1 — an independent set of vertices of minimum priority is eliminated at each step,
e.g., as used in GENMMD, multiple minimum degree.

– stepType > 1 — an independent set of vertices is eliminated whose priorities lie between the
minimum priority and the minimum priority multiplied by stepType.

The default value is 1, multiple elimination of vertices with minimum priority.

• int seed — a seed used for a random number generator, this introduces a necessary random element
to the ordering.

• int msglvl – message level for statistics, diagnostics and monitoring. The default value is zero, no
statistics. Set msglvl to one and get elimination monitoring. Increase msglvl slowly to get more
mostly debug information.

• FILE *msgFile – message file, default is stdout.

• int maxnbytes – maximum number of bytes used during the ordering.

• int nbytes – present number of bytes used during the ordering.

• int istage – present stage of elimination.

190

• int nstage – number of stages of elimination.

• MSMDstageInfo *stageInfo – pointer to vector of MSMDstageInfo structures that hold information
about each stage of the elimination.

• double totalCPU – total CPU to find the ordering.

22.1.2 MSMD : driver object

A user need not know anything about the internals of this object, just the methods to initialize it, order the
graph, and extract the permutation vectors and/or a front tree.

• int nvtx — number of internal vertices in the graph.

• IIheap *heap – pointer to a IIheap object that maintains the priority queue.

• IP *baseIP – pointer to the base IP objects, used to hold subtree lists

• IP *freeIP – pointer to the list of free IP objects

• int incrIP – integer that holds the increment factor for the IP objects.

• MSMDvtx *vertices – pointer to vector of MSMDvtx objects that represent the vertices.

• IV ivtmpIV – IV object that holds an integer temporary vector.

• IV reachIV – IV object that holds the reach vector.

22.1.3 MSMDstageInfo : statistics object for a stage of the elimination

This object stores information about the elimination process at a stage of the elimination.

• int nstep — number of elimination steps in this stage

• int nfront — number of fronts created at this stage

• int welim — weight of the vertices eliminated at this stage

• int nfind — number of front indices

• int nzf — number of factor entries (for a Cholesky factorization)

• double ops — number of factor operations (for a Cholesky factorization)

• int nexact2 — number of exact degree updates to 2-adjacent vertices

• int nexact3 — number of exact degree updates to non-2-adjacent vertices

• int napprox — number of approximate degree updates

• int ncheck — number of comparisons of vertices with the same checksum during the process to find
indistinguishable nodes

• int nindst — number of indistinguishable nodes that were detected.

• int noutmtch — number of nodes that were outmatched

• double cpu — elapsed CPU time for this stage of the elimination.

191

22.1.4 MSMDvtx : vertex object

This object stores information for a vertex during the elimination.

• int id — id of the vertex, in range [0,nvtx)

• char mark — character mark flag, ’O’ or ’X’

• char status — character status of the vertex

– ’L’ – eliminated leaf vertex

– ’E’ – eliminated interior vertex

– ’O’ – outmatched vertex

– ’D’ – vertex on degree (priority) heap

– ’R’ – vertex on reach set

– ’I’ – vertex found to be indistinguishable to another

– ’B’ – boundary vertex, to be eliminated in another stage

• int stage — stage of the vertex. Stage 0 nodes are eliminated before stage 1 nodes, etc.

• int wght — weight of the vertex

• int nadj — size of the adj vector

• int *adj — for an uneliminated vertex, adj points to a list of uncovered adjacent edges; for an
eliminated vertex, adj points points to a list of its boundary vertices (only valid when the vertex is a
leaf of the elimination tree or a root of a subtree of uneliminated vertices).

• int bndwght — for an eliminated vertex, the weight of the vertices on its boundary.

• MSMDvtx *par — for an eliminated vertex, par points to its parent vertex in the front tree (NULL if
the vertex is the root of a subtree). For an indistinguishable vertex, par points to its representative
vertex (which may have also been found to be indistinguishable to another).

• IP *subtrees — pointer to a list of IP objects to store the adjacent subtrees, valid only for unelimi-
nated vertices.

22.2 Prototypes and descriptions of MSMDinfo methods

This section contains brief descriptions including prototypes of all methods that belong to the MSMDinfo

object.

22.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. MSMDinfo * MSMDinfo_new (void) ;

This method simply allocates storage for the MSMDinfo structure and then sets the default fields by a
call to MSMDinfo setDefaultFields().

192

2. void MSMDinfo_setDefaultFields (MSMDinfo *info) ;

This method sets the structure’s fields to default values.

Error checking: If info is NULL, an error message is printed and the program exits.

3. void MSMDinfo_clearData (MSMDinfo *info) ;

This method clears any data owned by the object and then sets the structure’s default fields with a
call to MSMDinfo setDefaultFields().

Error checking: If info is NULL, an error message is printed and the program exits.

4. void MSMDinfo_free (MSMDinfo *info) ;

This method releases any storage by a call to MSMDinfo clearData() then free’s the storage for the
structure with a call to free().

Error checking: If info is NULL, an error message is printed and the program exits.

22.2.2 Utility methods

There are two utility methods, one to print the object, one to check to see if it is valid.

1. void MSMDinfo_print (MSMDinfo *info, FILE *fp) ;

This method prints out the information to a file.

Error checking: If info or fp is NULL, an error message is printed and the program exits.

2. int MSMDinfo_isValid (MSMDinfo *info) ;

This method checks that the object is valid. The return value is 1 for a valid object, 0 for an invalid
object.

Error checking: If info is NULL, an error message is printed and the program exits.

22.3 Prototypes and descriptions of MSMD methods

This section contains brief descriptions including prototypes of all methods that belong to the MSMD object.
The methods are loosely classified as public and private. Since the C language does not support private
methods (with the exception of static methods within a file), specifying a method as public or private is
advisory.

22.3.1 Basic methods — public

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. MSMD * MSMD_new (void) ;

This method simply allocates storage for the MSMD structure and then sets the default fields by a call
to MSMD setDefaultFields().

2. void MSMD_setDefaultFields (MSMD *msmd) ;

This method sets the structure’s fields to default values.

Error checking: If msmd is NULL, an error message is printed and the program exits.

193

3. void MSMD_clearData (MSMD *msmd) ;

This method clears any data owned by the object, then sets the structure’s default fields with a call
to MSMD setDefaultFields().

Error checking: If msmd is NULL, an error message is printed and the program exits.

4. void MSMD_free (MSMD *msmd) ;

This method releases any storage by a call to MSMD clearData() then free’s the storage for the structure
with a call to free().

Error checking: If msmd is NULL, an error message is printed and the program exits.

22.3.2 Initialization methods — public

There is one initialization method.

1. void MSMD_init (MSMD *msmd, Graph *graph, int stages[], MSMD *info) ;

This method initializes the MSMD object prior to an ordering. It is called by MSMD order() method, and
so it is currently a private method for the object. However, when designing more complicated ordering
methods, this object is necessary to set up the data structures. There are two input arguments: graph
is a pointer to a Graph object that holds the adjacency lists and weights of the vertices, and stages

is a map from each vertex to the stage at which it is to be eliminated. (If stages == NULL, then all
vertices will be eliminated in one stage, i.e., we order the graph using minimum degree.) Unlike much
other ordering software, we do not destroy the adjacency structure of the graph — however we might
shuffle the entries in each adjacency list.

Error checking: If msmd, graph or info is NULL, an error message is printed and the program exits.

22.3.3 Ordering methods — public

There is currently one ordering method.

1. void MSMD_order (MSMD *msmd, Graph *graph, int stages[], MSMD *info) ;

This method orders the vertices in the graph and maintains the MSMDvtx objects in a suitable rep-
resentation to generate permutation vectors and/or a front tree. The input is the same as for the
MSMD init() method defined above.

The method first checks that the input is valid, i.e., that msmd, graph and info are not NULL and that the
info structure is valid by calling MSMD isValid(). The msmd is then initialized by calling MSMD init().
If called for, the graph is compressed prior to any elimination. The vertices are then eliminated by
their stages via calls to MSMD eliminateStage(). The overall statistics for the elimination are then
computed, and then the working storage is then released, save for the MSMDvtx structures.

Error checking: If msmd, graph or info is NULL, an error message is printed and the program exits.

22.3.4 Extraction methods — public

There are two methods to extract the ordering. The first fills one or two IV objects with the permutation
vector(s). The second returns an ETree object that holds the front tree for the ordering.

194

1. void MSMD_fillPerms (MSMD *msmd, IV *newToOldIV, IV *oldToNewIV) ;

If newToOldIV is not NULL, this method fills the IV object with the new-to-old permutation of the
vertices, resizing the IV object if necessary. If oldToNewIV is not NULL, this method fills the IV object
with the old-to-new permutation of the vertices, resizing the IV object if necessary.

Error checking: If msmd is NULL, or if newToOldIV and oldToNewIV is NULL, an error message is printed
and the program exits.

2. ETree * MSMD_frontETree (MSMD *msmd) ;

This method constructs and returns a ETree object that contains the front tree for the ordering.

Error checking: If msmd is NULL, an error message is printed and the program exits.

22.3.5 Internal methods — private

The following methods are used internally to order the graph. the user should never have any cause to call
them.

1. void MSMD_eliminateStage (MSMD *msmd, MSMD *info) ;

This method eliminates the vertices in the present stage.

Error checking: If msmd or info is NULL, an error message is printed and the program exits.

2. int MSMD_eliminateStep (MSMD *msmd, MSMD *info) ;

This method eliminates one step of vertices, an independent set of vertices. The return value is the
weight of the vertices eliminated at this step.

Error checking: If msmd or info is NULL, an error message is printed and the program exits.

3. void MSMD_eliminateVtx (MSMD *msmd, MSMDvtx *v, MSMD *info) ;

This method eliminates vertex v.

Error checking: If msmd, v or info is NULL, an error message is printed and the program exits.

4. void MSMD_findInodes (MSMD *msmd, MSMD *info) ;

This method examines nodes in the reach set to detect indistinguishability.

• If info->compressFlag % 4 == 0, there is a simple return.

• If info->compressFlag % 4 == 1, only 2-adjacent nodes are examined.

• If info->compressFlag % 4 == 2, all nodes are examined.

The order of the nodes in the reach set may be permuted, but any indistinguishable nodes in the reach
set are not purged from the reach set.

Error checking: If msmd or info is NULL, an error message is printed and the program exits.

5. void MSMD_cleanReachSet (MSMD *msmd, MSMD *info) ;

This method cleans the nodes in the reach set by calling MSMD cleanSubtreeList()and MSMD clearEdgeList().

Error checking: If msmd or info is NULL, an error message is printed and the program exits.

6. void MSMD_cleanSubtreeList (MSMD *msmd, MSMDvtx *v, MSMD *info) ;

This method cleans the list of subtrees for vertex v, removing any node which is no longer the root of
a subtree of eliminated nodes.

Error checking: If msmd, v or info is NULL, an error message is printed and the program exits.

195

7. void MSMD_cleanEdgeList (MSMD *msmd, MSMDvtx *v, MSMD *info) ;

This method cleans the list of uncovered edges for vertex v, removing any edge (v,w) where v and w

share a common adjacent subtree.

Error checking: If msmd, v or info is NULL, an error message is printed and the program exits.

8. void MSMD_update (MSMD *msmd, MSMD *info) ;

This method updates the priorities of all nodes in the reach set.

Error checking: If msmd or info is NULL, an error message is printed and the program exits.

9. int MSMD_exactDegree2 (MSMD *msmd, MSMDvtx *v, MSMD *info) ;

This method computes and returns the exact external degree for vertex v.

Error checking: If msmd, v or info is NULL, an error message is printed and the program exits.

10. int MSMD_exactDegree3 (MSMD *msmd, MSMDvtx *v, MSMD *info) ;

This method computes and returns the exact external degree for vertex v.

Error checking: If msmd, v or info is NULL, an error message is printed and the program exits.

11. int MSMD_approxDegree (MSMD *msmd, MSMDvtx *v, MSMD *info) ;

This method computes and returns the approximate external degree for vertex v.

Error checking: If msmd, v or info is NULL, an error message is printed and the program exits.

12. void MSMD_makeSchurComplement (MSMD *msmd, Graph *schurGraph, IV *VtoPhiIV) ;

This method fills schurGraph with the graph of the Schur complement matrix (the fill graph of the
uneliminated vertices) and fills VtoPhiIV with a map from the vertices of the original graph to the
vertices of the Schur complement graph. (The mapped value of an eliminated vertex is -1.)

Error checking: If msmd, schurGraph or VtoPhiIV is NULL, an error message is printed and the program
exits.

22.4 Prototypes and descriptions of MSMDvtx methods

The MSMDvtx object is private so would not normally be accessed by the user. There is one method to print
out the object.

1. void MSMDvtx_print (MSMDvtx *v, FILE *fp) ;

This method prints a human-readable representation of a vertex, used for debugging.

Error checking: If v or fp is NULL, an error message is printed and the program exits.

22.5 Driver programs for the MSMD object

This section contains brief descriptions of four driver programs.

1. orderViaMMD msglvl msgFile inGraphFile seed compressFlag prioType

stepType outOldToNewIVfile outNewToOldIVfile outETreeFile

This driver program orders a graph using the multiple minimum degree algorithm — exactly which
algorithm is controlled by the input parameters.

196

• The msglvl parameter determines the amount of output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the output file
is stdout, otherwise a file is opened with append status to receive any output data.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The seed parameter is a random number seed.

• The compressFlag parameter controls the compression of the graph (identifying indistinguishable
nodes) before and during the elimination process.

– compressFlag / 4 >= 1 — a compression step is done before elimination.

– compressFlag % 4 == 2 — compress after each elimination step, consider all nodes.

– compressFlag % 4 == 1 — compress after each elimination step, consider only 2-adjacent
nodes (the most likely to form indistinguishable nodes).

– compressFlag % 4 == 0 — do no compression.

• The prioType parameter controls the type of priority that is used to choose nodes to eliminate.

– prioType == 1 — true external degree.

– prioType == 2 — approximate external degree.

– prioType == 3 — true external degree for 2-adjacent nodes, approximate external degree for
the others.

– prioType == 4 — priority of each node is zero; this implies random elimination.

• The stepType parameter controls the type of multiple elimination to be done.

– stepType == 0 — one vertex eliminated at each step, like YSMP, and QMD from SPARSPAK.

– stepType == 1 — regular multiple elimination, e.g., GENMMD.

– stepType > 1 — vertices whose priority lies between the minimum priority and stepType

times the minimum priority are eligible for elimination at a step.

• The outOldToNewIVfile parameter is the output file for the IV object that contains the old-to-
new permutation vector. If outOldToNewIVfile is "none", then there is no output, otherwise
outOldToNewIVfile must be of the form *.ivf or *.ivb.

• The outNewToOldIVfile parameter is the output file for the IV object that contains the new-
to-old permutation vector. If outNewToOldIVfile is "none", then there is no output, otherwise
outNewToOldIVfile must be of the form *.ivf or *.ivb.

• The outETreeFile parameter is the output file for the ETree object that contains the front tree
for the ordering. If outETreeFile is "none", then there is no output, otherwise outETreeFile

must be of the form *.etreef or *.etreeb.

2. orderViaND msglvl msgFile inGraphFile inDSTreeFile seed compressFlag

prioType stepType outOldToNewIVfile outNewToOldIVfile outETreeFile

This driver program orders a graph using the incomplete nested dissection algorithm. The stages
of elimination are generated by a DSTree domain/separator tree object that is read in from the
inDSTreeFile file. All the other parameters are the same as for the orderViaMMD driver program.

3. orderViaMS msglvl msgFile inGraphFile inDSTreeFile seed compressFlag

prioType stepType outOldToNewIVfile outNewToOldIVfile outETreeFile

This driver program orders a graph using the multisection algorithm. The stages of elimination are
generated by a DSTree domain/separator tree object that is read in from the inDSTreeFile file. All
the other parameters are the same as for the orderViaMMD driver program.

197

4. orderViaStages msglvl msgFile inGraphFile inStagesIVfile seed compressFlag

prioType stepType outOldToNewIVfile outNewToOldIVfile outETreeFile

This driver program orders a graph using the multi-stage minimum degree algorithm. The stages of
elimination are found in an IV object that is read in from the inStagesIVfile file. All the other
parameters are the same as for the orderViaMMD driver program.

Chapter 23

Network: Simple Max-flow solver

First, some background on how the Network object is used to find a minimal weight separator. The process
is rather complex.

We are given a partition of the vertices V into three disjoint sets, B, Y and W , where Y is a “wide”
separator (i.e., not a minimal separator). We construct a network from this vertex partition, solve a max
flow problem on this network, and then find one or more mincuts that correspond to a separator S ⊂ Y with
minimal vertex weight.

Here are the steps by which the GPart object contructs the network.

• All nodes in B are collapsed into the source s.

• All nodes in W are collapsed into the sink t.

• Y is partitioned into four sets:

– YB are those nodes adjacent to B but not adjacent to W .

– YW are those nodes adjacent to W but not adjacent to B.

– YI are those nodes adjacent to neither W nor B.

– YB,W are those nodes adjacent to both W and B.

Normally, by construction, YB,W = ∅, but the code should work fine otherwise.

• Each y ∈ YB becomes one node y in the network, and the edge (s, y) has capacity weight(y).

• Each y ∈ YW becomes one node y in the network, and the edge (y, t) has capacity weight(y).

• Each y ∈ YI becomes two nodes in the network, y− and y+. The edge (y−, y+) has capacity weight(y).

• An edge (x, y) where x ∈ YB and y ∈ YB is not found in the network. (It is not necessary.) Similarly,
an edge (x, y) where x ∈ YW and y ∈ YW is not found in the network.

• An edge (x, y) where x ∈ YB and y ∈ YI becomes two edges, (x, y−) and (y+, x), both with infinite
capacity.

• An edge (y, z) where y ∈ YI and z ∈ YW becomes two edges, (y+, z) and (z, y−), both with infinite
capacity.

• An edge (x, y) where x ∈ YI and y ∈ YI becomes two edges, (x+, y−) and (y+, x−), both with infinite
capacity.

198

199

The Network object can be constructed fairly simply. It is initialized by specifying the number of nodes
in the network, including the source and sink. Arcs can be added one at a time and it is not necessary to
know the total number of arcs ahead of time. To specify an arc one needs to provide the first and second
vertices, the capacity and the present flow.

Once we have constructed the network, we solve the max flow problem in a very simple manner, basically
the Ford-Fulkerson algorithm that generates augmenting paths. No doubt this can be improved, and it
would be welcome because for large three dimensional finite element graphs, up to sixty per cent of the time
is spent smoothing the separators, and most of this time is spent solving a max flow problem.

However, the network we generate in practice have two special properties:

• The networks are very shallow, i.e., the distance from the source to the sink is generally 3-6 in practice.
This reduces the potential improvement of a pre-push algorithm.

• The maximum capacity of an edge is small, usually 6-12. Therefore scaling algorithms have little
applicability.

Finding a minimal separator gives rise to networks of a special nature and that may require specialized
solution techniques. In fact, there is a more straightforward approach that generates a network where each
vertex in Y becomes one node in the network (as opposed to two network nodes for a vertex in YI). For this
special network, all edges have infinite capacity and it is the vertices that have finite capacity. In any case,
the Network object is but a naive and straightforward implementation of the simplest max flow solution
scheme and will no doubt be improved.

23.1 Data Structure

There are three structures associated with the Network object.

• Network – the main object

• Arc – a structure that represents an edge in the network.

• ArcChunk – a structure that holds the storage for a number of arcs. Since we do not require the number
of arcs to be known in advance when initializing the Network object, we allocate chunks of space to
hold the arcs as necessary. Each chunks holds space for nnode arc structures.

The Network object has six fields.

• int nnode — the number of nodes in the network, including the source (node 0) and the sink (node
nnode-1).

• int narc — the number of arcs in the network

• int ntrav — the number of arc traversals that we made to find a max flow.

• Arc **inheads — pointer to a vector of pointers to Arc, inheads[v] points to the first arc in the
in-list for node v.

• Arc **outheads — pointer to a vector of pointers to Arc, outheads[v] points to the first arc in the
out-list for node v.

• ArcChunk *chunk — pointer to the first ArcChunk structure.

• int msglvl — message level for debugging and diagnostics. Setting msglvl = 0 means no output.

200

• FILE *msgFile — message file for debugging and diagnostics.

A correctly initialized and nontrivial Network object will have positive nnode and narc values, and non-NULL
inheads, outheads and chunk fields.

The Arc object has six fields.

• int first — the first node in the arc.

• int second — the second node in the arc.

• int capacity — the capacity of the arc.

• int flow — the flow along the arc.

• Arc *nextOut — a pointer to the next Arc structure in the out-list for node first.

• Arc *nextIn — a pointer to the next Arc structure in the in-list for node second.

The ArcChunk object has four fields.

• int size — the total number of Arc structures in this chunk.

• int inuse — the number of active Arc structures in this chunk.

• Arc *base — pointer to the first Arc structure in this chunk.

• ArcChunk *next — pointer to the next ArcChunk structure in the list of chunks.

23.2 Prototypes and descriptions of Network methods

This section contains brief descriptions including prototypes of all methods that belong to the Network

object.

23.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. Network * Network_new (void) ;

This method simply allocates storage for the Network structure and then sets the default fields by a
call to Network setDefaultFields().

2. void Network_setDefaultFields (Network *network) ;

This method sets the structure’s fields to default values.

Error checking: If network is NULL, an error message is printed and the program exits.

3. void Network_clearData (Network *network) ;

This method releases any storage held by the object, e.g., it free’s the inheads and outheads vectors
and one by one it releases the storage held in the list of ArcChunk structures. It then sets the structure’s
default fields with a call to Network setDefaultFields().

Error checking: If network is NULL, an error message is printed and the program exits.

4. void Network_free (Network *network) ;

Thismethod releases any storage by a call to Network clearData() then free’s the storage for the
structure with a call to free().

Error checking: If network is NULL, an error message is printed and the program exits.

201

23.2.2 Initializer methods

There are three initializer methods.

1. void Network_init (Network *network, int nnode, int narc) ;

This method initializes an Network object given the number of nodes and number of arcs. (The latter
may be zero since we allow the storage for the arcs to grow dynamically.)

Error checking: If network is NULL, or if nnode ≤ 2, or if narc < 0, an error message is printed and
the program exits.

2. void Network_setMessageInfo (Network *network, int msglvl, FILE *msgFile) ;

This method sets the message level and message file pointer for the object.

Error checking: If network is NULL, an error message is printed and the program exits.

3. void Network_addArc (Network *network, int firstNode, secondNode,

int capacity, int flow) ;

This method adds an arc from firstNode to secondNode with flow flow and capacity capacity. The
arc is inserted in the out-list for firstNode and the in-list for secondNode.

Error checking: If network is NULL, or if nnode ≤ 0, or if firstNode ≤ 0, or if nnode ≤ firstNode,
or if secondNode ≤ 0, or if nnode ≤ secondNode, or if capacity ≤ 0, an error message is printed and
the program exits.

23.2.3 Utility methods

1. void Network_findMaxFlow (Network *network) ;

This method finds a maximum flow over the network by repeatedly calling the method to find an
augmenting path and then the method to augment the path. It uses an Ideq object to maintain a
priority dequeue.

Error checking: If network is NULL, or if nnode ≤ 0, an error message is printed and the program exits.

2. int Network_findAugmentingPath (Network *network, int node, int delta,

int tag, Ideq *deq, int tags[], int deltas[], int pres[]) ;

This methods tries to find an augmenting path. If successful, the return value is the additional flow
that can flow down the path. The start node is node, adjacent to the source and for which the edge
(source, node) is not saturated. The input parameter delta is the difference between the capacity
and the flow along this initial edge. The Ideq object holds the priority dequeue to store the nodes ids
that are visited during the search. The tags[] vector is used to tag nodes that have been visited — if
tags[v] = tag, then v has been visited. The deltas[v] value maintains the largest admissible flow
in the path from the source to v. The pred[] vector holds the tree links for the nodes.

Error checking: If network, deq, tags, deltas or pred is NULL, or if nnode ≤ 0, or if node ≤ 0, or if
nnode− 1 ≤ node, an error message is printed and the program exits.

3. void Network_augmentPath (Network *network, int delta, int pred[]) ;

This method augments the flow along the path defined by the pred[] vector by delta units.

Error checking: If network or pred is NULL, or if nnode ≤ 0, or if delta ≤ 0, an error message is
printed and the program exits.

202

4. void Network_findMincutFromSource (Network *network, Ideq deq, int mark[]) ;

This method finds the min-cut closest to the source by traversing a tree of flow-alternating paths from
the source. On return, mark[v] = 1 if the node v is in the component that contains the source. If the
node v is in the component that contains the sink, then mark[v] = 2.

Error checking: If network, deq or mark is NULL, or if nnode ≤ 0, an error message is printed and the
program exits.

5. void Network_findMincutFromSink (Network *network, Ideq deq, int mark[]) ;

This method finds the min-cut closest to the sink by traversing a tree of flow-alternating paths into
the sink. On return, mark[v] = 1 if the node v is in the component that contains the source. If the
node v is in the component that contains the sink, then mark[v] = 2.

Error checking: If network, deq or mark is NULL, or if nnode ≤ 0, an error message is printed and the
program exits.

23.2.4 IO methods

There are two IO routines for debugging purposes.

1. void Network_writeForHumanEye (Network *network, FILE *fp) ;

This method writes the network to a file in a human readable format. The method Network writeStats()

is called to write out the header and statistics. Then the in-list and out-lists for the nodes in the network
are printed.

Error checking: If network or fp is NULL, an error message is printed and the program exits.

2. void Network_writeStats (Network *network, FILE *fp) ;

This method writes a header and statistics to a file.

Error checking: If network or fp is NULL, an error message is printed and the program exits.

Chapter 24

SolveMap: Forward and Backsolve Map

The SolveMap object is to assign submatrix operations to threads or processors in a forward and backsolve.

A front is owned by a single process, and this ownership is defined by an owners[] vector. If process
myid owns front J, then LJ,J, DJ,J and UJ,J are owned by myid. The off-diagonal submatrices in the upper
block and their owners are stored as triples in three vectors. The ii’th submatrix in the upper triangle has
row id rowidsUpper[ii], column id colidsUpper[ii], and is owned by thread or process mapUpper[ii].
A similar situation holds for the lower triangle when the factorization is nonsymmetric.

24.1 Data Structure

The SolveMap structure has the following fields.

• int symmetryflag : symmetry flag

– SPOOLES SYMMETRIC – symmetric (UT + I)D(I + U) factorization

– SPOOLES HERMITIAN – hermitian (UH + I)D(I + U) factorization

– SPOOLES NONSYMMETRIC – nonsymmetric (L + I)D(I + U) factorization

• int nfront – number of fronts

• int nproc – number of threads or processes

• int *owners – vector mapping fronts to owning threads or processes

• int nblockUpper – number of submatrices in the upper triangle

• int *rowidsUpper – vector of row ids for the upper triangle

• int *colidsUpper – vector of column ids for the upper triangle

• int *mapUpper – map from submatrices to threads or processes

• int nblockLower – number of submatrices in the lower triangle

• int *rowidsLower – vector of row ids for the lower triangle

• int *colidsLower – vector of column ids for the lower triangle

• int *mapLower – map from submatrices to threads or processes processes

203

204

24.2 Prototypes and descriptions of SolveMap methods

This section contains brief descriptions including prototypes of all methods that belong to the SolveMap

object.

24.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. SolveMap * SolveMap_new (void) ;

This method simply allocates storage for the SolveMap structure and then sets the default fields by a
call to SolveMap setDefaultFields().

2. void SolveMap_setDefaultFields (SolveMap *solvemap) ;

This method sets the default fields of the object — symmetryflag = SPOOLES SYMMETRIC, nfront,
nproc, nblockUpper and nblockLower are set to zero, and owners, rowidsUpper, colidsUpper,
mapUpper, rowidsLower, colidsLower and mapLower are set to NULL.

Error checking: If solvemap is NULL, an error message is printed and the program exits.

3. void SolveMap_clearData (SolveMap *solvemap) ;

This method clears any data allocated by this object and then sets the default fields with a call to
SolveMap setDefaultFields().

Error checking: If solvemap is NULL, an error message is printed and the program exits.

4. void SolveMap_free (SolveMap *solvemap) ;

This method releases any storage by a call to SolveMap clearData() then free’s the storage for the
structure with a call to free().

Error checking: If solvemap is NULL, an error message is printed and the program exits.

24.2.2 Instance methods

1. int SolveMap_symmetryflag (SolveMap *solvemap) ;

This method returns symmetryflag, the symmetry flag.

Error checking: If solvemap is NULL, an error message is printed and the program exits.

2. int SolveMap_nfront (SolveMap *solvemap) ;

This method returns nfront, the number of fronts.

Error checking: If solvemap is NULL, an error message is printed and the program exits.

3. int SolveMap_nproc (SolveMap *solvemap) ;

This method returns nproc, the number of threads or processes.

Error checking: If solvemap is NULL, an error message is printed and the program exits.

4. int SolveMap_nblockUpper (SolveMap *solvemap) ;

This method returns nblockUpper, the number of off-diagonal submatrices in the upper triangle.

Error checking: If solvemap is NULL, an error message is printed and the program exits.

205

5. int SolveMap_nblockLower (SolveMap *solvemap) ;

This method returns nblockLower, the number of off-diagonal submatrices in the lower triangle.

Error checking: If solvemap is NULL, an error message is printed and the program exits.

6. int * SolveMap_owners (SolveMap *solvemap) ;

This method returns owners, a pointer to the map from fronts to owning threads or processes.

Error checking: If solvemap is NULL, an error message is printed and the program exits.

7. int * SolveMap_rowidsUpper (SolveMap *solvemap) ;

This method returns rowidsUpper, a pointer to the vector of row ids of the submatrices in the upper
triangle.

Error checking: If solvemap is NULL, an error message is printed and the program exits.

8. int * SolveMap_colidsUpper (SolveMap *solvemap) ;

This method returns colidsUpper, a pointer to the vector of column ids of the submatrices in the
upper triangle.

Error checking: If solvemap is NULL, an error message is printed and the program exits.

9. int * SolveMap_mapUpper (SolveMap *solvemap) ;

This method returns mapUpper, a pointer to the vector that maps the submatrices in the upper triangle
to threads or processes.

Error checking: If solvemap is NULL, an error message is printed and the program exits.

10. int * SolveMap_rowidsLower (SolveMap *solvemap) ;

This method returns rowidsLower, a pointer to the vector of row ids of the submatrices in the lower
triangle.

Error checking: If solvemap is NULL, an error message is printed and the program exits.

11. int * SolveMap_colidsLower (SolveMap *solvemap) ;

This method returns colidsLower, a pointer to the vector of column ids of the submatrices in the
upper triangle.

Error checking: If solvemap is NULL, an error message is printed and the program exits.

12. int * SolveMap_mapLower (SolveMap *solvemap) ;

This method returns mapLower, a pointer to the vector that maps the submatrices in the upper triangle
to threads or processes.

Error checking: If solvemap is NULL, an error message is printed and the program exits.

24.2.3 Initialization method

1. void SolveMap_init (SolveMap *solvemap, int symmetryflag, int nfront,

int nproc, int nblockUpper, nblockLower) ;

Any previously owned data is cleared via a call to SolveMap clearData(). The five scalars are then
set and the vectors are allocated and initialized.

Error checking: If solvemap is NULL, or symmetryflag is invalid, or nfront, nblockUpper, nblockLower
or nproc is negative, an error message is printed and the program exits.

206

24.2.4 Map creation methods

1. void SolveMap_randomMap (SolveMap *solvemap, int symmetryflag,

IVL *upperBlockIVL, IVL *lowerBlockIVL, int nproc,

IV *ownersIV, int seed, int msglvl, FILE *msgFile) ;

This method maps offdiagonal submatrices to threads or processes in a random fashion.

Error checking: If solvemap, upperBlockIVL or ownersIV is NULL, or if symmetryflag is invalid, an
error message is printed and the program exits.

2. void SolveMap_ddMap (SolveMap *solvemap, int symmetryflag,

IVL *upperBlockIVL, IVL *lowerBlockIVL, int nproc,

IV *ownersIV, int seed, int msglvl, FILE *msgFile) ;

This method maps offdiagonal submatrices to threads or processes in a domain decomposition fashion.
A domain is a subtree of fronts that are owned by the same thread or process. Furthermore, a domain
is maximal, i.e., the parent of the root domain (if it exists) is owned by a different process. If J belongs
to a domain, then for all K, LK,J and UJ,K are owned by the thread or process that owns the domain.
All other submatrices are mapped to threads or processes in a random fashion.

Error checking: If solvemap, upperBlockIVL or ownersIV is NULL, or if symmetryflag is invalid, an
error message is printed and the program exits.

24.2.5 Solve setup methods

1. IP ** SolveMap_forwardSetup (SolveMap *solvemap, int myid,

int msglvl, FILE *msgFile) ;

IP ** SolveMap_backwardSetup (SolveMap *solvemap, int myid,

int msglvl, FILE *msgFile) ;

These two methods return a vector of pointers to IP objects that contain the list of submatrices that
thread or process myid will use during the forward or backward solves.

Error checking: If solvemap is NULL, or if myid < 0 or myid >= solvemap->nproc, an error message
is printed and the program exits.

24.2.6 Utility methods

1. int SolveMap_owners (SolveMap *solvemap, int rowid, int colid) ;

If rowid = colid, this method returns the owner of front rowid. Otherwise, this method returns the
thread or process of the owner of Lrowid,colid if rowid ≥ colid or Urowid,colid if rowid < colid.

Error checking: If solvemap is NULL, an error message is printed and the program exits.

2. IVL * SolveMap_upperSolveIVL (SolveMap *solvemap, int myid,

int msglvl, FILE *msgFile) ;

This method returns an IVL object whose list K contains all processes that do not own K but who own
an UJ,K for some J < K.

Error checking: If solvemap is NULL then an error message is printed and the program exits.

3. IVL * SolveMap_lowerSolveIVL (SolveMap *solvemap, int myid,

int msglvl, FILE *msgFile) ;

This method returns an IVL object whose list J contains all processes that do not own J but who own
an LK,J for some K > J.

Error checking: If solvemap is NULL then an error message is printed and the program exits.

207

4. IV * SolveMap_upperAggregateIV (SolveMap *solvemap, int myid

int msglvl, FILE *msgFile) ;

This method returns an IV object that contains the aggregate count for a backward solve. If myid owns
front J, then entry J of the returned IV object contains the number of processes (other than myid) that
own an UJ,K submatrix, and so is the number of incoming aggregate submatrices process myid expects
for front J.

Error checking: If solvemap is NULL or nlist < 0 then an error message is printed and the program
exits.

5. IV * SolveMap_lowerAggregateIV (SolveMap *solvemap, int myid

int msglvl, FILE *msgFile) ;

This method returns an IV object that contains the aggregate count for a forward solve. If myid owns
front J, then entry J of the returned IV object contains the number of processes (other than myid)
that own an LJ,I submatrix, (or UI,J submatrix if symmetric or hermitian) and so is the number of
incoming aggregate submatrices process myid expects for front J.

Error checking: If solvemap is NULL or nlist < 0 then an error message is printed and the program
exits.

24.2.7 IO methods

There are the usual eight IO routines. The file structure of a SolveMap object is simple: symmetryflag,
nfront, nproc, nblockUpper and nblockLower, followed by owners[*], rowidsUpper[*], colidsUpper[*]
and mapidsUpper[*], and if symmetryflag = SPOOLES NONSYMMETRIC, followed by rowidsLower[*], colidsLower[*]
and mapidsLower[*].

1. int SolveMap_readFromFile (SolveMap *solvemap, char *fn) ;

This method reads an SolveMap object from a file. If the the file can be opened successfully, the
method calls SolveMap readFromFormattedFile() or SolveMap readFromBinaryFile(), closes the
file and returns the value returned from the called routine.

Error checking: If solvemap or fn are NULL, or if fn is not of the form *.solvemapf (for a formatted
file) or *.solvemapb (for a binary file), an error message is printed and the method returns zero.

2. int SolveMap_readFromFormattedFile (SolveMap *solvemap, FILE *fp) ;

This method reads an SolveMap object from a formatted file. If there are no errors in reading the
data, the value 1 is returned. If an IO error is encountered from fscanf, zero is returned.

Error checking: If solvemap or fp are NULL an error message is printed and zero is returned.

3. int SolveMap_readFromBinaryFile (SolveMap *solvemap, FILE *fp) ;

This method reads an SolveMap object from a binary file. If there are no errors in reading the data,
the value 1 is returned. If an IO error is encountered from fread, zero is returned.

Error checking: If solvemap or fp are NULL an error message is printed and zero is returned.

4. int SolveMap_writeToFile (SolveMap *solvemap, char *fn) ;

This method writes an SolveMap object to a file. If the the file can be opened successfully, the method
calls SolveMap writeFromFormattedFile() or SolveMap writeFromBinaryFile(), closes the file and
returns the value returned from the called routine.

Error checking: If solvemap or fn are NULL, or if fn is not of the form *.solvemapf (for a formatted
file) or *.solvemapb (for a binary file), an error message is printed and the method returns zero.

208

5. int SolveMap_writeToFormattedFile (SolveMap *solvemap, FILE *fp) ;

This method writes an SolveMap object to a formatted file. If there are no errors in writing the data,
the value 1 is returned. If an IO error is encountered from fprintf, zero is returned.

Error checking: If solvemap or fp are NULL an error message is printed and zero is returned.

6. int SolveMap_writeToBinaryFile (SolveMap *solvemap, FILE *fp) ;

This method writes an SolveMap object to a binary file. If there are no errors in writing the data, the
value 1 is returned. If an IO error is encountered from fwrite, zero is returned.

Error checking: If solvemap or fp are NULL an error message is printed and zero is returned.

7. int SolveMap_writeForHumanEye (SolveMap *solvemap, FILE *fp) ;

This method writes an SolveMap object to a file in an easily readable format. The method SolveMap writeStats()

is called to write out the header and statistics. The value 1 is returned.

Error checking: If solvemap or fp are NULL an error message is printed and zero is returned.

8. int SolveMap_writeStats (SolveMap *solvemap, FILE *fp) ;

This method writes some statistics about an SolveMap object to a file. The value 1 is returned.

Error checking: If solvemap or fp are NULL, an error message is printed and zero is returned.

Chapter 25

Tree: A Tree Object

The Tree object has very simple functionality, it represents the graph of a tree data structure of fixed size.
(In reality, it is a “forest” object, for the graph need not be connected.) Trees are used throughout sparse
matrix computations. The elimination tree [16] is the most common example, though assembly trees [10],
element merge trees [11] and front trees are also common.

The Tree object is very simple — there is a size, a root, and parent, first child and sibling vectors. No
information is stored for a node except for its tree connections. For an elimination tree, each vertex needs
to know the number of ancestors adjacent in the factor graph. For a front tree, each front needs to know the
dimensions of the front matrix. This extra information cannot be stored in the Tree object. See the ETree

object in Chapter 19; each ETree object contains a Tree object. (In a language that supports inheritance,
ETree could be a subclass of Tree.)

25.1 Data Structure

The Tree object has a very simple data structure. The value -1 is used to denote a null pointer for the
parent, first child and sibling fields.

• int n : size of the tree

• int root : root of the tree, in range [0,n-1], in the range [-1,n-1]

• int *par : pointer to parent vector, size n, entries in the range [-1,n-1]

• int *fch : pointer to first child vector, size n, entries in the range [-1,n-1]

• int *sib : pointer to sibling vector, size n, entries in the range [-1,n-1]

The user should rarely if ever change these five fields. In particular, throughout the code we assume that the
Tree object was correctly initialized using one of the three initializer methods. Inside almost every method
we check to ensure n > 0. If n > 0 then we assume that the structure was intialized correctly and that the
par, fch and sib fields point to storage that was allocated by the initializer method.

25.2 Prototypes and descriptions of Tree methods

This section contains brief descriptions including prototypes of all methods that belong to the Tree object.

209

210

25.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. Tree * Tree_new (void) ;

This method simply allocates storage for the Tree structure and then sets the default fields by a call
to Tree setDefaultFields().

2. void Tree_setDefaultFields (Tree *tree) ;

This method sets the structure’s fields to default values: n is zero, root is -1, and par, fch and sib

are all NULL.

Error checking: If tree is NULL, an error message is printed and the program exits.

3. void Tree_clearData (Tree *tree) ;

This method releases any storage held by the parent, first child and sibling vectors, then sets the
structure’s default fields with a call to Tree setDefaultFields().

Error checking: If tree is NULL, an error message is printed and the program exits.

4. void Tree_free (Tree *tree) ;

This method releases any storage by a call to Tree clearData() then free’s the storage for the structure
with a call to free().

Error checking: If tree is NULL, an error message is printed and the program exits.

25.2.2 Instance methods

1. int Tree_nnodes (Tree *tree) ;

This method returns the number of nodes in the tree.

Error checking: If tree is NULL, an error message is printed and the program exits.

2. int Tree_root (Tree *tree) ;

This method returns the root of the tree.

Error checking: If tree is NULL, an error message is printed and the program exits.

3. int * Tree_par (Tree *tree) ;

This method returns a pointer to the parent vector.

Error checking: If tree is NULL, an error message is printed and the program exits.

4. int * Tree_fch (Tree *tree) ;

This method returns a pointer to the first child vector.

Error checking: If tree is NULL, an error message is printed and the program exits.

5. int * Tree_sib (Tree *tree) ;

This method returns a pointer to the sibling vector.

Error checking: If tree is NULL, an error message is printed and the program exits.

211

25.2.3 Initializer methods

There are three initializers and two helper functions to set the dimensions of the tree, allocate the three
vectors, and fill the information.

1. void Tree_init1 (Tree *tree, int size) ;

This is the basic initializer method. Any previous data is cleared with a call to Tree clearData().
The size is set and storage allocated for the three tree vectors using IVinit(). All entries in the three
vectors are set to -1.

Error checking: If tree is NULL or size is negative, an error message is printed and the program exits.

2. void Tree_init2 (Tree *tree, int size, int par[]) ;

The simple initializer Tree init1() is called and the entries in par[] are copied into the parent vector.
The helper method Tree setFchSibRoot() is then called to set the other fields.

Error checking: If tree or par is NULL, or if size is negative, an error message is printed and the
program exits.

3. void Tree_init3 (Tree *tree, int size, int par[], int fch[], int sib[]) ;

The simple initializer Tree init1() is called and the entries in par[], fch[] and sib[] are copied
into their respective vectors. The helper method Tree setRoot() is then called to set the root field.

Error checking: If tree, par, fch or sib is NULL, or if size is negative, an error message is printed
and the program exits.

4. int Tree_initFromSubtree (Tree *subtree, IV *nodeidsIV, Tree *tree) ;

The subtree object is initialized from the tree object, the nodes that are included are those found
in nodeidsIV. A parent-child link in the subtree means that the two nodes have a parent-child link in
the tree.

Return codes:

1 normal return
-1 subtree is NULL
-2 nodeidsIV is NULL

-3 tree is NULL
-4 nodeidsIV is invalid

5. void Tree_setFchSibRoot (Tree *tree) ;

The root and the entries in the fch[] and sib[] vectors are set using the entries in the par[] vector.

Error checking: If tree is NULL, an error message is printed and the program exits.

6. void Tree_setRoot (Tree *tree) ;

The vertices that are roots in the tree are linked by their sib[] field and the root of the tree is set to
the head of the list.

Error checking: If tree is NULL, an error message is printed and the program exits.

25.2.4 Utility methods

The utility methods return the number of bytes taken by the object, aid in performing pre-order and post-
order traversals, and return statistics about the tree (e.g., the number of roots or leaves in the tree, or the
number of children of a node in the tree). This functionality can be easily had by direct manipulation or
inquiry of the object, but these methods insulate the user from the internals and allow us to change and
improve the internals if necessary.

212

1. int Tree_sizeOf (Tree *tree) ;

This method returns the number of bytes taken by this object.

Error checking: If tree is NULL, an error message is printed and the program exits.

2. int Tree_postOTfirst (Tree *tree) ;

This method returns the first node in a post-order traversal.

Error checking: If tree is NULL, or if tree->n < 1, an error message is printed and the program exits.

3. int Tree_postOTnext (Tree *tree, int v) ;

This method returns the node that follows v in a post-order traversal.

Error checking: If tree is NULL, or if tree->n < 1 or v is not in [0,tree->n-1], an error message is
printed and the program exits.

4. int Tree_preOTfirst (Tree *tree) ;

This method returns the first node in a pre-order traversal.

Error checking: If tree is NULL, or if tree->n < 1, an error message is printed and the program exits.

5. int Tree_preOTnext (Tree *tree, int v) ;

This method returns the node that follows v in a pre-order traversal.

Error checking: If tree is NULL, or if tree->n < 1, or v is not in [0,tree->n-1], an error message is
printed and the program exits.

6. int Tree_nleaves (Tree *tree) ;

This method returns the number of leaves of the tree.

Error checking: If tree is NULL, or if tree->n < 1, an error message is printed and the program exits.

7. int Tree_nroots (Tree *tree) ;

This method returns the number of roots of the tree (really a forest).

Error checking: If tree is NULL, or if tree->n < 1, an error message is printed and the program exits.

8. int Tree_nchild (Tree *tree, int v) ;

This method returns the number of children of v.

Error checking: If tree is NULL, or if tree->n < 1, or v is not in [0,tree->n-1], an error message is
printed and the program exits.

9. IV * Tree_nchildIV (Tree *tree) ;

This method creates an IV object that holds the number of children for each of the nodes, i.e., entry
v of the returned IV object contains the number of children of node v.

Error checking: If tree is NULL, or if tree->n < 1, an error message is printed and the program exits.

10. int Tree_maxNchild (Tree *tree) ;

This method returns the maximum number of children of any vertex.

Error checking: If tree is NULL, or if tree->n < 1, an error message is printed and the program exits.

11. int Tree_height (Tree *tree) ;

This method returns the height of the tree.

Error checking: If tree is NULL, or if tree->n < 1, an error message is printed and the program exits.

213

12. IV * Tree_maximizeGainIV (Tree *tree, IV *gainIV, int *ptotalgain,

int msglvl, FILE *msgFile) ;

Given a gain value assigned to each node, find a set of nodes, no two in a child-ancestor relationship,
that maximizes the total gain. This problem arises in finding the optimal domain/Schur complement
partition for a semi-implicit factorization.

Error checking: If tree, gainIV or ptotalgain is NULL, an error message is printed and the program
exits.

25.2.5 Metrics methods

Many operations need to know some metric defined on the nodes in a tree. Here are three examples: the
height of a node (the minimum distance from a descendant leaf), the depth of a node (the distance from
its root ancestor), or the weight associated with a subtree rooted at a node. Of course, a weight could be
associated with each node, so the height or depth becomes the weight of the nodes on the path.

Metrics can be int or double. Because of the limitations of C, we need two separate methods for each of
the height, depth and subtree functions. Each pair of methods differs only in the type of the vector object
argument.

1. IV * Tree_setSubtreeImetric (Tree *tree, IV *vmetricIV) ;

DV * Tree_setSubtreeDmetric (Tree *tree, DV *vmetricDV) ;

These methods create and return IV or DV objects that contain subtree metrics using as input an IV

or DV object that contains the metric for each of the nodes. If tmetric[] is the vector in the returned
IV or DV object, then

tmetric[v] = vmetric[v] + sum_{par[u] = v} tmetric[u].

Error checking: If tree or vmetric{I,D}V is NULL, an error message is printed and the program exits.

2. IV * Tree_setDepthImetric (Tree *tree, IV * vmetricIV) ;

DV * Tree_setDepthDmetric (Tree *tree, DV * vmetricDV) ;

These methods create and return IV or DV objects that contain depth metrics using as input an IV or
DV object that contains the metric for each of the nodes. If dmetric[] is the vector in the returned IV

or DV object, then

dmetric[v] = vmetric[v] if par[v] == -1

= vmetric[v] + dmetric[par[v]] if par[v] != -1

Error checking: If tree or vmetric{I,D}V is NULL, an error message is printed and the program exits.

3. IV * Tree_setHeightImetric (Tree *tree, IV * vmetricIV) ;

DV * Tree_setHeightDmetric (Tree *tree, DV * vmetricDV) ;

These methods create and return IV or DV objects that contain height metrics using as input an IV or
DV object that contains the metric for each of the nodes. If hmetric[] is the vector in the returned IV

or DV object, then

hmetric[v] = vmetric[v] if fch[v] == -1

= vmetric[v] + max_{par[u] = v} hmetric[par[v]]

Error checking: If tree or vmetric{I,D}V is NULL, an error message is printed and the program exits.

214

25.2.6 Compression methods

Frequently a tree will need to be compressed in some manner. Elimination trees usually have long chains
of nodes at the higher levels, where each chain of nodes corresponds to a supernode. Liu’s generalized row
envelope methods partition the vertices by longest chains [17]. In both cases, we can construct a map from
each node to a set of nodes to define a smaller, more compact tree. Given such a map, we construct the
smaller tree.

A fundamental chain is a set of nodes v1, . . . , vm such that (1) v1 is a leaf or has two or more children,
(2) vi+1 is the parent of vi for 1 ≤ i < m, and (3) vm is either a root or has a sibling. The set of
fundamental chains is uniquely defined. In the context of elimination trees, a fundamental chain is very close
to a fundamental supernode, and in many cases, fundamental chains can be used to contruct the fronts with
little added fill and factor operations.

1. IV * Tree_fundChainMap (Tree *tree) ;

This method creates and returns an IV object that contains the map a vertex to the fundamental chain
to which it belongs, i.e., map[v] contains the id of the fundamental chain that contains v. If u is a
descendant of v, then map[u] <= map[v]. The number of fundamental chains is returned.

Error checking: If tree is NULL, or if n < 1, an error message is printed and the program exits.

2. Tree * Tree_compress (Tree *tree, IV *mapIV) ;

This method creates and returns a new Tree object formed by compressing tree using the mapIV

object. The compressed tree is constructed and returned.

Error checking: If tree or mapIV is NULL, or if n < 1, an error message is printed and the program
exits.

25.2.7 Justification methods

Given a tree, how should the children of a node be ordered? This “justification” can have a large impact
in the working storage for the front tree in the multifrontal algorithm. Justification also is useful when
displaying trees.

1. void Tree_leftJustify (Tree *tree) ;

This method justifies the tree, reordering the children of each node as necessary. If u and v are siblings,
and u comes before v in a post-order traversal, then the size of the subtree rooted at u is as large or
larger than the size of the subtree rooted at v.

Error checking: If tree or map is NULL, or if n < 1, an error message is printed and the program exits.

2. void Tree_leftJustifyI (Tree *tree, IV *metricIV) ;

void Tree_leftJustifyD (Tree *tree, DV *metricIV) ;

This method justifies the tree, reordering the children of each node as necessary. If u and v are siblings,
and u comes before v in a post-order traversal, then the weight of the subtree rooted at u is as large
or larger than the weight of the subtree rooted at v.

Error checking: If tree or metricIV is NULL, or if n < 1, or if n is not the size of metricIV, an error
message is printed and the program exits.

25.2.8 Permutation methods

Often we need to extract a permutation from a tree, e.g., a post-order traversal of an elimination tree gives
an ordering for a sparse matrix. On other occasions, we need to permute a tree, i.e. re-label the nodes.

215

1. void Tree_fillNewToOldPerm (Tree *tree, int newToOld[]) ;

void Tree_fillOldToNewPerm (Tree *tree, int oldToNew[]) ;

void Tree_fillBothPerms (Tree *tree, int newToOld[], int oldToNew[]) ;

If tree is NULL, tree->n < 1 or a permutation vector is NULL, an error message is printed and the
program exits. Otherwise, the permutation vector(s) is (are) filled with the ordering of the nodes in a
post-order traversal.

Error checking: If tree or a permutation vector is NULL, or if n < 1, an error message is printed and
the program exits.

2. Tree * Tree_permute (Tree *tree, int newToOld[], int oldToNew[]) ;

A new tree is created with the same connectivity as the old but the nodes are relabeled.

Error checking: If tree, newToOld or oldToNew is NULL, or if tree->n < 1, an error message is printed
and the program exits.

25.2.9 Drawing method

1. int Tree_getSimpleCoords (Tree *tree, char heightflag, int coordflag,

DV *xDV, DV *yDV) ;

This method fills the xDV and yDV vector objects with coordinates of the nodes in the tree. When
coordflag = ’C’, we create Cartesian coordinates, where the leaves are at the bottom and the root(s)
at the top. When coordflag = ’P’, we create polar coordinates, where the leaves are found on the
outside and the root(s) in the center. The height of a node is the distance from the bottom for Cartesian
coordinates, and the distance from the outermost circle for polar coordinates. When heightflag =

’H’, the height of a node is one unit more than that of its highest child. When heightflag = ’D’,
the height of a node is one unit less than that of its parent.

Return codes:

1 normal return
-1 tree is NULL
-2 heightflag is invalid

-3 coordflag is invalid
-3 xDV is NULL
-4 yDV is NULL

2. int Tree_drawToEPS (Tree *tree, FILE *filename, DV *xDV, DV *yDV,

double rscale, DV *radiusDV, int labelflag,

double fontscale, IV *labelsIV, double bbox[],

double frame[], double bounds[]) ;

This method draws a tree. The coordinates of the nodes are found in the xDV and yDV vectors.

The nodes will have circles of constant radius (if radiusDV is NULL) or each circle can have a different
radius found in radiusDV when radiusDV is not NULL. The value rscale is used to scale all the radii.
(If radiusDV is NULL, then all radii are equal to one point — there are 72 points to the inch.)

If labelflag = 1, the nodes will have a numeric label. If labelsIV is NULL, then the label will be the
node id. Otherwise, the labels are taken from the labelsIV vector. The size of the fonts for the labels
is found in fontscale, e.g., fontscale = 10 implies using a 10 point font. bbox[4] and frame[4]

define the bounding box and frame, respectively.

If bounds[] is NULL, the tree is sized to fit inside the frame. Note, when the radii of the nodes are
non-constant, determining the local coordinates is a non-linear process that may not converge for a
large radius with respect to the frame. If this occurs, an error message is printed and the program
exits. If bounds[] is not NULL, then the nodes are mapped to local coordinates within the frame. This
is useful when we have two or more trees that need a common reference frame. (See the testFS driver
program in the ETree/drivers directory.)

216

See the drawTree driver program in the next section.

Return codes:

1 normal return
-1 tree is NULL
-2 filename is NULL
-3 xDV is NULL
-4 yDV is NULL

-5 rscale is negative
-6 fontscale is negative
-7 bbox is NULL
-8 frame is NULL

25.2.10 IO methods

There are the usual eight IO routines. The file structure of a tree object is simple: size, root, par[size],
fch[size] and sib[size].

1. int Tree_readFromFile (Tree *tree, char *fn) ;

This method reads in a Perm object from a file. It tries to open the file and if it is successful, it then
calls Tree readFromFormattedFile() or Tree readFromBinaryFile(), closes the file and returns the
value returned from the called routine.

Error checking: If tree or fn are NULL, or if fn is not of the form *.treef (for a formatted file) or
*.treeb (for a binary file), an error message is printed and the method returns zero.

2. int Tree_readFromFormattedFile (Tree *tree, FILE *fp) ;

This method reads in a Perm object from a formatted file. If there are no errors in reading the data,
the value 1 is returned. If an IO error is encountered from fscanf, zero is returned.

Error checking: If tree or fp are NULL, an error message is printed and zero is returned.

3. int Tree_readFromBinaryFile (Tree *tree, FILE *fp) ;

This method reads in a Perm object from a binary file. If there are no errors in reading the data, the
value 1 is returned. If an IO error is encountered from fread, zero is returned.

Error checking: If tree or fp are NULL, an error message is printed and zero is returned.

4. int Tree_writeToFile (Tree *tree, char *fn) ;

This method writes a Perm object to a file. It tries to open the file and if it is successful, it then calls
Tree writeFromFormattedFile() or Tree writeFromBinaryFile(), closes the file and returns the
value returned from the called routine.

Error checking: If tree or fn are NULL, or if fn is not of the form *.treef (for a formatted file) or
*.treeb (for a binary file), an error message is printed and the method returns zero.

5. int Tree_writeToFormattedFile (Tree *tree, FILE *fp) ;

This method writes a Perm object to a formatted file. If there are no errors in writing the data, the
value 1 is returned. If an IO error is encountered from fprintf, zero is returned.

Error checking: If tree or fp are NULL, an error message is printed and zero is returned.

6. int Tree_writeToBinaryFile (Tree *tree, FILE *fp) ;

This method writes a Perm object to a binary file. If there are no errors in writing the data, the value
1 is returned. If an IO error is encountered from fwrite, zero is returned.

Error checking: If tree or fp are NULL, an error message is printed and zero is returned.

217

7. int Tree_writeForHumanEye (Tree *tree, FILE *fp) ;

This method writes a Perm object to a file in a human readable format. The method Tree writeStats()

is called to write out the header and statistics. Then the parent, first child and sibling values are printed
out in three columns. The value 1 is returned.

Error checking: If tree or fp are NULL, an error message is printed and zero is returned.

8. int Tree_writeStats (Tree *tree, FILE *fp) ;

This method writes the header and statistics to a file. The value 1 is returned.

Error checking: If tree or fp are NULL, an error message is printed and zero is returned.

25.3 Driver programs for the Tree object

1. drawTree msglvl msgFile inTreeFile inTagsFile outEPSfile

heightflag coordflag radius bbox[4] frame[4] tagflag fontsize

This driver program reads in a Tree file and optionally a tags IV file and creates an EPS file with a
simple picture of a tree.

• The msglvl parameter determines the amount of output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the output file
is stdout, otherwise a file is opened with append status to receive any output data.

• The inTreeFile parameter is the input file for the Tree object. It must be of the form *.treef

or *.treeb. The Tree object is read from the file via the Tree readFromFile() method.

• The inTagsFile parameter is the input file for the IV vector object than holds the tags for the
nodes. It must be of the form *.ivf or *.ivb or none. The IV object is read from the file via
the IV readFromFile() method.

• The outEPSfile parameter is name of the encapsulated Postscript file to be written.

• The heightflag parameter is ’D’ to use a depth metric, (i.e., parent and child are in adjacent
levels), and ’H’ to use a height metric (i.e., a leaf is on the outermost level).

• The coordflag parameter is ’C’ to put the tree in a Cartesian coordinate system and ’P’ for a
polar coordinate system.

• The radius parameter is the radius of each node in the tree.

• The bbox parameter a sequence of four numbers that form the bounding box: lower left x value,
lower left y value, width and height.

• The frame parameter a sequence of four numbers that form the frame of the plot within the
bounding box: lower left x value, lower left y value, width and height.

• When tagflag = 1, tags are drawn on the nodes. If tagsFile is NULL, then node ids will be
drawn on the nodes. Otherwise, node ids will be taken from the tagsIV object.

• The fontsize parameter is the size of the font to be used to draw the node labels.

Use the doDraw script file as an example. Four plots of a tree for the R2D100 matrix ordered by nested
dissection are found below.

218

Figure 25.1: R2D100: domain/separator tree. On the left heightflag = ’H’ and coordflag = ’C’, on
the right heightflag = ’D’ and coordflag = ’C’.

0

1

2

3

4

5

6

7

8

910

11

12

13

1415

16

17

18

19

20

21

22

232425

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

0

1

2

3

4 5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 48

49

50

51

52

53

54

55

56

57

58 59

60

61

62

63

64

65

66

67

68

69

70

71

Figure 25.2: R2D100: domain/separator tree. On the left heightflag = ’H’ and coordflag = ’P’, on
the right heightflag = ’D’ and coordflag = ’P’.

0

1

2

3

4
5

6

7

8

9

10

11

1213

14

15

16
17

18 19 20 21

22

23

24

25

26 27

28

29
30

31

32

33

34

35

36

37

38

39

40

41

42

43

44454647

48

49

50

51

52

53
54

55

56

57

5859

60

61

62

63

64

65

66

67

68

69

70

71

0

1

2

3

4

5

6

7

8

9

10

11

1213

14

15

16
17

18
19

20
21

22

23

24

25

26 27

28

29

30

31
32

33

34

35

36

37

38

39

40

41

42

43

44454647

48

49

5051

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68 69

70

71

Part IV

Numeric Objects and Methods

219

Chapter 26

Chv: Block chevron

The Chv object is used to store and operate on a front during a sparse factorization. The Chv object can
contain either double precision real or complex data. A front is a portion of a matrix, shaded grey in the
diagram below.

(1,1) (1,2)

(2,1)

We use the word “chevron” to describe the front, because if you rotate the figure 45◦ clockwise the shaded
region resembles the chevron insignia of enlisted personnel in the armed forces. Similar matrices are also
known as “arrowhead” matrices, but we have found the “chevron” has a simpler abbreviation. We use the
adjective “block” to emphasize that the chevron object may have multiple entries of the diagonal of the
matrix. A “single” chevron (which is one way we assemble entries from a matrix into this data structure)
contains a single entry from the diagonal of the matrix.

The shaded region in the diagram above will normally be sparse, i.e., many of the entries might be zero.
There are three logical blocks to the Chv object: a nonempty square (1,1) block in the upper left corner,
and (possibly empty) (1,2) and (2,1) blocks in the upper right and lower left corners. To conserve space and
minimize work on logically zero elements, we store only rows of the lower part and columns of the upper
part that have (or may have) nonzero elements. (Note, a particular row or column may have zero elements,
but normally there will be nonzeros in each row and column that we store.)

Chv objects come in three types — symmetric, Hermitian and nonsymmetric. When an object is sym-
metric or Hermitian, we only store the upper triangle. There is one limitation, perhaps unnecessary, that
we put on the Chv object — the number of rows in the (2,1) block and number of columns in the (1,2) block
are equal. The Chv object is used within the context of a factorization of a sparse matrix that is assumed to
have symmetric structure. If we ever extend the code to handle a true nonsymmetric structure factorization
(e.g., umfpack and superlu), then we can modify the Chv object to handle unequal rows and columns.

During a factorization, a front has to take part in four distinct operations.

1. Assemble entries from the original matrix (or matrix pencil). (See the Chv addChevron() method.)

2. Accumulate updates from descendant fronts. (See the Chv update{S,H,N}() methods.)

3. Assemble any postponed data from its children fronts. (See the Chv assemblePostponedData()

method.)

221

222

4. Compute the factorization of the completely assembled front. (See the Chv factor() method.)

The implementor of a front object has a great deal of freedom to design the underlying data structures.
We have chosen to store the entries in each single chevron in contiguous memory — the first entry of a
chevron is in the last row of the front, the last entry of a chevron is in the last column of the front. The
figure below shows the storage locations for the entries — on the left is a nonsymmetric chevron, on the
right is a symmetric or hermitian chevron.

0

1

2

3

4

5

6

7

8 9 10 11 12 13 14 15 16

17

18

19

20

21

22

23

24 25 26 27 28 29 30 31

32

33

34

35

36

37

38 39 40 41 42 43 44

0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23

Any storage format has advantages and disadvantages.

con Moving along the diagonal is a nonconstant stride through memory. The same holds for moving along
a row in the lower part and along a column in the upper part. While the strides are nonconstant, they
are easily determined, particularly when starting in the first chevron. This affects the search methods
that look for a pivot in the (1,1) block, the method that evaluates a pivot, the swap methods that
swap rows and columns, and the methods that extract the entries from the chevron to be stored in the
factor matrix.

pro Moving along a row in the upper part and along a column in the lower part uses a unit stride. This
is useful when performing an update to the remaining part of the front after a pivot element has been
selected.

pro The assembly of data, be it from the original matrix stored by chevrons, aggregate update fronts from
other processes in a parallel factorization, or postponed data when pivoting for stability is used can be
done in a straightforward manner.

The chevron object exists within the context of a larger global matrix, and so needs indices to define
its rows and columns. For a symmetric or Hermitian matrix, we only store the column indices. For a
nonsymmetric matrix, we store the both the row and column indices. This second case may seem unnecessary,
since we assume that the larger global matrix has symmetric structure. However, during a factorization with
pivoting enabled, a pivot element may be chosen from anywhere in the (1,1) block, so the row indices and
column indices may no longer be identical.

A Chv object is inherently a serial, single threaded object, meaning it is designed so that only one thread
or process “owns” or operates on a particular Chv object. A Chv object is an “atom” of communication. It
stores postponed rows and columns to be assembled in a parent front. It might have to be written to and
read from a file in an out-of-core implementation. In a distributed environment, it is communicated between
processes. For these reasons, we designed the object so that its data (the scalars that describe its dimensions,
id and type, the row and column indices, and its entries) are found in contiguous storage managed by a DV

object. A file operation can be done with a single read or write, a message can be sent without packing and
unpacking data, or defining a new datatype. Managing working storage for a number of Chv objects is now
simpler.

When the Chv object contains double precision complex data, it stores and operates on them as double
precision entries. We follow the FORTRAN convention that the real and imaginary part of a complex
number are stored consecutively, the real part first followed by the imaginary number. In the above complex
nonsymmetric matrix, the third diagonal entry is found at location 38 in terms of the complex numbers,
but its real and imaginary parts are found in locations 2*38 = 76 and 2*38+1 = 77 of the double precision

223

vector that stores the entries. Computations are done in a mix of subroutine calls (see Utilites/ZV.h) and
by expanding the complex arithmetic into real arithmetic.

The Chv object “knows” about the IV, DV and ZV vector objects (for int, double and double complex

data types), the A2 object for dense 2-D arrays, and the SubMtx object for dense or sparse 2-D submatrices.
These IV, DV, ZV, A2 and SubMtx objects are subordinate to the Chv object.

26.1 Data Structure

The Chv structure has the following fields.

• int id : object’s id, default value is -1.

• int nD : number of rows and columns in the (1,1) block

• int nL : number of rows in the (2,1) block

• int nU : number of columns in the (1,2) block

• int type : type of entries

– SPOOLES REAL =⇒ real entries

– SPOOLES COMPLEX =⇒ complex entries

• int symflag : symmetry flag

– SPOOLES SYMMETRIC =⇒ symmetric entries

– SPOOLES HERMITIAN =⇒ Hermitian entries

– SPOOLES NONSYMMETRIC =⇒ nonsymmetric entries

• int *rowind : pointer to the base address of the int vector that contains row indices.

• int *colind : pointer to the base address of the int vector that contains column indices.

• double *entries : pointer to the base address of the double vector that contains the entries.

• DV wrkDV : object that manages the owned working storage.

• Chv *next : link to a next object in a singly linked list.

One can query the type and symmetry of the object using these simple macros.

• CHV IS REAL(chv) is 1 if chv has real entries and 0 otherwise.

• CHV IS COMPLEX(chv) is 1 if chv has complex entries and 0 otherwise.

• CHV IS SYMMETRIC(chv) is 1 if chv is symmetric and 0 otherwise.

• CHV IS HERMITIAN(chv) is 1 if chv is Hermitian and 0 otherwise.

• CHV IS NONSYMMETRIC(chv) is 1 if chv is nonsymmetric and 0 otherwise.

26.2 Prototypes and descriptions of Chv methods

This section contains brief descriptions including prototypes of all methods that belong to the Chv object.

224

26.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. Chv * Chv_new (void) ;

This method simply allocates storage for the Chv structure and then sets the default fields by a call to
Chv setDefaultFields().

2. void Chv_setDefaultFields (Chv *chv) ;

The structure’s fields are set to default values: id = -1, nD = nL = nU = 0, type = SPOOLES REAL,
symflag = SPOOLES SYMMETRIC, and rowind = colind = entries = next = NULL . The wrkDV object
has its default fields set via a call to DV setDefaultFields().

Error checking: If chv is NULL, an error message is printed and the program exits.

3. void Chv_clearData (Chv *chv) ;

This method clears the object and free’s any owned data by invoking the clearData() methods for
its internal DV object. There is a concluding call to Chv setDefaultFields().

Error checking: If chv is NULL, an error message is printed and the program exits.

4. void Chv_free (Chv *chv) ;

This method releases any storage by a call to Chv clearData() and then free the space for chv.

Error checking: If chv is NULL, an error message is printed and the program exits.

26.2.2 Instance methods

1. int Chv_id (Chv *chv) ;

This method returns the id of the object.

Error checking: If chv is NULL, an error message is printed and zero is returned.

2. int Chv_type (Chv *chv) ;

This method returns the type of the object.

• SPOOLES REAL =⇒ real entries

• SPOOLES COMPLEX =⇒ complex entries

Error checking: If chv is NULL, an error message is printed and zero is returned.

3. int Chv_symmetryFlag (Chv *chv) ;

This method returns the symmetry flag of the object.

• SPOOLES SYMMETRIC =⇒ symmetric entries, i.e., ai,j = aj,i.

• SPOOLES HERMITIAN =⇒ hermitian entries, i.e., ai,j = aj,i.

• SPOOLES NONSYMMETRIC =⇒ nonsymmetric entries.

Error checking: If chv is NULL, an error message is printed and zero is returned.

4. void Chv_dimensions (Chv *chv, int *pnD, int *pnL, *pnU) ;

This method fills *pnD, *pnL and *pnU with nD, nL and nU.

Error checking: If chv is NULL, an error message is printed and zero is returned.

225

5. void Chv_rowIndices (Chv *chv, int *pnrow, **prowind) ;

This method fills *pnrow with the number of rows (nD + nL) and *prowind with a pointer to the row
indices.

Error checking: If chv, pnrow or prowind is NULL, an error message is printed and zero is returned.

6. void Chv_columnIndices (Chv *chv, int *pncol, **pcolind) ;

This method fills *pncol with the number of columns (nD + nU) and *pcolind with a pointer to the
column indices.

Error checking: If chv, pncol or pcolind is NULL, an error message is printed and zero is returned.

7. int Chv_nent (Chv *chv) ;

This method returns number of matrix entries that the object contains. Note, for a complex chevron,
this is the number of double precision complex entries, equal to one half the number of double precision
entries that are stored.

Error checking: If chv is NULL, an error message is printed and zero is returned.

8. double * Chv_entries (Chv *chv) ;

This method returns the entries field of the object, a pointer to the base location of the double precision
array that stores the complex data.

Error checking: If chv is NULL, an error message is printed and zero is returned.

9. double * Chv_diagLocation (Chv *chv, int ichv) ;

This method returns a pointer to the address of the entry in the ichv’th diagonal location. For a real
chevron, to find the entry k places to the right of the diagonal entry, add k to the address. To find an
entry k places below the diagonal entry, subtract k from the address. For a complex chevron, to find
the entry k places to the right of the diagonal entry, add 2*k to the address. To find an entry k places
below the diagonal entry, subtract 2*k from the address.

Error checking: If chv is NULL, an error message is printed and zero is returned.

10. void * Chv_workspace (Chv *chv) ;

This method returns a pointer to the base address of the workspace.

Error checking: If chv is NULL, an error message is printed and zero is returned.

11. void Chv_realEntry (Chv *chv, int irow, int jcol, double *pValue) ;

This method fills *pValue with the entry in row irow and column jcol. Note, irow and jcol are local
indices, i.e., 0 ≤ irow < nD + nL and 0 ≤ jcol < nD + nU.

Error checking: If chv or pValue is NULL, or if irow or jcol is out of range, an error message is printed
and the program exits.

12. Chv_locationOfRealEntry (Chv *chv, int irow, int jcol, double **ppValue) ;

This method fills *ppValue with a pointer to the entry in row irow and column jcol. Note, irow and
jcol are local indices, i.e., 0 ≤ irow < nD+ nL and 0 ≤ jcol < nD+ nU.

Error checking: If chv or ppValue is NULL, or if irow or jcol is out of range, an error message is
printed and the program exits.

13. void Chv_setRealEntry (Chv *chv, int irow, int jcol, double value) ;

This method sets the entry in row irow and column jcol to be value. Note, irow and jcol are local
indices, i.e., 0 ≤ irow < nD + nL and 0 ≤ jcol < nD + nU.

Error checking: If chv is NULL, or if irow or jcol is out of range, an error message is printed and the
program exits.

226

14. void Chv_complexEntry (Chv *chv, int irow, int jcol,

double *pReal, double *pImag) ;

This method fills *pReal with the real part and *pImag with the imaginary part of the the entry in
row irow and column jcol. Note, irow and jcol are local indices, i.e., 0 ≤ irow < nD + nL and
0 ≤ jcol < nD+ nU.

Error checking: If chv, pReal or pImag is NULL, or if irow or jcol is out of range, an error message is
printed and the program exits.

15. Chv_locationOfComplexEntry (Chv *chv, int irow, int jcol,

double **ppReal, double **ppImag) ;

This method fills *ppReal with a pointer to the real part and *ppImag with a pointer to the imaginary
part of the entry in row irow and column jcol. Note, irow and jcol are local indices, i.e., 0 ≤ irow <
nD+ nL and 0 ≤ jcol < nD+ nU.

Error checking: If chv, ppReal or ppImag is NULL, or if irow or jcol is out of range, an error message
is printed and the program exits.

16. void Chv_setComplexEntry (Chv *chv, int irow, int jcol,

double real, double imag) ;

This method sets the real and imaginary parts and the entry in row irow and column jcol to be
real and imag, respectively. Note, irow and jcol are local indices, i.e., 0 ≤ irow < nD + nL and
0 ≤ jcol < nD+ nU.

Error checking: If chv is NULL, or if irow or jcol is out of range, an error message is printed and the
program exits.

26.2.3 Initialization methods

There are three initializer methods.

1. void Chv_init(Chv *chv, int id, int nD, int nL, int nU, int type, int symflag) ;

This is the initializer method used when the Chv object is to use its owned workspace to store indices
and entries. The number of indices and entries is computed, the work space is set up via calls to
Chv nbytesNeeded() and Chv setNbytesInWorkspace(), and the scalars, pointers and buffer are set
up via a call to Chv setFields().

Error checking: If chv is NULL, or if nD ≤ 0, or if nL or nU < 0, or if type or if symflag is not valid, an
error message is printed and zero is returned.

2. void Chv_initWithPointers (Chv *chv, int id, int nD, int nL, int nU, int type,

int symflag, int *rowind, int *colind, double *entries) ;

This initializer method is used when the Chv object does not own the storage for its indices and entries,
but points into some other storage.

Error checking: If chv is NULL, or if nD ≤ 0, or if nL or nU < 0, or if type or if symflag is not valid, or
if entries or colind is NULL, or if symflag = SPOOLES NONSYMMETRIC and rowind is NULL, an error
message is printed and zero is returned.

3. void Chv_initFromBuffer (Chv *chv) ;

This initializer method is used to set the scalar and pointer fields when the object’s buffer is already
preloaded. This functionality is used in the MPI factorization where a Chv object is sent and received,
more precisely, the workspace buffer owned by the Chv object is sent and received.

Error checking: If chv is NULL, an error message is printed and zero is returned.

227

26.2.4 Search methods

1. int Chv_maxabsInDiagonal11 (Chv *chv, int mark[], int tag, double *pmaxval) ;

This method returns the location of the first tagged element with the largest magnitude in the diagonal
of the (1,1) block. Element jj must have mark[jj] = tag to be eligible. Its magnitude is returned
in *pmaxval. Note, if the chevron is complex, the location is in terms of the complex entries, not
in the real entries, i.e., if k = Chv maxabsDiagonal11(chv,...), then the complex entry is found in
chv->entries[2*kk:2*kk+1].

Error checking: If chv, mark or pmaxval is NULL, an error message is printed and the program exits.

2. int Chv_maxabsInRow11 (Chv *chv, int irow, int colmark[],

int tag, double *pmaxval) ;

This method returns the location of the first element with the largest magnitude in row irow of
the (1,1) block. Element jj must have colmark[jj] = tag to be eligible. Its magnitude is re-
turned in *pmaxval. Note, if the chevron is complex, the location is in terms of the complex entries,
not in the real entries, i.e., if k = Chv maxabsRow11(chv,...), then the complex entry is found in
chv->entries[2*kk:2*kk+1].

Error checking: If chv is NULL or irow is not in [0,n1-1], an error message is printed and the program
exits.

3. int Chv_maxabsInColumn11 (Chv *chv, int jcol, int rowmark[],

int tag, double *pmaxval) ;

This method returns the location of the first element with the largest magnitude in column jcol of
the (1,1) block. Element jj must have rowmark[jj] = tag to be eligible. Its magnitude is returned
in *pmaxval. Note, if the chevron is complex, the location is in terms of the complex entries, not
in the real entries, i.e., if k = Chv maxabsColumn11(chv,...), then the complex entry is found in
chv->entries[2*kk:2*kk+1].

Error checking: If chv is NULL or irow is not in [0,n1-1], an error message is printed and the program
exits.

4. int Chv_maxabsInRow (Chv *chv, int irow, int colmark[],

int tag, double *pmaxval) ;

This method returns the location of the first element with the largest magnitude in row irow. Element
jj must have colmark[jj] = tag to be eligible. Its magnitude is returned in *pmaxval. Note, if the
chevron is complex, the location is in terms of the complex entries, not in the real entries, i.e., if k =

Chv maxabsRow(chv,...), then the complex entry is found in chv->entries[2*kk:2*kk+1].

Error checking: If chv is NULL or irow is not in [0,n1-1], an error message is printed and the program
exits.

5. int Chv_maxabsInColumn (Chv *chv, int jcol, int rowmark[],

int tag, double *pmaxval) ;

This method returns the location of the first element with the largest magnitude in column jcol.
Element jj must have rowmark[jj] = tag to be eligible. Its magnitude is returned in *pmaxval. Note,
if the chevron is complex, the location is in terms of the complex entries, not in the real entries, i.e., if k
= Chv maxabsColumn11(chv,...), then the complex entry is found in chv->entries[2*kk:2*kk+1].

Error checking: If chv is NULL or irow is not in [0,n1-1], an error message is printed and the program
exits.

6. double Chv_quasimax (Chv *chv, int rowmark[], int colmark[]

int tag, int *pirow, int *pjcol) ;

228

This method searches for a quasimax entry in the (1, 1) block, an entry ai,j that has largest magnitude
of the tagged entries in row i and column j. An entry ai,j is tagged when rowmark[i] = tag and
colmark[j] = tag. On return, *pirow is filled with the row id and *pjcol is filled with the column
id of the quasimax entry. The return value is the magnitude of the entry.

Error checking: If chv, rowmark, colmark, pirow or pjcol is NULL, an error message is printed and
the program exits.

7. void Chv_fastBunchParlettPivot (Chv *chv, int mark[], int tag,

int *pirow, int *pjcol) ;

This method is used only for a symmetric or hermitian object and finds a 1 × 1 or 2 × 2 pivot that
is suitable for elimination. Only pivots from the (1, 1) block can be chosen. A diagonal element ar,r

with maximum magnitude is first found using the Chv maxabsInDiagonal11() method. We then find
the element ar,k in that row that has a maximum magnitude. If |ar,r| > 0.6404|ar,k| then we accept
the 1 × 1 pivot element. Otherwise we look for an offdiagonal element that is largest in its row and
column and return it as a 2× 2 pivot.

Error checking: If chv, mark, pirow or pjcol is NULL, an error message is printed and the method
returns.

26.2.5 Pivot methods

1. int Chv_findPivot (Chv *chv, DV *workDV, double tau, int ndelay,

int *pirow, int *pjcol, int *pntest) ;

This method finds and tests a pivot, where if it were used at the next elimination step, each entry in
L and U would have magnitude less than or equal to tau. The workDV object is used for workspace,
it is resized as necessary. The ndelay parameter allows one to specify the number of leading rows and
columns to ignore, useful when delayed rows and columns have been placed in the leading portion of
the chevron. The pirow, pjcol and pntest addresses are filled with the pivot row, pivot column, and
number of pivot tests performed to find the pivot. If no pivot was found, pirow and pjcol are filled
with -1. The return value is the size of the pivot. If the chevron is symmetric, we can find a 1× 1 or
2× 2 pivot. If the chevron is nonsymmetric, we only find a 1× 1 pivot. A return value of zero means
that no pivot was found.

Error checking: If chv, workDV, pirow, pjcol or pntest is NULL, or if tau < 1.0, or if ndelay < 0, an
error message is printed and the program exits.

26.2.6 Update methods

1. void Chv_updateS (Chv *chv, SubMtx *mtxD, SubMtx *mtxU, DV *tempDV) ;

void Chv_updateH (Chv *chv, SubMtx *mtxD, SubMtx *mtxU, DV *tempDV) ;

void Chv_updateN (Chv *chv, SubMtx *mtxL, SubMtx *mtxD, SubMtx *mtxU,

DV *tempDV) ;

These methods perform an update to a chevron during the factorization. For a symmetric chevron, we
compute

TJ∩∂I,J∩∂I := TJ∩∂I,J∩∂I − UT
I,J∩∂IDI,IUI,J∩∂I

TJ∩∂I,∂J∩∂I := TJ∩∂I,∂J∩∂I − UT
I,J∩∂IDI,IUI,∂J∩∂I

where D is diagonal or block diagonal with 1× 1 and/or symmetric 2× 2 pivots. U is stored by sparse
or dense columns. For a Hermitian chevron, we compute

TJ∩∂I,J∩∂I := TJ∩∂I,J∩∂I − UH
I,J∩∂IDI,IUI,J∩∂I

TJ∩∂I,∂J∩∂I := TJ∩∂I,∂J∩∂I − UH
I,J∩∂IDI,IUI,∂J∩∂I

229

where D is diagonal or block diagonal with 1× 1 and/or Hermitian 2× 2 pivots. U is stored by sparse
or dense columns. For a nonsymmetric chevron, we compute

TJ∩∂I,J∩∂I := TJ∩∂I,J∩∂I − LJ∩∂I,IDI,IUI,J∩∂I

TJ∩∂I,∂J∩∂I := TJ∩∂I,∂J∩∂I − LJ∩∂I,IDI,IUI,∂J∩∂I

T∂J∩∂I,J∩∂I := T∂J∩∂I,J∩∂I − L∂J∩∂I,IDI,IUI,J∩∂I

where D is diagonal, L is stored by sparse or dense rows, and U is stored by sparse or dense columns.
tempDV is a temporary working vector whose storage is resized as necessary.

Error checking: If chvT, mtxL, mtxD, mtxU or tempDV is NULL, an error message is printed and the
program exits.

26.2.7 Assembly methods

1. void Chv_addChevron (Chv *chv, double alpha[], int ichv, int chvsize,

int chvind[], double chvent[]) ;

This method is used to assemble entries from the matrix pencil A + σB into the block chevron object.
Typically the entries from A or B will come from a InpMtx object, one of whose modes of storage is
by single chevrons. The value ichv is the row and column location of the diagonal entry. The indices
found in chvind[] are offsets. Let off = chvind[ii] be the offset for one of the chevron’s entries.
If off ≥ 0, then the entry is found in location (ichv, ichv+off) of the matrix. If off < 0, then the
entry is found in location (ichv-off, ichv) of the matrix. The value(s) in alpha[] form a scalar
used to scale the entire chevron for its assembly. A call to assemble entries in A (from the pencil
A + σB) would have alpha[] = (1.0,0.0); to assemble entries in B (from the pencil A + σB) would
have alpha[] = (Real(σ), Imag(σ)).

Error checking: If chv, chvind, chvent or alpha is NULL, or if ichv or chvsize are less than zero, an
error message is printed and the program exits.

2. void Chv_assembleChv (Chv *chvJ, Chv *chvI) ;

This method is used to assemble entries from one Chv object into another. The application is during a
factorization with pivoting, postponed entries from the children are stored in the chvI Chv object and
need to be assembled into the final working front, along with all updates from the descendents (which
are stored in the chvJ Chv object. Note, the row and column indices of chvI must nest with those of
chvJ.

Error checking: If chvI or chvJ is NULL, or if their symflag fields are not identical, an error message
is printed and the program exits.

3. int Chv_assemblePostponedData (Chv *newchv, Chv *oldchv, Chv *firstchild) ;

This method is used to assemble a Chv object for a front (oldchv) along with any postponed data from
the children (objects are held in a list where firstchild is the head) into a Chv object newchv. The
return value is the number of delayed rows and columns from the children fronts which are found in
the leading rows and columns of the chevron.

Error checking: If newchv, oldchv or firstchild is NULL, an error message is printed and the program
exits.

26.2.8 Factorization methods

1. int Chv_factorWithPivoting (Chv *chv, int ndelay, int pivotflag,

IV *pivotsizesIV, DV *workDV, double tau, int *pntest) ;

230

This method factors a front using pivoting for numerical stability. The number of rows and columns
that have been delayed (assembled from the children) is given by ndelay, this allows the method that
finds the pivots to skip over these rows and columns since no pivot can be found there. When pivoting
is enabled (pivotflag is SPOOLES PIVOTING), the workDV object used during the search process for
pivots must be non-NULL, tau is the upper bound on factor entries, and pivotsizesIV must be non-
NULL when the front is symmetric or Hermitian. The address pntest is incremented with the number
of pivot tests by the Chv findPivot() method. The return value is the number of eliminated rows
and columns.

Error checking: If chv is NULL, or if pivotflag is not valid, or if ndelay is negative, or if pivotflag
== SPOOLES PIVOTING and workDV is NULL or tau is less than 1.0, or if the chevron is symmetric or
Hermitian, pivotflag == SPOOLES PIVOTING and pivotsizesIV is NULL, an error message is printed
and the program exits.

2. int Chv_factorWithNoPivoting (Chv *chv, PatchAndGoInfo *info) ;

This method factors a front without using pivoting for numerical stability. It does support “patch-
and-go” functionality, where if a small or zero entry is found in the diagonal element that is to be
eliminated, some action can be taken. The return value is the number of eliminated rows and columns.

Error checking: If chv is NULL, an error message is printed and the program exits.

3. int Chv_r1upd (Chv *chv) ;

This method is used during the factorization of a front, performing a rank-one update of the chevron.
The return value is 1 if the pivot is nonzero, 0 otherwise.

Error checking: If chv is NULL, an error message is printed and the program exits.

4. int Chv_r2upd (Chv *chv) ;

This method is used during the factorization of a front, performing a rank-two update of the chevron.
The return value is 1 if the pivot is nonsingular, 0 otherwise.

Error checking: If chv is NULL, or if the chevron is nonsymmetric, an error message is printed and the
program exits.

5. void Chv_maxabsInChevron (Chv *chv, int ichv,

double *pdiagmaxabs, *prowmaxabs, *pcolmaxabs) ;

This method is used during the factorization of a front with a “patch-and-go” strategy. On return,
*pdiagmaxabs contains the magnitude of the diagonal entry for the chevron, *prowmaxabs contains the
maximum magnitude of the entries in the row of the chevron, and *pcolmaxabs contains the maximum
magnitude of the entries in the column of the chevron.

Error checking: If chv, pdiagmaxabs, prowmaxabs or pcolmaxabs is NULL, or if ichv is out of range,
an error message is printed and the program exits.

6. void Chv_zeroOffdiagonalOfChevron (Chv *chv, int ichv) ;

This method is used during the factorization of a front with a “patch-and-go” strategy. On return, the
offdiagonal entries of chevron ichv have been set to zero.

Error checking: If chv is NULL, or if ichv is out of range, an error message is printed and the program
exits.

26.2.9 Copy methods

1. int Chv_countEntries (Chv *chv, int npivot, int pivotsizes[],

int countflag) ;

231

This method counts the number of entries in the chevron that are larger in magnitude than droptol.
countflag has the following meaning.

• CHV STRICT LOWER =⇒ count strict lower entries

• CHV DIAGONAL =⇒ count diagonal entries

• CHV STRICT UPPER =⇒ count strict upper entries

• CHV STRICT LOWER 11 =⇒ count strict lower entries in the (1,1) block

• CHV LOWER 21 =⇒ count lower entries in the (2,1) block

• CHV STRICT UPPER 11 =⇒ count strict upper entries in the (1,1) block

• CHV UPPER 12 =⇒ count upper entries in the (1,2) block

This method is used to compute the necessary storage to store a chevron as a dense front.

Error checking: If chv is NULL or if countflag is not valid, an error message is printed and the program
exits.

2. int Chv_countBigEntries (Chv *chv, int npivot, int pivotsizes[],

int countflag, double droptol) ;

This method counts the number of entries in the chevron that are larger in magnitude than droptol.
countflag has the following meaning.

• CHV STRICT LOWER =⇒ count strict lower entries

• CHV STRICT UPPER =⇒ count strict upper entries

• CHV STRICT LOWER 11 =⇒ count strict lower entries in the (1,1) block

• CHV LOWER 21 =⇒ count lower entries in the (2,1) block

• CHV STRICT UPPER 11 =⇒ count strict upper entries in the (1,1) block

• CHV UPPER 12 =⇒ count upper entries in the (1,2) block

This method is used to compute the necessary storage to store a chevron as a sparse front.

Error checking: If chv is NULL or if countflag is not valid, an error message is printed and the program
exits.

3. int Chv_copyEntriesToVector (Chv *chv, int npivot, int pivotsizes[],

int length, double dvec[], int copyflag, int storeflag) ;

This method copies some entries the chevron object into a double precision vector. This method is
called after a front has been factored and is used to store the factor entries into the storage for the factor
matrix. If the front is nonsymmetric, the front contains entries of L, D and U , where D is diagonal.
If the front is symmetric or Hermitian, the front contains entries of D and U , and D is diagonal if
pivotsizesIV is NULL or may contain a mixture of 1 × 1 and 2 × 2 pivots otherwise. copyflag has
the following meaning.

• CHV STRICT LOWER =⇒ copy strict lower entries

• CHV DIAGONAL =⇒ copy diagonal entries

• CHV STRICT UPPER =⇒ copy strict upper entries

• CHV STRICT LOWER 11 =⇒ copy strict lower entries in the (1,1) block

• CHV LOWER 21 =⇒ copy lower entries in the (2,1) block

• CHV STRICT UPPER 11 =⇒ copy strict upper entries in the (1,1) block

• CHV UPPER 12 =⇒ copy upper entries in the (1,2) block

232

If storeflag is CHV BY ROWS, the entries are stored by rows and if storeflag is CHV BY COLUMNS, the
entries are stored by columns.

Error checking: If chv or dvec is NULL or if length is less than the number of entries to be copied, or
if copyflag or storeflag is valid, an error message is printed and the program exits.

4. int Chv_copyBigEntriesToVector (Chv *chv, int npivot, int pivotsizes[],

int sizes[], int ivec[], double dvec[],

int copyflag, int storeflag, double droptol) ;

This method also copies some entries the chevron object into a double precision vector, but only those
entries whose magnitude is greater than or equal to droptol are copied. This method is called after
a front has been factored and is used to store the factor entries of large magnitude into the storage
for the factor matrix. If the front is nonsymmetric, the front contains entries of L, D and U , where
D is diagonal. If the front is symmetric, the front contains entries of D and U , and D is diagonal if
pivotsizesIV is NULL or may contain a mixture of 1 × 1 and 2 × 2 pivots otherwise. copyflag has
the following meaning.

• CHV STRICT LOWER =⇒ copy strict lower entries

• CHV STRICT UPPER =⇒ copy strict upper entries

• CHV STRICT LOWER 11 =⇒ copy strict lower entries in the (1,1) block

• CHV LOWER 21 =⇒ copy lower entries in the (2,1) block

• CHV STRICT UPPER 11 =⇒ copy strict upper entries in the (1,1) block

• CHV UPPER 12 =⇒ copy upper entries in the (1,2) block

If storeflag is CHV BY ROWS, the entries are stored by rows and if storeflag is CHV BY COLUMNS, the
entries are stored by columns.

When we store the large entries in the columns of U , sizes[jcol] contains the number of large
entries in column jcol. The vectors ivec[] and dvec[] contain the row indices and the entries that
are stored. When we store the large entries in the rows of L, sizes[irow] contains the number of
large entries in column irow. The vectors ivec[] and dvec[] contain the column indices and the
entries that are stored. Presently there is no checking that sizes[], ivec[] and dvec[] are large
enough to store the sizes, indices and entries. The large entry count can be obtained using the method
Chv countBigEntries().

Error checking: If chv or dvec is NULL or if length is less than the number of entries to be copied, or
if copyflag or storeflag is not valid, an error message is printed and the program exits.

5. void Chv_copyTrailingPortion (Chv *chvI, Chv *chvJ, int offset) ;

This method copies the trailing portion of chvJ into chvI. The first offsets chevrons are not copied,
the remainder are copied. This method is used to extract the delayed entries from a front which has
been factored.

Error checking: If chvI or chvJ is NULL, or if offset < 0 or offset is greater than the number of
chevrons in chvJ, an error message is printed and the program exits.

26.2.10 Swap methods

1. void Chv_swapRows (Chv *chv, int irow, int jrow) ;

This method swaps rows irow and jrow of the chevron. Both rows must be less than the width nD

of the chevron. The row ids of the two rows are also swapped. If the chevron is symmetric, then the
method Chv swapRowsAndColumns() is called.

233

Error checking: If chv is NULL or if irow or jrow are less than 0 or greater than or equal to nD, an
error message is printed and the program exits.

2. void Chv_swapColumns (Chv *chv, int icol, int jcol) ;

This method swaps columns icol and jcol of the chevron. Both columns must be less than the width
nD of the chevron. The column ids of the two columns are also swapped. If the chevron is symmetric,
then the method Chv swapRowsAndColumns() is called.

Error checking: If chv is NULL or if icol or jcol are less than 0 or greater than or equal to nD, an
error message is printed and the program exits.

3. void Chv_swapRowsAndColumns (Chv *chv, int ii, int jj) ;

This method swaps rows and columns ii and jj of the chevron. Both must be less than the width nD

of the chevron. The row and/or column ids are also swapped.

Error checking: If chv is NULL or if ii or jj are less than 0 or greater than or equal to nD, an error
message is printed and the program exits.

26.2.11 Utility methods

1. int Chv_nbytesNeeded (int nD, int nL, int nU, int type, int symflag) ;

This method returns the number of bytes necessary to store an object with the given dimensions and
type in its workspace.

Error checking: If nD, nL, or nU is less than zero, or if type or symflag are not valid, an error message
is printed and the program exits.

2. int Chv_nbytesInWorkspace (Chv *chv) ;

This method returns the number of bytes in the workspace.

Error checking: If chv is NULL, an error message is printed and the program exits.

3. void Chv_setNbytesInWorkspace (Chv *chv, int nbytes) ;

This method sets the number of bytes in the workspace. If nbytes is less than the number of present
bytes in the workspace, the workspace is not shrunk.

Error checking: If chv is NULL, an error message is printed and the program exits.

4. void Chv_setFields (Chv *chv, int id, int nD, int nL, int nU,

int type, int symflag) ;

This method sets the scalar fields and rowind, colind and entries pointers.

Error checking: If chv is NULL, or if nD ≤ 0, or if nL or nU are less than zero, or if type or symflag are
not valid, an error message is printed and the program exits.

5. void Chv_shift (Chv *chv, int shift) ;

This method is used to shift the base of the entries and adjust dimensions of the Chv object. If shift
is positive, the first shift chevrons are removed from the chevron. If shift is negative, the shift

previous chevrons are prepended to the chevron. This is a dangerous method as it changes the state
of the object. We use it during the factorization of a front, where one Chv object points to the entire
chevron in order to swap rows and columns, while another chevron points to the uneliminated rows
and columns of the front. It is the latter chevron that is shifted during the factorization.

Error checking: If chv is NULL an error message is printed and the program exits.

234

6. void Chv_fill11block (Chv *chv, A2 *mtx) ;

This method is used to fill a A2 dense matrix object with the entries in the (1, 1) block of the chevron.

Error checking: If chv or mtx is NULL, an error message is printed and the program exits.

7. void Chv_fill12block (Chv *chv, A2 *mtx) ;

This method is used to fill a A2 dense matrix object with the entries in the (1, 2) block of the chevron.

Error checking: If chv or mtx is NULL, an error message is printed and the program exits.

8. void Chv_fill21block (Chv *chv, A2 *mtx) ;

This method is used to fill a A2 dense matrix object with the entries in the (2, 1) block of the chevron.

Error checking: If chv or mtx is NULL, an error message is printed and the program exits.

9. double Chv_maxabs (Chv *chv) ;

This method returns the magnitude of the entry of largest magnitude in the object.

Error checking: If chv is NULL, an error message is printed and the program exits.

10. double Chv_frobNorm (Chv *chv) ;

This method returns the Frobenius norm of the chevron.

Error checking: If chv is NULL, an error message is printed and the program exits.

11. void Chv_sub (Chv *chvJ, Chv *chvI) ;

This method subtracts chvI from chvJ.

Error checking: If chvJ or chvI is NULL, or if their dimensions are not the same, or if either of their
entries fields are NULL, an error message is printed and the program exits.

12. void Chv_zero (Chv *chv) ;

This method zeroes the entries in the chevron.

Error checking: If chv is NULL, an error message is printed and the program exits.

26.2.12 IO methods

1. void Chv_writeForHumanEye (Chv *chv, FILE *fp) ;

This method writes a Chv object to a file in an easily readable format.

Error checking: If chv or fp are NULL, an error message is printed and zero is returned.

2. void Chv_writeForMatlab (Chv *chv, char *chvname, FILE *fp) ;

This method writes a Chv object to a file in a matlab format. For a real chevron, a sample line is

a(10,5) = -1.550328201511e-01 ;

where chvname = "a". For a complex chevron, a sample line is

a(10,5) = -1.550328201511e-01 + 1.848033378871e+00*i;

where chvname = "a". The matrix indices come from the rowind[] and colind[] vectors, and are
incremented by one to follow the Matlab and FORTRAN convention.

Error checking: If chv, chvname or fp are NULL, an error message is printed and zero is returned.

235

26.3 Driver programs for the Chv object

1. test_addChevron msglvl msgFile nD nU type symflag seed alphareal alphaimag

This driver program tests the Chv addChevron method. Use the script file do addChevron for testing.
When the output file is loaded into matlab, the last line to the screen is the error of the assembly.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The nD parameter is the number of rows and columns in the (1,1) block.

• The nU parameter is the number of columns in the (1,2) block.

• The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX

• The symflag parameter is the symmetry flag — SPOOLES SYMMETRIC, SPOOLES HERMITIAN or
SPOOLES NONSYMMETRIC.

• The seed parameter is a random number seed.

• The alphareal and alphaimag parameters form a complex number that is a scaling parameter.
Normally alpha is (1.0,0.0), when we are just loading matrix entries into a front. However, when
we factor A + αB, the entries of B will be loaded with alpha set equal to α[0 : 1].

2. test_assmbChv msglvl msgFile nDJ nUJ nDI nUI type symflag seed

This driver program tests the Chv assembleChv method. It assembles a chevron TI into TJ , as is done
during the assembly of postponed rows and columns during the factorization when pivoting is enabled.
Use the script file do assmbChv for testing. When the output file is loaded into matlab, the last line
to the screen is the error of the assembly.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The nDJ parameter is the number of rows and columns in the (1,1) block of TJ .

• The nUJ parameter is the number of columns in the (1,2) block of TJ .

• The nDI parameter is the number of rows and columns in the (1,1) block of TI .

• The nUI parameter is the number of columns in the (1,2) block of TI .

• The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX

• The symflag parameter is the symmetry flag — SPOOLES SYMMETRIC, SPOOLES HERMITIAN or
SPOOLES NONSYMMETRIC.

• The seed parameter is a random number seed.

3. test_copyEntriesToVector msglvl msgFile nD nU type symflag

pivotingflag storeflag seed

This driver program tests the Chv copyEntriesToVector method which is used when after a front has
been factored to store the entries into dense L and U submatrices. Use the script file do copyEntriesToVector

for testing. When the output file is loaded into matlab, the last line to the screen is a matrix that
contains two entries. If the program executes correctly, these two entries should be exactly zero.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

236

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The nD parameter is the number of rows and columns in the (1,1) block.

• The nU parameter is the number of columns in the (1,2) block.

• The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX

• The symflag parameter is the symmetry flag — SPOOLES SYMMETRIC, SPOOLES HERMITIAN or
SPOOLES NONSYMMETRIC.

• The pivotingflag parameter is the pivoting flag — SPOOLES NO PIVOTING for no pivoting,
SPOOLES PIVOTING for pivoting.

• The storeflag parameter is the storage flag, to store by rows, use SPOOLES BY ROWS, to store by
columns, use SPOOLES BY COLUMNS.

• The seed parameter is a random number seed.

4. test_copyBigEntriesToVector msglvl msgFile nD nU type symflag

pivotingflag storeflag seed droptol

This driver program tests the Chv copyBigEntriesToVector method which is used when after a
front has been factored to store the entries into sparse L and U submatrices. Use the script file
do copyBigEntriesToVector for testing. When the output file is loaded into matlab, the last line to
the screen is a matrix that contains three entries. The first two are the maximum magnitudes of the
entries that were not copied (two different ways), and the third is the drop tolerance. If the program
executes correctly, the third term is larger than the first two.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The nD parameter is the number of rows and columns in the (1,1) block.

• The nU parameter is the number of columns in the (1,2) block.

• The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX

• The symflag parameter is the symmetry flag — SPOOLES SYMMETRIC, SPOOLES HERMITIAN or
SPOOLES NONSYMMETRIC.

• The pivotingflag parameter is the pivoting flag — SPOOLES NO PIVOTING for no pivoting,
SPOOLES PIVOTING for pivoting.

• The storeflag parameter is the storage flag, to store by rows, use SPOOLES BY ROWS, to store by
columns, use SPOOLES BY COLUMNS.

• The seed parameter is a random number seed.

• The droptol parameter is a drop tolerance parameters, entries whose magnitude is smaller than
droptol are not copied.

5. test_factor msglvl msgFile nD nU type symflag pivotingflag seed tau

This driver program tests the Chv factor method. Use the script file do factor for testing. When the
output file is loaded into matlab, the last line to the screen is a matrix that contains three entries. The
first entry is the error in the factorization. The second and third entries are the maximum magnitudes
of the entries in L and U , respectively.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

237

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The nD parameter is the number of rows and columns in the (1,1) block.

• The nU parameter is the number of columns in the (1,2) block.

• The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX

• The symflag parameter is the symmetry flag — SPOOLES SYMMETRIC, SPOOLES HERMITIAN or
SPOOLES NONSYMMETRIC.

• The pivotingflag parameter is the pivoting flag — SPOOLES NO PIVOTING for no pivoting,
SPOOLES PIVOTING for pivoting.

• The seed parameter is a random number seed.

• The tau parameter is used when pivoting is enabled. All entries in L and U will have magnitudes
less than tau.

6. test_findPivot msglvl msgFile nD nU type symflag seed tau

This driver program tests the Chv findPivot method. Use the script file do findPivot for testing.
When the output file is loaded into matlab, look on the screen for the variables maxerrupd (the error
in the factor and update), ubound (the maximum magnitude of the entries in U), and if nonsymmetric
lbound (the maximum magnitude of the entries in L).

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The nD parameter is the number of rows and columns in the (1,1) block.

• The nU parameter is the number of columns in the (1,2) block.

• The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX

• The symflag parameter is the symmetry flag — SPOOLES SYMMETRIC, SPOOLES HERMITIAN or
SPOOLES NONSYMMETRIC.

• The seed parameter is a random number seed.

• The tau parameter is used when pivoting is enabled. All entries in L and U will have magnitudes
less than tau.

7. test_maxabs msglvl msgFile nD nU type symflag seed

This driver program tests the Chv maxabsInRow(), Chv maxabsInRow11(), Chv maxabsInColumn(),
Chv maxabsInColumn11() and Chv maxabsInDiagonal11() methods. Use the script file do maxabs

for testing. When the output file is loaded into matlab, look on the screen for the variables rowerror,
colerror, rowerror11, colerror11 and diag11error. All should be zero.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The nD parameter is the number of rows and columns in the (1,1) block.

• The nU parameter is the number of columns in the (1,2) block.

• The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX

• The symflag parameter is the symmetry flag — SPOOLES SYMMETRIC, SPOOLES HERMITIAN or
SPOOLES NONSYMMETRIC.

238

• The pivotingflag parameter is the pivoting flag — SPOOLES NO PIVOTING for no pivoting,
SPOOLES PIVOTING for pivoting.

• The seed parameter is a random number seed.

8. test_r1upd msglvl msgFile nD nU type symflag seed

This driver program tests the Chv r1upd() method. Use the script file do r1upd for testing. When
the output file is loaded into matlab, the last line is the error of the update.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The nD parameter is the number of rows and columns in the (1,1) block.

• The nU parameter is the number of columns in the (1,2) block.

• The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX

• The symflag parameter is the symmetry flag — SPOOLES SYMMETRIC, SPOOLES HERMITIAN or
SPOOLES NONSYMMETRIC.

• The seed parameter is a random number seed.

9. test_r2upd msglvl msgFile nD nU type symflag seed

This driver program tests the Chv r2upd() method. Use the script file do r2upd for testing. When
the output file is loaded into matlab, the last line is the error of the update.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The nD parameter is the number of rows and columns in the (1,1) block.

• The nU parameter is the number of columns in the (1,2) block.

• The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX

• The symflag parameter is the symmetry flag — SPOOLES SYMMETRIC, SPOOLES HERMITIAN or
SPOOLES NONSYMMETRIC.

• The seed parameter is a random number seed.

10. test_swap msglvl msgFile nD nU type symflag seed

This driver program tests three methods: Chv swapRowsAndColumns(), Chv swapRows() and Chv swapColumns().
Use the script file do swap for testing. When the output file is loaded into matlab, look for the
maxerrrowswap1, maxerrcolswap1, maxerrswap, maxerrsymswap1 and maxerrsymswap2 values. All
should be zero.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The nD parameter is the number of rows and columns in the (1,1) block.

• The nU parameter is the number of columns in the (1,2) block.

• The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX

• The symflag parameter is the symmetry flag — SPOOLES SYMMETRIC, SPOOLES HERMITIAN or
SPOOLES NONSYMMETRIC.

239

• The seed parameter is a random number seed.

11. test_update msglvl msgFile type symflag sparsityflag

ncolT ncolU nrowD nentU offset seed

This driver program tests the Chv updateH(), Chv updateS() and Chv updateN() methods. The Chv

object T is updated by −UT DU , −UHDU or −LDU , depending on whether T is symmetric, hermitian
or nonsymmetric. Use the script file do update for testing. When the output file is loaded into matlab,
the last line is the error in the update which should be zero.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX

• The symflag parameter is the symmetry flag — SPOOLES SYMMETRIC, SPOOLES HERMITIAN or
SPOOLES NONSYMMETRIC.

• The sparsityflag parameter should be zero for dense U and L, or 1 for sparse U and L.

• The ncolT parameter is the number of columns in the (1,1) and (1,2) blocks of T .

• The nDT parameter is the number of rows and columns in the (1,1) block of T .

• The ncolU parameter is the number of columns in U .

• The nrowD parameter is the number of rows and columns in D.

• The nentU parameter is the number entries in U , ignored if sparsityflag = 0.

• The offset parameter is the offset of first index in T from the last index in D.

• The seed parameter is a random number seed.

Chapter 27

ChvList: Chv list object

This object was created to handle a list of lists of Chv objects during a matrix factorization. Its form and
function is very close to the SubMtxList object that handles lists of lists of SubMtx objects during the forward
and backsolves.

Here are the main properties.

1. There are a fixed number of lists, set when the ChvList object is initialized.

2. For each list there is an expected count, the number of times an object will be added to the list. (Note,
a NULL object can be added to the list. In this case, nothing is added to the list, but its count is
decremented.)

3. There is one lock for all the lists, but each list can be flagged as necessary to lock or not necessary to
lock before an insertion, count decrement, or an extraction is made to the list.

The ChvList object manages a number of lists that may require handling critical sections of code. For
example, one thread may want to add an object to a particular list while another thread is removing objects.
The critical sections are hidden inside the ChvList object. Our factorization code does not know about any
mutual exclusion locks that govern access to the lists.

There are four functions of the ChvList object.

• Is the incoming count for a list nonzero?

• Is a list nonempty?

• Add an object to a list (possibly a NULL object) and decrement the incoming count.

• Remove a subset of objects from a list.

The first two operations are queries, and can be done without locking the list. The third operation needs
a lock only when two or more threads will be inserting objects into the list. The fourth operation requires
a lock only when one thread will add an object while another thread removes the object and the incoming
count is not yet zero.

Having a lock associated with a ChvList object is optional, for example, it is not needed during a
serial factorization nor a MPI factorization. In the latter case there is one ChvList per process. For a
multithreaded factorization there is one ChvList object that is shared by all threads. The mutual exclusion
lock that is (optionally) embedded in the ChvList object is a Lock object from this library. It is inside
the Lock object that we have a mutual exclusion lock. Presently we support the Solaris and POSIX thread
packages. Porting the multithreaded codes to another platform should be simple if the POSIX thread package
is present. Another type of thread package will require some modifications to the Lock object, but none to
the ChvList objects.

240

241

27.1 Data Structure

The ChvList structure has the following fields.

• int nlist : number of lists.

• Chv **heads : vector of pointers to the heads of the list of Chv objects.

• int *counts : vector of incoming counts for the lists.

• Lock *lock : mutual exclusion lock.

• char *flags : vector of lock flags for the lists. If flags[ilist] == ’N’, the list does not need to be
locked. If flags[ilist] == ’Y’, the list does need to be locked. Used only when lock is not NULL.

• int nlocks : total number of locks made on the mutual exclusion lock.

27.2 Prototypes and descriptions of ChvList methods

This section contains brief descriptions including prototypes of all methods that belong to the ChvList

object.

27.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. ChvList * ChvList_new (void) ;

This method simply allocates storage for the ChvList structure and then sets the default fields by a
call to ChvList setDefaultFields().

2. void ChvList_setDefaultFields (ChvList *list) ;

The structure’s fields are set to default values: nlist and nlocks set to zero, and heads, counts, lock
and flags are set to NULL .

Error checking: If list is NULL, an error message is printed and the program exits.

3. void ChvList_clearData (ChvList *list) ;

This method clears the object and free’s any owned data by calling Chv free() for each object on the
free list. If heads is not NULL, it is free’d. If counts is not NULL, it is free’d via a call to IVfree(). If
flags is not NULL, it is free’d via a call to CVfree(). If the lock is not NULL, it is destroyed via a call
to Lock free(). There is a concluding call to ChvList setDefaultFields().

Error checking: If list is NULL, an error message is printed and the program exits.

4. void ChvList_free (ChvList *list) ;

This method releases any storage by a call to ChvList clearData() and then free the space for list.

Error checking: If list is NULL, an error message is printed and the program exits.

242

27.2.2 Initialization methods

There are three initializer methods.

1. void ChvList_init(ChvList *list, int nlist, int counts[],

int lockflag, char flags[]) ;

Any data is cleared via a call to ChvList clearData(). The number of lists is set and the heads[]

vector is initialized. If counts is not NULL, the object’s counts[] vector is allocated and filled with the
incoming entries. If lockflag is zero, the lock is not initialized. If lockflag is 1, the lock is initialized
to be able to synchronize threads with the calling process. If lockflag is 2, the lock is initialized to
be able to synchronize threads across processes. If flags is not NULL, the object’s flags[] vector is
allocated and filled with the incoming entries.

Error checking: If list is NULL, or if nlist ≤ 0, or if lockflag is not in [0,2], an error message is
printed and zero is returned.

27.2.3 Utility methods

1. int ChvList_isListNonempty (ChvList *list, int ilist) ;

If list ilist is empty, the method returns 0. Otherwise, the method returns 1.

Error checking: If list is NULL, or if ilist is not in the range [0,nlist), an error message is printed
and zero is returned.

2. int ChvList_isCountZero (ChvList *list, int ilist) ;

If counts is NULL, or if counts[ilist] equal to zero, the method returns 1. Otherwise, the method
returns 0.

Error checking: If list is NULL, or if ilist is not in the range [0,nlist), an error message is printed
and zero is returned.

3. Chv * ChvList_getList (ChvList *list, int ilist) ;

If list ilist is empty, the method returns NULL. Otherwise, if the list needs to be locked, the lock is
locked. The head of the list is saved to a pointer and then the head is set to NULL. If the list was
locked, the number of locks is incremented and the lock unlocked. The saved pointer is returned.

Error checking: If list is NULL, or if ilist is not in the range [0,nlist), an error message is printed
and zero is returned.

4. void ChvList_addObjectToList (ChvList *list, Chv *chv, int ilist) ;

If the list needs to be locked, the lock is locked. If chv is not NULL, it is added to the head of the list. If
counts is not NULL, then counts[ilist] is decremented. If the lock was locked, the number of locks
is incremented and it is now unlocked.

Error checking: If list is NULL, or if ilist is not in the range [0,nlist), an error message is printed
and zero is returned.

27.2.4 IO methods

1. void ChvList_writeForHumanEye (ChvList *list, FILE *fp) ;

This method writes the list to a file in user readable form.

Error checking: If list or fp are NULL, an error message is printed and zero is returned.

Chapter 28

ChvManager: Chv manager object

This object was created to handle a number of instances of Chv objects. Our codes are heavily dependent
on dynamic memory management. This is partly due to the pivoting capability during the factorization and
partly to the nondeterministic nature of parallel computation — we may not know ahead of time just what
data structures will exist during the computations.

We wanted to be able to generate and re-use Chv objects, and we wanted to make the process somewhat
transparent to other sections of the code. Towards this aim, there are two simple functions.

• Ask the manager object for a Chv object that has a certain amount of workspace.

• Return to the manager object a Chv object or list of objects that are no longer needed.

Where the manager object gets an instance, or what the manager does with the instance objects when they
are returned to it, is of no concern to the user of the manager object — unless the process takes too much
time or storage. We support two modes of behavior.

• catch-and-release

In this mode the ChvManager object is just a front to malloc() and free() calls. The user asks for an
object of a certain size, and the manager creates one using a call to malloc(). When the user returns
an object, the manager releases the storage via a call to free().

• recycle

In this mode the ChvManager object keeps a free pool of Chv objects. When the user requests a Chv

object of a certain size, the manager searches the pool and finds one of that size or larger, removes
the object from the pool, and returns the object to the user. (Our implementation finds a smallest
object of that size or larger.) If there is no object on the free pool of sufficient size, one is created and
returned. When the user releases an object to the manager, the object is placed on the free pool.

For the factorization, serial, multithreaded or MPI, we recommend using the recycling mode.

A multithreaded environment creates some difficulties. Should there be one manager object per thread,
or should all the threads share one object? We have chosen the latter course, but this requires that a lock
be present to guard the critical section of code where one searches or adds an object to the list. The lock we
use is a Lock object, and so the ChvManager code is completely independent of the thread package. Porting
to a new system might require some modification to the Lock, but none to the manager object.

Each manager object keeps track of certain statistics, bytes in their workspaces, the total number of
bytes requested, the number of requests for a Chv objects, the number of releases, and the number of locks
and unlocks.

243

244

28.1 Data Structure

The ChvList structure has the following fields.

• Chv *head : vector of pointers to the heads of the list of Chv objects.

• Lock *lock : mutual exclusion lock.

• int mode : behavior mode. When mode = 0, the object calls SubMtx new() and SubMtx free() to
create and release objects. When mode = 1, the object recycles the objects.

• int nactive : number of active instances.

• int nbytesactive : number of bytes that are active.

• int nbytesrequested : number of bytes that have been requested.

• int nbytesalloc : number of bytes that have been allocated.

• int nrequests : number of requests for instances.

• int releases : number of instances that have been released.

• int nlocks : total number of locks made on the mutual exclusion lock. int nunlocks : total number
of unlocks made on the mutual exclusion lock.

28.2 Prototypes and descriptions of ChvManager methods

This section contains brief descriptions including prototypes of all methods that belong to the ChvManager

object.

28.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. ChvManager * ChvManager_new (void) ;

This method simply allocates storage for the ChvManager structure and then sets the default fields by
a call to ChvManager setDefaultFields().

2. void ChvManager_setDefaultFields (ChvManager *manager) ;

The structure’s fields are set to default values: mode, nactive, nbytesactive, nbytesrequested,
nbytesalloc, nrequests, nreleases, nlocks and nunlocks set to zero, and head and lock are set
to NULL .

Error checking: If manager is NULL, an error message is printed and the program exits.

3. void ChvManager_clearData (ChvManager *manager) ;

This method clears the object and free’s any owned data by calling Chv free() for each object on the
free list. If the lock is not NULL, it is destroyed via a call to mutex destroy() and then free’d. There
is a concluding call to ChvManager setDefaultFields().

Error checking: If manager is NULL, an error message is printed and the program exits.

245

4. void ChvManager_free (ChvManager *manager) ;

This method releases any storage by a call to ChvManager clearData() and then free the space for
manager.

Error checking: If manager is NULL, an error message is printed and the program exits.

28.2.2 Initialization methods

1. void ChvManager_init(ChvManager *manager, int lockflag, int mode) ;

Any data is cleared via a call to ChvManager clearData(). If lockflag is zero, the lock is not
initialized. If lockflag is 1, the lock is initialized to be able to synchronize threads with the calling
process. If lockflag is 2, the lock is initialized to be able to synchronize threads across processes. The
behavior mode is set to mode.

Error checking: If manager is NULL, or if lockflag is not in [0,2], or if mode is not in [0,1], an error
message is printed and the program exits.

28.2.3 Utility methods

1. Chv * ChvManager_newObjectOfSizeNbytes (ChvManager *manager,

int nbytesNeeded) ;

This method returns a Chv object whose workspace contains at least nbytesNeeded bytes.

Error checking: If manager is NULL, an error message is printed and the program exits.

2. void ChvManager_releaseObject (ChvManager *manager, Chv *chv) ;

This method releases the chv instance into the free pool of objects.

Error checking: If manager is NULL, an error message is printed and zero is returned.

3. void ChvManager_releaseListOfObjects (ChvManager *manager, Chv *chv) ;

This method releases a list of Chv objects into the free pool of objects. The head of the list is the chv

instance.

Error checking: If manager is NULL, an error message is printed and zero is returned.

28.2.4 IO methods

1. void ChvManager_writeForHumanEye (ChvManager *manager, FILE *fp) ;

This method writes the statistics to a file in user readable form.

Error checking: If manager or fp are NULL, an error message is printed and zero is returned.

Chapter 29

DenseMtx: Dense matrix object

The DenseMtx object contains a dense matrix along with row and column indices. The entries in the matrix
can be double precision real or double precision complex. It needs to be able to manage its own storage,
much like the Chv and SubMtx objects that are used during the factor and solves, so we include this capability
via a contained DV object. A DenseMtx object may also be found in a list, so there is a next field that points
to another DenseMtx object.

The DenseMtx object also exists in an MPI environment, where it holds the solution and right hand side
matrices. Since each of these two matrices is distributed, a processor owns only part of the global matrix, and
so the need for row and column indices to specify which rows and columns are present on which processor.

29.1 Data Structure

The DenseMtx structure has the following fields.

• int type : type of entries, SPOOLES REAL or SPOOLES COMPLEX.

• int rowid : object’s row id, default value is -1.

• int colid : object’s column id, default value is -1.

• int nrow : number of rows

• int ncol : number of columns

• int inc1 : row increment, difference in addresses between entries in the same column

• int inc2 : column increment, difference in addresses between entries in the same row

• int *rowind : pointer to the base address of the int vector that contains row indices.

• int *colind : pointer to the base address of the int vector that contains column indices.

• double *entries : pointer to the base address of the double vector that contains the entries.

• DV wrkDV : object that manages the owned working storage.

• DenseMtx *next : link to a next object in a singly linked list.

One can query the type of entries via two macros.

• DENSEMTX IS REAL(mtx) returns 1 if the matrix has real entries, and 0 otherwise.

• DENSEMTX IS COMPLEX(mtx) returns 1 if the matrix has complex entries, and 0 otherwise.

246

247

29.2 Prototypes and descriptions of DenseMtx methods

This section contains brief descriptions including prototypes of all methods that belong to the DenseMtx

object.

29.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. DenseMtx * DenseMtx_new (void) ;

This method simply allocates storage for the DenseMtx structure and then sets the default fields by a
call to DenseMtx setDefaultFields().

2. void DenseMtx_setDefaultFields (DenseMtx *mtx) ;

The structure’s fields are set to default values: type = SPOOLES REAL, rowid = colid = -1, nrow =
ncol = inc1 = inc2 = 0 and rowind = colind = entries = next = NULL . The wrkDV object has
its default fields set via a call to DV setDefaultFields().

Error checking: If mtx is NULL, an error message is printed and the program exits.

3. void DenseMtx_clearData (DenseMtx *mtx) ;

This method clears the object and free’s any owned data by invoking the clearData() methods for
its internal DV object. There is a concluding call to DenseMtx setDefaultFields().

Error checking: If mtx is NULL, an error message is printed and the program exits.

4. void DenseMtx_free (DenseMtx *mtx) ;

This method releases any storage by a call to DenseMtx clearData() and then free the space for mtx.

Error checking: If mtx is NULL, an error message is printed and the program exits.

29.2.2 Instance methods

1. int DenseMtx_rowid (DenseMtx *mtx) ;

This method returns the rowid field of the object.

Error checking: If mtx is NULL, an error message is printed and the program exits.

2. int DenseMtx_colid (DenseMtx *mtx) ;

This method returns the colid field of the object.

Error checking: If mtx is NULL, an error message is printed and the program exits.

3. void DenseMtx_dimensions (DenseMtx *mtx, int *pnrow, int *pncol) ;

This method fills *pnrow and *pncol with nrow and ncol.

Error checking: If mtx is NULL, an error message is printed and the program exits.

4. int DenseMtx_columnIncrement (DenseMtx *mtx) ;

This method returns the row increment of the object, the difference in memory locations of two entries
in consecutive columns in the same row.

Error checking: If mtx is NULL, an error message is printed and the program exits.

248

5. int DenseMtx_rowIncrement (DenseMtx *mtx) ;

This method returns the row increment of the object, the difference in memory locations of two entries
in consecutive rows in the same column.

Error checking: If mtx is NULL, an error message is printed and the program exits.

6. void DenseMtx_rowIndices (DenseMtx *mtx, int *pnrow, **prowind) ;

This method fills *pnrow with nrow, the number of rows, and *prowind with rowind, a pointer to the
row indices.

Error checking: If mtx, pnrow or prowind is NULL, an error message is printed and the program exits.

7. void DenseMtx_columnIndices (DenseMtx *mtx, int *pncol, **colind) ;

This method fills *pncol with ncol, the number of columns, and *pcolind with colind, a pointer to
the column indices.

Error checking: If mtx, pncol or pcolind is NULL, an error message is printed and the program exits.

8. double * DenseMtx_entries (DenseMtx *mtx) ;

This method returns the entries field of the object.

Error checking: If mtx is NULL, an error message is printed and the program exits.

9. void * DenseMtx_workspace (DenseMtx *mtx) ;

This method returns a pointer to the base address of the object’s workspace.

Error checking: If mtx is NULL, an error message is printed and the program exits.

10. void DenseMtx_realEntry (DenseMtx *mtx, int irow, int jcol, double *pValue) ;

This method fills *pValue with the entry in row irow and column jcol.

Error checking: If mtx or pValue is NULL, or if the matrix is not real, or if irow or jcol is out of range,
an error message is printed and the program exits.

11. void DenseMtx_complexEntry (DenseMtx *mtx, int irow, int jcol,

double *pReal, double *pImag) ;

This method fills *pReal with the real part and *pImag with the imaginary part of the the entry in
row irow and column jcol.

Error checking: If mtx, pReal or pImag is NULL, or if the matrix is not complex, or if irow or jcol is
out of range, an error message is printed and the program exits.

12. void DenseMtx_setRealEntry (DenseMtx *mtx, int irow, int jcol, double value) ;

This method sets the entry in row irow and column jcol to be value.

Error checking: If mtx is NULL, or if the matrix is not real, or if irow or jcol is out of range, an error
message is printed and the program exits.

13. void DenseMtx_setComplexEntry (DenseMtx *mtx, int irow, int jcol,

double real, double imag) ;

This method sets the real and imaginary parts of the entry in row irow and column jcol to be
(real,imag).

Error checking: If mtx is NULL, or if the matrix is not complex, or if irow or jcol is out of range, an
error message is printed and the program exits.

249

14. int DenseMtx_row (DenseMtx *mtx, int irow, double **prowent) ;

This method fills *prowent with the first location of the entries in row irow.

Return codes: 1 is a normal return, -1 means mtx is NULL, -2 means invalid type for mtx, -3 means
irow is out-of-range, -4 means prowent is NULL.

15. int DenseMtx_column (DenseMtx *mtx, int jcol, double **pcolent) ;

This method fills *pcolent with the first location of the entries in column jcol.

Return codes: 1 is a normal return, -1 means mtx is NULL, -2 means invalid type for mtx, -3 means
jcol is out-of-range, -4 means pcolent is NULL.

29.2.3 Initialization methods

There are three initializer methods.

1. void DenseMtx_init(DenseMtx *mtx, int type, int rowid, int colid,

int nrow, int ncol, int inc1, int inc2) ;

This is the initializer method used when the DenseMtx object is to use its workspace to store indices
and entries. The number of bytes required in the workspace is computed, the workspace is resized if
necessary, and the scalar and pointer fields are set.

Error checking: If mtx is NULL, or if type is neither SPOOLES REAL nor SPOOLES COMPLEX, or if nrow,
ncol, inc1 or inc2 is less than or equal to zero, or if neither inc1 nor inc2 are 1, an error message is
printed and the program exits.

2. void DenseMtx_initWithPointers (DenseMtx *mtx, int type, int rowid, int colid,

int nD, int nL, int nU, int *rowind, int *colind, double *entries) ;

This is the initializer method used when the DenseMtx object does not own the storage for its indices
and entries, but points into some other storage.

Error checking: If mtx is NULL, or if type is neither SPOOLES REAL nor SPOOLES COMPLEX, or if nrow,
ncol, inc1 or inc2 is less than or equal to zero, or if neither inc1 nor inc2 are 1, or if rowind, colind
or entries is NULL, an error message is printed and the program exits.

3. int DenseMtx_initAsSubmatrix (DenseMtx *B, DenseMtx *A, int firstrow, int lastrow,

int firstcol, int lastcol) ;

This method initializes B to contain rows firstrow:lastrow and columns firstcol:lastcol of A.
Note, the rowind, colind and entries fields of B point into the indices and entries for A.

Return codes: 1 is the normal return, -1 means B is NULL, -2 means A is NULL, -3 means A has invalid
type

1 normal return
-1 B is NULL
-2 A is NULL

-3 A has invalid type
-4 requested rows are out-of-range
-5 requested columns are out-of-range

4. void DenseMtx_initFromBuffer (DenseMtx *mtx) ;

This method initializes the object using information present in the workspace buffer. This method is
used to initialize the DenseMtx object when it has been received as an MPI message.

Error checking: If mtx is NULL, an error message is printed and the program exits.

5. void DenseMtx_setA2 (DenseMtx *mtx, A2 *a2) ;

This method initializes the a2 object to point into the entries of the matrix.

Error checking: If mtx or a2 is NULL, an error message is printed and the program exits.

250

29.2.4 Utility methods

1. int DenseMtx_nbytesNeeded (int type, int nrow, int ncol) ;

This method returns the number of bytes required to store the object’s information in its buffer.

Error checking: If type is neither SPOOLES REAL nor SPOOLES COMPLEX, or if nrow or ncol is less than
zero, an error message is printed and the program exits.

2. int DenseMtx_nbytesInWorkspace (DenseMtx *mtx) ;

This method returns the number of bytes in the workspace owned by this object.

Error checking: If mtx is NULL, an error message is printed and the program exits.

3. void DenseMtx_setNbytesInWorkspace (DenseMtx *mtx, int nbytes) ;

This method sets the number of bytes in the workspace of this object. If nbytes is less than the present
number of bytes, the workspace is not resized.

Error checking: If mtx is NULL, an error message is printed and the program exits.

4. void DenseMtx_setFields(DenseMtx *mtx, int type, int rowid, int colid,

int nrow, int ncol, int inc1, int inc2) ;

This method sets the scalar and pointer fields.

Error checking: If mtx is NULL, or if type is neither SPOOLES REAL nor SPOOLES COMPLEX, or if nrow,
ncol, inc1 or inc2 is less than or equal to zero, or if neither inc1 nor inc2 are 1, an error message is
printed and the program exits.

5. void DenseMtx_permuteRows (DenseMtx *mtx, IV *oldToNewIV) ;

void DenseMtx_permuteColumns (DenseMtx *mtx, IV *oldToNewIV) ;

These methods permute the rows or columns using an old-to-new permutation vector. The row or
column ids are overwritten using the permutation vector, and then the rows or columns are sorted into
ascending order.

Error checking: If mtx or oldToNewIV is NULL, an error message is printed and the program exits.

6. void DenseMtx_sort (DenseMtx *mtx) ;

This method sort the rows so the row ids are in ascending order and sorts the columns so the column
ids are in ascending order.

Error checking: If mtx is NULL, an error message is printed and the program exits.

7. void DenseMtx_copyRow (DenseMtx *mtxB, int irowB, DenseMtx *mtxA, int irowA) ;

This method copies row irowA from matrix mtxA into row irowB of matrix mtxB.

Error checking: If mtxB is NULL, or if irowB is out of range, or if mtxA is NULL, or if irowA is out of
range, or if the number of columns in mtxB and mtxA are not the same, an error message is printed and
the program exits.

8. void DenseMtx_copyRowAndIndex (DenseMtx *mtxB, int irowB,

DenseMtx *mtxA, int irowA) ;

This method copies row irowA from matrix mtxA into row irowB of matrix mtxB, and copies the index
of row irowA of mtxA into location irowB of the row indices for mtxB.

Error checking: If mtxB is NULL, or if irowB is out of range, or if mtxA is NULL, or if irowA is out of
range, or if the number of columns in mtxB and mtxA are not the same, an error message is printed and
the program exits.

251

9. void DenseMtx_addRow (DenseMtx *mtxB, int irowB, DenseMtx *mtxA, int irowA) ;

This method adds row irowA from matrix mtxA into row irowB of matrix mtxB.

Error checking: If mtxB is NULL, or if irowB is out of range, or if mtxA is NULL, or if irowA is out of
range, or if the number of columns in mtxB and mtxA are not the same, an error message is printed and
the program exits.

10. void DenseMtx_zero (DenseMtx *mtx) ;

This method zeros the entries in the matrix.

Error checking: If mtx is NULL, an error message is printed and the program exits.

11. void DenseMtx_fillRandomEntries (DenseMtx *mtx, Drand *drand) ;

This method the entries in the matrix with random numbers using the drand object.

Error checking: If mtx or drand is NULL, an error message is printed and the program exits.

12. void DenseMtx_checksums (DenseMtx *mtx, double sums[3]) ;

This method fills sums[0] with the sum of the row indices, sums[1] with the sum of the column
indices, and sums[2] with the sum of the magnitudes of the entries. This method is used to check the
MPI method where a distributed matrix is re-distributed.

Error checking: If mtx or sums is NULL, an error message is printed and the program exits.

13. int DenseMtx_scale (DenseMtx *mtx, double alpha[]) ;

This method scales the entries in mtx by alpha.

Return values: 1 for a normal return, -1 if mtx is NULL, -2 if mtx has an invalid type, -3 if alpha is
NULL.

14. double DenseMtx_maxabs (DenseMtx *mtx) ;

This method returns the entry of maximum magnitude of the entries.

Error checking: If mtx is NULL, an error message is printed and the program exits.

15. double DenseMtx_sub (DenseMtx *mtxB, *DenseMtx *mtxA) ;

This method subtracts matrix mtxA from mtxB .

Error checking: If mtxA or mtxB is NULL, an error message is printed and the program exits.

16. double DenseMtx_copyRowIntoVector (DenseMtx *mtx, int irow, double vec[]) ;

This method copies row irow of matrix mtx into vector vec[].

Error checking: If mtx or vec is NULL, or if irow < 0 or irow ≥ nrow, an error message is printed and
the program exits.

17. double DenseMtx_copyVectorIntoRow (DenseMtx *mtx, int irow, double vec[]) ;

This method copies vector vec[] into row irow of matrix mtx.

Error checking: If mtx or vec is NULL, or if irow < 0 or irow ≥ nrow, an error message is printed and
the program exits.

18. double DenseMtx_addVectorIntoRow (DenseMtx *mtx, int irow, double vec[]) ;

This method adds vector vec[] into row irow of matrix mtx.

Error checking: If mtx or vec is NULL, or if irow < 0 or irow ≥ nrow, an error message is printed and
the program exits.

252

29.2.5 IO methods

The file structure of a DenseMtx object is simple. First comes seven scalars, type, rowid, colid, nrow, ncol,
inc1 and inc2, followed by the row indices, followed by the column indices, and then followed by the matrix
entries.

1. int DenseMtx_readFromFile (DenseMtx *mtx, char *fn) ;

This method reads an DenseMtx object from a file. If the the file can be opened successfully, the
method calls DenseMtx readFromFormattedFile() or DenseMtx readFromBinaryFile(), closes the
file and returns the value returned from the called routine.

Error checking: If mtx or fn are NULL, or if fn is not of the form *.densemtxf (for a formatted file) or
*.densemtxb (for a binary file), an error message is printed and the method returns zero.

2. int DenseMtx_readFromFormattedFile (DenseMtx *mtx, FILE *fp) ;

This method reads an DenseMtx object from a formatted file. If there are no errors in reading the
data, the value 1 is returned. If an IO error is encountered from fscanf, zero is returned.

Error checking: If mtx or fp are NULL an error message is printed and zero is returned.

3. int DenseMtx_readFromBinaryFile (DenseMtx *mtx, FILE *fp) ;

This method reads an DenseMtx object from a binary file. If there are no errors in reading the data,
the value 1 is returned. If an IO error is encountered from fread, zero is returned.

Error checking: If mtx or fp are NULL an error message is printed and zero is returned.

4. int DenseMtx_writeToFile (DenseMtx *mtx, char *fn) ;

This method writes an DenseMtx object to a file. If the the file can be opened successfully, the method
calls DenseMtx writeFromFormattedFile() or DenseMtx writeFromBinaryFile(), closes the file and
returns the value returned from the called routine.

Error checking: If mtx or fn are NULL, or if fn is not of the form *.densemtxf (for a formatted file) or
*.densemtxb (for a binary file), an error message is printed and the method returns zero.

5. int DenseMtx_writeToFormattedFile (DenseMtx *mtx, FILE *fp) ;

This method writes an DenseMtx object to a formatted file. If there are no errors in writing the data,
the value 1 is returned. If an IO error is encountered from fprintf, zero is returned.

Error checking: If mtx or fp are NULL an error message is printed and zero is returned.

6. int DenseMtx_writeToBinaryFile (DenseMtx *mtx, FILE *fp) ;

This method writes an DenseMtx object to a binary file. If there are no errors in writing the data, the
value 1 is returned. If an IO error is encountered from fwrite, zero is returned.

Error checking: If mtx or fp are NULL an error message is printed and zero is returned.

7. int DenseMtx_writeStats (DenseMtx *mtx, FILE *fp) ;

This method writes out a header and statistics to a file. The value 1 is returned.

Error checking: If mtx or fp are NULL, an error message is printed and zero is returned.

8. void DenseMtx_writeForHumanEye (DenseMtx *mtx, FILE *fp) ;

This method writes a DenseMtx object to a file in an easily readable format.

Error checking: If mtx or fp are NULL, an error message is printed and zero is returned.

253

9. void DenseMtx_writeForMatlab (DenseMtx *mtx, char *mtxname, FILE *fp) ;

This method writes out a DenseMtx object to a file in a Matlab format. A sample line is

a(10,5) = -1.550328201511e-01 + 1.848033378871e+00*i ;

for complex matrices, or

a(10,5) = -1.550328201511e-01 ;

for real matrices, where mtxname = "a". The matrix indices come from the rowind[] and colind[]

vectors, and are incremented by one to follow the Matlab and FORTRAN convention.

Error checking: If mtx, mtxname or fp are NULL, an error message is printed and zero is returned.

Chapter 30

FrontMtx: Front matrix

The FrontMtx object is used to solve linear systems of equations by computing and using an LU or UT DU
factorization of a matrix or matrix pencil. The “front” in its name refers to a multifrontal formulation of
the factor matrices. We don’t actually use the multifrontal factorization method, (rather a left-looking block
general sparse algorithm), but the storage of the factors and the computations are based on “fronts”.

There are four orthogonal axes that describe a front matrix.

• The entries of the matrix can be double precision real or double precision complex.

• The factorization could be from a real or complex symmetric matrix, from a Hermitian matrix, or from
a real or complex nonsymmetric matrix. In addition, the matrix can be represented as A+σB, a linear
combination of two matrices.

• The factorization can be performed with or without pivoting for numerical stability.

• The factorization can be direct or approximate. In the former case, the submatrices of the factors are
stored as dense matrices. In the latter case, a user supplied drop tolerance is used to decide which
entries to keep in the factorization.

The front matrix can exist in three different environments: serial, shared memory with parallelism enabled
using Solaris or POSIX threads, and distributed memory using MPI.

This object computes, stores and solves linear systems using three types of factorizations:

1. (A + σB) = P (UT + I)D(I + U)PT , where A and B are symmetric or Hermitian matrices. If pivoting
is not enabled, D is a diagonal matrix. If pivoting is enabled, D has 1 × 1 and 2 × 2 blocks on its
diagonal. U is strictly upper triangular, and the nonzero structures of U and D are disjoint. P is a
permutation matrix. If pivoting is not used, P is the identity.

2. (A + σB) = P (L + I)D(I + U)QT for a square nonsymmetric matrix A with symmetric structure.
D is a diagonal matrix. U is strictly upper triangular. L is strictly lower triangular. P and Q are
permutation matrices. If pivoting is not used, P and Q are the identity.

3. A = QR for square or rectangular A. Q is an orthogonal matrix that is not explicitly computed or
stored. R is upper triangular.

The factorization is performed using a one dimensional decomposition of the global sparse matrix. A
typical front of the matrix is found the shaded portion of the figure below.

254

255

A front is indivisible, it is found on one processor, and one processor or one thread is responsible for its
internal computations. This is extremely important if we want to support pivoting for stability, for deciding
how to choose the pivot elements in the front requires continuous up-to-date information about all the entries
in the front. If a front were partitioned among threads or processors, the cost of the communication to select
pivot elements would be intolerable.

Solving a nonsymmetric linear system (A + σB)X = B is done in the following steps.

• Factor (A + σB) = P (L + I)D(I + U)QT .

• Solve (L + I)Y = PT B

• Solve DZ = Y

• Solve (I + U)W = Z

• X = QW .

Release 1.0 used a one-dimensional data decomposition for the solves. Release 2.0 has changed to a two-
dimensional data decomposition to increase the available parallelism. After the factorization is computed
using a one-dimensional data decomposition, we post-process the matrix to obtain the two-dimensional
decomposition and then perform the forward and backsolves.

To use the front matrix object, the user need know about only the initialization, factor, postprocess
and solve methods. Here are the objects that a front matrix interacts with from the user’s or “external”
perspective.

• A sparse matrix A that is to be factored is contain in a InpMtx object. This object has been designed
to be easy to use, to assemble and permute matrix entries, and to be put into a convenient form to be
assembled into the front matrix. It contains real or complex matrix entries.

• The linear combination A + σB is found in a Pencil object.

• The ETree object contains the front tree that governs the factorization and solve. Inside this object
are the dimensions of each front (the number of internal and external rows and columns), the tree
connectivity of the fronts, and a map from each vertex to the front that contains it as an internal row
and column. The FrontMtx object contains a pointer to an ETree object, but it does not modify the
object, nor does it own the storage for the ETree object. Thus multiple front matrices can all point to
the same ETree object simultaneously.

• An IVL object (Integer Vector List), contains the symbolic factorization. For each front, it gives the
list of internal and external rows and columns, used to initialize a front prior to its factorization. For
a factorization without pivoting, this object stores the index information for the factors, and so is
used during the forward and backsolves. For a factorization with pivoting, the index information for a
front may change, so this object is not used during the solves. As for the ETree object, the symbolic
factorization is neither modified or owned by the front matrix object.

• Working storage is necessary during the factor and solves. Instead of forcing one way of managing
working storage, (e.g., simple malloc and free’s or a complex management of one large work array),
we have abstracted this behavior into two objects.

256

– The SubMtxManager object manages instances of the SubMtx object, used to store submatrices of
the factors and working storage during the solves. The FrontMtx object contains a pointer to this
manager object, set upon initialization.

– The ChvManager object manages instances of the Chv object, used to store fronts during the
factorization. This manager object is passed to the front matrix object in a call to the factorization
methods.

The user can easily override the behavior of these two manager objects. Our default supplied object
are simple in their functionality — they are either wrappers around malloc() and free() calls, or
they manage a pool of available objects. We measure their overhead and storage requirements during
the factorizations and solve.

• The right hand side B and solution X are stored in DenseMtx objects. This object is a very simple
wrapper around a dense matrix stored either column major or row major. (Our solves presently require
the storage to be column major.) The matrices B and X can be either global (as in a serial or shared
memory environment) or partitioned into local matrices (as in a distributed implementation).

• A parallel factorization requires a map from fronts to threads or processors, and this functionality is
supplied by an IV (Integer Vector) object.

• The parallel solve requires a map from the submatrices to the threads or processors. This two-
dimensional map is embodied in the SolveMap object.

To see how the front matrix object interacts with the other objects in the SPOOLES library, here is a
brief description of the objects “internal” to the front matrix, its factorization and solve.

• The Chv object stores a front as a block chevron. Updates to the front, its assembly of postponed data
(when pivoting is enabled) or aggregate data (in a parallel factorization), and the factorization of the
fully assembled front, take place within the context of this object.

• The SubMtx object is used to store a submatrix of the factor matrices D, L and U . Once a front is
factored it is split into one or more of these submatrix objects. After the factorization is complete, the
data structures are postprocessed to yield submatrices that contain the coupling between fronts. The
working storage during the solves is also managed by SubMtx objects.

• Each submatrix represents the coupling between two fronts, I and J . To enable rapid random access
to these submatrices, we use a I2Ohash object that is a hash table whose keys are two integers and
whose data is a void * pointer.

• The set of nonzero submatrices, i.e., the nonzero couplings between two fronts, is kept in one or two
IVL objects. This information is necessary for the factorization and forward and backsolves.

• The factorization and solves require lists of fronts and submatrices to manage assembly of data and
synchronization. We encapsulate these functions in the ChvList and SubMtxList objects that operate
in serial, multithreaded and MPI environments.

• For a factorization with pivoting, the composition of a front (its dimensions and the row and column
indices) may change, so we need additional data structures to store this information. We use an IV

object to store the front size — the number of rows and columns that were eliminated when the front
was factored. We use an IVL object to store the column indices — internal and external — and if the
matrix is nonsymmetric, another IVL object to store the row indices.

• If we have a multithreaded factorization and use pivoting or an approximate factorization, we need
exclusive access to the IV object that stores the final front size, and the IVL object(s) that store the
final row and column indices for the front. Therefore we use a Lock object to govern exclusive access
to these objects.

257

30.1 Data Structures

The FrontMtx structure has the following fields.

• int nfront : number of fronts.

• int neqns : number of rows and columns in the factor matrix.

• int symmetryflag : flag to denote the type of symmetry of A + σB.

– SPOOLES SYMMETRIC — A and/or B are symmetric.

– SPOOLES HERMITIAN — A and/or B are hermitian.

– SPOOLES NONSYMMETRIC — A and/or B are nonsymmetric.

• int pivotingflag : flag to specify pivoting for stability,

– SPOOLES NO PIVOTING — pivoting not used

– SPOOLES PIVOTING — pivoting used

• int sparsityflag : flag to specify storage of factors.

– 0 — each front is dense

– 1 — a front may be sparse due to entries dropped because they are below a drop tolerance.

• int dataMode : flag to specify data storage.

– 1 — one-dimensional, used during the factorization.

– 2 — two-dimensional, used during the solves.

• int nentD : number of entries in D

• int nentL : number of entries in L

• int nentU : number of entries in U

• Tree *tree : Tree object that holds the tree of fronts. Note, normally this is frontETree->tree,
but we leave this here for later enhancements where we change the tree after the factorization, e.g.,
merge/drop fronts.

• ETree *frontETree : elimination tree object that holds the front tree.

• IVL *symbfacIVL : IVL object that holds the symbolic factorization.

• IV *frontsizesIV : IV object that holds the vector of front sizes, i.e., the number of internal rows
and columns in a front.

• IVL *rowadjIVL : IVL object that holds the row list for the fronts, used only for a nonsymmetric
factorization with pivoting enabled.

• IVL *coladjIVL : IVL object that holds the column list for the fronts, used only for a symmetric or
nonsymmetric factorization with pivoting enabled.

• IVL *lowerblockIVL : IVL object that holds the front-to-front coupling in L, used only for a nonsym-
metric factorization.

• IVL *upperblockIVL : IVL object that holds the front-to-front coupling in U .

258

• SubMtx **p mtxDJJ : a vector of pointers to diagonal submatrices.

• SubMtx **p mtxUJJ : a vector of pointers to submatrices in U that are on the block diagonal, used
only during the factorization.

• SubMtx **p mtxUJN : a vector of pointers to submatrices in U that are off the block diagonal, used
only during the factorization.

• SubMtx **p mtxLJJ : a vector of pointers to submatrices in L that are on the block diagonal, used
only during a nonsymmetric factorization.

• SubMtx **p mtxLNJ : a vector of pointers to submatrices in L that are off the block diagonal, used
only during a nonsymmetric factorization.

• I2Ohash *lowerhash : pointer to a I2Ohash hash table for submatrices in L, used during the solves.

• I2Ohash *upperhash : pointer to a I2Ohash hash table for submatrices in U , used during the solves.

• SubMtxManager *manager : pointer to an object that manages the instances of submatrices during the
factors and solves.

• Lock *lock : pointer to a Lock lock used in a multithreaded environment to ensure exlusive access
while allocating storage in the IV and IVL objects. This is not used in a serial or MPI environment.

• int nlocks : number of times the lock has been locked.

• PatchAndGo *info : this is a pointer to an object that is used by the Chv object during the factorization
of a front.

One can query the properties of the front matrix object using these simple macros.

• FRONTMTX IS REAL(frontmtx) is 1 if frontmtx has real entries and 0 otherwise.

• FRONTMTX IS COMPLEX(frontmtx) is 1 if frontmtx has complex entries and 0 otherwise.

• FRONTMTX IS SYMMETRIC(frontmtx) is 1 if frontmtx comes from a symmetric matrix or linear com-
bination of symmetric matrices, and 0 otherwise.

• FRONTMTX IS HERMITIAN(frontmtx) is 1 if frontmtx comes from a Hermitian matrix or linear combi-
nation of Hermitian matrices, and 0 otherwise.

• FRONTMTX IS NONSYMMETRIC(frontmtx) is 1 if frontmtx comes from a nonsymmetric matrix or linear
combination of nonsymmetric matrices, and 0 otherwise.

• FRONTMTX IS DENSE FRONTS(frontmtx) is 1 if frontmtx comes from a direct factorization and so stores
dense submatrices, and 0 otherwise.

• FRONTMTX IS SPARSE FRONTS(frontmtx) is 1 if frontmtx comes from an approximate factorization
and so stores sparse submatrices, and 0 otherwise.

• FRONTMTX IS PIVOTING(frontmtx) is 1 if pivoting was used during the factorization, and 0 otherwise.

• FRONTMTX IS 1D MODE(frontmtx) is 1 if the factor are still stored as a one-dimensional data decom-
position (i.e., the matrix has not yet been post-processed), and 0 otherwise.

• FRONTMTX IS 2D MODE(frontmtx) is 1 if the factor are stored as a two-dimensional data decomposition
(i.e., the matrix has been post-processed), and 0 otherwise.

259

30.2 Prototypes and descriptions of FrontMtx methods

This section contains brief descriptions including prototypes of all methods that belong to the FrontMtx

object.

30.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. FrontMtx * FrontMtx_new (void) ;

This method simply allocates storage for the FrontMtx structure and then sets the default fields by a
call to FrontMtx setDefaultFields().

2. void FrontMtx_setDefaultFields (FrontMtx *frontmtx) ;

The structure’s fields are set to default values: nfront, neqns, nentD, nentL, nentU and nlocks are
set to zero. Five scalars are set to their default values,

type = SPOOLES REAL

symmetryflag = SPOOLES SYMMETRIC

sparsityflag = FRONTMTX DENSE FRONTS

pivotingflag = SPOOLES NO PIVOTING

dataMode = FRONTMTX 1D MODE

and the structure’s pointers are set to NULL.

Error checking: If frontmtx is NULL, an error message is printed and the program exits.

3. void FrontMtx_clearData (FrontMtx *frontmtx) ;

This method clears the object and free’s any owned data by invoking the clearData() methods for its
internal IV and IVL objects, (not including the frontETree and symbfacIVL objects that are not owned
by this FrontMtx object). If the lock pointer is not NULL, the lock is destroyed via a call to Lock free()

and its storage is then free’d. There is a concluding call to FrontMtx setDefaultFields().

Error checking: If frontmtx is NULL, an error message is printed and the program exits.

4. void FrontMtx_free (FrontMtx *frontmtx) ;

This method releases any storage by a call to FrontMtx clearData() and then free the space for
frontmtx.

Error checking: If frontmtx is NULL, an error message is printed and the program exits.

30.2.2 Instance methods

1. int FrontMtx_nfront (FrontMtx *frontmtx) ;

This method returns the number of fronts in the matrix.

Error checking: If frontmtx is NULL, an error message is printed and the program exits.

2. int FrontMtx_neqns (FrontMtx *frontmtx) ;

This method returns the number of equations in the matrix.

Error checking: If frontmtx is NULL, an error message is printed and the program exits.

260

3. Tree * FrontMtx_frontTree (FrontMtx *frontmtx) ;

This method returns the Tree object for the fronts.

Error checking: If frontmtx is NULL, an error message is printed and the program exits.

4. void FrontMtx_initialFrontDimensions (FrontMtx *frontmtx, int J,

int *pnD, int *pnL, int *pnU, int *pnbytes) ;

This method fills the four pointer arguments with the number of internal rows and columns, number of
rows in the lower block, number of columns in the upper block, and number of bytes for a Chv object
to hold the front. in front J.

Error checking: If frontmtx is NULL, or if J is not in [0,nfront), or if any of the four pointer arguments
are NULL, an error message is printed and the program exits.

5. int FrontMtx_frontSize (FrontMtx *frontmtx, int J) ;

This method returns the number of internal rows and columns in front J.

Error checking: If frontmtx or frontsizesIV is NULL, or if J is not in [0,nfront), an error message
is printed and the program exits.

6. void FrontMtx_setFrontSize (FrontMtx *frontmtx, int J, int size) ;

This method sets the number of internal rows and columns in front J to be size. This method is used
during factorizations with pivoting enabled since we cannot tell ahead of time how many rows and
columns in a front will be eliminated.

Error checking: If frontmtx or frontsizesIV is NULL, or if J is not in [0,nfront), or if size < 0, an
error message is printed and the program exits.

7. void FrontMtx_columnIndices (FrontMtx *frontmtx, int J,

int *pncol, int **pindices) ;

This method fills *pncol with the number of columns and *pindices with a pointer to the column
indices for front J.

Error checking: If frontmtx, pncol or pindices is NULL, or if J is not in [0,nfront), an error message
is printed and the program exits.

8. void FrontMtx_rowIndices (FrontMtx *frontmtx, int J,

int *pnrow, int **pindices) ;

This method fills *pnrow with the number of rows and *pindices with a pointer to the row indices
for front J.

Error checking: If frontmtx, pnrow or pindices is NULL, or if J is not in [0,nfront), an error message
is printed and the program exits.

9. SubMtx * FrontMtx_diagMtx (FrontMtx *frontmtx, int J) ;

This method returns a pointer to the object that contains submatrix DJ,J .

Error checking: If frontmtx is NULL, or if J is not in [0,nfront), an error message is printed and the
program exits.

10. SubMtx * FrontMtx_upperMtx (FrontMtx *frontmtx, int J, int K) ;

This method returns a pointer to the object that contains submatrix UJ,K . If K = nfront, then the
object containing UJ,∂J is returned.

Error checking: If frontmtx is NULL, or if J is not in [0,nfront), or if K is not in [0,nfront], an
error message is printed and the program exits.

261

11. SubMtx * FrontMtx_lowerMtx (FrontMtx *frontmtx, int K, int J) ;

This method returns a pointer to the object that contains submatrix LK,J . If K = nfront, then the
object containing L∂J,J is returned.

Error checking: If frontmtx is NULL, or if J is not in [0,nfront), or if K is not in [0,nfront], an
error message is printed and the program exits.

12. void FrontMtx_lowerAdjFronts (FrontMtx *frontmtx, int J,

int *pnadj, int **padj) ;

This method fills *pnadj with the number of fronts adjacent to J in L and fills *padj with a pointer
to the first entry of a vector containing the ids of the adjacent fronts.

Error checking: If frontmtx, pnadj or ppadj is NULL, or if J is not in [0,nfront), an error message
is printed and the program exits.

13. void FrontMtx_upperAdjFronts (FrontMtx *frontmtx, int J,

int *pnadj, int **padj) ;

This method fills *pnadj with the number of fronts adjacent to J in U and fills *padj with a pointer
to the first entry of a vector containing the ids of the adjacent fronts.

Error checking: If frontmtx, pnadj or ppadj is NULL, or if J is not in [0,nfront), an error message
is printed and the program exits.

14. int FrontMtx_nLowerBlocks (FrontMtx *frontmtx) ;

This method returns the number of nonzero LK,J submatrices.

Error checking: If frontmtx is NULL, an error message is printed and the program exits.

15. int FrontMtx_nUpperBlocks (FrontMtx *frontmtx) ;

This method returns the number of nonzero UJ,K submatrices.

Error checking: If frontmtx is NULL, an error message is printed and the program exits.

16. IVL * FrontMtx_upperBlockIVL (FrontMtx *frontmtx) ;

This method returns a pointer to the IVL object that holds the upper blocks.

Error checking: If frontmtx is NULL, an error message is printed and the program exits.

17. IVL * FrontMtx_lowerBlockIVL (FrontMtx *frontmtx) ;

This method returns a pointer to the IVL object that holds the lower blocks.

Error checking: If frontmtx is NULL, an error message is printed and the program exits.

30.2.3 Initialization methods

1. void FrontMtx_init (FrontMtx *frontmtx, ETree *frontETree,

IVL *symbfacIVL, int type, int symmetryflag, int sparsityflag,

int pivotingflag, int lockflag, int myid, IV *ownersIV,

SubMtxManager *manager, int msglvl, FILE *msgFile) ;

This method initializes the object, allocating and initializing the internal objects as necessary. See the
previous section on data structures for the meanings of the type, symmetryflag, sparsityflag and
pivotingflag parameters. The lockflag parameter has the following meaning.

• 0 — the Lock object is not allocated or initialized.

• 1 — the Lock object is allocated and initialized to synchronize only threads in this process.

262

• 2 — the Lock object is allocated and initialized to synchronize threads in this and other processes.

If lockflag is not 0, the lock is allocated and initialized.

This method allocates as much storage as possible. When pivoting is not enabled and dense fronts are
stored the structure of the factor matrix is fixed and given by the frontETree object. The diagonal
DJ,J , upper triangular UJ,J and UJ,∂J matrices, and lower triangular LJ,J and L∂J,J matrices are
allocated.

The myid and ownersIV parameters are used in a distributed environment where we specify which
process owns each front. When we can preallocate data structures (when there is no pivoting and
dense fronts are stored) we need each process to determine what parts of the data it can allocate and
set up. In a serial or multithreaded environment, use ownersIV = NULL.

Error checking: If frontmtx, frontETree or symbfacIVL is NULL, or if type, symmetryflag, sparsityflag
or pivotingflag are not valid, or if lockflag is not 0, 1 or 2, or if ownersIV is not NULL and myid <

0, an error message is printed and the program exits.

30.2.4 Utility Factorization methods

The following methods are called by all the factor methods — serial, multithreaded and MPI.

1. void FrontMtx_initializeFront (FrontMtx *frontmtx, Chv *frontJ, int J) ;

This method is called to initialize a front. The number of internal rows and columns is found from the
front ETree object and the row and column indices are obtained from the symbolic factorization IVL

object. The front Chv object is initialized via a call to Chv init(), and the column indices and row
indices (when nonsymemtric) are copied. Finally the front’s entries are zeroed via a call to Chv zero().

Error checking: None presently.

2. char FrontMtx_factorVisit (FrontMtx *frontmtx, Pencil *pencil, int J,

int myid, int owners[], Chv *fronts[], int lookahead, double tau,

double droptol, char status[], IP *heads[], IV *pivotsizesIV, DV *workDV,

int parent[], ChvList *aggList, ChvList *postList, ChvManager *chvmanager,

int stats[], double cpus[], int msglvl, FILE *msgFile) ;

This method is called during the serial, multithreaded and MPI factorizations when front J is visited
during the bottom-up traversal of the tree.

Error checking: None presently.

3. Chv * FrontMtx_setupFront (FrontMtx *frontmtx, Pencil *pencil, int J,

int myid, int owners[], ChvManager *chvmanager,

double cpus[], int msglvl, FILE *msgFile) ;

This method is called by FrontMtx visitFront() to initialize the front’s Chv object and load original
entries if applicable.

Error checking: None presently.

4. IP ** FrontMtx_factorSetup (FrontMtx *frontmtx, IV *frontOwnersIV,

int myid, int msglvl, FILE *msgFile) ;

This method is called by the serial, multithreaded and MPI factorizations methods to initialize a data
structure that contains the front-to-front updates that this thread or processor will perform. The data
structure is a vector of pointers to IP objects that holds the heads of list of updates for each front.

Error checking: None presently.

263

5. int * FrontMtx_nactiveChild (FrontMtx *frontmtx, char *status, int myid) ;

This method is called by the multithreaded and MPI factorizations to create an integer vector that
contains the number of active children of each front with respect to this thread or processor.

Error checking: If frontmtx or status is NULL, or if myid < 0, an error message is printed and the
program exits.

6. Ideq * FrontMtx_setUpDequeue (FrontMtx *frontmtx, int owners[], int myid,

char status[], IP *heads[], char activeFlag,

char inactiveFlag, int msglvl, FILE *msgFile) ;

This method is called by the multithreaded and MPI factorizations to create and return an integer
dequeue object to schedule the bottom-up traversal of the front tree.

Error checking: If frontmtx, owners or status is NULL, or if myid < 0, an error message is printed
and the program exits.

7. void FrontMtx_loadActiveLeaves (FrontMtx *frontmtx, char status[],

char activeFlag, Ideq *dequeue) ;

This method is called by the multithreaded and MPI factor and solve methods to load the dequeue
with the active leaves in the front tree with respect to the thread or processor.

Error checking: None presently.

8. ChvList * FrontMtx_postList (FrontMtx *frontmtx, IV *frontOwnersIV,

int lockflag) ;

This method is called by the multithreaded and MPI factor methods to create and return a list object
to hold postponed chevrons and help synchronize the factorization.

Error checking: None presently.

9. ChvList * FrontMtx_aggregateList (FrontMtx *frontmtx,

IV *frontOwnersIV, int lockflag) ;

This method is called by the multithreaded factor methods to create and return a list object to hold ag-
gregate fronts and help synchronize the factorization. There is an analogous FrontMtx MPI aggregateList()

method for the MPI environment.

Error checking: If frontmtx or frontOwnersIV is NULL, or if lockflag is invalid, an error message is
printed and the program exits.

10. void FrontMtx_loadEntries (Chv *frontJ, DPencil *pencil,

int msglvl, FILE *msgFile) ;

This method is called to load the original entries into a front.

Error checking: If frontJ is NULL, or if msglvl > 0 and msgFile is NULL, an error message is printed
and the program exits.

11. void FrontMtx_update (FrontMtx *frontmtx, Chv *frontJ, IP *heads[],

char status[], DV *tempDV, int msglvl, FILE *msgFile) ;

This method is called to update the current front stored in frontJ from all descendent fronts. (For the
multithreaded and MPI factorizations, updates come from all owned descendent fronts.) The heads[]

vector maintains the linked list of completed fronts that still have ancestors to update. The tempDV

object is used as working storage by the Chv update methods, its size is automatically resized. When
pivoting is disabled, the maximum size of the tempDV object is three times the maximum number of
internal rows and columns in a front.

Error checking: None presently.

264

12. Chv * FrontMtx_assemblePostponedData (FrontMtx *frontmtx, Chv *frontJ,

ChvList *postponedlist, ChvManager *chvmanager, int *pndelay) ;

This method is called to assemble any postponed data from its children fronts into the current front.
frontJ contains the updates from the descendents. Any postponed data is found in the list in
postponedlist. If this list is empty, a new front is created to hold the aggregate updates and the
postponed data, and the chvmanager object receives the aggregate and postponed Chv objects. The
number of delayed rows and columns is returned in *pndelay — this is used during the factorization
of the front that follows immediately.

Error checking: None presently.

13. FrontMtx_storePostponedData (FrontMtx *frontmtx, Chv *frontJ,

int npost, int K, ChvList *postponedlist, ChvManager *chvmanager) ;

This method is used to store any postponed rows and columns from the current front frontJ into a
Chv object obtained from the chvmanager object and place it into the list of postponed objects for K,
its parent, found in the postponedlist object. The frontJ object is unchanged by this method.

Error checking: None presently.

14. FrontMtx_storeFront (FrontMtx *frontmtx, Chv *frontJ, IV *pivotsizesIV,

double droptol, int msglvl, FILE *msgFile) ;

This method is used to store the eliminated rows and columns of the current front frontJ into the
factor matrix storage.

Error checking: None presently.

30.2.5 Serial Factorization method

There are two factorization methods: the first is for factoring a matrix A stored in a DInpMtx object, the
second factors a linear combination A + σB stored in a DPencil object.

1. Chv * FrontMtx_factorInpMtx (FrontMtx *frontmtx, InpMtx *inpmtx, double tau,

double droptol, ChvManager *chvmanager, int *perror,

double cpus[], int stats[], int msglvl, FILE *msgFile) ;

Chv * FrontMtx_factorPencil (FrontMtx *frontmtx, Pencil *pencil, double tau,

double droptol, ChvManager *chvmanager, int *perror,

double cpus[], int stats[], int msglvl, FILE *msgFile) ;

These two serial factorization methods factor a matrix A (stored in inpmtx) or a matrix pencil A+σB
(stored in pencil). The tau parameter is used when pivoting is enabled, each entry in U and L (when
nonsymmetric) will have magnitude less than or equal to tau. The droptol parameter is used when the
fronts are stored in a sparse format, each entry in U and L (when nonsymmetric) will have magnitude
greater than or equal to droptol.

The return value is a pointer to the first element in a list of Chv objects that contain the rows and
columns that were not able to be eliminated. In all present cases, this should be NULL; we have left this
return value as a hook to future factorizations via stages. The perror parameter is an address that
is filled with an error code on return. If the factorization has completed, then *perror is a negative
number. If *perror is in the range [0,nfront), then an error has been detected at front *perror.
On return, the cpus[] vector is filled with the following information.

• cpus[0] — time spent initializing the fronts.

• cpus[1] — time spent loading the original entries.

• cpus[2] — time spent accumulating updates from descendents.

265

• cpus[3] — time spent assembling postponed data.

• cpus[4] — time spent to factor the fronts.

• cpus[5] — time spent to extract postponed data.

• cpus[6] — time spent to store the factor entries.

• cpus[7] — miscellaneous time.

• cpus[8] — total time in the method.

On return, the stats[] vector is filled with the following information.

• stats[0] — number of pivots.

• stats[1] — number of pivot tests.

• stats[2] — number of delayed rows and columns.

• stats[3] — number of entries in D.

• stats[4] — number of entries in L.

• stats[5] — number of entries in U .

Error checking: If frontmtx, pencil, cpus or stats is NULL, or if msglvl > 0 and msgFile is NULL,
an error message is printed and the program exits.

30.2.6 QR factorization utility methods

1. void FrontMtx_QR_setup (FrontMtx *frontmtx, InpMtx *mtxA, IVL **prowsIVL,

int **pfirstnz, int msglvl, FILE *msgFile) ;

This method sets up the rowsIVL and firstnz[] data structures. The address of rowsIVL is placed
in *prowsIVL and the address of firstnz is placed in *pfirstnz. List J of rowsIVL contains the rows
of A that will be assembled into front J. The leading column with a nonzero entry in row j is found in
firstnz[j].

Error checking: If frontmtx, mtxA, prowsIVL or pfirstnz is NULL, or if msglvl > 0 and msgFile is
NULL, an error message is printed and the program exits.

2. void FrontMtx_QR_factorVisit (FrontMtx *frontmtx, int J, InpMtx *mtxA,

IVL *rowsIVL, int firstnz[], ChvList *updList, ChvManager *chvmanager,

char status[], int colmap[], DV *workDV, double cpus[],

double *pfacops, int msglvl, FILE *msgFile) ;

This method visits front J during the QR factorization. The number of operations to reduce the
staircase matrix to upper trapezoidal or triangular form is incremented in *pfacops.

Error checking: If frontmtx, mtxA, rowsIVL, firstnz, updlist, chvmanager, status, colmap, workDV,
cpus or pfacops is NULL, or if msglvl > 0 and msgFile is NULL, an error message is printed and the
program exits.

3. A2 * FrontMtx_QR_assembleFront (FrontMtx *frontmtx, int J, InpMtx *mtxA,

IVL *rowsIVL, int firstnz[], int colmap[], Chv *firstchild,

DV *workDV, int msglvl, FILE *msgFile) ;

This method creates an A2 object to hold the front, assembles any original rows of A and any update
matrices from the children into the front, and then returns the front. The rows and update matrices
are assembled into staircase form, so no subsequent permutations of the rows is necessary.

Error checking: If frontmtx, mtxA, rowsIVL, firstnz, colmap or workDV is NULL, or if msglvl > 0

and msgFile is NULL, an error message is printed and the program exits.

266

4. void FrontMtx_QR_storeFront (FrontMtx *frontmtx, int J, A2 *frontJ,

int msglvl, FILE *msgFile) ;

This method takes as input frontJ, the front in trapezoidal or triangular form. It scales the strict
upper triangle or trapezoid by the diagonal entries, then squares the diagonal entries. (This transforms
RT R into (UT + I)D(I + U) or RHR into (UH + I)D(I + U) for our solves.) It then stores the entries
into the factor matrix.

Error checking: If frontmtx or frontJ is NULL, or if msglvl > 0 and msgFile is NULL, an error message
is printed and the program exits.

5. Chv * FrontMtx_QR_storeUpdate (FrontMtx *frontmtx, int J, A2 *frontJ,

ChvManager *chvmanager, int msglvl, FILE *msgFile) ;

This method takes as input frontJ, the front in trapezoidal or triangular form. It extracts the update
matrix, stores the entries in a Chv object, and returns the Chv object. entries, then squares the diagonal
entries.

Error checking: If frontmtx, frontJ or chvmanager is NULL, or if msglvl > 0 and msgFile is NULL,
an error message is printed and the program exits.

30.2.7 Serial QR Factorization method

1. void FrontMtx_QR_factor (FrontMtx *frontmtx, InpMtx *mtxA,

ChvManager *chvmanager, double cpus[],

double *pfacops, int msglvl, FILE *msgFile) ;

This method computes the (UT + I)D(I + U) factorization of AT A if A is real or (UH + I)D(I + U)
factorization of AHA if A is complex. The chvmanager object manages the working storage. On return,
the cpus[] vector is filled as follows.

• cpus[0] – setup time, time to compute the rowsIVL and firstnz[] objects

• cpus[1] – time to initialize and load the staircase matrices

• cpus[2] – time to factor the matrices

• cpus[3] – time to scale and store the factor entries

• cpus[4] – time to store the update entries

• cpus[5] – miscellaneous time

• cpus[6] – total time

On return, *pfacops contains the number of floating point operations done by the factorization.

Error checking: If frontmtx, frontJ or chvmanager is NULL, or if msglvl > 0 and msgFile is NULL,
an error message is printed and the program exits.

30.2.8 Postprocessing methods

1. void FrontMtx_postProcess (FrontMtx *frontmtx, int msglvl, FILE *msgFile) ;

This method does post-processing chores after the factorization is complete. If pivoting was enabled,
the method permutes the row and column adjacency objects, permutes the lower and upper matrices,
and updates the block adjacency objects. The chevron submatrices L∂J,J and UJ,∂J are split into LK,J

and UJ,K where K ∩ ∂J 6= ∅.
Error checking: If frontmtx is NULL, or if msglvl ¿ 0 and msgFile is NULL, an error message is printed
and the program exits.

267

2. void FrontMtx_permuteUpperAdj (FrontMtx *frontmtx,

int msglvl, FILE *msgFile) ;

void FrontMtx_permuteLowerAdj (FrontMtx *frontmtx,

int msglvl, FILE *msgFile) ;

These methods are called during the postprocessing step, where they permute the upper and lower
adjacency structures so that vertices in ∂J are in ascending order with respect to the indices in K∪∂K,
where K is the parent of J .

Error checking: If frontmtx is NULL, or if msglvl ¿ 0 and msgFile is NULL, an error message is printed
and the program exits.

3. void FrontMtx_permuteUpperMatrices (FrontMtx *frontmtx,

int msglvl, FILE *msgFile) ;

void FrontMtx_permuteLowerMatrices (FrontMtx *frontmtx,

int msglvl, FILE *msgFile) ;

These methods are called during the postprocessing step, where they permute the upper UJ,∂J and
lower L∂J,J submatrices so that the columns in UJ,∂J and rows in L∂J,J are in ascending order with
the columns and rows of the final matrix.

Error checking: If frontmtx is NULL, or if msglvl ¿ 0 and msgFile is NULL, an error message is printed
and the program exits.

4. void FrontMtx_splitUpperMatrices (FrontMtx *frontmtx, int msglvl, FILE *msgFile) ;

void FrontMtx_splitLowerMatrices (FrontMtx *frontmtx, int msglvl, FILE *msgFile) ;

These methods are called during the postprocessing step, where they split the chevron submatrices
L∂J,J and UJ,∂J into LK,J and UJ,K where K ∩ ∂J 6= ∅.
Error checking: If frontmtx is NULL, or if msglvl ¿ 0 and msgFile is NULL, an error message is printed
and the program exits.

30.2.9 Utility Solve methods

The following methods are called by all the solve methods — serial, multithreaded and MPI.

1. SubMtx ** FrontMtx_loadRightHandSide (FrontMtx *frontmtx, DenseMtx *mtxB,

int owners[], int myid, SubMtxManager *mtxmanager,

int msglvl, FILE *msgFile) ;

This method creates and returns a vector of pointers to SubMtx objects that hold pointers to the right
hand side submatrices owned by the thread or processor.

Error checking: None presently.

2. void FrontMtx_forwardVisit (FrontMtx *frontmtx, int J, int nrhs,

int *owners, int myid, SubMtxManager *mtxmanager, SubMtxList *aggList,

SubMtx *p_mtx[], char frontIsDone[], IP *heads[], SubMtx *p_agg[],

char status[], int msglvl, FILE *msgFile) ;

This method is used to visit front J during the forward solve, (UT + I)Y = B, (UH + I)Y = B or
(L + I)Y = B.

Error checking: None presently.

3. void FrontMtx_diagonalVisit (FrontMtx *frontmtx, int J, int owners[],

int myid, SubMtx *p_mtx[], char frontIsDone[], SubMtx *p_agg[],

int msglvl, FILE *msgFile) ;

268

This method is used to visit front J during the diagonal solve, DZ = Y .

Error checking: None presently.

4. void FrontMtx_backwardVisit (FrontMtx *frontmtx, int J, int nrhs,

int *owners, int myid, SubMtxManager *mtxmanager, SubMtxList *aggList,

SubMtx *p_mtx[], char frontIsDone[], IP *heads[], SubMtx *p_agg[],

char status[], int msglvl, FILE *msgFile) ;

This method is used to visit front J during the backward solve, (U + I)Y = B.

Error checking: None presently.

5. void FrontMtx_storeSolution (FrontMtx *frontmtx, int owners[], int myid,

SubMtxManager *mtxmanager, SubMtx *p_mtx[],

DenseMtx *mtxX, int msglvl, FILE *msgFile) ;

This method stores the solution in the solmtx dense matrix object.

Error checking: None presently.

6. IP ** FrontMtx_forwardSetup (FrontMtx *frontmtx, int msglvl, FILE *msgFile) ;

This method is used to set up a data structure of IP objects that hold the updates of the form
YJ := YJ −UT

I,JXI , YJ := YJ −UH
I,JXI or YJ := YJ −LJ,IXI that will be performed by this thread or

processor.

Error checking: None presently.

7. IP ** FrontMtx_backwardSetup (FrontMtx *frontmtx, int msglvl, FILE *msgFile) ;

This method is used to set up a data structure of IP objects that hold the updates of the form
ZJ := ZJ − UJ,KXK that will be performed by this thread or processor.

Error checking: None presently.

8. void FrontMtx_loadActiveRoots (FrontMtx *frontmtx, char status[],

char activeFlag, Ideq *dequeue) ;

This method loads the active roots for a thread or a processor into the dequeue for the backward solve.

Error checking: None presently.

30.2.10 Serial Solve method

1. void FrontMtx_solve (FrontMtx *frontmtx, DenseMtx *mtxX, DenseMtx *mtxB,

SubMtxManager *mtxmanager, double cpus[], int msglvl, FILE *msgFile) ;

This method is used to solve one of three linear systems of equations — (UT + I)D(I + U)X = B,
(UH + I)D(I +U)X = B or (L+ I)D(I +U)X = B. Entries of B are read from mtxB and entries of X
are written to mtxX. Therefore, mtxX and mtxB can be the same object. (Note, this does not hold true
for an MPI factorization with pivoting.) The mtxmanager object manages the working storage using
the solve. On return the cpus[] vector is filled with the following.

• cpus[0] — set up the solves

• cpus[1] — fetch right hand side and store solution

• cpus[2] — forward solve

• cpus[3] — diagonal solve

• cpus[4] — backward solve

269

• cpus[5] — total time in the method.

Error checking: If frontmtx, mtxB or cpus is NULL, or if msglvl ¿ 0 and msgFile is NULL, an error
message is printed and the program exits.

30.2.11 Serial QR Solve method

1. void FrontMtx_QR_solve (FrontMtx *frontmtx, InpMtx *mtxA, DenseMtx *mtxX,

DenseMtx *mtxB, SubMtxManager *mtxmanager,

double cpus[], int msglvl, FILE *msgFile) ;

This method is used to minimize ‖B −AX‖F , where A is stored in mtxA, B is stored in mtxB, and X
will be stored in mtxX. The frontmtx object contains a (UT + I)D(I + U) factorization of AT A if A is
real or (UH + I)D(I + U) factorization of AHA if A is complex. We solve the seminormal equations
(UT + I)D(I + U)X = AT B or (UH + I)D(I + U)X = AHB for X . The mtxmanager object manages
the working storage used in the solves. On return the cpus[] vector is filled with the following.

• cpus[0] — set up the solves

• cpus[1] — fetch right hand side and store solution

• cpus[2] — forward solve

• cpus[3] — diagonal solve

• cpus[4] — backward solve

• cpus[5] — total time in the solve method.

• cpus[6] — time to compute AT B or AHB.

• cpus[7] — total time.

Error checking: If frontmtx, mtxA, mtxX, mtxB or cpus is NULL, or if msglvl ¿ 0 and msgFile is NULL,
an error message is printed and the program exits.

30.2.12 Utility methods

1. IV * FrontMtx_colmapIV (FrontMtx *frontmtx) ;

IV * FrontMtx_rowmapIV (FrontMtx *frontmtx) ;

These methods construct and return an IV object that map the rows and columns to the fronts that
contains them.

Error checking: None presently.

2. IV * FrontMtx_ownedRowsIV (FrontMtx *frontmtx, int myid, IV *ownersIV,

int msglvl, FILE *msgFile) ;

IV * FrontMtx_ownedColumnsIV (FrontMtx *frontmtx, int myid, IV *ownersIV,

int msglvl, FILE *msgFile) ;

These methods construct and return IV objects that contain the ids of the rows and columns that
belong to fronts that are owned by processor myid. If ownersIV is NULL, an IV object is returned that
contains {0,1,2,3, ..., nfront-1}.
Error checking: If frontmtx is NULL, an error message is printed and the program exits.

3. IVL * FrontMtx_makeUpperBlockIVL (FrontMtx *frontmtx, IV *colmapIV) ;

IVL * FrontMtx_makeLowerBlockIVL (FrontMtx *frontmtx, IV *rowmapIV) ;

270

These methods construct and return IVL objects that contain the submatrix structure of the lower
and upper factors. The IV objects map the rows and columns of the matrix to the fronts in the factor
matrix that contain them.

Error checking: If frontmtx, colmapIV or rowmapIV are NULL, an error message is printed and the
program exits.

4. void FrontMtx_inertia (FrontMtx *frontmtx, int *pnneg, int *pnzero, int *pnpos) ;

This method determines the inertia of a symmetric matrix based on the (UT +I)D(I+U) factorization.
The number of negative eigenvalues is returned in *pnneg, the number of zero eigenvalues is returned
in *pnzero, and the number of positive eigenvalues is returned in *pnpos.

Error checking: If frontmtx, pnneg, pnzero or pnpos is NULL, or if symmetryflag 6= 0 an error message
is printed and the program exits.

5. int FrontMtx_nSolveOps (FrontMtx *frontmtx) ;

This method computes and return the number of floating point operations for a solve with a single
right hand side.

Error checking: If frontmtx is NULL, or if type or symmetryflag are invalid, an error message is
printed and the program exits.

30.2.13 IO methods

1. int FrontMtx_readFromFile (FrontMtx *frontmtx, char *fn) ;

This method reads a FrontMtx object from a file. It tries to open the file and if it is successful, it
then calls FrontMtx readFromFormattedFile() or FrontMtx readFromBinaryFile(), closes the file
and returns the value returned from the called routine.

Error checking: If frontmtx or fn are NULL, or if fn is not of the form *.frontmtxf (for a formatted
file) or *.frontmtxb (for a binary file), an error message is printed and the method returns zero.

2. int FrontMtx_readFromFormattedFile (FrontMtx *frontmtx, FILE *fp) ;

This method reads a FrontMtx object from a formatted file. If there are no errors in reading the data,
the value 1 is returned. If an IO error is encountered from fscanf, zero is returned.

Error checking: If frontmtx or fp are NULL an error message is printed and zero is returned.

3. int FrontMtx_readFromBinaryFile (FrontMtx *frontmtx, FILE *fp) ;

This method reads a FrontMtx object from a binary file. If there are no errors in reading the data, the
value 1 is returned. If an IO error is encountered from fread, zero is returned.

Error checking: If frontmtx or fp are NULL an error message is printed and zero is returned.

4. int FrontMtx_writeToFile (FrontMtx *frontmtx, char *fn) ;

This method writes a FrontMtx object to a file. It tries to open the file and if it is successful, it then
calls FrontMtx writeFromFormattedFile() or FrontMtx writeFromBinaryFile(), closes the file and
returns the value returned from the called routine.

Error checking: If frontmtx or fn are NULL, or if fn is not of the form *.frontmtxf (for a formatted
file) or *.frontmtxb (for a binary file), an error message is printed and the method returns zero.

5. int FrontMtx_writeToFormattedFile (FrontMtx *frontmtx, FILE *fp) ;

This method writes a FrontMtx object to a formatted file. If there are no errors in writing the data,
the value 1 is returned. If an IO error is encountered from fprintf, zero is returned.

Error checking: If frontmtx or fp are NULL an error message is printed and zero is returned.

271

6. int FrontMtx_writeToBinaryFile (FrontMtx *frontmtx, FILE *fp) ;

This method writes a FrontMtx object to a binary file. If there are no errors in writing the data, the
value 1 is returned. If an IO error is encountered from fwrite, zero is returned.

Error checking: If frontmtx or fp are NULL an error message is printed and zero is returned.

7. int FrontMtx_writeForHumanEye (FrontMtx *frontmtx, FILE *fp) ;

This method writes a FrontMtx object to a file in a human readable format. The method FrontMtx writeStats()

is called to write out the header and statistics. The value 1 is returned.

Error checking: If frontmtx or fp are NULL an error message is printed and zero is returned.

8. int FrontMtx_writeStats (FrontMtx *frontmtx, FILE *fp) ;

The header and statistics are written to a file. The value 1 is returned.

Error checking: If frontmtx or fp are NULL an error message is printed and zero is returned.

9. int FrontMtx_writeForMatlab (FrontMtx *frontmtx, char *Lname, char *Dname,

char *Uname, FILE *fp) ;

This method writes out the factor matrix entries in a Matlab-readable form. Lname is a string for the
lower triangular matrix, Dname is a string for the diagonal matrix, and Uname is a string for the upper
triangular matrix.

Error checking: If frontmtx, Lname, Dname, Uname or fp are NULL, an error message is printed and zero
is returned.

30.3 Driver programs for the DFrontMtx object

1. testGrid msglvl msgFile n1 n2 n3 maxzeros maxsize seed type

symmetryflag sparsityflag pivotingflag tau droptol

lockflag nrhs

This driver program tests the serial FrontMtx factor() and FrontMtx solve() methods for the linear
system AX = B. Use the script file do grid for testing.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• n1 is the number of points in the first grid direction.

• n2 is the number of points in the second grid direction.

• n3 is the number of points in the third grid direction.

• maxzeros is used to merge small fronts together into larger fronts. Look at the ETree object for
the ETree mergeFronts{One,All,Any}() methods.

• maxsize is used to split large fronts into smaller fronts. See the ETree splitFronts() method.

• The seed parameter is a random number seed.

• The type parameter specifies a real or complex linear system.

– type = 1 (SPOOLES REAL) for real,

– type = 2 (SPOOLES COMPLEX) for complex.

• The symmetryflag parameter specifies the symmetry of the matrix.

– type = 0 (SPOOLES SYMMETRIC) for A real or complex symmetric,

272

– type = 1 (SPOOLES HERMITIAN) for A complex Hermitian,

– type = 2 (SPOOLES NONSYMMETRIC)

for A real or complex nonsymmetric.

• The sparsityflag parameter signals a direct or approximate factorization.

– sparsityflag = 0 (FRONTMTX DENSE FRONTS) implies a direct factorization, the fronts will
be stored as dense submatrices.

– sparsityflag = 1 (FRONTMTX SPARSE FRONTS) implies an approximate factorization. The
fronts will be stored as sparse submatrices, where the entries in the triangular factors will be
subjected to a drop tolerance test — if the magnitude of an entry is droptol or larger, it will
be stored, otherwise it will be dropped.

• The pivotingflag parameter signals whether pivoting for stability will be enabled or not.

– If pivotingflag = 0 (SPOOLES NO PIVOTING), no pivoting will be done.

– If pivotingflag = 1 (SPOOLES PIVOTING), pivoting will be done to ensure that all entries
in U and L have magnitude less than tau.

• The tau parameter is an upper bound on the magnitude of the entries in L and U when pivoting
is enabled.

• The droptol parameter is a lower bound on the magnitude of the entries in L and U when the
approximate factorization is enabled.

• When lockflag is zero, the mutual exclusion lock for the factor matrix is not enabled. When
lockflag is not zero, the mutual exclusion lock is set. This capability is here to test the overhead
for the locks for a serial factorization.

• The nrhs parameter is the number of right hand sides to solve as one block.

2. testQRgrid msglvl msgFile n1 n2 n3 seed nrhs type

This driver program tests the serial FrontMtx QR factor() and FrontMtx QR solve() methods for
the least squares problem minX ‖F −AX‖F .

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• n1 is the number of points in the first grid direction.

• n2 is the number of points in the second grid direction.

• n3 is the number of points in the third grid direction.

• The seed parameter is a random number seed.

• The nrhs parameter is the number of right hand sides to solve as one block.

• The type parameter specifies a real or complex linear system.

– type = 1 (SPOOLES REAL) for real,

– type = 2 (SPOOLES COMPLEX) for complex.

Chapter 31

ILUMtx: Incomplete LU Matrix Object

The ILUMtx object represents and approximate (incomplete) (L + I)D(I + U), (UT + I)D(I + U) or (UH +
I)D(I+U) factorization. It is a very simple object, rows and columns of L and U are stored as single vectors.
All computations to compute the factorization and to solve linear systems are performed with sparse BLAS1
kernels. Presently, the storage scheme is very simple minded, we use malloc() and free() to handle the
individual vectors of the rows and columns of L and U .

At present we have one factorization method. No pivoting is performed. Rows of U are stored, along
with columns of L if the matrix is nonsymmetric. If a zero pivot is encountered on the diagonal during the
factorization, the computation stops and returns a nonzero error code. (Presently, there is no “patch-and-go”
functionality.) An Lj,i entry is kept if |Lj,iDi,i| ≥ σ

√
|Di,i| |Aj,j |, where σ is a user supplied drop tolerance,

and similarly for Ui,j . Note, if Aj,j = 0, as is common for KKT matrices, all Lj,i and Ui,j entries will be
kept. It is simple to modify the code to use another drop tolerance criteria, e.g., an absolute tolerance, or
one based only on |Di,i|. We intend to write other factorization methods that will conform to a user-supplied
nonzero structure for the factors.

31.1 Data Structure

The ILUMtx structure has the following fields.

• int neqns : number of equations.

• int type : type of entries, SPOOLES REAL or SPOOLES COMPLEX.

• int symmetryflag : type of matrix symmetry, SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC.

• int UstorageMode : type of storage for U , SPOOLES BY ROWS or SPOOLES BY COLUMNS.

• int LstorageMode : type of storage for L, SPOOLES BY ROWS or SPOOLES BY COLUMNS.

• double *entD : vector of diagonal entries.

• int *sizesL : vector of sizes of the off-diagonal vectors of L, not used if the matrix is symmetric or
Hermitian.

• int **p indL : vector of pointers to the indicies vectors of L, not used if the matrix is symmetric or
Hermitian.

• double **p entL : vector of pointers to the entries vectors of L, not used if the matrix is symmetric
or Hermitian.

273

274

• int *sizesU : vector of sizes of the off-diagonal vectors of U .

• int **p indU : vector of pointers to the indicies vectors of U .

• double **p entU : vector of pointers to the entries vectors of U .

One can query the attributes of the object with the following macros.

• ILUMTX IS REAL(mtx) returns 1 if the entries are real, and 0 otherwise.

• ILUMTX IS COMPLEX(mtx) returns 1 if the entries are complex, and 0 otherwise.

• ILUMTX IS SYMMETRIC(mtx) returns 1 if the factorization is symmetric, and 0 otherwise.

• ILUMTX IS HERMITIAN(mtx) returns 1 if the factorization is Hermitian, and 0 otherwise.

• ILUMTX IS NONSYMMETRIC(mtx) returns 1 if the factorization is nonsymmetric, and 0 otherwise.

• ILUMTX IS L BY ROWS(mtx) returns 1 if L is stored by rows, and 0 otherwise.

• ILUMTX IS L BY COLUMNS(mtx) returns 1 if L is stored by columns, and 0 otherwise.

• ILUMTX IS U BY ROWS(mtx) returns 1 if U is stored by rows, and 0 otherwise.

• ILUMTX IS U BY COLUMNS(mtx) returns 1 if U is stored by columns, and 0 otherwise.

31.2 Prototypes and descriptions of ILUMtx methods

This section contains brief descriptions including prototypes of all methods that belong to the ILUMtx object.

31.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. ILUMtx * ILUMtx_new (void) ;

This method simply allocates storage for the ILUMtx structure and then sets the default fields by a call
to ILUMtx setDefaultFields().

2. int ILUMtx_setDefaultFields (ILUMtx *mtx) ;

This method sets the structure’s fields to default values: neqns = 0, type= SPOOLES REAL, symmetryflag
= SPOOLES SYMMETRIC, UstorageMode = SPOOLES BY ROWS, LstorageMode = SPOOLES BY COLUMNS,
and entD, sizesL, p indL, p entL, sizesU, p indU and p entU are all set to NULL.

Return codes: 1 means a normal return, -1 means mtx is NULL.

3. int ILUMtx_clearData (ILUMtx *mtx) ;

This method releases all storage held by the object.

Return codes: 1 means a normal return, -1 means mtx is NULL.

4. int ILUMtx_free (ILUMtx *mtx) ;

This method releases all storage held by the object via a call to ILUMtx clearData(), then free’d the
storage for the object.

Return codes: 1 means a normal return, -1 means mtx is NULL.

275

31.2.2 Initialization Methods

1. int ILUMtx_init (ILUMtx *mtx, int neqns, int type, int symmetryflag,

int LstorageMode, int UstorageMode) ;

This is the initializer method that should be called immediately after ILUMtx new(). It first clears any
previous data with a call to ILUMtx clearData(). The object’s scalar fields are then set. The sizesU

(and sizesL if nonsymmetric) vector(s) are then initialized and filled with zeros. The p indU, p entU

(and p indL and p entL if nonsymmetric) vectors of pointers are initialized and filled with NULL values.
The entD vector is initialized and filled with zeros.

Return codes:

1 normal return
-1 mtx is NULL
-2 neqns <= 0
-3 type is invalid

-4 symmetryflag is invalid
-5 LstorageMode is invalid
-6 UstorageMode is invalid
-7 type and storage modes do not match

31.2.3 Factorization Methods

1. int ILUMtx_factor (ILUMtx *mtx, InpMtx *mtxA, double sigma,

double *pops, int msglvl, FILE *msgFile) ;

This methods computes a drop tolerance A = (L + I)D(I + U), A = (UT + I)D(I + U) or A =
(UH + I)D(I + U) factorization. An Lj,i entry is kept if |Lj,iDi,i| ≥ σ

√
|Di,i| |Aj,j |, where σ is a user

supplied drop tolerance, and similarly for Ui,j . If pops is not NULL, then on return *pops holds the
number of floating point operations that was performed during the factorization.

Return codes:

1 normal return
-1 mtx is NULL
-2 neqns <= 0
-3 type is invalid
-4 symmetryflag is invalid
-5 LstorageMode is invalid
-6 UstorageMode is invalid
-7 sizesL is NULL
-8 sizesU is NULL
-9 p indL is NULL

-10 p indU is NULL
-11 entD is NULL
-12 p entL is NULL
-13 p entU is NULL
-14 mtxA is NULL
-15 types of mtxLDU and mtxA do not match
-16 mtxA is not in chevron mode
-17 sigma < 0
-18 msglvl > 0 and msgFile is NULL
-19 singular pivot found

31.2.4 Solve Methods

1. int ILUMtx_solveVector (ILUMtx *mtx, DV *X, DV *B, DV *workDV,

double *pops, int msglvl, FILE *msgFile) ;

This methods solves a linear system (L + I)D(I + U)x = b, (UT + I)D(I + U)x = b or (UH + I)D(I +
U)x = b. workDV is a work vector. If workDV is different that B, then B is unchanged on return. One
can have X, B and workDV point to the same object. If pops is not NULL, then on return *pops holds
the number of floating point operations that was performed during the solve.

Return codes:

276

1 normal return
-1 mtx is NULL
-2 neqns <= 0
-3 type is invalid
-4 symmetryflag is invalid
-5 LstorageMode is invalid
-6 UstorageMode is invalid
-7 sizesL is NULL
-8 sizesU is NULL
-9 p indL is NULL

-10 p indU is NULL
-11 entD is NULL

-12 p entL is NULL
-13 p entU is NULL
-14 X is NULL
-15 size of X is incorrect
-16 entries of X are NULL

-17 B is NULL
-18 size of B is incorrect
-19 entries of B are NULL

-20 workDV is NULL
-21 size of workDV is incorrect
-22 entries of workDV are NULL

-23 msglvl > 0 and msgFile is NULL

31.2.5 Utility methods

1. int ILUMtx_fillRandom (ILUMtx *mtx, int seed) ;

This method fills the mtx object with a random nonzero pattern and random matrix entries. The
matrix must have already been initialized using the ILUMtx init() method.

Return codes:

1 normal return
-1 mtx is NULL
-2 neqns <= 0
-3 type is invalid
-4 symmetryflag is invalid

-5 LstorageMode is invalid
-6 UstorageMode is invalid
-7 sizesL is NULL
-8 sizesU is NULL
-9 p indL is NULL

-10 p indU is NULL
-11 entD is NULL
-12 p entL is NULL
-13 p entU is NULL

31.2.6 IO methods

1. int ILUMtx_writeForMatlab (ILUMtx *mtx, char *Lname, char *Dname,

char *Uname, FILE *fp) ;

This method writes out a ILUMtx object to a file in a Matlab format. The entries in L use the Lname

string, the entries in D use the Dname string, and the entries in U use the Uname string, A sample line
is

L(10,5) = -1.550328201511e-01 + 1.848033378871e+00*i ;

for complex matrices, or

L(10,5) = -1.550328201511e-01 ;

for real matrices, where Lname = "L". The matrix indices are incremented by one to follow the Matlab
and FORTRAN convention.

Return codes:

1 normal return
-1 mtx is NULL
-2 neqns <= 0
-3 type is invalid
-4 symmetryflag is invalid
-5 LstorageMode is invalid

-6 UstorageMode is invalid
-7 sizesL is NULL
-8 sizesU is NULL
-9 p indL is NULL

-10 p indU is NULL
-11 entD is NULL

-12 p entL is NULL
-13 p entU is NULL
-14 Lname is NULL
-15 Dname is NULL
-16 Uname is NULL
-17 fp is NULL

277

31.3 Driver programs for the ILUMtx object

This section contains brief descriptions of the driver programs.

1. testFactor msglvl msgFile type symflag

neqns nitem seed sigma matlabFile

This driver program generates a random matrix A stored in an InpMtx object. It then factors A =
(L+ I)D(I +U), A = (UT + I)D(I +U) or A = (UH + I)D(I +U) (depending on type and symflag).
If matlabFile is not "none", it writes A, L, D and U to a Matlab file, which can then be run through
matlab to compute the error in the factorization. The CPU, number of operations and megaflops for
the factorization are printed to msgFile.

• The msglvl parameter determines the amount of output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• type must be either SPOOLES REAL or SPOOLES COMPLEX.

• symflag must be either SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES SYMMETRIC.

• neqns is the number of equations, must be positive.

• nitem is the number of off-diagonal entries, must be nonnegative.

• seed is a random number seed.

• sigma is the drop tolerance.

• matlabFile is the name of the Matlab file for the matrices. If "none" then no output is written.

2. testSolve msglvl msgFile neqns type symflag

LstorageMode UstorageMode seed matlabFile

This driver program solve a linear system (L + I)D(I + U)X = B, (UT + I)D(I + U)X = B or
(UH + I)D(I + U)X = B, depending on type and symflag. L, D and L are random sparse matrices
and B is a random vector. If matlabFile is not "none", it writes L, D, U , B and the computed
solution X to a Matlab file, which can then be run through matlab to compute the error in the solve.
The CPU, number of operations and megaflops for the factorization are printed to msgFile.

• The msglvl parameter determines the amount of output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• neqns is the number of equations, must be positive.

• type must be either SPOOLES REAL or SPOOLES COMPLEX.

• symflag must be either SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES SYMMETRIC.

• LstorageMode must be either SPOOLES BY ROWS or SPOOLES BY COLUMNS.

• UstorageMode must be either SPOOLES BY ROWS or SPOOLES BY COLUMNS.

• seed is a random number seed.

• matlabFile is the name of the Matlab file for the matrices. If "none" then no output is written.

Chapter 32

InpMtx: Input Matrix Object

The InpMtx object has two functions:

• It is used to assemble a sparse matrix (or just its structure) from individual entries, rows, columns or
dense submatrices (or any combination of these) that may overlap.

• It is used to communicate entries of a matrix into a front during the factorization.

We have designed this object to be easy to use, but it has one significant drawback — it is an in-core
implementation, and this is a disadvantage in situations where memory is limited. Extending this object to
work out-of-core is not difficult, but we leave that value-added function to others in the future.

The InpMtx object has three faces. It can just manipulate (i, j) pairs, where it assembles just the nonzero
structure of a matrix. We use this functionality to generate a Graph object that is needed as input to the
ordering software. Alternatively, it can assemble and manipulate (i, j, ai,j triples where ai,j is either a real
or complex number. (At any one time, the object works with either no numbers, real numbers or complex
numbers but not mixtures of the three.) The normal input to the InpMtx object is a collection of matrix
entries in some form, e.g., single entries, (partial) rows or columns, or dense submatrices.

Here is a common sequence of events to use this object when we want to build the structure of a sparse
matrix.

1. Create an instance of a InpMtx object using the InpMtx new() method.

2. Initialize the InpMtx object using the InpMtx init() method; set the input mode to indices only,
maximum number of entries for the workspace, and the number of vectors. (The latter two quantities
may be zero, for the object resizes its storage as required.)

3. Call the method InpMtx changeCoordType() to set the coordinate type to rows.

4. Load data into the object using one or more of the five input methods: InpMtx inputEntry(),
InpMtx inputRow(), InpMtx inputColumn(), InpMtx inputMatrix() and InpMtx inputTriples()

methods. Each time the workspace fills up, the raw data is sorted and compressed and then the
workspace is resized. If the input data overlaps, e.g., elemental matrices are being assembled, it would
be efficient to have sufficient elbow room to minimize the number of sorts and compressions. In this
case, a tight upper bound on the necessary storage is the sum of the sizes of the elemental matrices.
The entries are assembled by a call to InpMtx changeStorageMode().

5. Create an IVL object that contains the full adjacency of A+AT by calling the InpMtx fullAdjacency()

method.

278

279

6. Create a Graph object using the Graph init2() method and the IVL object as an input argument.

A similar functionality exists for creating a Graph object from a linear combination of two InpMtx objects
that contains the matrices A and B. The InpMtx fullAdjacency2() method returns an IVL object with
the full adjacency of (A + B) + (A + B)T . These two methods are called by the DPencil fullAdjacency()

methods to return the full adjacency of a matrix pencil.

Here is a common sequence of events to use this object when we want to assemble the entries of a sparse
matrix.

1. Create an instance of a InpMtx object using the InpMtx new() method.

2. Initialize the InpMtx object using the InpMtx init() method; set the input mode to real or complex
entries, maximum number of entries for the workspace, and the number of vectors. (The latter two
quantities may be zero, for the object resizes its storage as required.)

3. Call the method InpMtx changeCoordType() to set the coordinate type to rows.

4. Load data into the object using one or more of the five input methods: InpMtx inputEntry(),
InpMtx inputRow(), InpMtx inputColumn(), InpMtx inputMatrix() and InpMtx inputTriples()

methods. Each time the workspace fills up, the raw data is sorted and compressed and then the
workspace is resized. If the input data overlaps, e.g., elemental matrices are being assembled, it would
be efficient to have sufficient elbow room to minimize the number of sorts and compressions. In this
case, a tight upper bound on the necessary storage is the sum of the sizes of the elemental matrices.
The entries are assembled by a call to InpMtx changeStorageMode().

The InpMtx object is now ready to be permuted, take part in a matrix-vector multiply, become part of a
Pencil matrix pencil object, or serve as input to a numeric factorization.

NOTE: to improve performance we have changed the InpMtx fullAdjacency() method. The InpMtx

object must be in the chevron coordinate type and have its storage mode be by vectors. Previously, this was
done if necessary inside the method.

32.1 Data Structure

The InpMtx structure has the following fields.

• int coordType : coordinate type. The following types are supported.

– INPMTX BY ROWS — row triples, the coordinates for ai,j is (i, j).

– INPMTX BY COLUMNS — column triples, the coordinates for ai,j is (j, i).

– INPMTX BY CHEVRONS — chevron triples, the coordinates for ai,j is (min(i, j), j − i). (Chevron j
contains aj,j , aj,k 6= 0 and ak,j 6= 0 for k > j.)

– INPMTX CUSTOM — custom coordinates.

• int storageMode : mode of storage

– INPMTX RAW DATA — data is raw pairs or triples, two coordinates and (optionally) one or two
double precision values.

– INPMTX SORTED — data is sorted and distinct triples, the primary key is the first coordinate, the
secondary key is the second coordinate.

280

– INPMTX BY VECTORS — data is sorted and distinct vectors. All entries in a vector share some-
thing in common. For example, when coordType is INPMTX BY ROWS, INPMTX BY COLUMNS or
INPMTX BY CHEVRONS, row vectors, column vectors, or chevron vectors are stored, respectively.
When coordType is INPMTX CUSTOM, a custom type, entries in the same vector have something in
common but it need not be a common row, column or chevron coordinate.

• int inputMode : mode of data input

– INPMTX INDICES ONLY — only indices are stored, not entries.

– SPOOLES REAL — indices and real entries are stored.

– SPOOLES COMPLEX — indices and complex entries are stored.

• int maxnent – present maximum number of entries in the object. This quantity is initialized by the
InpMtx init() method, but will be changed as the object resizes itself as necessary.

• int nent – present number of entries in the object. This quantity changes as data is input or when
the raw triples are sorted and compressed.

• double resizeMultiple – governs how the workspace grows as necessary. The default value is 1.25.

• IV ivec1IV – an IV vector object of size mxnent that holds first coordinates.

• IV ivec2IV – an IV vector object of size mxnent that holds second coordinates.

• DV dvecDV – a DV vector object of size mxnent that holds double precision entries. Used only when
inputMode is SPOOLES REAL or SPOOLES COMPLEX.

• int maxnvector – present maximum number of vectors. This quantity is initialized by the InpMtx init()

method, but will be changed as the object resizes itself as necessary. Used only when storageMode is
INPMTX BY VECTORS.

• int nvector – present number of vectors. Used only when storageMode is INPMTX BY VECTORS.

• IV vecidsIV – an IV vector object of size nvector to hold the id of each vector. Used only when
storageMode is INPMTX BY VECTORS.

• IV sizesIV – an IV vector object of size nvector to hold the size of each vector. Used only when
storageMode is INPMTX BY VECTORS.

• IV offsetsIV – an IV vector object of size nvector to hold the offset of each vector into the ivec1IV,
ivec2IV and dvecDV vector objects. Used only when storageMode is INPMTX BY VECTORS.

One can query the attributes of the object with the following macros.

• INPMTX IS BY ROWS(mtx) returns 1 if the entries are stored by rows, and 0 otherwise.

• INPMTX IS BY COLUMNS(mtx) returns 1 if the entries are stored by columns, and 0 otherwise.

• INPMTX IS BY CHEVRONS(mtx) returns 1 if the entries are stored by chevrons, and 0 otherwise.

• INPMTX IS BY CUSTOM(mtx) returns 1 if the entries are stored by some custom coordinate, and 0

otherwise.

• INPMTX IS RAW DATA(mtx) returns 1 if the entries are stored as unsorted pairs or triples, and 0 other-
wise.

• INPMTX IS SORTED(mtx) returns 1 if the entries are stored as sorted pairs or triples, and 0 otherwise.

281

• INPMTX IS BY VECTORS(mtx) returns 1 if the entries are stored as vectors, and 0 otherwise.

• INPMTX IS INDICES ONLY(mtx) returns 1 if the entries are not stored, and 0 otherwise.

• INPMTX IS REAL ENTRIES(mtx) returns 1 if the entries are real, and 0 otherwise.

• INPMTX IS COMPLEX ENTRIES(mtx) returns 1 if the entries are complex, and 0 otherwise.

32.2 Prototypes and descriptions of InpMtx methods

This section contains brief descriptions including prototypes of all methods that belong to the InpMtx object.

32.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. InpMtx * InpMtx_new (void) ;

This method simply allocates storage for the InpMtx structure and then sets the default fields by a call
to InpMtx setDefaultFields().

2. void InpMtx_setDefaultFields (InpMtx *inpmtx) ;

This method sets the structure’s fields to default values: coordType = INPMTX BY ROWS, storageMode
= INPMTX RAW DATA, inputMode = SPOOLES REAL, resizeMultiple = 1.25, and maxnent = nent =
maxnvector = nvector = 0. The IV and DV objects have their fields set to their default values via
calls to IV setDefaultFields() and DV setDefaultFields().

Error checking: If inpmtx is NULL, an error message is printed and the program exits.

3. void InpMtx_clearData (InpMtx *inpmtx) ;

This method releases all storage held by the object.

Error checking: If inpmtx is NULL, an error message is printed and the program exits.

4. void InpMtx_free (InpMtx *inpmtx) ;

This method releases all storage held by the object via a call to InpMtx clearData(), then free’d the
storage for the object.

Error checking: If inpmtx is NULL, an error message is printed and the program exits.

32.2.2 Instance Methods

1. int InpMtx_coordType (InpMtx *inpmtx) ;

This method returns the coordinate type.

• INPMTX NO TYPE – none specified

• INPMTX BY ROWS – storage by row triples

• INPMTX BY COLUMNS – storage by column triples

• INPMTX BY CHEVRONS – storage by chevron triples

• INPMTX CUSTOM – custom type

282

Error checking: If inpmtx is NULL, an error message is printed and the program exits.

2. int InpMtx_storageMode (InpMtx *inpmtx) ;

This method returns the storage mode.

• INPMTX NO MODE – none specified

• INPMTX RAW DATA – raw triples

• INPMTX SORTED – sorted and distinct triples

• INPMTX BY VECTORS – vectors by the first coordinate

Error checking: If inpmtx is NULL, an error message is printed and the program exits.

3. int InpMtx_inputMode (InpMtx *inpmtx) ;

This method returns the input mode.

• INPMTX INDICES ONLY – indices only

• SPOOLES REAL – indices and real entries

• SPOOLES COMPLEX – indices and complex entries

Error checking: If inpmtx is NULL, an error message is printed and the program exits.

4. int InpMtx_maxnent (InpMtx *inpmtx) ;

This method returns the maximum number of entries.

Error checking: If inpmtx is NULL, an error message is printed and the program exits.

5. int InpMtx_nent (InpMtx *inpmtx) ;

This method returns the present number of entries.

Error checking: If inpmtx is NULL, an error message is printed and the program exits.

6. int InpMtx_maxnvector (InpMtx *inpmtx) ;

This method returns the maximum number of vectors.

Error checking: If inpmtx is NULL, an error message is printed and the program exits.

7. int InpMtx_nvector (InpMtx *inpmtx) ;

This method returns the present number of vectors.

Error checking: If inpmtx is NULL, an error message is printed and the program exits.

8. double InpMtx_resizeMultiple (InpMtx *inpmtx) ;

This method returns the present resize multiple for the storage of entries.

Error checking: If inpmtx is NULL, an error message is printed and the program exits.

9. int * InpMtx_ivec1 (InpMtx *inpmtx) ;

This method returns the base address of the ivec1[] vector.

Error checking: If inpmtx is NULL, an error message is printed and the program exits.

10. int * InpMtx_ivec2 (InpMtx *inpmtx) ;

This method returns the base address of the ivec2[] vector.

Error checking: If inpmtx is NULL, an error message is printed and the program exits.

283

11. double * InpMtx_dvec (InpMtx *inpmtx) ;

This method returns the base address of the dvec[] vector.

Error checking: If inpmtx is NULL, an error message is printed and the program exits.

12. int * InpMtx_vecids (InpMtx *inpmtx) ;

This method returns the base address of the vecids[] vector.

Error checking: If inpmtx is NULL, an error message is printed and the program exits.

13. int * InpMtx_sizes (InpMtx *inpmtx) ;

This method returns the base address of the sizes[] vector.

Error checking: If inpmtx is NULL, an error message is printed and the program exits.

14. int * InpMtx_offsets (InpMtx *inpmtx) ;

This method returns the base address of the offsets[] vector.

Error checking: If inpmtx is NULL, an error message is printed and the program exits.

15. void InpMtx_vector (InpMtx *inpmtx, int id, int *pnent, int **pindices) ;

void InpMtx_realVector (InpMtx *inpmtx, int id, int *pnent,

int **pindices, double **pentries) ;

void InpMtx_complexVector (InpMtx *inpmtx, int id, int *pnent,

int **pindices, double **pentries) ;

This methods fills *pnent with the number of entries in vector id and sets *pindices to the base
address of the indices. When the object stores real or complex matrix entries, the methods sets
*pentries to the base address of the entries.

Error checking: If inpmtx is NULL, or if storageMode 6= INPMTX BY VECTORS, or if id is out of range,
or if pnent, pindices or pentries is NULL, an error message is printed and the program exits.

16. int InpMtx_range (InpMtx *inpmtx, int *pmincol, int *pmaxcol,

int *pminrow, int *pmaxrow) ;

This method computes and returns the minimum and maximum rows and columns in the matrix. If
pmincol is not NULL, on return *pmincol is filled with the minimum column id. If pmaxcol is not
NULL, on return *pmaxcol is filled with the maximum column id. If pminrow is not NULL, on return
*pminrow is filled with the minimum row id. If pmaxrow is not NULL, on return *pmaxrow is filled with
the maximum row id.

Return codes:

1 normal return
-1 mtx is NULL

-2 no entries in the matrix
-3 invalid coordinate type

17. void InpMtx_setMaxnent (InpMtx *inpmtx, int newmaxnent) ;

This method sets the maxinum number of entries in the indices and entries vectors.

Error checking: If inpmtx is NULL, or if newmaxnent < 0, an error message is printed and the program
exits.

18. void InpMtx_setNent (InpMtx *inpmtx, int newnent) ;

This method sets the present number of entries in the indices and entries vectors.

Error checking: If inpmtx is NULL, or if newnent < 0, an error message is printed and the program
exits.

284

19. void InpMtx_setMaxnvector (InpMtx *inpmtx, int newmaxnvector) ;

This method sets the maxinum number of vectors.

Error checking: If inpmtx is NULL, or if newmaxnvector < 0, an error message is printed and the
program exits.

20. void InpMtx_setNvector (InpMtx *inpmtx, int newnvector) ;

This method sets the present number of vectors.

Error checking: If inpmtx is NULL, or if newnvector < 0, an error message is printed and the program
exits.

21. void InpMtx_setResizeMultiple (InpMtx *inpmtx, double resizeMultiple) ;

This method sets the present number of vectors.

Error checking: If inpmtx is NULL, or if resizeMultiple < 0, an error message is printed and the
program exits.

22. void InpMtx_setCoordType (InpMtx *inpmtx, int type) ;

This method sets a custom coordinate type, so type must be greater than or equal to 4. To change
from one of the three supported types to another, use InpMtx changeCoordType().

Error checking: If inpmtx is NULL, or if coordType <= 3, an error message is printed and the program
exits.

32.2.3 Methods to initialize and change state

1. void InpMtx_init (InpMtx *inpmtx, int coordType, int inputMode,

int maxnent, int maxnvector) ;

This is the initializer method that should be called immediately after InpMtx new(). It first clears any
previous data with a call to InpMtx clearData(). The coordType and inputMode fields are set. If
maxnent > 0 then the ivec1IV and ivec2IV objects are initialized to have size maxnent. If maxnent
> 0 and inputMode = SPOOLES REAL or inputMode = SPOOLES COMPLEX , then the dvecDV object is
initialized to have size maxnent. If maxnvector > 0 then the sizesIV and offsetsIV objects are
initialized to have size maxnvector.

Error checking: If inpmtx is NULL or if coordType or inputMode is invalid, or if maxnent or maxnvector
are less than zero, an error message is printed and the program exits.

2. void InpMtx_changeCoordType (InpMtx *inpmtx, int newType) ;

This method changes the coordinate type. If coordType = newType, the program returns. If coordType≥
4, then the triples are held in some unknown custom type and cannot be translated, so an error mes-
sage is printed and the program exits. If newType ≥ 4, then some custom coordinate type is now
present; the coordType field is set and the method returns. If newType is one of INPMTX BY ROWS,
INPMTX BY COLUMNS or INPMTX BY CHEVRONS, a translation is made from the old coordinate type to the
new type.

Error checking: If inpmtx is NULL or newType is invalid, an error message is printed and the program
exits.

3. void InpMtx_changeStorageMode (InpMtx *inpmtx, int newMode) ;

If storageMode = newMode, the method returns. Otherwise, a translation between the three valid
modes is made by calling InpMtx sortAndCompress() and InpMtx convertToVectors(), as appropri-
ate.

Error checking: If inpmtx is NULL or newMode is invalid, an error message is printed and the program
exits.

285

32.2.4 Input methods

1. void InpMtx_inputEntry (InpMtx *inpmtx, int row, int col) ;

void InpMtx_inputRealEntry (InpMtx *inpmtx, int row, int col, double value) ;

void InpMtx_inputComplexEntry (InpMtx *inpmtx, int row, int col,

double real, double imag) ;

This method places a single entry into the matrix object. The coordinate type of the object must be
INPMTX BY ROWS, INPMTX BY COLUMNS or INPMTX BY CHEVRONS. The triple is formed and inserted into
the vectors, which are resized if necessary.

Error checking: If inpmtx is NULL or row or col are negative, an error message is printed and the
program exits.

2. void InpMtx_inputRow (InpMtx *inpmtx, int row, int rowsize, int rowind[]) ;

void InpMtx_inputRealRow (InpMtx *inpmtx, int row, int rowsize,

int rowind[], double rowent[]) ;

void InpMtx_inputComplexRow (InpMtx *inpmtx, int row, int rowsize,

int rowind[], double rowent[]) ;

This method places a row or row fragment into the matrix object. The coordinate type of the object
must be INPMTX BY ROWS, INPMTX BY COLUMNS or INPMTX BY CHEVRONS. The individual entries of the
row are placed into the vector storage as triples, and the vectors are resized if necessary.

Error checking: If inpmtx is NULL, or row or rowsize are negative, or rowind or rowent are NULL, an
error message is printed and the program exits.

3. void InpMtx_inputColumn (InpMtx *inpmtx, int col, int colsize, int colind[]) ;

void InpMtx_inputRealColumn (InpMtx *inpmtx, int col, int colsize,

int colind[], double colent[]) ;

void InpMtx_inputComplexColumn (InpMtx *inpmtx, int col, int colsize,

int colind[], double colent[]) ;

This method places a column or column fragment into the matrix object. The coordinate type of the
object must be INPMTX BY ROWS, INPMTX BY COLUMNS or INPMTX BY CHEVRONS. The individual entries
of the column are placed into the vector storage as triples, and the vectors are resized if necessary.

Error checking: If inpmtx is NULL, or col or colsize are negative, or colind or colent are NULL, an
error message is printed and the program exits.

4. void InpMtx_inputChevron (InpMtx *inpmtx, int chv, int chvsize, int chvind[]) ;

void InpMtx_inputRealChevron (InpMtx *inpmtx, int chv, int chvsize,

int chvind[], double chvent[]) ;

void InpMtx_inputComplexChevron (InpMtx *inpmtx, int chv, int chvsize,

int chvind[], double chvent[]) ;

This method places a chevron or chevron fragment into the matrix object. The coordinate type of the
object must be INPMTX BY ROWS, INPMTX BY COLUMNS or INPMTX BY CHEVRONS. The individual entries
of the chevron are placed into the vector storage as triples, and the vectors are resized if necessary.

Error checking: If inpmtx is NULL, or chv or chvsize are negative, or chvind or chvent are NULL, an
error message is printed and the program exits.

5. void InpMtx_inputMatrix (InpMtx *inpmtx, int nrow, int col,

int rowstride, int colstride, int rowind[], int colind[]) ;

void InpMtx_inputRealMatrix (InpMtx *inpmtx, int nrow, int col,

int rowstride, int colstride, int rowind[], int colind[], double mtxent[]) ;

void InpMtx_inputComplexMatrix (InpMtx *inpmtx, int nrow, int col,

286

int rowstride, int colstride, int rowind[], int colind[], double mtxent[]) ;

This method places a dense submatrix into the matrix object. The coordinate type of the object must
be INPMTX BY ROWS, INPMTX BY COLUMNS or INPMTX BY CHEVRONS. The individual entries of the matrix
are placed into the vector storage as triples, and the vectors are resized if necessary.

Error checking: If inpmtx is NULL, or col or row are negative, or rowstride or colstride are less
than 1, or rowind, colind or mtxent are NULL, an error message is printed and the program exits.

6. void InpMtx_inputTriples (InpMtx *inpmtx, int ntriples,

int rowids[], int colids[]) ;

void InpMtx_inputRealTriples (InpMtx *inpmtx, int ntriples,

int rowids[], int colids[], double entries[]) ;

void InpMtx_inputComplexTriples (InpMtx *inpmtx, int ntriples,

int rowids[], int colids[], double entries[]) ;

This method places a vector of (row,column,entry) triples into the matrix object. The coordinate type
of the object must be INPMTX BY ROWS, INPMTX BY COLUMNS or INPMTX BY CHEVRONS.

Error checking: If inpmtx, rowids, colids is NULL, or ntriples are negative, or if inputMode = 2

and entries is NULL, an error message is printed and the program exits.

32.2.5 Permutation, map and support methods

These methods find the support of a matrix, map the indices from one numbering to another, and permute
the rows and/or columns of the matrix.

1. void InpMtx_supportNonsym (InpMtx *A, IV *rowsupIV, IV *colsupIV) ;

void InpMtx_supportNonsymT (InpMtx *A, IV *rowsupIV, IV *colsupIV) ;

void InpMtx_supportNonsymH (InpMtx *A, IV *rowsupIV, IV *colsupIV) ;

These methods are used to set up sparse matrix-matrix multiplies of the form Y := Y + αAX , Y :=
Y + αAT X or Y := Y + αAHX , where A is a nonsymmetric matrix. These methods fill rowsupIV
with the rows of Y that will be updated, and colsupIV with the rows of X that will be accessed. In
a distributed environment, A, X and Y will be distributed, and A will contain only part of the larger
global matrix A. Finding the row an column support enables one to construct local data structures
for X and the product αAX .

Error checking: If A, rowsupIV or colsupIV is NULL, an error message is printed and the program exits.

2. void InpMtx_supportSym (InpMtx *A, IV *supIV) ;

void InpMtx_supportSymH (InpMtx *A, IV *supIV) ;

These methods are used to set up sparse matrix-matrix multiplies of the form Y := Y +αAX where A
is a symmetric or Hermitian matrix. These methods fill supIV with the rows of Y that will be updated.
Since A has symmetric nonzero structure, the rows of Y that will be updated are exactly the same as
the rows of X that will be accessed. In a distributed environment, A, X and Y will be distributed,
and A will contain only part of the larger global matrix A. Finding the row an column support enables
one to construct local data structures for X and the product αAX .

Error checking: If A or supIV is NULL, an error message is printed and the program exits.

3. void InpMtx_mapEntries (InpMtx *A, IV *rowmapIV, IV *colmapIV) ;

These methods are used to map a matrix from one numbering system to another. The primary use of
this method is to map a part of a distributed matrix between the global and local numberings.

Error checking: If A, rowmapIV or colmapIV is NULL, an error message is printed and the program exits.

287

4. void InpMtx_permute (InpMtx *inpmtx, int rowOldToNew[], int colOldToNew[]) ;

This method permutes the rows and or columns of the matrix. If rowOldToNew and colOldToNew are
both NULL, or if there are no entries in the matrix, the method returns. Note, either rowOldToNew or
colOldToNew can be NULL. If coordType == INPMTX BY CHEVRONS, then the coordinates are changed
to row coordinates. The coordinates are then mapped to their new values. The storageMode is set to
1, (raw triples).

Error checking: If inpmtx is NULL, an error message is printed and the program exits.

32.2.6 Matrix-matrix multiply methods

There are four families of matrix-vector and matrix-matrix multiply methods. The InpMtx * mmm*()methods
compute

Y := Y + αAX, Y := Y + αAT X and Y := Y + αAHX,

where A is an InpMtx object, and X and Y are column major DenseMtx objects. The InpMtx * mmmVector*()

methods compute

y := y + αAx, y := y + αAT x and y := y + αAHx,

where A is an InpMtx object, and x and y are vectors. The InpMtx * gmmm*() methods compute

Y := βY + αAX, Y := βY + αAT X and Y := βY + αAHX,

where A is an InpMtx object, and X and Y are column major DenseMtx objects. The InpMtx * gmvm*()

methods compute

y := βy + αAx, y := βy + αAT x and y := βy + αAHx,

where A is an InpMtx object, and x and y are double vectors. The code notices if α and/or β are zero or 1
and takes special action.

1. void InpMtx_nonsym_mmm (InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X) ;

void InpMtx_sym_mmm (InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X) ;

void InpMtx_herm_mmm (InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X) ;

void InpMtx_nonsym_mmm_T (InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X) ;

void InpMtx_nonsym_mmm_H (InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X) ;

These five methods perform the following computations.

InpMtx nonsym mmm() Y := Y + αAX nonsymmetric real or complex
InpMtx sym mmm() Y := Y + αAX symmetric real or complex
InpMtx herm mmm() Y := Y + αAX Hermitian complex
InpMtx nonsym mmm T() Y := Y + αAT X nonsymmetric real or complex
InpMtx nonsym mmm H() Y := Y + αAHX nonsymmetric complex

A, X and Y must all be real or all be complex. When A is real, then α = alpha[0]. When A is complex,
then α = alpha[0] + i* alpha[1]. The values of α must be loaded into an array of length 1 or 2.

Error checking: If A, Y or X are NULL, or if coordType is not INPMTX BY ROWS, INPMTX BY COLUMNS or
INPMTX BY CHEVRONS, or if storageMode is not one of INPMTX RAW DATA, INPMTX SORTED or INPMTX BY VECTORS,
or if inputMode is not SPOOLES REAL or SPOOLES COMPLEX, an error message is printed and the program
exits.

288

2. void InpMtx_nonsym_mmmVector (InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X) ;

void InpMtx_sym_mmmVector (InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X) ;

void InpMtx_herm_mmmVector (InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X) ;

void InpMtx_nonsym_mmmVector_T (InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X) ;

void InpMtx_nonsym_mmmVector_H (InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X) ;

These five methods perform the following computations.

InpMtx nonsym mmm() y := y + αAx nonsymmetric real or complex
InpMtx sym mmm() y := y + αAx symmetric real or complex
InpMtx herm mmm() y := y + αAx Hermitian complex
InpMtx nonsym mmm T() y := y + αAT x nonsymmetric real or complex
InpMtx nonsym mmm H() y := y + αAHx nonsymmetric complex

A, x and y must all be real or all be complex. When A is real, then α = alpha[0]. When A is complex,
then α = alpha[0] + i* alpha[1]. The values of α must be loaded into an array of length 1 or 2.

Error checking: If A, x or x are NULL, or if coordType is not INPMTX BY ROWS, INPMTX BY COLUMNS or
INPMTX BY CHEVRONS, or if storageMode is not one of INPMTX RAW DATA, INPMTX SORTED or INPMTX BY VECTORS,
or if inputMode is not SPOOLES REAL or SPOOLES COMPLEX, an error message is printed and the program
exits.

3. int InpMtx_nonsym_gmmm (InpMtx *A, double beta[], DenseMtx *Y,

double alpha[], DenseMtx *X) ;

int InpMtx_sym_gmmm (InpMtx *A, double beta[], DenseMtx *Y,

double alpha[], DenseMtx *X) ;

int InpMtx_herm_gmmm (InpMtx *A, double beta[], DenseMtx *Y,

double alpha[], DenseMtx *X) ;

int InpMtx_nonsym_gmmm_T (InpMtx *A, double beta[], DenseMtx *Y,

double alpha[], DenseMtx *X) ;

int InpMtx_nonsym_gmmm_H (InpMtx *A, double beta[], DenseMtx *Y,

double alpha[], DenseMtx *X) ;

These five methods perform the following computations.

InpMtx nonsym gmmm() Y := βY + αAX nonsymmetric real or complex
InpMtx sym gmmm() Y := βY + αAX symmetric real or complex
InpMtx herm gmmm() Y := βY + αAX Hermitian complex
InpMtx nonsym gmmm T() Y := βY + αAT X nonsymmetric real or complex
InpMtx nonsym gmmm H() Y := βY + αAHX nonsymmetric complex

A, X and Y must all be real or all be complex. When A is real, then β = beta[0] and α = alpha[0].
When A is complex, then β = beta[0] + i*beta[1] and α = alpha[0] + i*alpha[1]. The values of
β and α must be loaded into an array of length 1 or 2.

Return codes:

1 normal return
-1 A is NULL
-2 type of A is invalid
-3 indices of entries of A are NULL

-4 beta is NULL
-5 Y is NULL
-6 type of Y is invalid
-7 bad dimensions and strides for Y

-8 entries of Y are NULL

-9 alpha is NULL
-10 X is NULL
-11 type of X is invalid
-12 bad dimensions and strides for X
-13 entries of X are NULL

-14 types of A, X and Y are not identical
-15 number of columns in X and Y are not equal

289

4. int InpMtx_nonsym_gmvm (InpMtx *A, double beta[], int ny, double y[],

double alpha[], int nx, double x[]) ;

int InpMtx_sym_gmvm (InpMtx *A, double beta[], int ny, double y[],

double alpha[], int nx, double x[]) ;

int InpMtx_herm_gmvm (InpMtx *A, double beta[], int ny, double y[],

double alpha[], int nx, double x[]) ;

int InpMtx_nonsym_gmvm_T (InpMtx *A, double beta[], int ny, double y[],

double alpha[], int nx, double x[]) ;

int InpMtx_nonsym_gmvm_H (InpMtx *A, double beta[], int ny, double y[],

double alpha[], int nx, double x[]) ;

These five methods perform the following computations.

InpMtx nonsym gmvm() y := βy + αAx nonsymmetric real or complex
InpMtx sym gmvm() y := βy + αAx symmetric real or complex
InpMtx herm gmvm() y := βy + αAx Hermitian complex
InpMtx nonsym gmvm T() y := βy + αAT x nonsymmetric real or complex
InpMtx nonsym gmvm H() y := βy + αAHx nonsymmetric complex

When A is real, then β = beta[0] and α = alpha[0]. When A is complex, then β = beta[0] +
i*beta[1] and α = alpha[0] + i*alpha[1]. The values of β and α must be loaded into an array of
length 1 or 2.

Return codes:

1 normal return
-1 A is NULL
-2 type of A is invalid
-3 indices of entries of A are NULL

-4 beta is NULL

-5 ny ≤ 0
-6 y is NULL
-7 alpha is NULL
-8 nx ≤ 0
-9 x is NULL

32.2.7 Graph construction methods

Often we need to construct a graph object from a matrix, e.g., when we need to find an ordering of the rows
and columns. We don’t construct a Graph object directly, but create a full adjacency structure that is stored
in an IVL object, a lower level object than the Graph object.

1. IVL * InpMtx_fullAdjacency (InpMtx *inpmtxA) ;

This method creates and returns an IVL object that holds the full adjacency structure of A + AT ,
where inpmtxA contains the entries in A.

Error checking: If inpmtxA is NULL, or if the coordinate type is not INPMTX BY ROWS or INPMTX BY COLUMNS,
or if the storage mode is not INPMTX BY VECTORS, an error message is printed and the program exits.

2. IVL * InpMtx_fullAdjacency2 (InpMtx *inpmtxA, InpMtx *inpmtxB) ;

This method creates and returns an IVL object that holds the full adjacency structure of (A + B) +
(A + B)T , where inpmtxA contains the entries in A and inpmtxB contains the entries in B.

Error checking: If inpmtxA is NULL, or if the coordinate type is not INPMTX BY ROWS or INPMTX BY COLUMNS,
or if the storage mode is not INPMTX BY VECTORS, an error message is printed and the program exits.

3. IVL * InpMtx_adjForATA (InpMtx *inpmtxA) ;

This method creates and returns an IVL object that holds the full adjacency structure of AT A, where
inpmtxA contains the entries in A.

Error checking: If inpmtxA is NULL, an error message is printed and the program exits.

290

32.2.8 Submatrix extraction method

1. int InpMtx_initFromSubmatrix (InpMtx *B, InpMtx *A, IV *BrowsIV,

IV *BcolsIV, int symmetryflag, int msglvl, FILE *msgFile) ;

This method fills B with the submatrix formed from the rows and columns of A found in BrowsIV and
BcolsIV. The row and column indices in B are local with respect to BrowsIV and BcolsIV.

When symmetryflag is SPOOLES SYMMETRIC or SPOOLES HERMITIAN, then we assume that when i 6= j,
Ai,j or Aj,i is stored, but not both. (A could be stored by rows of its upper triangle, or by columns of
its lower triangle, or a mixture.) In this case, if BrowsIV and BcolsIV are identical, then just the upper
triangular part of B is stored. Otherwise B contains all entries of A for rows in rowsIV and columns in
colsIV.

Return codes:

1 normal return
-1 B is NULL
-2 BcolsIV is NULL
-3 BrowsIV is NULL
-4 A is NULL

-5 invalid input mode for A
-6 invalid coordinate type for A
-7 invalid symmetryflag

-8 Hermitian symmetryflag but not complex
-9 msglvl > 0 and msgFile is NULL

32.2.9 Utility methods

1. void InpMtx_sortAndCompress (InpMtx *inpmtx) ;

This method sorts the triples first by their primary key and next by their secondary key. At this point
any two triples with identical first and second coordinates lie in consecutive locations, so it is easy to
add all entries together that are associated with a triple and thus compress the vectors.

Error checking: If inpmtx is NULL, or if storageMode is not 1, an error message is printed and the
program exits.

2. void InpMtx_convertToVectors (InpMtx *inpmtx) ;

This method fills the sizes[] and offsets[] arrays to generate a set of vectors of triples whose first
coordinate is identical. The method requires that storageMode = INPMTX SORTED, i.e., that the triples
have been sorted and compressed. The sizes of the two arrays are changed as necessary.

Error checking: If inpmtx is NULL, or if storageMode is not 2, an error message is printed and the
program exits.

3. void InpMtx_dropOffDiagonalEntries (InpMtx *inpmtx) ;

void InpMtx_dropLowerTriangle (InpMtx *inpmtx) ;

void InpMtx_dropUpperTriangle (InpMtx *inpmtx) ;

These methods purge entries based on structure.

Error checking: If inpmtx is NULL, or if coordType is not INPMTX BY ROWS, INPMTX BY COLUMNS or
INPMTX BY CHEVRONS, an error message is printed and the program exits.

4. void InpMtx_mapToLowerTriangle (InpMtx *inpmtx) ;

void InpMtx_mapToUpperTriangle (InpMtx *inpmtx) ;

void InpMtx_mapToUpperTriangleH (InpMtx *inpmtx) ;

If the InpMtx object holds only the lower or upper triangle of a matrix (as when the matrix is symmetric
or Hermitian), and is then permuted, it is not likely that the permuted object will only have entries in
the lower or upper triangle. The first method moves ai,j for i < j to aj,i. The second method moves
ai,j for i > j to aj,i, (If the matrix is Hermitian, the sign of the imaginary part of an entry is dealt with

291

in the correct fashion.) In other words, using these methods will restore the lower or upper triangular
structure after a permutation.

Error checking: If inpmtx is NULL, or if coordType is invalid, an error message is printed and the
program exits.

5. void InpMtx_log10profile (InpMtx *inpmtx, int npts, DV *xDV, DV *yDV,

double tausmall, double taubig,

int *pnzero, int *pnsmall, int *pnbig) ;

This method fills the xDV and yDV objects with with an approximate density profile of the magnitudes
of the entries in the matrix. Only values whose log 10(ai,j) is in the range [tausmall, taubig]

contribute to the profile. The range is divided up into npts buckets. The x value is the log 10 of a
average magnitude of a bucket, and the y value is the number of entries found in that bucket. On
return, *pnzero returns the number of zero entries in the matrix, *pnsmall returns the number of
entries whose log 10 magnitude is smaller than tausmall, and *pnbig returns the number of entries
whose log 10 magnitude is larger than taubig. The DVL log10profile() method is used to find the
profile.

Error checking: If inpmtx, xDV, yDV, pnzero, pnsmall or pnbig is NULL, or if inputMode is not
SPOOLES REAL or SPOOLES COMPLEX, or if npts, taubig or tausmall ≤ 0, or if tausmall > taubig,
an error message is printed and the program exits.

6. void InpMtx_checksums (InpMtx *inpmtx, double sums[]) ;

This method fills sums[0] with the sum of the absolute values of the first coordinates, sums[1] with
the sum of the absolute values of the second coordinates, and if entries are present, it fills sums[2]

with the sum of the magnitudes of the entries.

Error checking: If inpmtx is NULL, or if inputMode is not valid, an error message is printed and the
program exits.

7. int InpMtx_randomMatrix (InpMtx *inpmtx, int inputMode, int coordType,

int storageMode, int nrow, int ncol, int symflag,

int nonzerodiag, int nitem, int seed) ;

This methods fills mtx with random entries. inputMode can be indices only, real or complex. coordType
can be rows, columns or chevrons. storageMode can be raw, sorted or vectors. nrow and ncol must be
positive. symflag can be symmetric, Hermitian or nonsymmetric. if nonzerodiag is 1, the diagonal
of the matrix is filled with nonzeros. nitem numbers (or nitem + min(nrow,ncol) if nonzerodiag =

1) are placed into the matrix. seed is used for the random number generator.

Error checking: If inpmtx is NULL, -1 is returned. If inputMode is invalid, -2 is returned. If coordType
is invalid, -3 is returned. If storageMode is invalid, -4 is returned. If nrow or ncol is not positive,
-5 is returned. If symflag is invalid, -5 is returned. If symflag is Hermitian but inputMode is not
complex, -7 is returned. If symflag is symmetric or Hermitian but nrow is not equal to ncol, -8 is
returned. If nitem is not positive, -9 is returned. Otherwise, 1 is returned.

Return codes:

1 normal return
-1 inpmtx is NULL
-2 inputMode invalid
-3 coordType invalid
-4 storageMode invalid

-5 nrow or ncol negative
-6 symflag is invalid
-7 (symflag,inputMode) invalid
-8 (symflag,nrow,ncol) invalid
-9 nitem negative

292

32.2.10 IO methods

There are the usual eight IO routines. The file structure of a InpMtx object is simple: The first en-
tries in the file are coordType, storageMode, inputMode, nent and nvector. If nent > 0, then the
ivec1IV and ivec2IV vectors follow, If nent > 0 and inputMode = SPOOLES REAL or SPOOLES COMPLEX,
the dvecDV vector follows. If storageMode = INPMTX BY VECTORS and nvector > 0, the vecidsIV, sizesIV
and offsetsIV vectors follow.

1. int InpMtx_readFromFile (InpMtx *inpmtx, char *fn) ;

This method reads the object from a formatted or binary file. It tries to open the file and if successful,
it then calls InpMtx readFromBinaryFile() or InpMtx readFromFormattedFile(), closes the file and
returns the value returned from the called routine.

Error checking: If inpmtx or fn is NULL, or if fn is not of the form *.inpmtxf (for a formatted file)
or *.inpmtxb (for a binary file), or if the file cannot be opened, an error message is printed and the
method returns zero.

2. int InpMtx_readFromFormattedFile (InpMtx *inpmtx, FILE *fp) ;

This method reads in the object from a formatted file. If there are no errors in reading the data, the
value 1 is returned. If an IO error is encountered from fscanf, zero is returned.

Error checking: If inpmtx or fp is NULL, an error message is printed and the method returns zero.

3. int InpMtx_readFromBinaryFile (InpMtx *inpmtx, FILE *fp) ;

This method reads in the object from a binary file. If there are no errors in reading the data, the value
1 is returned. If an IO error is encountered from fread, zero is returned.

Error checking: If inpmtx or fp is NULL, an error message is printed and the method returns zero.

4. int InpMtx_writeToFile (InpMtx *inpmtx, char *fn) ;

This method writes the object to a formatted or binary file. It tries to open the file and if successful,
it then calls InpMtx writeToBinaryFile() or InpMtx writeToFormattedFile(), closes the file and
returns the value returned from the called routine.

Error checking: If inpmtx of fn is NULL, or if fn is not of the form *.inpmtxf (for a formatted file)
or *.inpmtxb (for a binary file), or if the file cannot be opened, an error message is printed and the
method returns zero.

5. int InpMtx_writeToFormattedFile (InpMtx *inpmtx, FILE *fp) ;

This method writes the object to a formatted file. If there are no errors in writing the data, the value
1 is returned. If an IO error is encountered from fprintf, zero is returned.

Error checking: If inpmtx or fp is NULL, an error message is printed and the method returns zero.

6. int InpMtx_writeToBinaryFile (InpMtx *inpmtx, FILE *fp) ;

This method writes the object to a binary file. If there are no errors in writing the data, the value 1

is returned. If an IO error is encountered from fwrite, zero is returned.

Error checking: If inpmtx or fp is NULL, an error message is printed and the method returns zero.

7. int InpMtx_writeForHumanEye (InpMtx *inpmtx, FILE *fp) ;

This method writes the object to a file suitable for reading by a human. The method InpMtx writeStats()

is called to write out the header and statistics. The data is written out in the appropriate way, e.g., if
the storage mode is by triples, triples are written out. The value 1 is returned.

Error checking: If inpmtx or fp are NULL, an error message is printed and zero is returned.

293

8. int InpMtx_writeStats (InpMtx *inpmtx, FILE *fp) ;

This method writes the statistics about the object to a file. human. The value 1 is returned.

Error checking: If inpmtx or fp are NULL, an error message is printed and zero is returned.

9. void InpMtx_writeForMatlab (InpMtx *mtx, char *mtxname, FILE *fp) ;

This method writes out a InpMtx object to a file in a Matlab format. A sample line is

a(10,5) = -1.550328201511e-01 + 1.848033378871e+00*i ;

for complex matrices, or

a(10,5) = -1.550328201511e-01 ;

for real matrices, where mtxname = "a". The matrix indices come from the rowind[] and colind[]

vectors, and are incremented by one to follow the Matlab and FORTRAN convention.

Error checking: If mtx, mtxname or fp are NULL, an error message is printed and zero is returned.

10. int InpMtx_readFromHBFile (InpMtx *inpmtx, char *fn) ;

This method reads the object from a Harwell-Boeing file. This method calls readHB info() and
readHB mat double() from the Harwell-Boeing C IO routines from NIST1, found in the misc/src/iohb.c
file.

Error checking: If inpmtx or fn is NULL, or if the file cannot be opened, an error message is printed
and the method returns zero.

32.3 Driver programs for the InpMtx object

This section contains brief descriptions of the driver programs.

1. testIO msglvl msgFile inFile outFile

This driver program reads and write InpMtx files, useful for converting formatted files to binary files
and vice versa. One can also read in a InpMtx file and print out just the header information (see the
InpMtx writeStats() method).

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the InpMtx
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inFile parameter is the input file for the InpMtx object. It must be of the form *.inpmtxf

or *.inpmtxb. The InpMtx object is read from the file via the InpMtx readFromFile() method.

• The outFile parameter is the output file for the InpMtx object. If outFile is none then the
InpMtx object is not written to a file. Otherwise, the InpMtx writeToFile() method is called
to write the object to a formatted file (if outFile is of the form *.inpmtxf), or a binary file (if
outFile is of the form *.inpmtxb).

2. testFullAdj msglvl msgFile nvtx nent seed

This driver program tests the InpMtx fullAdjacency() method. If first generates a InpMtx object
filled with random entries of a matrix A and then constructs an IVL object that contains the full
adjacency structure of A + AT , diagonal edges included.

1http://math.nist.gov/mcsd/Staff/KRemington/harwell io/harwell io.html

294

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the InpMtx
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The nvtx parameter is the number of rows and columns in A.

• The nent parameter is an upper bound on the number of entries in A. (Since the locations of the
entries are generated via random numbers, there may be duplicate entries.)

• The seed parameter is random number seed.

3. testFullAdj2 msglvl msgFile nvtx nentA nentB seed

This driver program tests the InpMtx fullAdjacency2()method. If first generates two InpMtx object
filled with random entries — one for a matrix A and one for a matrix B. It then constructs an IVL

object that contains the full adjacency structure of (A + B) + (A + B)T , diagonal edges included.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the InpMtx
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The nvtx parameter is the number of rows and columns in A.

• The nentA parameter is an upper bound on the number of entries in A. (Since the locations of
the entries are generated via random numbers, there may be duplicate entries.)

• The nentB parameter is an upper bound on the number of entries in B. (Since the locations of
the entries are generated via random numbers, there may be duplicate entries.)

• The seed parameter is random number seed.

4. createGraph msglvl msgFile inFile outFile

This driver program reads in InpMtx object from the file inFile that holds a matrix A. It then creates
a Graph object for B = A + AT and writes it to the file outFile. Recall, a Graph object must be
symmetric, so if the InpMtx object only holds the lower or upper triangular part of the matrix, the
other portion will be added. Also, a Graph object has edges of the form (v,v), and if these entries are
missing from the InpMtx object, they will be added.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the InpMtx
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inFile parameter is the input file for the InpMtx object. It must be of the form *.inpmtxf

or *.inpmtxb. The InpMtx object is read from the file via the InpMtx readFromFile() method.

• The outFile parameter is the output file for the InpMtx object. If outFile is none then the
InpMtx object is not written to a file. Otherwise, the InpMtx writeToFile() method is called
to write the object to a formatted file (if outFile is of the form *.inpmtxf), or a binary file (if
outFile is of the form *.inpmtxb).

5. createGraphForATA msglvl msgFile inFile outFile

This driver program reads in InpMtx object from the file inFile that holds a matrix A. It then creates
a Graph object for B = AT A and writes it to the file outFile.

295

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the InpMtx
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inFile parameter is the input file for the InpMtx object. It must be of the form *.inpmtxf

or *.inpmtxb. The InpMtx object is read from the file via the InpMtx readFromFile() method.

• The outFile parameter is the output file for the InpMtx object. If outFile is none then the
InpMtx object is not written to a file. Otherwise, the InpMtx writeToFile() method is called
to write the object to a formatted file (if outFile is of the form *.inpmtxf), or a binary file (if
outFile is of the form *.inpmtxb).

6. adjToGraph msglvl msgFile inAdjacencyFile outGraphFile flag

This driver program was used to generate a type 0 Graph object (unit weight vertices and edges) from
a file that contained the adjacency structure of a matrix in the following form.

nvtx nadj

offsets[nvtx+1]

indices[nadj]

There are nvtx vertices in the graph and the adjacency vector has nadj entries. It was not known
whether the adjacency structure contained (v,v) entries or if it was only the upper or lower triangle.
Our Graph object is symmetric with loops, i.e., (u,v) is present if and only if (v,u) is present, and
(v,v) is present.

This program reads in the adjacency structure, decrements the offsets and indices by one if specified by
the flag parameter (our application came from a Fortran code with 1-indexing), then loads the entries
into a InpMtx object where they are assembled and sorted by rows. The (v, v) entries are loaded, and
each vector of the adjacency structure is loaded as both a column and as a row, so in effect we are
constructing the graph of (A + AT). Recall, multiple entries are collapsed during the sort and merge
step.

A Graph object is then created using the Graph fillFromOffsets() method using the vectors in the
InpMtx object. The Graph object is then optionally written to a file.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the InpMtx
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inAdjacencyFile parameter is the input file for the adjacency structure as defined above.
It must be a formatted file.

• The outGraphFile parameter is the output file for the Graph object. If outGraphFile is none

then the Graph object is not written to a file. Otherwise, the Graph writeToFile() method is
called to write the object to a formatted file (if outGraphFile is of the form *.graphf), or a
binary file (if outGraphFile is of the form *.graphb).

• The flag parameter is used to specify whether the offsets and indices are 0-indexed (as in C) or
1-indexed (as in Fortran). If they are 1-indexed, the offsets and indices are decremented prior to
loading into the InpMtx object.

7. weightedAdjToGraph msglvl msgFile inAdjacencyFile outGraphFile flag

This driver program was used to generate a type 1 Graph object (weighted vertices, unit weight edges)
from a file that contained the adjacency structure of a matrix in the following form.

296

nvtx nadj

vwghts[nvtx]

offsets[nvtx+1]

indices[nadj]

There are nvtx vertices in the graph and the adjacency vector has nadj entries. It was not known
whether the adjacency structure contained (v,v) entries or if it was only the upper or lower triangle.
Our Graph object is symmetric with loops, i.e., (u,v) is present if and only if (v,u) is present, and
(v,v) is present.

This program reads in the adjacency structure, decrements the offsets and indices by one if specified by
the flag parameter (our application came from a Fortran code with 1-indexing), then loads the entries
into a InpMtx object where they are assembled and sorted by rows. The (v, v) entries are loaded, and
each vector of the adjacency structure is loaded as both a column and as a row, so in effect we are
constructing the graph of (A + AT). Recall, multiple entries are collapsed during the sort and merge
step.

A Graph object is then created using the Graph fillFromOffsets() method using the vectors in the
InpMtx object. The Graph object is then optionally written to a file.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the InpMtx
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inAdjacencyFile parameter is the input file for the adjacency structure as defined above.
It must be a formatted file.

• The outGraphFile parameter is the output file for the Graph object. If outGraphFile is none

then the Graph object is not written to a file. Otherwise, the Graph writeToFile() method is
called to write the object to a formatted file (if outGraphFile is of the form *.graphf), or a
binary file (if outGraphFile is of the form *.graphb).

• The flag parameter is used to specify whether the offsets and indices are 0-indexed (as in C) or
1-indexed (as in Fortran). If they are 1-indexed, the offsets and indices are decremented prior to
loading into the InpMtx object.

8. testR2D msglvl msgFile EGraphFile CoordsFile coordType seed outInpMtxFile

This driver program reads in an EGraph element graph and a Coords grid point coordinate object
for one of the R2D* randomly triangulated 2-D grids. It then generates the finite element matrices
for each of the triangular elements and assembles the matrices into a InpMtx object, which is then
optionally written out to a file. A matrix-vector product is computed using the unassembled matrix
and the assembled matrix and compared to detect errors. The InpMtx object is then permuted and a
matrix-vector multiply again computed and checked for errors.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means that all
objects are written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any message data.

• The EGraphFile is the file that holds the EGraph object — must be of the form *.egraphf or
*.egraphb.

• The CoordsFile is the file that holds the Coords object — must be of the form *.coordsf or
*.coordsb.

• The coordType determines the coordinate type for the InpMtx object.

297

– 1 — storage of entries by rows

– 2 — storage of entries by columns

– 3 — storage of entries by chevrons

• The seed parameter is used as a random number seed to determine the row and column permu-
tations for the matrix-vector multiply.

• The outInpMtxFile parameter is the output file for the InpMtx object. If outInpMtxFile is none
then the InpMtx object is not written to a file. Otherwise, the InpMtx writeToFile() method is
called to write the object to a formatted file (if outInpMtxFile is of the form *.inpmtxf), or a
binary file (if outInpMtxFile is of the form *.inpmtxb).

9. readAIJ msglvl msgFile inputFile outInpMtxFile flag

This driver program reads (i, j, ai,j) triples from a file, loads them into a InpMtx object, and optionally
writes the object out to a file. The input file has the form:

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means that all
objects are written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any message data.

• The inputFile is the file that holds the triples. It has the following form.

nrow ncol nentries

irow jcol value

...

irow jcol value

Note, nrow and ncol are not used by the InpMtx object — each (irow, jcol, value) triple is loaded.

• The outInpMtxFile parameter is the output file for the InpMtx object. If outInpMtxFile is none
then the InpMtx object is not written to a file. Otherwise, the InpMtx writeToFile() method is
called to write the object to a formatted file (if outInpMtxFile is of the form *.inpmtxf), or a
binary file (if outInpMtxFile is of the form *.inpmtxb).

• The flag parameter is used to specify whether the indices are 0-indexed (as in C) or 1-indexed (as
in Fortran). If they are 1-indexed, the indices are decremented prior to loading into the InpMtx

object.

10. getProfile msglvl msgFile inInpMtxFile npts tausmall taubig

This driver program produces a profile of the magnitudes of the matrix entries in a format that is
suitable for plotting by Matlab. The npts parameter specifies how many points to be used in the
profile plot. The message file will contain line of the form.

data = [...

x1 y1

...

xnpts ynpts] ;

which can be used to generate the following matlab plot. An example is given below for the bcsstk23

matrix, where npts = 200, tausmall = 1.e-10 and taubig = 1.e100.

298

−10 −5 0 5 10 15 20
0

200

400

600

800

1000

1200

1400

1600

 log10(|a_{i,j}|)

 #
 o

f
e
n
tr

ie
s

 BCSSTK23: profile of magnitudes of matrix entries

The number of entries that are zero, the number whose magnitude is less than tausmall, and the
number whose magnitude is larger than taubig are printed to msgFile.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the InpMtx
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inInpMtxFile parameter is the input file for the InpMtx object that holds the matrix. It
must be of the form *.inpmtxf or *.inpmtxb. The InpMtx object is read from the file via the
InpMtx readFromFile() method.

• The npts parameter determines the number of points to use in the plot.

• The tausmall parameter is a lower cutoff for putting entries in the profile plot.

• The taubig parameter is an upper cutoff for putting entries in the profile plot.

11. mkNaturalFactorMtx msglvl msgFile n1 n2 n3 seed outFile

This driver program generates rectangular matrix that would arise from a natural factor representation
of the Laplacian operator on a regular grid. If n3 = 1, we have a n1×n2 grid. There are (n1-1)*(n2-1)
elements and each element gives rise to four equations, so the resulting matrix has 4(n1-1)*(n2-1) rows
and n1*n2 columns. If n3 > 1, we have a n1×n2×n3 grid. There are (n1-1)*(n2-1)*(n3-1) elements
and each element gives rise to eight equations, so the resulting matrix has 8(n1-1)*(n2-1)*(n3-1)

rows and n1*n2*n3 columns.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the InpMtx
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• n1 is the number of points in the first direction.

• n2 is the number of points in the second direction.

• n3 is the number of points in the third direction.

• The seed parameter is a random number seed used to fill the matrix entries with random numbers.

• The outFile parameter is the output file for the InpMtx object that holds the matrix. It
must be of the form *.inpmtxf or *.inpmtxb. The InpMtx object is written to the file via
the InpMtx writeToFile() method.

299

12. testMMM msglvl msgFile dataType symflag coordType transpose

nrow ncol nitem nrhs seed alphaReal alphaImag

This driver program tests the matrix-matrix multiply methods. This driver program generates A, a
nrow× ncol matrix using nitem input entries, X and Y , nrow× nrhs matrices, and all are filled with
random numbers. It then computes Y := Y + αAX , Y := Y + αAT X or Y := Y + αAHX . The
program’s output is a file which when sent into Matlab, outputs the error in the computation.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the InpMtx
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• dataType is the type of entries, 0 for real, 1 for complex.

• symflag is the symmetry flag, 0 for symmetric, 1 for Hermitian, 2 for nonsymmetric.

• coordType is the storage mode for the entries, 1 for by rows, 2 for by columns, 3 for by chevrons.

• transpose determines the equation, 0 for Y := Y + αAX , 1 for Y := Y + αAHX or 2 for
Y := Y + αAT X .

• nrowA is the number of rows in A

• ncolA is the number of columns in A

• nitem is the number of matrix entries that are assembled into the matrix.

• nrhs is the number of columns in X and Y .

• The seed parameter is a random number seed used to fill the matrix entries with random numbers.

• alphaReal and alphaImag form the scalar in the multiply.

13. testGMMM msglvl msgFile dataType symflag coordType transpose

nrow ncol nitem nrhs seed alphaReal alphaImag betaReal betaImag

This driver program tests the generalized matrix-matrix multiply methods. It generates A, a nrow×
ncol matrix using nitem input entries, X and Y , nrow× nrhs matrices, and all are filled with random
numbers. It then computes Y := βY +αAX , Y := βY +αAT X or Y := βY + αAHX . The program’s
output is a file which when sent into Matlab, outputs the error in the computation.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the InpMtx
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• dataType is the type of entries, 0 for real, 1 for complex.

• symflag is the symmetry flag, 0 for symmetric, 1 for Hermitian, 2 for nonsymmetric.

• coordType is the storage mode for the entries, 1 for by rows, 2 for by columns, 3 for by chevrons.

• transpose determines the equation, 0 for Y := βY + αAX , 1 for Y := βY + αAHX or 2 for
Y := βY + αAT X .

• nrowA is the number of rows in A

• ncolA is the number of columns in A

• nitem is the number of matrix entries that are assembled into the matrix.

• nrhs is the number of columns in X and Y .

• The seed parameter is a random number seed used to fill the matrix entries with random numbers.

300

• alphaReal and alphaImag form the α scalar in the multiply.

• betaReal and betaImag form the β scalar in the multiply.

14. testGMVM msglvl msgFile dataType symflag coordType transpose

nrow ncol nitem seed alphaReal alphaImag betaReal betaImag

This driver program tests the generalized matrix-vector multiply methods. It generates A, a nrow×ncol
matrix using nitem input entries, x and y, and fills the matrices with random numbers. It then
computes y := βy + αAx, y := βy + αAT x or y := βy + αAHx. The program’s output is a file which
when sent into Matlab, outputs the error in the computation.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the InpMtx
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• dataType is the type of entries, 0 for real, 1 for complex.

• symflag is the symmetry flag, 0 for symmetric, 1 for Hermitian, 2 for nonsymmetric.

• coordType is the storage mode for the entries, 1 for by rows, 2 for by columns, 3 for by chevrons.

• transpose determines the equation, 0 for y := βy + αAx, 1 for y := βy + αAT x or 2 for
y := βy + αAHx.

• nrowA is the number of rows in A

• ncolA is the number of columns in A

• nitem is the number of matrix entries that are assembled into the matrix.

• The seed parameter is a random number seed used to fill the matrix entries with random numbers.

• alphaReal and alphaImag form the α scalar in the multiply.

• betaReal and betaImag form the β scalar in the multiply.

15. testHBIO msglvl msgFile inFile outFile

This driver program read in a matrix from a Harwell-Boeing file, and optionally writes it to a formatted
or binary InpMtx file.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the InpMtx
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inFile parameter is the Harwell-Boeing file.

• The outFile parameter is the output file for the InpMtx object. If outFile is none then the
InpMtx object is not written to a file. Otherwise, the InpMtx writeToFile() method is called
to write the object to a formatted file (if outFile is of the form *.inpmtxf), or a binary file (if
outFile is of the form *.inpmtxb).

Chapter 33

Iter: Iterative Methods

Iter is composed of 5 Krylov space iterative methods, PCG (Preconditioned Conjugate Gradients), BiCGStab,
TFQMR, and BGMRES (Block GMRES), and MLBiCGStab. (For references, see top comments in codes.)
The intent of these methods is to provide the user of SPOOLES with an easy way to evaluate the effective-
ness of the approximate factorizations belonging to the FrontMtx object. To further facilitate the evaluation
we have included a single call driver that can run anyone of the methods we have provided with the type
of preconditioner desired. For each iterative method we allow for left and right preconditioning. Also, for
each method, except BGMRES, we allow for real or complex matrices.

Because our intent was to provide a simple means to test the effectiveness of the preconditioners, these
implementations are not parallel (neither shared or distributed memory). However, they were intentionally
written to be consistent in style and form so that they could be easily adapted to exploit the parallelism
that is in SPOOLES. All iterative methods use the basic structure DenseMtx for handling the intermediate
vectors and performing the matrix multiplications and system solves. By doing this we have also anticipated
the eventual movement to block iterative methods and the DenseMtx structure can remain the basic structure.
There are a few basic utilities that have been added, which are discribed in this section, upon which the
iterative methods were built. These are provided to aid the experienced SPOOLES user with an ability to
develop additional iterative methods, as seen fit.

33.1 Data Structure

The methods in Iter solve a linear system AX = B, where A is an InpMtx object and X and B are
DenseMtx objects. The preconditioner is a FrontMtx object obtained via frontal method which uses several
other objects. See header file Iter.h for further information.

33.2 Prototypes and descriptions of Iter methods

This section contains brief descriptions including prototypes of all methods found in the Iter source directory.

33.2.1 Utility methods

1. double DenseMtx_frobNorm (DenseMtx *mtx) ;

This method returns the Frobenius norm of the matrix.

Error checking: If mtx is NULL, an error message is printed and the program exits.

301

302

2. double DenseMtx_twoNormOfColumn (DenseMtx *mtx, int jcol) ;

This method returns the two-norm of column jcol of the matrix.

Error checking: If mtx is NULL, or jcol is not in [0,ncol-1], an error message is printed and the
program exits.

3. void DenseMtx_colCopy (DenseMtx *mtxB, int jcol,

DenseMtx *mtxA, int icol) ;

This method copies the column icol of the matrix mtxA to the column jcol of the matrix mtxB.

Error checking: If mtxA or mtxB is NULL, jcol is not in [0,ncolB-1], or icol is not in [0,ncolA-1]

an error message is printed and the program exits.

4. void DenseMtx_colDotProduct (DenseMtx *mtxA, int icol,

DenseMtx *mtxB, int jcol, double *prod) ;

This method computes dot product of column icol of the matrix mtxA and column jcol of the matrix
mtxB. Note that the column icol of the matrix mtxA will be transported and conjugated for complex
entries.

Error checking: If mtxA or mtxB is NULL, jcol is not in [0,ncolB-1], or icol is not in [0,ncolA-1]

an error message is printed and the program exits.

5. void DenseMtx_colGenAxpy (double *alpha, DenseMtx *mtxA, int icol,

double *beta, DenseMtx *mtxB, int jcol) ;

This method replaces column icol of the matrix mtxA by alpha times itself plus beta times column
jcol of mtxB.

Error checking: If mtxA or mtxB is NULL, jcol is not in [0,ncolB-1], or icol is not in [0,ncolA-1]

an error message is printed and the program exits.

6. int DenseMtx_mmm (char *A_opt, char *B_opt, double *beta, DenseMtx *mtxC,

double *alpha, DenseMtx *mtxA, DenseMtx *mtxB);

This method computes the matrix-matrix multiplication C := βC + αAB, where A, B and C are
found in the C DenseMtx object, β and α are real or complex in beta[] and alpha[]. If any of the
input objects are NULL, an error message is printed and the program exits. A, B and C must all be real
or all be complex. When A and B are real, then α = alpha[0]. When A and B are complex, then
α = alpha[0] + i* alpha[1]. When C is real, then β = beta[0]. When C is complex, then β =
beta[0] + i* beta[1]. This means that one cannot call the method with a constant as the third and
fifth parameter, e.g., DenseMtx mmm(a opt, b opt, beta, C, alpha, A, B), for this may result in a
segmentation violation. The values of α and β must be loaded into an array of length 1 or 2 .

Error checking: If beta, alpha, C, A, B are NULL, or if C, A and B do not have the same data type
(SPOOLES REAL or SPOOLES COMPLEX), or if A opt or B opt is invalid, or the number of column of A and
the number of row of B is not match, an error message is printed and the program exits.

7. void FrontMtx_solveOneColumn (FrontMtx *frontmtx, DenseMtx *solmtx,

int jcol, DenseMtx *rhsmtx, int icol, SubMtxManager *mtxmanager,

double cpus[], int msglvl, FILE *msgFile) ;

This method is used to solve one of three linear systems of equations — (UT + I)D(I + U)X = B,
(UH +I)D(I +U)X = B or (L+I)D(I +U)X = B. Entries of B are read from column icol of rhsmtx
and entries of X are written to column jcol of solmtx. Therefore, rhsmtx and solmtx can be the
same object. (Note, this does not hold true for an MPI factorization with pivoting.) The mtxmanager

object manages the working storage using the solve. On return the cpus[] vector is filled with the
following.

303

• cpus[0] — set up the solves

• cpus[1] — fetch right hand side and store solution

• cpus[2] — forward solve

• cpus[3] — diagonal solve

• cpus[4] — backward solve

• cpus[5] — total time in the method.

Error checking: If frontmtx, rhsmtx or cpus is NULL, or if msglvl > 0 and msgFile is NULL, an error
message is printed and the program exits.

33.2.2 Iterative methods

A collection of iterative methods is provided to solve a sparse linear system AX = B, where A is an
InpMtx object and X and B are DenseMtx objects. This includes left and right preconditioning BiCGStab,
MLBiCGStab, TFQMR, PCG, and BGMRES. All methods have similar input arguments:

• n matrixSize is order of the matrix A.

• type is the type of entries, 0 for real, 1 for complex.

• The symmetryflag parameter specifies the symmetry of the matrix A.

– type = 0 (SPOOLES SYMMETRIC) for A real or complex symmetric,

– type = 1 (SPOOLES HERMITIAN) for A complex Hermitian,

– type = 2 (SPOOLES NONSYMMETRIC) for A real or complex nonsymmetric.

• mtxA is the matrix A.

• Precond is the preconditioner.

• mtxX is the solution vectors X saved as a DenseMtx object.

• mtxB is the right-hand-side vectors B saved as a DenseMtx object.

• itermax is the maximum iterations number.

• convergetol parameter is a stop criterion for iterative algorithms.

• maxninner is the maximum number of inner iterations in BGMRES method.

• maxnouter is the maximum number of outer iterations in BGMRES method.

• pninner is last number of inner iterations executed in BGMRES method.

• pnouter is last number of outer iterations executed in BGMRES method.

• mtxQ is the starting vectors saved as a DenseMtx object for MLBiCGStab method.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message file is
stdout, otherwise a file is opened with append status to receive any output data.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means most of the
objects are written to the message file.

304

1. int bicgstabr (int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA,

FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxB, int itermax,

double convergetol, int msglvl, FILE *msgFile) ;

This method solves a real linear system using BiCGStab algorithm with right preconditioner.

Return codes: 1 is a normal return. Otherwise, an error message is printed and the program exits.

2. int bicgstabl (int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA,

FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxB, int itermax,

double convergetol, int msglvl, FILE *msgFile) ;

This method solves a real linear system using BiCGStab algorithm with left preconditioner.

Return codes: 1 is a normal return. Otherwise, an error message is printed and the program exits.

3. int mlbicgstabr (int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA,

FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxQ, DenseMtx *mtxB,

int itermax, double convergetol, int msglvl, FILE *msgFile) ;

This method solves a real linear system using MLBiCGStab algorithm with right preconditioner.

Return codes: 1 is a normal return. Otherwise, an error message is printed and the program exits.

4. int mlbicgstabl (int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA,

FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxQ, DenseMtx *mtxB,

int itermax, double convergetol, int msglvl, FILE *msgFile) ;

This method solves a real linear system using MLBiCGStab algorithm with left preconditioner.

Return codes: 1 is a normal return. Otherwise, an error message is printed and the program exits.

5. int tfqmrr (int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA,

FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxB, int itermax,

double convergetol, int msglvl, FILE *msgFile) ;

This method solves a real linear system using TFQMR algorithm with right preconditioner.

Return codes: 1 is a normal return. Otherwise, an error message is printed and the program exits.

6. int tfqmrl (int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA,

FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxB, int itermax,

double convergetol, int msglvl, FILE *msgFile) ;

This method solves a real linear system using TFQMR algorithm with left preconditioner.

Return codes: 1 is a normal return. Otherwise, an error message is printed and the program exits.

7. int pcgr (int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA,

FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxB, int itermax,

double convergetol, int msglvl, FILE *msgFile) ;

This method solves a real symmetric position definite linear system using PCG algorithm with right
preconditioner.

Return codes: 1 is a normal return. Otherwise, an error message is printed and the program exits.

8. int pcgl (int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA,

FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxB, int itermax,

double convergetol, int msglvl, FILE *msgFile) ;

This method solves a real symmetric position definite linear system using PCG algorithm with left
preconditioner.

Return codes: 1 is a normal return. Otherwise, an error message is printed and the program exits.

305

9. int bgmresr (int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA,

FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxB, int maxnouter,

int maxninner, int *pnouter, int *pninner, double convergetol,

int msglvl, FILE *msgFile) ;

This method solves a real linear system using BGMRES algorithm with right preconditioner.

Return codes: 1 is a normal return. Otherwise, an error message is printed and the program exits.

10. int bgmresl (int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA,

FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxB, int maxnouter,

int maxninner, int *pnouter, int *pninner, double convergetol,

int msglvl, FILE *msgFile) ;

This method solves a real linear system using BGMRES algorithm with left preconditioner.

Return codes: 1 is a normal return. Otherwise, an error message is printed and the program exits.

11. int zbicgstabr (int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA,

FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxB, int itermax,

double convergetol, int msglvl, FILE *msgFile) ;

This method solves a complex linear system using BiCGStab algorithm with right preconditioner.

Return codes: 1 is a normal return. Otherwise, an error message is printed and the program exits.

12. int zbicgstabl (int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA,

FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxB, int itermax,

double convergetol, int msglvl, FILE *msgFile) ;

This method solves a complex linear system using BiCGStab algorithm with left preconditioner.

Return codes: 1 is a normal return. Otherwise, an error message is printed and the program exits.

13. int zmlbicgstabr (int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA,

FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxQ, DenseMtx *mtxB,

int itermax, double convergetol, int msglvl, FILE *msgFile) ;

This method solves a complex linear system using MLBiCGStab algorithm with right preconditioner.

Return codes: 1 is a normal return. Otherwise, an error message is printed and the program exits.

14. int zmlbicgstabl (int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA,

FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxQ, DenseMtx *mtxB,

int itermax, double convergetol, int msglvl, FILE *msgFile) ;

This method solves a complex linear system using MLBiCGStab algorithm with left preconditioner.

Return codes: 1 is a normal return. Otherwise, an error message is printed and the program exits.

15. int ztfqmrr (int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA,

FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxB, int itermax,

double convergetol, int msglvl, FILE *msgFile) ;

This method solves a complex linear system using TFQMR algorithm with right preconditioner.

Return codes: 1 is a normal return. Otherwise, an error message is printed and the program exits.

16. int ztfqmrl (int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA,

FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxB, int itermax,

double convergetol, int msglvl, FILE *msgFile) ;

This method solves a complex linear system using TFQMR algorithm with left preconditioner.

Return codes: 1 is a normal return. Otherwise, an error message is printed and the program exits.

306

17. int zpcgr (int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA,

FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxB, int itermax,

double convergetol, int msglvl, FILE *msgFile) ;

This method solves a complex hermitian position definite linear system using PCG algorithm with
right preconditioner.

Return codes: 1 is a normal return. Otherwise, an error message is printed and the program exits.

18. int zpcgl (int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA,

FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxB, int itermax,

double convergetol, int msglvl, FILE *msgFile) ;

This method solves a complex hermitian position definite linear system using PCG algorithm with left
preconditioner.

Return codes: 1 is a normal return. Otherwise, an error message is printed and the program exits.

33.3 Driver programs

1. test_colCopy msglvl msgFile type n1 n2 inc1 inc2 icol jcol seed

This driver program generates a DenseMtx object whose column icol is copied to column jcol.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the
DenseMtx object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• type is the type of entries, 0 for real, 1 for complex.

• n1 is the row dimension of the test matrix.

• n2 is the column dimension of the test matrix.

• inc1 is the row increment.

• inc2 is the column increment.

• icol is the column number to be copied. 0 ≤icol<n2.

• jcol is the column number to be replaced. 0 ≤jcol<n2.

• seed parameter is random number seed.

2. test_colDotProduct msglvl msgFile type n1 n2 inc1 inc2 icol jcol seed

This driver program generates a DenseMtx object object, and computes the dot product of column
icol and column jcol of the matrix.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the
DenseMtx object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• type is the type of entries, 0 for real, 1 for complex.

• n1 is the row dimension of the test matrix.

• n2 is the column dimension of the test matrix.

• inc1 is the row increment.

307

• inc2 is the column increment.

• icol is the first column number. 0 ≤icol<n2.

• jcol is the second column number. 0 ≤jcol<n2.

• seed parameter is random number seed.

3. test_colGenAxpy msglvl msgFile type n1 n2 inc1 inc2 icol jcol

ralpha, ialpha, rbeta, ibeta, seed

This driver program generates a DenseMtx object whose column icol is replaced by α times column
icol plus β times column jcol.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the
DenseMtx object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• type is the type of entries, 0 for real, 1 for complex.

• n1 is the row dimension of the test matrix.

• n2 is the column dimension of the test matrix.

• inc1 is the row increment.

• inc2 is the column increment.

• icol is the column number to be replaced. 0 ≤icol<n2.

• jcol is the column number to be added. 0 ≤jcol<n2.

• ralpha is the real part of the scalar α.

• ialpha is the imaginary part of the scalar α.

• rbeta is the real part of the scalar β.

• ibeta is the imaginary part of the scalar β.

• seed parameter is random number seed.

4. test_frobNorm msglvl msgFile type n1 n2 inc1 inc2 seed

This driver program generates a DenseMtx object and computes the Frobenius norm of this matrix.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the
DenseMtx object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• type is the type of entries, 0 for real, 1 for complex.

• n1 is the row dimension of the test matrix.

• n2 is the column dimension of the test matrix.

• inc1 is the row increment.

• inc2 is the column increment.

• seed parameter is random number seed.

5. test_frobNorm msglvl msgFile type n1 n2 inc1 inc2 jcol seed

This driver program generates a DenseMtx object and computes two norm of column jcol of this
matrix.

308

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the
DenseMtx object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• type is the type of entries, 0 for real, 1 for complex.

• n1 is the row dimension of the test matrix.

• n2 is the column dimension of the test matrix.

• inc1 is the row increment.

• inc2 is the column increment.

• jcol is the column number whose two norm is required. 0 ≤jcol<n2.

• seed parameter is random number seed.

6. test_DenseMtx_mmm msglvl msgFile type nrow nk ncol ainc1

ainc2 binc1 binc2 cinc1 cinc2 a_opt b_opt ralpha

ialpha rbeta ibeta seed

This driver program tests the matrix-matrix multiply method. The program generates DenseMtx

objects A, ,B and C. It returns the matrix C whose elements are replaced by β times matrix C plus α
times matrix A times matrix B.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the
DenseMtx object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• type is the type of entries, 0 for real, 1 for complex.

• nrow is the row dimension of the test matrix A.

• nk is the column dimension of the test matrix A and the row dimension of the test matrix B.

• ncol is the column dimension of the test matrix B.

• ainc1 is the row increment for the test matrix A.

• ainc2 is the column increment for the test matrix A.

• binc1 is the row increment for the test matrix B.

• binc2 is the column increment for the test matrix B.

• cinc1 is the row increment for the test matrix C.

• cinc2 is the column increment for the test matrix C.

• a opt specifies the computation of the test matrix A to be performed. "n" or "N" is No transpose.
"t" or "T" is Transpose. "c" or "C" is Conjugate transpose.

• b opt specifies the computation of the test matrix B to be performed. "n" or "N" is No transpose.
"t" or "T" is Transpose. "c" or "C" is Conjugate transpose.

• ralpha is the real part of the scalar α.

• ialpha is the imaginary part of the scalar α.

• rbeta is the real part of the scalar β.

• ibeta is the imaginary part of the scalar β.

• seed parameter is random number seed.

309

7. iter inFile

This driver program reads required parameters from the inFile to solve a sparse linear system AX =
B, where A is an InpMtx object and X and B are DenseMtx objects, using selected methods with left
or right preconditioner. The preconditioner is obtained via applying frontal method to the matrix A.
In the inFile, the required parameters are in a layout as

srcMtxFormat

srcMtxFile

InpMtxFile

ETreeFormat

ETreeFile

rhsFile

slnFile

msgFile

msglvl seed nrhs Ik itermax iterout

symmetryflag sparsityflag pivotingflag

tau droptol convtol

methods

All comment lins should start with a start (*) and the lines order of the required parameters should
not be changed.

• srcMtxFormat is the file format of source matrix A, 0 for InpMtx, 1 for HBF, and 2 for AIJ2.

• srcMtxFile is the file name saved the source matrix A.

• InpMtxFile is the file name to save InpMtx object if the original input matrix is in HBF or AIJ2
format. It should be with extension .inpmtxb or .inpmtxf. If InpMtxFile is none, the converted
InpMtx object will not be written to file.

• ETreeFormat is the source format for ETree object. 0 for reading from file, 1 for obtaining via the
best of a nested dissection and a multisection ordering, 2 for obtaining via a multiple minimum
degree ordering, 3 for obtaining via a multisection ordering, and 4 for obtaining via a nested
dissection ordering.

• ETreeFile is the name of file from which ETree object is read if ETreeFormat is 0. Otherwise,
it is the file name to save the computed ETree object. It should be with extension .etreeb or
.etreef. If ETreeFile is none, the computed ETree object will not be written to file.

• rhsFile is the name of file from which right-hand-side vectors B is read. It should be with
extension .densemtxb or .densemtxf. If rhsFile is none, the right-hand-side B is generated by
random numbers.

• slnFile is the name of file from which solution vectors X is saved. It should be with extension
.densemtxb or .densemtxf. If rhsFile is none, the solution X is not saved.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means most of
the objects are written to the message file.

• seed parameter is random number seed.

• nrhs is the number of columns of right-hand-side B.

• Ik is a block parameter for MLBiCGStab method.

• itermax is the maximum iterations number. (inner iterations number for GMRES method)

310

• iterout is the maximum outer number of iterations for GMRES method.

• The symmetryflag parameter specifies the symmetry of the matrix A.

– type = 0 (SPOOLES SYMMETRIC) for A real or complex symmetric,

– type = 1 (SPOOLES HERMITIAN) for A complex Hermitian,

– type = 2 (SPOOLES NONSYMMETRIC)

for A real or complex nonsymmetric.

• The sparsityflag parameter signals a direct or approximate factorization.

– sparsityflag = 0 (FRONTMTX DENSE FRONTS) implies a direct factorization, the fronts will
be stored as dense submatrices.

– sparsityflag = 1 (FRONTMTX SPARSE FRONTS) implies an approximate factorization. The
fronts will be stored as sparse submatrices, where the entries in the triangular factors will be
subjected to a drop tolerance test — if the magnitude of an entry is droptol or larger, it will
be stored, otherwise it will be dropped.

• The pivotingflag parameter signals whether pivoting for stability will be enabled or not.

– If pivotingflag = 0 (SPOOLES NO PIVOTING), no pivoting will be done.

– If pivotingflag = 1 (SPOOLES PIVOTING), pivoting will be done to ensure that all entries
in U and L have magnitude less than tau.

• The tau parameter is an upper bound on the magnitude of the entries in L and U when pivoting
is enabled.

• The droptol parameter is a lower bound on the magnitude of the entries in L and U when the
approximate factorization is enabled.

• convtol parameter is a stop criterion for iterative algorithms.

• methods parameters are choices of iterative algorithms, 0 for BiCGStabR, 1 for BiCGStabL, 2
for MLBiCGStabR, 3 for MLBiCGStabL, 4 for TFQMRR, 5 for TFQMRL, 6 for PCGR 7, for
PCGL 8 for BGMRESR, and 9 for BGMRESL.

Chapter 34

PatchAndGoInfo: Pivot Modification
Object

On occasion, an application will demand specific behavior during a factorization. We have written the
PatchAndGoInfo object to communicate information to the Chv object during a factorization of a front.
Most users can ignore this object. However, if a different type of behavior is required, one could extend this
object by adding a new strategy to it and modifying the Chv methods that factor a front.

Let us describe two strategies that we presently support.

• Primal-dual linear programming may require repeated factorizations of matrices of the form AD2AT ,
where A comes from constraint equations and D is a diagonal matrix. As the optimization proceeds,
AD2AT becomes increasingly ill-conditioned because the entries in D go to zero or infinity. Normally,
when a small or zero pivot element is detected, we would either signal an error (if we expected the
matrix to be positive definite) or pivot for stability. However, in the primal-dual pivot context, a
small or zero element on the diagonal is not a calamity. It signals that the variable associated with
the small entry can be “skipped” in the solution process. There are several ways to implement this
behavior. We have chosen a simple way: the diagonal entry is set to 1.0 and all off-diagonal entries in
the corresponding column of L are set to zero.

• In structural analysis, “multi-point constraints” are often applied to a linear system. At times, applying
these constraints generates a matrix that is essentially singular. The singularity may be benign, as in
the following case. [

A1,1 0
0 A2,2

] [
X1

X2

]
=

[
0

B2

]

If A1,1 is singular, the solution X1 = 0 and X2 = A−1
2,2B2 is perfectly acceptable. In other cases, the

location of the singularity can be communicated back to the user to supply useful information about
the finite element model. One common practice is to not use pivoting, but to check the magnitude
of the diagonal entry as a row and column is to be eliminated. If the magnitude is smaller than a
user-supplied parameter, the diagonal entry is set to some multiple of the largest offdiagonal entry
in that row and column of the front, the location and perturbation is noted, and the factorization
proceeds.

Other strategies can be added to the PatchAndGoInfo object. For example, if a matrix is being factored
that is believed to be positive definite, and a negative value is found in a pivot element, one could abort the
factorization, or perturb the element so that it is positive.

311

312

34.1 Data Structure

The PatchAndGoInfo structure has five fields.

• int strategy : type of patch-and-go strategy

– 1 — used with optimization matrices, if |Ai,i| ≤ toosmall then set Ai,i = 1 and Lj,i = 0 for j > i.

– 2 — used with structural analysis matrices, if |Ai,i| ≤ fudge then set Ai,i = fudge·max{1,maxj>i{|Ai,j |, |Aj,i|}}

• double toosmall : cutoff for diagonal entry magnitude

• double fudge : pertubation multiplier for modification

• IV *fudgeIV : vector to collect locations of perturbations, may be NULL.

• DV *fudgeDV : vector to collect perturbations, may be NULL.

34.2 Prototypes and descriptions of PatchAndGoInfo methods

This section contains brief descriptions including prototypes of all methods that belong to the PatchAndGoInfo
object.

34.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. PatchAndGoInfo * PatchAndGoInfo_new (void) ;

This method simply allocates storage for the PatchAndGoInfo structure and then sets the default fields
by a call to PatchAndGoInfo setDefaultFields().

2. void PatchAndGoInfo_setDefaultFields (PatchAndGoInfo *info) ;

This method sets the structure’s fields to default values: strategy = -1, toosmall = fudge = 0.0,
and fudgeIV = fudgeDV = NULL .

Error checking: If info is NULL, an error message is printed and the program exits.

3. void PatchAndGoInfo_clearData (PatchAndGoInfo *info) ;

This method clears any data owned by the object. If fudgeIV is not NULL it is free’d by a call to
IV free(). If fudgeDV is not NULL it is free’d by a call to DV free(). The structure’s default fields
are then set with a call to PatchAndGoInfo setDefaultFields().

Error checking: If info is NULL, an error message is printed and the program exits.

4. void PatchAndGoInfo_free (PatchAndGoInfo *info) ;

This method releases any storage by a call to PatchAndGoInfo clearData() then free’s the storage
for the structure with a call to free().

Error checking: If info is NULL, an error message is printed and the program exits.

313

34.2.2 Initializer methods

1. void PatchAndGoInfo_init (PatchAndGoInfo *info, int strategy, double toosmall,

double fudge, int storeids, int storevalues) ;

This method initializes the object. Presently, two strategies are supported: strategy = 1 for op-
timization matrices and strategy = 2 for structural analysis matrices. toosmall is the cutoff for
diagonal entry modification, if an entry has magnitude less than toosmall some action is taken. For
the second strategy, the fudge parameter contributes to the perturbation. When storeids is not zero,
the fudgeIV object is created to accumulate the locations of the perturbations. When storevalues

is not zero, the fudgeDV object is created to accumulate information on the perturbations themselves.

Error checking: If info is NULL or strategy is not 1 or 2, or toosmall or fudge are less than zero, an
error message is printed and the program exits.

Chapter 35

Pencil: Matrix pencil

This object stores a matrix pencil A+σB. A and B are both stored as InpMtx objects. Many of the Pencil
methods simply call the equivalent InpMtx method.

35.1 Data Structure

The Pencil structure has the following fields.

• int type : type of matrix entries,

– SPOOLES REAL for real entries

– SPOOLES COMPLEX for complex entries

• int symflag : type of symmetry present in the matrices

– SPOOLES SYMMETRIC for real or complex symmetric matrices

– SPOOLES HERMITIAN for complex Hermitian matrices

– SPOOLES NONSYMMETRIC for real or complex nonsymmetric matrices

• InpMtx *inpmtxA : pointer to the matrix object for A. If inpmtxA is NULL, then A is the identity
matrix.

• InpMtx *inpmtxB : pointer to the matrix object for B. If inpmtxB is NULL, then B is the identity
matrix.

• double sigma[2] : real or complex scalar shift value.

35.2 Prototypes and descriptions of Pencil methods

This section contains brief descriptions including prototypes of all methods that belong to the Pencil object.

35.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

314

315

1. Pencil * Pencil_new (void) ;

This method simply allocates storage for the Pencil structure and then sets the default fields by a call
to Pencil setDefaultFields().

2. void Pencil_setDefaultFields (Pencil *pencil) ;

The structure’s fields are set to default values: sigma[2] = {0,0}, type = SPOOLES REAL, symflag =
SPOOLES SYMMETRIC, and inpmtxA = inpmtxB = NULL .

Error checking: If pencil is NULL, an error message is printed and the program exits.

3. void Pencil_clearData (Pencil *pencil) ;

This method clears the object and free’s any owned data by invoking the InpMtx free() method for
the inpmtxA and inpmtxB objects. There is a concluding call to Pencil setDefaultFields().

Error checking: If pencil is NULL, an error message is printed and the program exits.

4. void Pencil_free (Pencil *pencil) ;

This method releases any storage by a call to Pencil clearData() and then free the space for pencil.

Error checking: If pencil is NULL, an error message is printed and the program exits.

35.2.2 Initialization methods

1. void Pencil_init(Pencil *pencil, int type, int symflag,

InpMtx *inpmtxA, double sigma[], InpMtx *inpmtxB) ;

The fields of the pencil object are set to the input parameters.

Error checking: If pencil is NULL, an error message is printed and zero is returned.

35.2.3 Utility methods

1. void Pencil_changeCoordType (Pencil *pencil, int newType) ;

This method simply calls the InpMtx changeCoordType() method for each of its two matrices.

Error checking: If pencil is NULL, an error message is printed and zero is returned.

2. void Pencil_changeStorageMode (Pencil *pencil, int newMode) ;

This method simply calls the InpMtx changeStorageMode() method for each of its two matrices.

Error checking: If pencil is NULL, an error message is printed and zero is returned.

3. void Pencil_sortAndCompress (Pencil *pencil) ;

This method simply calls the InpMtx sortAndCompress() method for each of its two matrices.

Error checking: If pencil is NULL, an error message is printed and zero is returned.

4. void Pencil_convertToVectors (Pencil *pencil) ;

This method simply calls the InpMtx sortAndCompress() method for each of its two matrices.

Error checking: If pencil is NULL, an error message is printed and zero is returned.

5. void Pencil_mapToLowerTriangle (Pencil *pencil) ;

This method simply calls the InpMtx mapToLowerTriangle() method for each of its two matrices.

Error checking: If pencil is NULL, an error message is printed and zero is returned.

316

6. void Pencil_mapToUpperTriangle (Pencil *pencil) ;

This method simply calls the InpMtx mapToUpperTriangle() method for each of its two matrices.

Error checking: If pencil is NULL, an error message is printed and zero is returned.

7. void Pencil_permute (Pencil *pencil,

IV *rowOldToNewIV, IV *colOldToNewIV) ;

This method simply calls the InpMtx permute() method for each of its two matrices.

Error checking: If pencil is NULL, an error message is printed and zero is returned.

8. void Pencil_mmm (Pencil *pencil, DenseMtx *Y, DenseMtx *X) ;

This method is used to compute X = (A + σB)X .

Error checking: If pencil, X or Y is NULL an error message is printed and the program exits.

9. IVL * Pencil_fullAdjacency (Pencil *pencil) ;

This method returns an IVL object that holds the full adjacency structure of (A + σB) + (A + σB)T .

Error checking: If pencil is NULL, an error message is printed and the program exits.

35.2.4 IO methods

1. Pencil * Pencil_setup (int myid, int symflag, char *inpmtxAfile,

double sigma[], char *inpmtxBfile, int randomflag, Drand *drand,

int msglvl, FILE *msgFile) ;

This method is used to read in the matrices from two files and initialize the objects. If the file name
is “none”, then no matrix is read. If symflag is SPOOLES SYMMETRIC or SPOOLES HERMITIAN, entries
in the lower triangle are dropped. If randomflag is one, the entries are filled with random numbers
using the Drand random number generator drand.

Note: this method was created for an MPI application. If myid is zero, then the files are read in,
otherwise just stubs are created for the internal matrix objects. In our MPI drivers, process zero reads
in the matrices and then starts the process to distribute them to the other processes.

Error checking: If pencil or fp are NULL, an error message is printed and zero is returned.

2. int Pencil_readFromFiles (Pencil *pencil, char *fnA, char *fnB) ;

This method reads the two InpMtx objects from two files. If fnA is “none”, then A is not read. If fnB
is “none”, then B is not read.

Error checking: If pencil or fp are NULL, an error message is printed and zero is returned.

3. void Pencil_writeForHumanEye (Pencil *pencil, FILE *fp) ;

This method writes a Pencil object to a file in an easily readable format.

Error checking: If pencil or fp are NULL, an error message is printed and zero is returned.

4. void Pencil_writeStats (Pencil *pencil, FILE *fp) ;

This method writes statistics for Pencil object to a file.

Error checking: If pencil or fp are NULL, an error message is printed and zero is returned.

Chapter 36

SemiImplMtx: Semi-Implicit
Factorization

The SemiImplMtx object contains a semi-implicit representation of a sparse matrix factorization. Assume
that the matrix A has been factored as PAQ = LDU , where L is unit lower triangular and U is unit upper
triangular. Now consider PAQ (and so L, D and U) partitioned as follows.

Â = PAQ =

[
Â1,1 Â1,2

Â2,1 Â2,2

]
=

[
L1,1 0
L2,1 L2,2

] [
D1,1 0

0 D2,2

] [
U1,1 U1,2

0 U2,2

]

After some algebra we can arrive at the following identities.

L2,1 = Â2,1D
−1
1,1 and U1,2 = D−1

1,1Â1,2

The straightforward solution of AX = B can be done as follows, as we solve the permuted linear system
ÂX̂ = B̂, where X̂ = QT X and B̂ = PB.

• solve L1,1Y1 = B̂1.

• solve L2,2Y2 = B̂2 − L2,1Y1.

• solve D1,1Z1 = Y1.

• solve D2,2Z2 = Y2.

• solve U2,2X̂2 = Z2.

• solve U1,1X̂1 = Z1 − U1,2Z2.

An equivalent process does not requires L2,1 and U1,2, but instead uses the Â1,2 and Â2,1 matrices.

• solve L1,1D1,1U1,1T1 = B̂1.

• solve L2,2D2,2U2,2X̂2 = B̂2 −A2,1T1.

• solve L1,1D1,1U1,1X̂1 = B̂1 −A1,2X̂2.

In effect, we have traded multiplies with L2,1 and U1,2 for multiplies with A1,2 and A2,1 and two extra
solves with D1,1. In some cases this semi-implicit procedure (so named because L2,1 and U1,2 are stored
in a semi-implicit form) can pay off — storage can be saved when the number of entries in L2,1 and U1,2

are larger than the number of entries in A2,1 and A1,2. The number of solve operations is reduced by
|L2,1|+ |U1,2| − 2|D1,1| − |A2,1| − |A1,2|, where | · | denotes the number of nonzeroes in a matrix.

317

318

36.1 Data Structure

The SemiImplMtx structure has the following fields.

• int neqns : number of equations.

• int type : type of entries, SPOOLES REAL or SPOOLES COMPLEX.

• int symmetryflag : type of matrix symmetry, SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC.

• int ndomeqns : number of equations in the domains, or (1,1) block.

• int nschureqns : number of equations in the Schur complement, or (2,2) block.

• FrontMtx *domainMtx : matrix object for L1,1, D1,1 and U1,1.

• FrontMtx *schurMtx : matrix object for L2,2, D2,2 and U2,2.

• InpMtx *A21 : matrix object for Â2,1.

• InpMtx *A12 : matrix object for Â1,2.

• IV *domRowsIV : object that holds the global ids of the rows in Â1,1.

• IV *schurRowsIV : object that holds the global ids of the rows in Â2,2.

• IV *domColumnsIV : object that holds the global ids of the columns in Â1,1.

• IV *schurColumnsIV : object that holds the global ids of the columns in Â2,2.

36.2 Prototypes and descriptions of SemiImplMtx methods

This section contains brief descriptions including prototypes of all methods that belong to the SemiImplMtx

object.

36.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. SemiImplMtx * SemiImplMtx_new (void) ;

This method simply allocates storage for the SemiImplMtx structure and then sets the default fields
by a call to SemiImplMtx setDefaultFields().

2. int SemiImplMtx_setDefaultFields (SemiImplMtx *mtx) ;

This method sets the structure’s fields to default values: neqns= 0, type= SPOOLES REAL, symmetryflag
= SPOOLES SYMMETRIC, ndomeqns= nschureqns= 0, and domainMtx, schurMtx, A21, A12, domRowsIV,
schurRowsIV, domColumnsIV and schurColumnsIV are all set to NULL.

Return codes: 1 means a normal return, -1 means mtx is NULL.

3. int SemiImplMtx_clearData (SemiImplMtx *mtx) ;

This method releases all storage held by the object.

Return codes: 1 means a normal return, -1 means mtx is NULL.

319

4. int SemiImplMtx_free (SemiImplMtx *mtx) ;

This method releases all storage held by the object via a call to SemiImplMtx clearData(), then free’d
the storage for the object.

Return codes: 1 means a normal return, -1 means mtx is NULL.

36.2.2 Initialization Methods

1. int SemiImplMtx_initFromFrontMtx (SemiImplMtx *semimtx, FrontMtx *frontmtx,

InpMtx *inpmtx, IV *frontmapIV, int msglvl, FILE *msgFile) ;

This initializer is used after the FrontMtx object for the factorization has been computed. The
frontmapIV object defines which fronts map to domains and which to the Schur complement. If
entry J of the frontmapIV object is zero, then front J belongs in the Schur complement, otherwise it
belongs to the domains’ matrix. The A1,2 and A2,1 (if nonsymmetric) matrices are extracted from the
InpMtx object.

The semimtx object removes submatrices from the frontmtx object, i.e., after the return of this
method, the frontmtx no longer owns (and so cannot free) the submatrices from the (1, 1) and (2, 2)
blocks. On return, the frontmtx object can safely be free’d without affecting the semimtx object.

Return codes:

1 normal return
-1 semimtx is NULL
-2 frontmtx is NULL
-3 inpmtx is NULL

-4 frontmapIV is NULL
-5 frontmapIV is invalid
-6 unable to create (1,1) front matrix
-7 unable to create (2,2) front matrix

2. int FrontMtx_initFromSubMtx (FrontMtx *submtx, FrontMtx *frontmtx, IV *frontidsIV,

IV *rowsIV, IV *colsIV, int msglvl, FILE *msgFile) ;

This initializer is used to initialize the submtx FrontMtx object from a global FrontMtx object, i.e.,
to initialize the domainMtx and schurMtx objects. The fronts of the frontmtx that will be included
into the submtx object are given in the frontidsIV vector object. The submtx object extracts the
submatrices from the frontmtx object, i.e., after the return of this method, the frontmtx no longer
owns (and so cannot free) its submatrices. The submtx front matrix has local numbering, its global
row ids are placed in rowsIV and its global column ids are placed in colsIV.

Return codes:

1 normal return
-1 submtx is NULL
-2 frontmtx is NULL
-3 frontmtx is not in 2-d mode
-4 frontidsIV is NULL
-5 frontidsIV is invalid
-6 rowsIV is NULL

-7 colsIV is NULL
-8 unable to create the front tree
-9 unable to create the symbolic factorization

-10 unable to create the column adjacency
-11 unable to create the row adjacency
-12 unable to create the upper block IVL

-13 unable to create the lower block IVL

36.2.3 Solve Methods

1. int SemiImplMtx_solve (SemiImplMtx *mtx, DenseMtx *X, DenseMtx *B,

SubMtxManager *mtxmanager, double cpus[], int msglvl, FILE *msgFile) ;

This methods solves a linear system (L + I)D(I + U)X = B, (UT + I)D(I + U)X = B or (UH +
I)D(I + U)X = B, where X and B are DenseMtx objects. mtxmanager is an object to handle the
working SubMtx objects during the solve. One can have X and B point to the same object, for entries
are read from B and written to X. On return, the cpus[] vector contains the following information.

320

cpus[0] initialize working matrices
cpus[1] load right hand side
cpus[2] first solve with domains
cpus[3] compute Schur right hand side
cpus[4] Schur solve

cpus[5] compute domains’ right hand side
cpus[6] second solve with domains
cpus[7] store solution
cpus[8] miscellaneous time
cpus[9] total time

Return codes:

1 normal return
-1 mtx is NULL
-2 X is NULL

-3 B is NULL
-4 mtxmanager is NULL
-5 cpus is NULL

36.2.4 Utility methods

1. int SemiImplMtx_stats (SemiImplMtx *mtx, int stats[]) ;

This method fills the stats[] vector with some statistics.

stats[0] # of equations
stats[1] # of equations in the (1, 1) block
stats[2] # of equations in the (2, 2) block
stats[3] # of entries in L1,1

stats[4] # of entries in D1,1

stats[5] # of entries in U1,1

stats[6] # of entries in L2,2

stats[7] # of entries in D2,2

stats[8] # of entries in U2,2

stats[9] # of entries in A1,2

stats[10] # of entries in A2,1

stats[11] total # of entries
stats[12] # of operations for a solve

Return values:

1 for a normal return, -1 if mtx is NULL, -2 if stats is NULL.

36.2.5 IO methods

1. int SemiImplMtx_writeForHumanEye (SemiImplMtx *mtx, FILE *fp) ;

This method writes out a SemiImplMtx object to a file in a human readable format.

Return codes:

1 normal return
-1 mtx is NULL
-2 type is invalid

-3 symmetryflag is invalid
-4 fp is NULL

36.3 Driver programs for the SemiImplMtx object

This section contains brief descriptions of the driver programs.

1. testGrid msglvl msgFile n1 n2 n3 maxzeros maxsize seed type symmetryflag

sparsityflag pivotingflag tau droptol nrhs depth

This driver program tests the SemiImplMtx creation and solve methods for a matrix from a regular
2-D or 3-D grid. The matrix can be real or complex and is loaded with random entries. The linear
system AX = B is solved as follows.

• First A is factored, and a FrontMtx object is created to hold the factorization.

321

• The system is solved using the FrontMtx object.

• A SemiImplMtx matrix object is constructed from the FrontMtx object and A.

• The system is solved using the SemiImplMtx object.

Various statistics and CPU timings are written to the message file to compare the two solution pro-
cesses. Use the do grid shell script for testing.

• The msglvl parameter determines the amount of output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• n1 is the number of grid points in the first direction.

• n2 is the number of grid points in the second direction.

• n3 is the number of grid points in the third direction.

• maxzeros is the maximum number of zeroes to place into a front.

• maxsize is the maximum number of internal rows and columns in a front.

• type must be either SPOOLES REAL or SPOOLES COMPLEX.

• symmetryflag must be either SPOOLES SYMMETRIC, SPOOLES HERMITIAN or

• sparsityflag must be either FRONTMTX DENSE FRONTS or FRONTMTX SPARSE FRONTS.

• pivotingflag must be either SPOOLES PIVOTING, SPOOLES NO PIVOTING or

• tau is used when pivoting is enabled, it is an upper bound on the magnitude of the entries in L
and U .

• droptol is used when an approximate factorization is called for, (i.e., when sparsityflag is
FRONTMTX SPARSE FRONTS). It is a lower bound on the magnitude of the entries in L and U that
are stored and used in computations.

• nrhs is the number of right hand sides.

• depth is used to specify the schur complement. It is based on separators, not on fronts. (Recall
that large separators can be split into smaller fronts for efficiency reasons.) All fronts found in
separators lower than depth in depth (the top level separator has depth zero) belong in domains.

2. testSimple msglvl msgFile inFrontMtxFile inInpMtxFile inIVfile

This driver program is used to construct a SemiImplMtx object. It reads in a FrontMtx and InpMtx

from files. It also reads in an IV object that specifies whether a front is to be in the domains (the (1,1)
block) or the Schur complement (the (2,2) block). It then creates the SemiImplMtx object and writes
it to the message file. Use the do simple script file for testing.

• The msglvl parameter determines the amount of output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The FrontMtx object is read from the inFrontMtxFilefile, which must be of the form *.frontmtxf

or *.frontmtxb.

• The InpMtx object is read from the inInpMtxFile file, which must be of the form *.inpmtxf or
*.inpmtxb.

• The map vector IV object is read from the inIVfile file, which must be of the form *.ivf or
*.ivb.

Chapter 37

SubMtx: Submatrix object

The SubMtx object was created to hold the data for and operate with a submatrix of a sparse matrix. The
entries in a submatrix can be either double precision real or complex.

For example, the lower and upper triangular matrices L and U that are created during the factorization
are stored as submatrices, e.g., LI,I and LJ,I where I and J are index sets. To be more precise, I and J are
index sets associated with fronts I and J. We do not necessarily represent LJ,I , because some of the rows in
the submatrix may be zero. Instead we keep L∂I∩J,I , where ∂I ∩ J are precisely those rows that may have
nonzeros. The situation is similar for U where we keep UI,∂I∩J .

The submatrices for L and U may be dense or sparse. (A direct factorization typically generates dense
submatrices while a drop tolerance factorization produces sparse submatrices.) We also use SubMtx objects
to represent submatrices of the D matrix, where D is either diagonal or has 1 × 1 and 2 × 2 blocks on its
diagonal. In the latter case, we support DI,I to be either real symmetric, complex symmetric or complex
Hermitian.

The SubMtx object has the following attributes.

• A SubMtx object has a row id and column id to identify itself within the context of a larger block
matrix.

• Each row and column of the block matrix corresponds to a certain index set. A SubMtx object associated
with block row J and block column I has row indices J and column indices I.

• Matrix entries stored in one of the following ways.

– dense by rows, i.e., dense and row major

– dense by columns, i.e., dense and column major

– sparse using dense subrows

– sparse using dense subcolumns

– sparse using sparse rows

– sparse using sparse columns

– sparse using (i, j, ai,j) triples

– a diagonal matrix

– a block diagonal symmetric matrix where the blocks are 1 × 1 or 2 × 2, used in the symmetric
indefinite factorization.

– a block diagonal Hermitian matrix where the blocks are 1 × 1 or 2 × 2, used in the hermitian
indefinite factorization.

322

323

• The SubMtx object can be self-contained, in the sense that its structure contains a DV object that
manages a contiguous vector of workspace that is used to store all information about the SubMtx

object — its scalar parameters, any integer index or dimension information, and all matrix entries. In
a distributed environment, this allows a SubMtx object to be sent between processors as one message,
no copying to an internal buffer is needed, nor any custom data type needs to be defined as for MPI. In
an out-of-core environment, a SubMtx object can be read from or written to a file by a single operation.

The SubMtx object is a superset of the DenseMtx object in terms of data structure and functionality. If
we were working in a language that supports inheritance, SubMtx would be an abstract class and DenseMtx

would be a subclass where entries would be stored by dense rows or columns. At some point in the future
we may deprecate the DenseMtx object in this library, replacing it with the SubMtx object.

Because the SubMtx object wears so many hats, i.e., it supports nine different storage formats, it has to
be flexible in how it responds to its environment. For example, how we access the data is different depending
on which storage format. Instead of accessing structure fields directly, e.g., let mtx->entries point to the
start of the matrix entries, we follow a convention that instance methods return information. For example,
the function call

SubMtx_columnIndices(mtx, &nrow, &rowind) ;

is an instance method that fills nrow with the number of rows and rowind with the first location of the row
indices. A more complex example is for the sparse storage by rows format,

SubMtx_sparseRowsInfo(mtx, &nrow, &nent, &sizes, &indices, &entries) ;

where the number of rows and entries are returned in nrow and nent, the number of nonzero entries in
each row is contained in sizes[], and the column indices and nonzero entries are found in indices[] and
entries[], respectively. This convention of using instance methods to return information is better than
using explicit structure fields. For example, if we want to extend the object by allowing another storage
format, we do not need to increase the size of the structure at all — it is only necessary to provide one or
more instance methods to return the new information.

37.1 Data Structure

The SubMtx structure has the following fields.

• int type : type of entries.

– SPOOLES REAL : double precision real entries.

– SPOOLES COMPLEX : double precision complex entries.

• int mode : storage mode.

– SUBMTX DENSE ROWS : dense, storage by rows.

– SUBMTX DENSE COLUMNS : dense, storage by columns.

– SUBMTX SPARSE ROWS : sparse, storage by rows.

– SUBMTX SPARSE COLUMNS : sparse, storage by columns.

– SUBMTX SPARSE TRIPLES : sparse, storage by (i, j, ai,j) triples.

– SUBMTX DENSE SUBROWS : sparse, storage by dense subrows.

– SUBMTX DENSE SUBCOLUMNS : sparse, storage by dense subcolumns.

324

– SUBMTX DIAGONAL : a diagonal matrix.

– SUBMTX BLOCK DIAGONAL SYM : a symmetric block diagonal matrix with 1× 1 and 2× 2 blocks.

– SUBMTX BLOCK DIAGONAL HERM : a hermitian block diagonal matrix with 1× 1 and 2× 2 blocks.

• int rowid : object’s row id, default value is -1.

• int colid : object’s column id, default value is -1.

• int nrow : number of rows

• int ncol : number of columns

• int nent : number of stored matrix entries.

• DV wrkDV : object that manages the owned working storage.

• SubMtx *next : link to a next object in a singly linked list.

One can query the type of the object using these simple macros.

• SUBMTX IS REAL(mtx) is 1 if mtx has real entries and 0 otherwise.

• SUBMTX IS COMPLEX(mtx) is 1 if mtx has complex entries and 0 otherwise.

• SUBMTX IS DENSE ROWS(mtx) is 1 if mtx has dense rows as its storage format, and 0 otherwise.

• SUBMTX IS DENSE COLUMNS(mtx) is 1 if mtx has dense columns as its storage format, and 0 otherwise.

• SUBMTX IS SPARSE ROWS(mtx) is 1 if mtx has sparse rows as its storage format, and 0 otherwise.

• SUBMTX IS SPARSE COLUMNS(mtx) is 1 if mtx has sparse columns as its storage format, and 0 otherwise.

• SUBMTX IS SPARSE TRIPLES(mtx) is 1 if mtx has sparse triples as its storage format, 0 otherwise.

• SUBMTX IS DENSE SUBROWS(mtx) is 1 if mtx has dense subrows as its storage format, 0 otherwise.

• SUBMTX IS DENSE SUBCOLUMNS(mtx) is 1 if mtx has dense subcolumns as its storage format, 0 otherwise.

• SUBMTX IS DIAGONAL(mtx) is 1 if mtx is diagonal, 0 otherwise.

• SUBMTX IS BLOCK DIAGONAL SYM(mtx) is 1 if mtx is block diagonal and symmetric, 0 otherwise.

• SUBMTX IS BLOCK DIAGONAL HERM(mtx) is 1 if mtx is block diagonal and hermitian, 0 otherwise.

37.2 Prototypes and descriptions of SubMtx methods

This section contains brief descriptions including prototypes of all methods that belong to the SubMtx object.

325

37.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. SubMtx * SubMtx_new (void) ;

This method simply allocates storage for the SubMtx structure and then sets the default fields by a call
to SubMtx setDefaultFields().

2. void SubMtx_setDefaultFields (SubMtx *mtx) ;

The structure’s fields are set to default values: type= SPOOLES REAL, mode= DENSEMTX DENSE COLUMNS,
rowid = colid = -1, type = nrow = ncol = nent = 0 and next = NULL . The wrkDV object has its
default fields set via a call to DV setDefaultFields().

Error checking: If mtx is NULL, an error message is printed and the program exits.

3. void SubMtx_clearData (SubMtx *mtx) ;

This method clears the object and free’s any owned data by invoking the clearData() methods for
its internal DV object. There is a concluding call to SubMtx setDefaultFields().

Error checking: If mtx is NULL, an error message is printed and the program exits.

4. void SubMtx_free (SubMtx *mtx) ;

This method releases any storage by a call to SubMtx clearData() and then frees the space for mtx.

Error checking: If mtx is NULL, an error message is printed and the program exits.

37.2.2 Instance methods

1. void SubMtx_ids (SubMtx *mtx, int *prowid, int *pcolid) ;

This method fills *prowid with the row id and *pcolid with the column id of the object.

Error checking: If mtx, prowid or pcolid is NULL, an error message is printed and the program exits.

2. void SubMtx_setIds (SubMtx *mtx, int rowid, int colid) ;

This method sets the row and column id’s of the matrix.

Error checking: If mtx is NULL, an error message is printed and the program exits.

3. void SubMtx_dimensions (SubMtx *mtx, int *pnrow, int *pncol, int *pnent) ;

This method fills *pnrow, *pncol and *pnent with the number of rows, columns and matrix entries,
respectively.

Error checking: If mtx, pnrow or pncol is NULL, an error message is printed and the program exits.

4. void SubMtx_rowIndices (SubMtx *mtx, int *pnrow, **prowind) ;

This method fills *pnrow with the number of rows. If prowind is not NULL, *prowind is filled with a
pointer to the row indices.

Error checking: If mtx or pnrow is NULL, an error message is printed and the program exits.

5. void SubMtx_columnIndices (SubMtx *mtx, int *pncol, **colind) ;

This method fills *pncol with the number of columns. If pcolind is not NULL, *pcolind is filled with
a pointer to the column indices.

Error checking: If mtx, pncol or pcolind is NULL, an error message is printed and the program exits.

326

6. void SubMtx_denseInfo (SubMtx *mtx, int *pnrow, int *pncol,

int *pinc1, int *pinc2, double **pentries) ;

This method is used when the storage mode is dense rows or columns. It fills *pnrow with the number
of rows, *pncol with the number of columns, *pinc1 with the row increment, *pinc2 with the column
increment, and *pentries with the base address of entries vector.

Error checking: If mtx, pnrow, pncol, pinc1, pinc2 or pentries is NULL, or if the matrix type is not
SUBMTX DENSE ROWS or SUBMTX DENSE COLUMNS, an error message is printed and the program exits.

7. void SubMtx_sparseRowsInfo (SubMtx *mtx, int *pnrow, int *pnent,

int **psizes, int **pindices, double **pentries) ;

This method is used when the storage mode is sparse rows. It fills *pnrow with the number of
rows, *pnent with the number of matrix entries, *psizes with the base address of the sizes[nrow]

vector that contains the number of entries in each row, *indices with the base address of the
indices[nent] vector that contains the column index for each entry, and *pentries with the base
address of entries[nent] vector. The indices and entries for the rows are stored contiguously.

Error checking: If mtx, pnrow, pnent, psizes, pindices or pentries is NULL, or if the matrix type is
not SUBMTX SPARSE ROWS, an error message is printed and the program exits.

8. void SubMtx_sparseColumnsInfo (SubMtx *mtx, int *pncol, int *pnent,

int **psizes, int **pindices, double **pentries) ;

This method is used when the storage mode is sparse columns. It fills *pncol with the number of
columns, *pnent with the number of matrix entries, *psizes with the base address of the sizes[ncol]
vector that contains the number of entries in each column, *indices with the base address of the
indices[nent] vector that contains the row index for each entry, and *pentrieswith the base address
of entries[nent] vector. The indices and entries for the columns are stored contiguously.

Error checking: If mtx, pncol, pnent, psizes, pindices or pentries is NULL, or if the matrix type is
not SUBMTX SPARSE COLUMNS, an error message is printed and the program exits.

9. void SubMtx_sparseTriplesInfo (SubMtx *mtx, int *pnent, int **prowids,

int **pcolids, double **pentries) ;

This method is used when the storage mode is sparse triples. It fills *pnent with the number of matrix
entries, *prowids with the base address of the rowids[nent] vector that contains the row id of each
entry, *pcolids with the base address of the colids[nent] vector that contains the column id of each
entry, and *pentries with the base address of entries[nent] vector.

Error checking: If mtx, pnent, prowids, pcolids or pentries is NULL, or if the matrix type is not
SUBMTX SPARSE TRIPLES, an error message is printed and the program exits.

10. void SubMtx_denseSubrowsInfo (SubMtx *mtx, int *pnrow, int *pnent,

int **pfirstlocs, int **plastlocs, double **pentries) ;

This method is used when the storage mode is dense subrows. It fills *pnrow with the number of rows,
*pnent with the number of matrix entries, *pfirstlocswith the base address of the firstlocs[nrow]
vector, *plastlocs with the base address of the lastlocs[nrow] vector, and *pentries with the
base address of entries[nent] vector. For row irow, the nonzero entries are found in columns
[firstlocs[irow],lastlocs[irow]]when firstlocs[irow]≥ 0 and firstlocs[irow]≤ lastlocs[irow].
The entries for the rows are stored contiguously.

Error checking: If mtx, pnrow, pnent, pfirstlocs, plastlocs or pentries is NULL, or if the matrix
type is not SUBMTX DENSE SUBROWS, an error message is printed and the program exits.

327

11. void SubMtx_denseSubcolumnsInfo (SubMtx *mtx, int *pncol, int *pnent,

int **pfirstlocs, int **plastlocs, double **pentries) ;

This method is used when the storage mode is dense subcolumns. It fills *pncol with the num-
ber of columns, *pnent with the number of matrix entries, *pfirstlocs with the base address
of the firstlocs[ncol] vector, *plastlocs with the base address of the lastlocs[ncol] vector,
and *pentries with the base address of entries[nent] vector. For column jcol, the nonzero
entries are found in rows [firstlocs[jcol],lastlocs[jcol]] when firstlocs[jcol] ≥ 0 and
firstlocs[jcol]≤ lastlocs[jcol]. The entries for the columns are stored contiguously.

Error checking: If mtx, pnrow, pnent, pfirstlocs, plastlocs or pentries is NULL, or if the matrix
type is not SUBMTX DENSE SUBCOLUMNS, an error message is printed and the program exits.

12. void SubMtx_diagonalInfo (SubMtx *mtx, int *pncol, double **pentries) ;

This method is used when the storage mode is diagonal. It fills *pncol with the number of columns
and *pentries with the base address of entries[] vector.

Error checking: If mtx, pncol or pentries is NULL, or if the matrix type is not SUBMTX DIAGONAL, an
error message is printed and the program exits.

13. void SubMtx_blockDiagonalInfo (SubMtx *mtx, int *pncol, int *pnent,

int **ppivotsizes, double **pentries) ;

This method is used when the storage mode is block diagonal. It fills *pncol with the number of
columns, *pnent with the number of entries, *ppivotsizes with the base address of the pivot sizes
vector, and *pentries with the base address of entries[] vector.

Error checking: If mtx, pncol, pnent, ppivotsizes or pentries is NULL, or if the matrix type is not
SUBMTX BLOCK DIAGONAL SYM, or SUBMTX BLOCK DIAGONAL HERM, an error message is printed and the
program exits.

14. int SubMtx_realEntry (SubMtx *mtx, int irow, int jcol, double *pValue) ;

This method fill *pValue with the entry in row irow and columnjcol. Note, irow and jcol are local
indices, i.e., 0 ≤ irow ≤ nrow and 0 ≤ jcol ≤ ncol. If the (irow,jcol) entry is present, the return
value is the offset from the start of the entries vector. Otherwise, -1 is returned.

Error checking: If mtx or pValue is NULL, or if irow or jcol is out of range, an error message is printed
and the program exits.

15. int SubMtx_complexEntry (SubMtx *mtx, int irow, int jcol,

double *pReal, double *pImag) ;

This method fill *pReal with the real part and *pImag with the imaginary part of the the entry
in row irow and columnjcol. Note, irow and jcol are local indices, i.e., 0 ≤ irow ≤ nrow and
0 ≤ jcol ≤ ncol. If the (irow,jcol) entry is present, the return value is the offset from the start of
the entries vector. (The offset is in terms of complex entries, not double entries.) Otherwise, -1 is
returned.

Error checking: If mtx, pReal or pImag is NULL, or if irow or jcol is out of range, an error message is
printed and the program exits.

16. void SubMtx_locationOfRealEntry (SubMtx *mtx, int irow, int jcol,

double **ppValue) ;

If the (irow,jcol) entry is present, this method fills *ppValue with a pointer to the entry in row
irow and columnjcol. Otherwise, *ppValue is set to NULL. Note, irow and jcol are local indices, i.e.,
0 ≤ irow ≤ nrow and 0 ≤ jcol ≤ ncol.

Error checking: If mtx or ppValue is NULL, or if irow or jcol is out of range, an error message is
printed and the program exits.

328

17. void SubMtx_locationOfComplexEntry (SubMtx *mtx, int irow, int jcol,

double **ppReal, double **ppImag) ;

If the (irow,jcol) entry is present, this method fills *ppReal with a pointer to the real part and
*ppImag with a pointer to the imaginary part of the the entry in row irow and columnjcol. Otherwise,
*ppImag and *ppReal are set to NULL. Note, irow and jcol are local indices, i.e., 0 ≤ irow ≤ nrow

and 0 ≤ jcol ≤ ncol.

Error checking: If mtx, ppReal or ppImag is NULL, or if irow or jcol is out of range, an error message
is printed and the program exits.

37.2.3 Initialization methods

There are three initializer methods.

1. void SubMtx_init(SubMtx *mtx, int type, int mode, int rowid, int colid,

int nrow, int ncol, int nent) ;

This is the initializer method used when the SubMtx object is to use its workspace to store indices
and entries. The number of bytes required in the workspace is computed, the workspace is resized if
necessary, the scalar fields are set, and the row and column indices are set to [0,nrow) and [0,ncol),
respectively.

Error checking: If mtx is NULL, or if nrow, ncol, inc1 or inc2 is less than or equal to zero, or if neither
inc1 nor inc2 are 1, an error message is printed and the program exits.

2. void SubMtx_initFromBuffer (SubMtx *mtx) ;

This method initializes the object using information present in the workspace buffer. This method is
used to initialize the SubMtx object when it has been received as an MPI message.

Error checking: If mtx is NULL, an error message is printed and the program exits.

3. void SubMtx_initRandom (SubMtx *mtx, int type, int mode, int rowid, int colid,

int nrow, int ncol, int nent, int seed) ;

This is used to initialize an object to have random entries and (possibly) random structure. The object
is first initialized via a call to SubMtx init(). Its matrix entries are then filled with random numbers.
If the matrix is sparse, its sparsity pattern is sparse and random, using nent when applicable. The
row and column indices are ascending starting from zero.

Error checking: If mtx is NULL, or if nrow, ncol, inc1 or inc2 is less than or equal to zero, or if neither
inc1 nor inc2 are 1, an error message is printed and the program exits.

4. void SubMtx_initRandomLowerTriangle (SubMtx *mtx, int type, int mode,

int rowid, int colid, int nrow, int ncol, int nent, int seed, int strict) ;

void SubMtx_initRandomUpperTriangle (SubMtx *mtx, int type, int mode,

int rowid, int colid, int nrow, int ncol, int nent, int seed, int strict) ;

This is used to initialize an object to have random entries and (possibly) random structure. The matrix
type may not be diagonal, block diagonal, or triples. If strict = 1, the matrix will be strict lower
or upper triangular. The object is first initialized via a call to SubMtx init(). Its matrix entries are
then filled with random numbers. If the matrix is sparse, its sparsity pattern is sparse and random,
using nent when applicable. The row and column indices are ascending starting from zero.

Error checking: If mtx is NULL, or if nrow, ncol, inc1 or inc2 is less than or equal to zero, or if neither
inc1 nor inc2 are 1, an error message is printed and the program exits.

329

37.2.4 Vector scaling methods

These methods are used during the factorization when we compute products of the form −UT DU , −UHDU
and −LDU .

1. void SubMtx_scale1vec (SubMtx *mtxD, double y0[], double x0[]) ;

void SubMtx_scale2vec (SubMtx *mtxD, double y0[], double y1[],

double x0[], double x1[]) ;

void SubMtx_scale3vec (SubMtx *mtxD, double y0[], double y1[], double y2[],

double x0[], double x1[], double x2[]

These methods compute one of the following

y0 = Dx0,
[

y0 y1

]
= D

[
x0 x1

]
or

[
y0 y1 y2

]
= D

[
x0 x1 x2

]

where D is stored in the SubMtx object mtxD, and the y0, y1, y2, x0, x1 and x2 vectors are stored as
simple real or complex vectors. This method is only used when mtxD is diagonal or block diagonal
(symmetric or Hermitian).

Error checking: If mtxD, y0, y1, y2, x0, x1 or x2 is NULL, an error message is printed and the program
exits.

37.2.5 Solve methods

These methods are used during the forward and backward solves.

1. void SubMtx_solve (SubMtx *mtxA, SubMtx *mtxB) ;

This method is used to solve (I + A)X = B (if A is strict lower or upper triangular) or AX = B (if
A is diagonal or block diagonal). The solution X overwrites B, and mtxB must have dense columns.
If A is strict lower triangular, then mtxA must have dense subrows or sparse rows. If A is strict upper
triangular, then mtxA must have dense subcolumns or sparse columns.

Error checking: If mtxA or mtxB is NULL, an error message is printed and the program exits.

2. void SubMtx_solveH (SubMtx *mtxA, SubMtx *mtxB) ;

This method is used to solve (I + AH)X = B, where A is strict lower or upper triangular. The
solution X overwrites B, and mtxB must have dense columns. If A is strict lower triangular, then mtxA

must have dense subrows or sparse rows. If A is strict upper triangular, then mtxA must have dense
subcolumns or sparse columns.

Error checking: If mtxA or mtxB is NULL, an error message is printed and the program exits.

3. void SubMtx_solveT (SubMtx *mtxA, SubMtx *mtxB) ;

This method is used to solve (I + AT)X = B, where A is strict lower or upper triangular. The
solution X overwrites B, and mtxB must have dense columns. If A is strict lower triangular, then mtxA

must have dense subrows or sparse rows. If A is strict upper triangular, then mtxA must have dense
subcolumns or sparse columns.

Error checking: If mtxA or mtxB is NULL, an error message is printed and the program exits.

4. void SubMtx_solveupd (SubMtx *mtxY, SubMtx *mtxA, SubMtx *mtxX) ;

This method is used to update Y := Y − A ∗X , where A has dense or sparse rows or columns. mtxY

and mtxX must have dense columns.

Error checking: If mtxY, mtxA or mtxX is NULL, an error message is printed and the program exits.

330

5. void SubMtx_solveupdH (SubMtx *mtxY, SubMtx *mtxA, SubMtx *mtxX) ;

This method is used to update Y := Y −AH ∗X , where A has dense or sparse rows or columns. mtxY
and mtxX must have dense columns.

Error checking: If mtxY, mtxA or mtxX is NULL, an error message is printed and the program exits.

6. void SubMtx_solveupdT (SubMtx *mtxY, SubMtx *mtxA, SubMtx *mtxX) ;

This method is used to update Y := Y −AT ∗X , where A has dense or sparse rows or columns. mtxY
and mtxX must have dense columns.

Error checking: If mtxY, mtxA or mtxX is NULL, an error message is printed and the program exits.

37.2.6 Utility methods

1. int SubMtx_nbytesNeeded (int type, int mode, int nrow, int ncol, int nent) ;

This method returns the number of bytes required to store the object’s information in its buffer.

Error checking: If nrow or ncol is less than or equal to zero, or if nent is less than to zero, or if type
is invalid, an error message is printed and the program exits.

2. int SubMtx_nbytesInUse (SubMtx *mtx) ;

This method returns the actual number of bytes that are used in the workspace owned by this object.

Error checking: If mtx is NULL, an error message is printed and the program exits.

3. int SubMtx_nbytesInWorkspace (SubMtx *mtx) ;

This method returns the number of bytes in the workspace owned by this object.

Error checking: If mtx is NULL, an error message is printed and the program exits.

4. void SubMtx_setNbytesInWorkspace (SubMtx *mtx, int nbytes) ;

This method sets the number of bytes in the workspace of this object. If nbytes is less than the present
number of bytes, the workspace is not resized.

Error checking: If mtx is NULL, an error message is printed and the program exits.

5. void * SubMtx_workspace (SubMtx *mtx) ;

This method returns a pointer to the base address of the workspace.

Error checking: If mtx is NULL, an error message is printed and the program exits.

6. void SubMtx_setFields(SubMtx *mtx, int type, int mode, int rowid,

int colid, int nrow, int ncol, int nent) ;

This method sets the scalar fields.

Error checking: If mtx is NULL, or if nrow, ncol, nent is less than or equal to zero, or if type or mode
is invalid, an error message is printed and the program exits.

7. void SubMtx_sortRowsUp (SubMtx *mtx) ;

This method sort the rows so the row ids are in ascending order.

Error checking: If mtx is NULL, an error message is printed and the program exits.

8. void SubMtx_sortColumnsUp (SubMtx *mtx) ;

This method sort the rows so the column ids are in ascending order.

Error checking: If mtx is NULL, an error message is printed and the program exits.

331

9. void SubMtx_fillRowDV (SubMtx *mtx, int irow, DV *rowDV) ;

This method is used for real submatrices. It copies the entries in row irow of the mtx object into the
rowDV vector object.

Error checking: If mtx or rowDV is NULL, or if irow is out of range, an error message is printed and the
program exits.

10. void SubMtx_fillColumnDV (SubMtx *mtx, int jcol, DV *rowDV) ;

This method is used for real submatrices. It copies the entries in column jcol of the mtx object into
the colDV vector object.

Error checking: If mtx or colDV is NULL, or if jcol is out of range, an error message is printed and the
program exits.

11. void SubMtx_fillRowZV (SubMtx *mtx, int irow, ZV *rowZV) ;

This method is used for complex submatrices. It copies the entries in row irow of the mtx object into
the rowZV vector object.

Error checking: If mtx or rowZV is NULL, or if irow is out of range, an error message is printed and the
program exits.

12. void SubMtx_fillColumnZV (SubMtx *mtx, int jcol, ZV *rowZV) ;

This method is used for complex submatrices. It copies the entries in column jcol of the mtx object
into the colZV vector object.

Error checking: If mtx or colZV is NULL, or if jcol is out of range, an error message is printed and the
program exits.

13. double SubMtx_maxabs (SubMtx *mtx) ;

This method returns the magnitude of the element in the matrix with the largest magnitude.

Error checking: If mtx is NULL, an error message is printed and the program exits.

14. void SubMtx_zero (SubMtx *mtx) ;

This method zeros the entries of the submatrix.

Error checking: If mtx is NULL, an error message is printed and the program exits.

37.2.7 IO methods

The file structure of a SubMtx object is exactly that of its internal workspace buffer. See the source code for
more details.

1. int SubMtx_readFromFile (SubMtx *mtx, char *fn) ;

This method reads a SubMtx object from a file. It tries to open the file and if it is successful, it then calls
SubMtx readFromFormattedFile() or SubMtx readFromBinaryFile(), closes the file and returns the
value returned from the called routine.

Error checking: If mtx or fn are NULL, or if fn is not of the form *.mtxf (for a formatted file) or *.mtxb
(for a binary file), an error message is printed and the method returns zero.

2. int SubMtx_readFromFormattedFile (SubMtx *mtx, FILE *fp) ;

This method reads in a SubMtx object from a formatted file. If there are no errors in reading the
data, the value 1 is returned. If an IO error is encountered from fscanf, zero is returned. Note, if the
mtxutation vectors are one-based (as for Fortran), they are converted to zero-based vectors.

Error checking: If mtx or fp are NULL, an error message is printed and zero is returned.

332

3. int SubMtx_readFromBinaryFile (SubMtx *mtx, FILE *fp) ;

This method reads in a SubMtx object from a binary file. If there are no errors in reading the data, the
value 1 is returned. If an IO error is encountered from fread, zero is returned. Note, if the mtxutation
vectors are one-based (as for Fortran), they are converted to zero-based vectors.

Error checking: If mtx or fp are NULL, an error message is printed and zero is returned.

4. int SubMtx_writeToFile (SubMtx *mtx, char *fn) ;

This method writes a SubMtx object to a file. It tries to open the file and if it is successful, it then calls
SubMtx writeFromFormattedFile() or SubMtx writeFromBinaryFile(), closes the file and returns
the value returned from the called routine.

Error checking: If mtx or fn are NULL, or if fn is not of the form *.mtxf (for a formatted file) or *.mtxb
(for a binary file), an error message is printed and the method returns zero.

5. int SubMtx_writeToFormattedFile (SubMtx *mtx, FILE *fp) ;

This method writes out a SubMtx object to a formatted file. If there are no errors in writing the data,
the value 1 is returned. If an IO error is encountered from fprintf, zero is returned.

Error checking: If mtx or fp are NULL, an error message is printed and zero is returned.

6. int SubMtx_writeToBinaryFile (SubMtx *mtx, FILE *fp) ;

This method writes out a SubMtx object to a binary file. If there are no errors in writing the data, the
value 1 is returned. If an IO error is encountered from fwrite, zero is returned.

Error checking: If mtx or fp are NULL, an error message is printed and zero is returned.

7. int SubMtx_writeForHumanEye (SubMtx *mtx, FILE *fp) ;

This method writes out a SubMtx object to a file in a human readable format. The method SubMtx writeStats()

is called to write out the header and statistics. The value 1 is returned.

Error checking: If mtx or fp are NULL, an error message is printed and zero is returned.

8. int SubMtx_writeStats (SubMtx *mtx, FILE *fp) ;

This method writes out a header and statistics to a file. The value 1 is returned.

Error checking: If mtx or fp are NULL, an error message is printed and zero is returned.

9. void SubMtx_writeForMatlab (SubMtx *mtx, char *mtxname, FILE *fp) ;

This method writes out a SubMtx object to a file in a Matlab format. A sample line is

a(10,5) = -1.550328201511e-01 + 1.848033378871e+00*i ;

for complex matrices, or

a(10,5) = -1.550328201511e-01 ;

for real matrices, where mtxname = "a". The matrix indices come from the rowind[] and colind[]

vectors, and are incremented by one to follow the Matlab and FORTRAN convention.

Error checking: If mtx, mtxname or fp are NULL, an error message is printed and zero is returned.

333

37.3 Driver programs for the SubMtx object

1. testIO msglvl msgFile inFile outFile

This driver program reads in a SubMtx object from inFile and writes out the object to outFile

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the SubMtx
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inFile parameter is the input file for the SubMtx object. It must be of the form *.submtxf

or *.submtxb. The SubMtx object is read from the file via the SubMtx readFromFile() method.

• The outFile parameter is the output file for the SubMtx object. It must be of the form *.submtxf

or *.submtxb. The SubMtx object is written to the file via the SubMtx writeToFile() method.

2. test_scalevec msglvl msgFile type mode nrowA seed

This driver program tests the SubMtx scalevec{1,2,3}() methods. Use the script file do scalevec

for testing. When the output file is loaded into matlab, the last lines to the screen contain the errors.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The type parameter must be one of 1 (SPOOLES REAL) or 2 (SPOOLES COMPLEX).

• The mode parameter must be one of 7 (SUBMTX DIAGONAL), 8 (SUBMTX BLOCK DIAGONAL SYM) or 9
(SUBMTX BLOCK DIAGONAL HERM).

• The nrowA parameter is the number of rows in the matrix.

• The seed parameter is a random number seed.

3. test_solve msglvl msgFile type mode nrowA nentA ncolB seed

This driver program tests the SubMtx solve() method which tests the solve AX = B when A is
diagonal or block diagonal, and (I + A)X = B otherwise (A is strict upper or lower triangular). Use
the script file do solve for testing. When the output file is loaded into matlab, the last lines to the
screen contain the errors.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The type parameter must be one of 1 (SPOOLES REAL) or 2 (SPOOLES COMPLEX).

• The mode parameter must be one of 2 (SUBMTX SPARSE ROWS), 3 (SUBMTX SPARSE COLUMNS), 5
(SUBMTX DENSE SUBROWS), 6 (SUBMTX DENSE SUBCOLUMNS), 7 (SUBMTX DIAGONAL),
8 (SUBMTX BLOCK DIAGONAL SYM) or 9 (SUBMTX BLOCK DIAGONAL HERM).

• The nrowA parameter is the number of rows in the matrix.

• The nentA parameter is the number of nonzero entries in the submatrix, when appropriate.

• The ncolB parameter is the number of columns in B.

• The seed parameter is a random number seed.

334

4. test_solveH msglvl msgFile type mode nrowA nentA ncolB seed

This driver program tests the SubMtx solve() method which tests the solve (I + AH)X = B when
A is strict upper or lower triangular and has dense subrows, dense subcolumns, sparse rows, or sparse
columns. Use the script file do solveH for testing. When the output file is loaded into matlab, the last
lines to the screen contain the errors.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The type parameter must be 2 (SPOOLES COMPLEX).

• The mode parameter must be one of 2 (SUBMTX SPARSE ROWS), 3 (SUBMTX SPARSE COLUMNS), 5
(SUBMTX DENSE SUBROWS) or 6 (SUBMTX DENSE SUBCOLUMNS).

• The nrowA parameter is the number of rows in the matrix.

• The nentA parameter is the number of nonzero entries in the submatrix, when appropriate.

• The ncolB parameter is the number of columns in B.

• The seed parameter is a random number seed.

5. test_solveT msglvl msgFile type mode nrowA nentA ncolB seed

This driver program tests the SubMtx solve() method which tests the solve (I + AT)X = B when A
is strict upper or lower triangular and has dense subrows, dense subcolumns, sparse rows, or sparse
columns. Use the script file do solveT for testing. When the output file is loaded into matlab, the last
lines to the screen contain the errors.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The type parameter must be one of 1 (SPOOLES REAL) or 2 (SPOOLES COMPLEX).

• The mode parameter must be one of 2 (SUBMTX SPARSE ROWS), 3 (SUBMTX SPARSE COLUMNS), 5
(SUBMTX DENSE SUBROWS) or 6 (SUBMTX DENSE SUBCOLUMNS).

• The nrowA parameter is the number of rows in the matrix.

• The nentA parameter is the number of nonzero entries in the submatrix, when appropriate.

• The ncolB parameter is the number of columns in B.

• The seed parameter is a random number seed.

6. test_solveupd msglvl msgFile type mode nrowA nentA ncolB seed

This driver program tests the SubMtx solveupd() method which tests the update Y := Y − A ∗ X ,
used in the forward solve. X and Y have dense columns, and A has dense rows or columns or sparse
rows or columns. Use the script file do solveupd for testing. When the output file is loaded into
matlab, the last lines to the screen contain the errors.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The type parameter must be one of 1 (SPOOLES REAL) or 2 (SPOOLES COMPLEX).

• The mode parameter must be one of 0 (SUBMTX DENSE ROWS), 1 (SUBMTX DENSE COLUMNS), 2 (SUBMTX SPARSE ROWS

or 3 (SUBMTX SPARSE COLUMNS).

335

• The nrowY parameter is the number of rows in Y .

• The ncolY parameter is the number of columns in Y .

• The nrowA parameter is the number of rows in A, nrowA ≤ nrowY.

• The ncolA parameter is the number of columns in A, ncolA ≤ nrowX.

• The nentA parameter is the number of nonzero entries in the submatrix, when appropriate.

• The nrowX parameter is the number of rows in X , nrowA ≤ nrowY.

• The seed parameter is a random number seed.

7. test_solveupdH msglvl msgFile type mode nrowA nentA ncolB seed

This driver program tests the SubMtx solveupd() method which tests the update Y := Y −AH ∗X ,
used in the forward solve of a hermitian factorization. X and Y have dense columns, and A has dense
rows or columns or sparse rows or columns. Use the script file do solveupdH for testing. When the
output file is loaded into matlab, the last lines to the screen contain the errors.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The type parameter must be 2 (SPOOLES COMPLEX).

• The mode parameter must be one of 0 (SUBMTX DENSE ROWS), 1 (SUBMTX DENSE COLUMNS), 2 (SUBMTX SPARSE ROWS

or 3 (SUBMTX SPARSE COLUMNS).

• The nrowY parameter is the number of rows in Y .

• The ncolY parameter is the number of columns in Y .

• The nrowA parameter is the number of rows in A, nrowA ≤ nrowY.

• The ncolA parameter is the number of columns in A, ncolA ≤ nrowX.

• The nentA parameter is the number of nonzero entries in the submatrix, when appropriate.

• The nrowX parameter is the number of rows in X , nrowA ≤ nrowY.

• The seed parameter is a random number seed.

8. test_solveupdT msglvl msgFile type mode nrowA nentA ncolB seed

This driver program tests the SubMtx solveupd() method which tests the update Y := Y − AT ∗X ,
used in the forward solve of a symmetric factorization. X and Y have dense columns, and A has dense
rows or columns or sparse rows or columns. Use the script file do solveupdT for testing. When the
output file is loaded into matlab, the last lines to the screen contain the errors.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The type parameter must be one of 1 (SPOOLES REAL) or 2 (SPOOLES COMPLEX).

• The mode parameter must be one of 0 (SUBMTX DENSE ROWS), 1 (SUBMTX DENSE COLUMNS), 2 (SUBMTX SPARSE ROWS

or 3 (SUBMTX SPARSE COLUMNS).

• The nrowY parameter is the number of rows in Y .

• The ncolY parameter is the number of columns in Y .

• The nrowA parameter is the number of rows in A, nrowA ≤ nrowY.

• The ncolA parameter is the number of columns in A, ncolA ≤ nrowX.

336

• The nentA parameter is the number of nonzero entries in the submatrix, when appropriate.

• The nrowX parameter is the number of rows in X , nrowA ≤ nrowY.

• The seed parameter is a random number seed.

9. test_sort msglvl msgFile type mode nrowA ncolA nentA seed

This driver program tests the SubMtx sortRowsUp() and SubMtx sortColumnsUp() methods. Use the
script file do sort for testing. When the output file is loaded into matlab, the last lines to the screen
contain the errors.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The type parameter must be one of 1 (SPOOLES REAL) or 2 (SPOOLES COMPLEX).

• The mode parameter must be one of 0 (SUBMTX DENSE ROWS), 1 (SUBMTX DENSE COLUMNS), 2 (SUBMTX SPARSE ROWS

or 3 (SUBMTX SPARSE COLUMNS).

• The nrowA parameter is the number of rows in A.

• The ncolA parameter is the number of columns in A.

• The nentA parameter is the number of nonzero entries in the submatrix, when appropriate.

• The seed parameter is a random number seed.

Chapter 38

SubMtxList: SubMtx list object

This object was created to handle a list of lists of SubMtx objects during a matrix solve. Its form and function
is very close to the ChvList object that handles lists of lists of Chv objects during the factorization.

Here are the main properties.

1. There are a fixed number of lists, set when the SubMtxList object is initialized.

2. For each list there is an expected count, the number of times an object will be added to the list. (Note,
a NULL object can be added to the list. In this case, nothing is added to the list, but its count is
decremented.)

3. There is one lock for all the lists, but each list can be flagged as necessary to lock or not necessary to
lock before an insertion, count decrement, or an extraction is made to the list.

The SubMtxList object manages a number of lists that may require handling critical sections of code.
For example, one thread may want to add an object to a particular list while another thread is removing
objects. The critical sections are hidden inside the SubMtxList object. Our solve code do not know about
any mutual exclusion locks that govern access to the lists.

There are four functions of the SubMtxList object.

• Is the incoming count for a list nonzero?

• Is a list nonempty?

• Add an object to a list (possibly a NULL object) and decrement the incoming count.

• Remove a subset of objects from a list.

The first two operations are queries, and can be done without locking the list. The third operation needs
a lock only when two or more threads will be inserting objects into the list. The fourth operation requires
a lock only when one thread will add an object while another thread removes the object and the incoming
count is not yet zero.

Having a lock associated with a SubMtxList object is optional, for example, it is not needed during
a serial factorization nor a MPI solve. In the latter case there is one SubMtxList per process. For a
multithreaded solve there is one SubMtxList object that is shared by all threads. The mutual exclusion
lock that is (optionally) embedded in the SubMtxList object is a Lock object from this library. It is inside
the Lock object that we have a mutual exclusion lock. Presently we support the Solaris and POSIX thread
packages. Porting the multithreaded codes to another platform should be simple if the POSIX thread package
is present. Another type of thread package will require some modifications to the Lock object, but none to
the SubMtxList objects.

337

338

38.1 Data Structure

The SubMtxList structure has the following fields.

• int nlist : number of lists.

• SubMtx **heads : vector of pointers to the heads of the list of SubMtx objects.

• int *counts : vector of incoming counts for the lists.

• Lock *lock : mutual exclusion lock.

• char *flags : vector of lock flags for the lists. If flags[ilist] == ’N’, the list does not need to be
locked. If flags[ilist] == ’Y’, the list does need to be locked. Used only when lock is not NULL.

• int nlocks : total number of locks made on the mutual exclusion lock.

38.2 Prototypes and descriptions of SubMtxList methods

This section contains brief descriptions including prototypes of all methods that belong to the SubMtxList

object.

38.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. SubMtxList * SubMtxList_new (void) ;

This method simply allocates storage for the SubMtxList structure and then sets the default fields by
a call to SubMtxList setDefaultFields().

2. void SubMtxList_setDefaultFields (SubMtxList *list) ;

The structure’s fields are set to default values: nlist and nlocks set to zero, and heads, counts, lock
and flags are set to NULL .

Error checking: If list is NULL, an error message is printed and the program exits.

3. void SubMtxList_clearData (SubMtxList *list) ;

This method clears the object and free’s any owned data by calling SubMtx free() for each object on
the free list. If heads is not NULL, it is free’d. If counts is not NULL, it is free’d via a call to IVfree().
If flags is not NULL, it is free’d via a call to CVfree(). If the lock is not NULL, it is destroyed via a call
to mutex destroy() and then free’d. There is a concluding call to SubMtxList setDefaultFields().

Error checking: If list is NULL, an error message is printed and the program exits.

4. void SubMtxList_free (SubMtxList *list) ;

This method releases any storage by a call to SubMtxList clearData() and then free the space for
list.

Error checking: If list is NULL, an error message is printed and the program exits.

339

38.2.2 Initialization methods

There are three initializer methods.

1. void SubMtxList_init(SubMtxList *list, int nlist, int counts[],

int lockflag, char flags[]) ;

Any data is cleared via a call to SubMtxList clearData(). The number of lists is set and the heads[]
vector is initialized. If counts is not NULL, the object’s counts[] vector is allocated and filled with the
incoming entries. If lockflag is zero, the lock is not initialized. If lockflag is 1, the lock is initialized
to be able to synchronize threads with the calling process. If lockflag is 2, the lock is initialized to
be able to synchronize threads across processes. If flags is not NULL, the object’s flags[] vector is
allocated and filled with the incoming entries.

Error checking: If list is NULL, or if nlist ≤ 0, or if lockflag is not in [0,2], an error message is
printed and zero is returned.

38.2.3 Utility methods

1. int SubMtxList_isListNonempty (SubMtxList *list, int ilist) ;

If list ilist is empty, the method returns 0. Otherwise, the method returns 1.

Error checking: If list is NULL, or if ilist is not in the range [0,nlist), an error message is printed
and zero is returned.

2. int SubMtxList_isCountZero (SubMtxList *list, int ilist) ;

If counts is NULL, or if counts[ilist] equal to zero, the method returns 1. Otherwise, the method
returns 0.

Error checking: If list is NULL, or if ilist is not in the range [0,nlist), an error message is printed
and zero is returned.

3. SubMtx * SubMtxList_getList (SubMtxList *list, int ilist) ;

If list ilist is empty, the method returns NULL. Otherwise, if the list needs to be locked, the lock is
locked. The head of the list is saved to a pointer and then the head is set to NULL. If the list was
locked, the number of locks is incremented and the lock unlocked. The saved pointer is returned.

Error checking: If list is NULL, or if ilist is not in the range [0,nlist), an error message is printed
and zero is returned.

4. void SubMtxList_addObjectToList (SubMtxList *list,

SubMtx *mtx, int ilist) ;

If the list needs to be locked, the lock is locked. If mtx is not NULL, it is added to the head of the list. If
counts is not NULL, then counts[ilist] is decremented. If the lock was locked, the number of locks
is incremented and it is now unlocked.

Error checking: If list is NULL, or if ilist is not in the range [0,nlist), an error message is printed
and zero is returned.

38.2.4 IO methods

1. void SubMtxList_writeForHumanEye (SubMtxList *list, FILE *fp) ;

This method write the list to a file in user readable form.

Error checking: If list or fp are NULL, an error message is printed and zero is returned.

Chapter 39

SubMtxManager: SubMtx object manager

This object was created to manage a number of instances of SubMtx double precision matrix objects. Its
form and functionality is almost identical to that of the ChvManager object.

The SubMtxManager object is very simple. It has two functions.

• When asked for a SubMtx object of a certain size, it returns one.

• When given a SubMtx object (or a list of objects connected via their next fields) that is (are) no longer
necessary for the calling program, it takes some action with it (them).

There are presently two modes of behavior : the first is a wrapper around calls to SubMtx new() and
SubMtx free() (which contain calls to malloc() and free()), the second can recycle instances to be used
later.

Both behaviors are appropriate in certain circumstances. When one needs a large number of objects
(though not all at the same time) whose workspace requirements are roughly equal, recycling the objects
can be cost effective. On the other hand, consider a scenario which arises in the factorization of FrontMtx
objects. At first one needs a moderate number of large SubMtx objects which store the UJ,∂J and L∂J,J

submatrices. We then replace them with a larger number of smaller objects that store the UJ,K and LK,J

matrices. In this case recycling is not cost-effective for the large objects are recycled as smaller objects and
much of their workspace is inactive and therefore wasted. The total storage footprint can be almost twice
as large as necessary.

Our recycling mode is a very simple implementation. The manager object maintains a free list of objects,
sorting in ascending order of the number of bytes in their workspace. When asked for an object with a
certain amount of workspace, the manager performs a linear search of the list and returns the first object
that has sufficient space. If no such object exists, i.e., if the list is empty or there is no object large enough,
the manager allocates a new SubMtx object, initializes it with sufficient work space, and returns a pointer to
the object. When a SubMtx object is no longer necessary, it is released to the manager object, which then
inserts it into the free list. A list of SubMtx objects can be released in one call.

One can specify whether the object is to be locked via a mutual exclusion lock. This is not necessary for
a serial or MPI factorization or solve (where there is one SubMtxManager object for each processor), but it
is necessary for in a multithreaded environment.

Each manager object keeps track of certain statistics, bytes in their workspaces, the total number of
bytes requested, the number of requests for a SubMtx objects, the number of releases, and the number of
locks and unlocks.

340

341

39.1 Data Structure

The SubMtxManager structure has the following fields.

• SubMtx *head : head of the free list of SubMtx objects.

• Lock *lock : mutual exclusion lock.

• int mode : behavior mode. When mode = 0, the object calls SubMtx new() and SubMtx free() to
create and release objects. When mode = 1, the object recycles the objects.

• int nactive : number of active SubMtx objects.

• int nbytesactive : number of bytes in the active SubMtx objects.

• int nbytesrequested : total number of bytes in the requested SubMtx objects.

• int nbytesalloc : total number of bytes that were actually allocated in the workspace of the SubMtx

objects.

• int nrequests : total number of requests for SubMtx objects.

• int nreleases : total number of releases of SubMtx objects.

• int nlocks : total number of locks made on the mutual exclusion lock.

• int nunlocks : total number of unlocks made on the mutual exclusion lock.

39.2 Prototypes and descriptions of SubMtxManager methods

This section contains brief descriptions including prototypes of all methods that belong to the SubMtxManager
object.

39.2.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. SubMtxManager * SubMtxManager_new (void) ;

This method simply allocates storage for the SubMtxManager structure and then sets the default fields
by a call to SubMtxManager setDefaultFields().

2. void SubMtxManager_setDefaultFields (SubMtxManager *manager) ;

The structure’s fields are set to default values: mode, nactive, nbytesactive, nbytesrequested,
nbytesalloc, nrequests, nreleases, nlocks and nunlocks are set to zero, and head and lock are
set to NULL .

Error checking: If manager is NULL, an error message is printed and the program exits.

3. void SubMtxManager_clearData (SubMtxManager *manager) ;

This method clears the object and free’s any owned data by calling SubMtx free() for each object on
the free list. If the lock is not NULL, it is destroyed via a call to mutex destroy() and then free’d.
There is a concluding call to SubMtxManager setDefaultFields().

Error checking: If manager is NULL, an error message is printed and the program exits.

342

4. void SubMtxManager_free (SubMtxManager *manager) ;

This method releases any storage by a call to SubMtxManager clearData() and then free the space
for manager.

Error checking: If manager is NULL, an error message is printed and the program exits.

39.2.2 Initialization methods

1. void SubMtxManager_init(SubMtxManager *manager, int lockflag, int mode) ;

Any data is cleared via a call to SubMtxManager clearData(). If lockflag is zero, the lock is not
initialized. If lockflag is 1, the lock is initialized to be able to synchronize threads with the calling
process. If lockflag is 2, the lock is initialized to be able to synchronize threads across processes. The
behavior mode is set to mode.

Error checking: If manager is NULL, or if lockflag is not in [0,2], or if mode is not in [0,1], an error
message is printed and zero is returned.

39.2.3 Utility methods

1. SubMtx * SubMtxManager_newObjectOfSizeNbytes (SubMtxManager *manager,

int nbytesNeeded) ;

This method returns a pointer to a SubMtx object that has at least nbytesNeeded bytes in its workspace.

Error checking: If manager is NULL, or if nbytesNeeded ≤ 0, an error message is printed and zero is
returned.

2. void SubMtxManager_releaseObject (SubMtxManager *manager, SubMtx *mtx) ;

This method releases the mtx instance, either free’ing it (if mode = 0), or returning it to the free list
(if mode = 1).

Error checking: If manager or mtx is NULL, an error message is printed and zero is returned.

3. void SubMtxManager_releaseListOfObjects (SubMtxManager *manager, SubMtx *first) ;

This method releases a list of SubMtx objects whose head is first, either free’ing them (if mode = 0),
or returning them to the free list (if mode = 1).

Error checking: If manager or head is NULL, an error message is printed and zero is returned.

39.2.4 IO methods

1. void SubMtxManager_writeForHumanEye (SubMtxManager *manager, FILE *fp) ;

This method writes a SubMtxManager object to a file in an easily readable format.

Error checking: If manager or fp are NULL, an error message is printed and zero is returned.

Chapter 40

SymbFac: Symbolic Factorization

This object is really a collection of methods — there is no struct associated with it, and therefore no data.
The reason for its existence is that a symbolic factorization can be produced using an ETree object and one
of several different inputs, e.g., a Graph object, a InpMtx object, and a Pencil object. Possibly there could
be others, all that is necessary is to be able to communicate the nonzero structure of a chevron.

The symbolic factorization methods used to belong to the ETree object. It was a natural location for this
functionality. We first generated a symbolic factorization using a Graph object as input, and since the ETree
object used a Graph object to initialize itself, this was acceptable. Then we started to bypass the Graph

object and use a InpMtx object as input, and this forced the vision of the ETree object (the other objects
it must know about) to grow. By the time we started using the Pencil matrix pencil object to find the
symbolic factorization, we knew things were out of hand. By creating a new object to handle the symbolic
factorization, we can remove the InpMtx and Pencil objects from the vision of the ETree object.

The symbolic factorization is stored in an IVL object. The vertices in J ∪ ∂J are stored in the J’th list
and can be accessed via a call to

IVL_listAndSize(symbfacIVL, J, &size, &indices) ;

where on return, the int vector indices[size] contains the vertices.

NOTE: The SymbFac initFromInpMtx() and SymbFac initFromPencil() methods have been changed
slightly to make them more efficient. The InpMtx objects that are input are now required to have chevron
coordinate type and storage mode must be by vectors.

40.1 Data Structure

There is no struct or data associated with the SymbFac object.

40.2 Prototypes and descriptions of SymbFac methods

This section contains brief descriptions including prototypes of all methods that belong to the SymbFac

object.

40.2.1 Symbolic factorization methods

1. IVL * SymbFac_initFromGraph (ETree *etree, Graph *graph) ;

343

344

This symbolic factorization method takes a Graph object as input. This method constructs an IVL

object that contains one list per front. List ilist contains the internal and external vertices for front
ilist. If the input graph is a compressed graph, then the lists of compressed vertices make little
sense; they must be converted to original vertices. To do this, see the IVL expand() method. The
nodwghtsIV and bndwghtsIV objects for the ETree object are updated using information from the
symbolic factorization.

Error checking: If etree or graph is NULL, or if nfront < 1, or if nvtx < 1, or if graph->nvtx 6= nvtx,
an error message is printed and the program exits.

2. IVL * SymbFac_initFromInpMtx (ETree *etree, InpMtx *inpmtx) ;

This symbolic factorization method takes a InpMtx object as input. This method constructs an IVL

object that contains one list per front. List ilist contains the internal and external vertices for front
ilist. We assume that both the ETree and InpMtx objects have had been permuted into their final
ordering. The nodwghtsIV and bndwghtsIV objects for the ETree object are updated using information
from the symbolic factorization.

Error checking: If etree or inpmtx is NULL, or if the coordinate type of inpmtx is not INPMTX BY CHEVRONS,
or if the storage mode of inpmtx is not INPMTX BY VECTORS, or if nfront < 1, or if nvtx < 1, an error
message is printed and the program exits.

3. IVL * SymbFac_initFromPencil (ETree *etree, Pencil *pencil) ;

This first symbolic factorization method takes a Pencil object as input and is used to compute the
symbolic factorization for a matrix pencil A−σB. This method constructs an IVL object that contains
one list per front. List ilist contains the internal and external vertices for front ilist. We assume
that both the ETree and InpMtx objects have had been permuted into their final ordering. The
nodwghtsIV and bndwghtsIV objects for the ETree object are updated using information from the
symbolic factorization.

Error checking: If etree or inpmtxA is NULL, or if the coordinate type of either internal InpMtx

objects is not INPMTX BY CHEVRONS, or if the storage mode of either internal InpMtx objects is not
INPMTX BY VECTORS, or if nfront < 1, or if nvtx < 1, an error message is printed and the program
exits.

40.3 Driver programs

1. testSymbFacInpMtx msglvl msgFile inETreeFile inDInpMtxFile

outETreeFile outIVfile outIVLfile

This driver program reads in an ETree object and a InpMtx object and computes the symbolic factor-
ization. The ETree object is updated (the front sizes and boundary sizes may change) and is optionally
written out to outETreeFile. The old-to-new IV object is optionally written to outIVfile. The IVL

object that contains the symbolic factorization is optionally written to outIVLfile.

• The msglvl parameter determines the amount of output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inETreeFile parameter is the input file for the ETree object. It must be of the form *.etreef

or *.etreeb. The ETree object is read from the file via the ETree readFromFile() method.

• The inInpMtxFile parameter is the input file for the InpMtx object. It must be of the form
*.inpmtxf or *.inpmtxb. The InpMtx object is read from the file via the InpMtx readFromFile()

method.

345

• The outETreeFile parameter is the output file for the ETree object. If outETreeFile is none

then the ETree object is not written to a file. Otherwise, the ETree writeToFile() method is
called to write the object to a formatted file (if outETreeFile is of the form *.etreef), or a
binary file (if outETreeFile is of the form *.etreeb).

• The outIVfile parameter is the output file for the vertex-to-front map IV object. If outIVfile
is none then the IV object is not written to a file. Otherwise, the IV writeToFile() method is
called to write the object to a formatted file (if outIVfile is of the form *.ivf), or a binary file
(if outIVfile is of the form *.ivb).

• The outIVLfile parameter is the output file for the symbolic factorization IVL object. If
outIVLfile is none then the IVL object is not written to a file. Otherwise, the IVL writeToFile()

method is called to write the object to a formatted file (if outIVLfile is of the form *.ivlf), or
a binary file (if outIVLfile is of the form *.ivlb).

2. testSymbFacGraph msglvl msgFile inETreeFile inGraphFile

outETreeFile outIVfile outIVLfile

This driver program reads in an ETree object and a Graph object and computes the symbolic factor-
ization. The ETree object is updated (the front sizes and boundary sizes may change) and is optionally
written out to outETreeFile. The old-to-new IV object is optionally written to outIVfile. The IVL

object that contains the symbolic factorization is optionally written to outIVLfile.

• The msglvl parameter determines the amount of output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inETreeFile parameter is the input file for the ETree object. It must be of the form *.etreef

or *.etreeb. The ETree object is read from the file via the ETree readFromFile() method.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The outETreeFile parameter is the output file for the ETree object. If outETreeFile is none

then the ETree object is not written to a file. Otherwise, the ETree writeToFile() method is
called to write the object to a formatted file (if outETreeFile is of the form *.etreef), or a
binary file (if outETreeFile is of the form *.etreeb).

• The outIVfile parameter is the output file for the vertex-to-front map IV object. If outIVfile
is none then the IV object is not written to a file. Otherwise, the IV writeToFile() method is
called to write the object to a formatted file (if outIVfile is of the form *.ivf), or a binary file
(if outIVfile is of the form *.ivb).

• The outIVLfile parameter is the output file for the symbolic factorization IVL object. If
outIVLfile is none then the IVL object is not written to a file. Otherwise, the IVL writeToFile()

method is called to write the object to a formatted file (if outIVLfile is of the form *.ivlf), or
a binary file (if outIVLfile is of the form *.ivlb).

Part V

Miscellaneous Methods

346

Chapter 41

Misc directory

This directory contains a number of miscellaneous functions and driver programs that don’t really fit any-
where else. There are functions to generate nested dissection orderings on regular 2-D and 3-D grids —
the usual nested dissection, with double wide separators, and local nested dissection [8]. There are wrapper
methods for minimum degree, nested dissection and multisection orderings for general graphs. There is also
a driver program to produce a postscript file for a 2-D graph, very useful for visualizing graph partitionings
and orderings.

41.1 Prototypes and descriptions of methods in the Misc directory

This section contains brief descriptions including prototypes of all methods in the Misc directory.

41.1.1 Theoretical nested dissection methods

1. void mkNDperm (int n1, int n2, int n3, int newToOld[], int west,

int east, int south, int north, int bottom, int top) ;

This method this vector fills a permutation vector with the nested dissection new-to-old ordering of
the vertices for the subgrid defined by nodes whose coordinates lie in

[west, east] x [south, north] x [bottom, top].

The method calls itself recursively. To find the permutation for an n1 x n2 x n3 grid, call

mkNDperm(n1, n2, n3, newToOld, 0, n1-1, 0, n2-1, 0, n3-1) ;

from a driver program.

Error checking: If n1, n2 or n3 are less than or equal to zero, or if newToOld is NULL, or if west, south
or bottom are less than or equal to zero, of if east ≥ n1, of if north ≥ n2, of if top ≥ n3, an error
message is printed and the program exits.

2. void mkNDperm2 (int n1, int n2, int n3, int newToOld[], int west,

int east, int south, int north, int bottom, int top) ;

This method this vector fills a permutation vector with the nested dissection new-to-old ordering of
the vertices for the subgrid defined by nodes whose coordinates lie in

348

349

[west, east] x [south, north] x [bottom, top].

There is one important difference between this method and mkNDperm() above; this method finds
double-wide separators, necessary for an operator with more than nearest neighbor grid point coupling.
The method calls itself recursively. To find the permutation for an n1 x n2 x n3 grid, call

mkNDperm(n1, n2, n3, newToOld, 0, n1-1, 0, n2-1, 0, n3-1) ;

from a driver program.

Error checking: If n1, n2 or n3 are less than or equal to zero, or if newToOld is NULL, or if west, south
or bottom are less than or equal to zero, of if east ≥ n1, of if north ≥ n2, of if top ≥ n3, an error
message is printed and the program exits.

3. void localND2D (int n1, int n2, int p1, int p2,

int dsizes1[], int dsizes2[], int oldToNew[]) ;

This method finds a local nested dissection ordering [8] for an n1 x n2 2-D grid. There are p1 x

p2 domains in the grid. The dsizes1[] and dsizes2[] vectors are optional; they allow the user
to explicitly input domain sizes. If dsizes1[] and dsizes2[] are not NULL, the q = q1 + q2*p1’th
domain contains a dsizes1[q1] x dsizes2[q2] subgrid of points.

Error checking: If n1 or n2 are less than or equal to zero, or if p1 or p2 are less than or equal to zero,
or if 2p1 − 1 > n1, or if 2p2 − 1 > n2, or if oldToNew is NULL, or if dsizes1[] and dsizes2[] are
not NULL but have invalid entries (all entries must be positive, entries in dsizes1[] must sum to n1

- p1 + 1, and entries in dsizes2[] must sum to n2 - p2 + 1, an error message is printed and the
program exits.

4. void localND3D (int n1, int n2, int n3, int p1, int p2, int p3,

int dsizes1[], int dsizes2[], int dsizes3[],

int oldToNew[]) ;

This method finds a local nested dissection ordering [8] for an n1 x n2 x n3 3-D grid. There are p1 x

p2 x p3 domains in the grid. The q’th domain contains a dsizes1[q] x dsizes2[q] x dsizes3[q]

subgrid of points. The dsizes1[], dsizes2[] and dsizes3[] vectors are optional; they allow the user
to explicitly input domain sizes. If dsizes1[], dsizes2[] and dsizes3[] are not NULL, the q = q1

+ q2*p1+ q3*p1*p2’th domain contains a dsizes1[q1] x dsizes2[q2] x disizes3[q3] subgrid of
points.

Error checking: If n1, n2 or n3 are less than or equal to zero, or if p1, p2 or p3 are less than or equal to
zero, or if 2p1− 1 > n1, or if 2p2− 1 > n2, or if 2p3− 1 > n3, or if oldToNew is NULL, or if dsizes1[],
disizes2[] and dsizes3[] are not NULL but have invalid entries (all entries must be positive, entries
in dsizes1[] must sum to n1 - p1 + 1, entries in dsizes2[] must sum to n2 - p2 + 1, and entries
in dsizes3[] must sum to n3 - p3 + 1, an error message is printed and the program exits.

5. void fp2DGrid (int n1, int n2, int ivec[], FILE *fp) ;

This method writes the ivec[] vector onto an n1 x n2 grid to file fp. This is useful to visualize an
ordering or a metric on a grid.

Error checking: If n1 or n2 are less than or equal to zero, or if ivec or fp are NULL, an error message
is printed and the program exits.

6. void fp3DGrid (int n1, int n2, int n3, int ivec[], FILE *fp) ;

This method writes the ivec[] vector onto an n1 x n2 x n3 grid to file fp. This is useful to visualize
an ordering or a metric on a grid.

Error checking: If n1, n2 or n3 are less than or equal to zero, or if ivec or fp are NULL, an error
message is printed and the program exits.

350

41.1.2 Multiple minimum degree, Nested dissection and multisection wrapper
methods

There are three simple methods to find minimum degree, nested dissection and multisection orderings. In
addition, there is one method that finds the better of two methods – nested dissection and multisection.
(Much of the work to find either nested dissection or multisection is identical, so this method takes little
more time than either of the two separately.)

To properly specify these methods there are many parameters — these three wrapper methods insulate
the user from all but one or two of the parameters. As a result, the quality of the ordering may not be as
good as can be found by using non-default settings of the parameters.

One wrapper method computes a minimum degree ordering — the only input parameter is a random
number seed. Two wrappers methods compute the nested dissection and multisection orderings — in addition
to a random number seed there is a upper bound on the subgraph size used during the graph partition. This
is the most sensitive of the parameters.

The user interested in more customized orderings should consult the chapters on the the GPart, DSTree
and MSMD objects that perform the three steps of the ordering process: perform an incomplete nested dissec-
tion of the graph, construct the map from vertices to stages in which they will be eliminated, and perform the
multi-stage minimum degree ordering. The driver programs in the GPart and MSMD directories fully exercise
the graph partition and ordering strategies by giving the user access to all input parameters.

1. ETree * orderViaMMD (Graph *graph, int seed, int msglvl, FILE *msgFile) ;

This method returns a front tree ETree object for a multiple minimum degree ordering of the graph
graph. The seed parameter is a random number seed. The msglvl and msgFile parameters govern
the diagnostics output. Use msglvl = 0 for no output, msglvl = 1 for timings and scalar statistics,
and use msglvl > 1 with care, for it can generate huge amounts of output.

Error checking: If graph is NULL, or if msglvl > 0 and msgFile is NULL, an error message is printed
and the program exits.

2. ETree * orderViaND (Graph *graph, int maxdomainsize, int seed,

int msglvl, FILE *msgFile) ;

This method returns a front tree ETree object for a nested dissection ordering of the graph graph.
If a subgraph has more vertices than the maxdomainsize parameter, it is split. The seed parameter
is a random number seed. The msglvl and msgFile parameters govern the diagnostics output. Use
msglvl = 0 for no output, msglvl = 1 for timings and scalar statistics, and use msglvl > 1 with
care, for it can generate huge amounts of output.

Error checking: If graph is NULL, or if maxdomainsize≤ 0, or if msglvl > 0 and msgFile is NULL, an
error message is printed and the program exits.

3. ETree * orderViaMS (Graph *graph, int maxdomainsize, int seed,

int msglvl, FILE *msgFile) ;

This method returns a front tree ETree object for a multisection ordering of the graph graph. If a
subgraph has more vertices than the maxdomainsize parameter, it is split. The seed parameter is a
random number seed. The msglvl and msgFile parameters govern the diagnostics output. Use msglvl
= 0 for no output, msglvl = 1 for timings and scalar statistics, and use msglvl > 1 with care, for it
can generate huge amounts of output.

Error checking: If graph is NULL, or if maxdomainsize≤ 0, or if msglvl > 0 and msgFile is NULL, an
error message is printed and the program exits.

4. ETree * orderViaBestOfNDandMS (Graph *graph, int maxdomainsize, int maxzeros,

int maxsize, int seed, int msglvl, FILE *msgFile) ;

351

This method returns a front tree ETree object for a better of two orderings, a nested dissection and
multisection ordering. If a subgraph has more vertices than the maxdomainsize parameter, it is split.
The seed parameter is a random number seed. This method also transforms the front tree using
the maxzeros and maxsize parameters. See the ETree transform() method in Section 19.2.10. The
msglvl and msgFile parameters govern the diagnostics output. Use msglvl = 0 for no output, msglvl
= 1 for timings and scalar statistics, and use msglvl > 1 with care, for it can generate huge amounts
of output.

Error checking: If graph is NULL, or if maxdomainsize≤ 0, or if msglvl > 0 and msgFile is NULL, an
error message is printed and the program exits.

41.1.3 Graph drawing method

1. void drawGraphEPS (Graph *graph, Coords *coords, IV *tagsIV,

double bbox[4], double rect[4], double linewidth1,

double linewidth2, double radius, char *epsFileName,

int msglvl, FILE *msgFile) ;

This method is used to create an EPS (Encapsulated Postscript) file that contains a picture of a graph
in two dimensions. We use this to visualize separators and domain decompositions, mostly of regular
grids and triangulations of a planar region.

The graph object defines the connectivity of the vertices. The coords object defines the locations of
the vertices. The tagsIV object is used to define whether or not an edge is drawn between two vertices
adjacent in the graph. When tagsIV is not NULL, if there is an edge (u,v) in the graph and tags[u] =

tags[v], then the edge with width linewidth1 is drawn. For edges (u,v) in the graph and tags[u]

!= tags[v], then the edge with width linewidth2 is drawn, assuming linewidth2 > 0. If tagsIV is
NULL, than all edges are drawn with width linewidth1. Each vertex is draw with a filled circle with
radius radius.

The graph and its Coords object occupy a certain area in 2-D space. We try to plot the graph inside the
area defined by the rect[] array in such a manner that the relative scales are preserved (the graph is
not stretched in either the x or y direction) and that the larger of the width and height of the graph fills
the area defined by the rect[] rectangle. Note: hacking postscript is not an area of expertise of either
author. Some Postscript viewers give us messages that we are not obeying the format conventions (this
we do not doubt), but we have never failed to view or print one of these files.

Error checking: If the method is unable to open the file, an error message is printed and the program
exits.

41.1.4 Linear system construction

Our driver programs test linear systems where the matrices come from regular grids using nested dissection
orderings. There are two methods that generate linear systems of this form along with the front tree and
symbolic factorization.

1. void mkNDlinsys (int n1, int n2, int n3, int maxzeros, int maxsize,

int type, int symmetryflag, int nrhs, int seed, int msglvl,

FILE *msgFile, ETree **pfrontETree, IVL **psymbfacIVL,

InpMtx **pmtxA, DenseMtx **pmtxX, DenseMtx **pmtxB) ;

This method creates a linear system AX = B for a n1 × n2 × n3 grid. The entries in A and X
are random numbers, B is computed as the product of A with X . A can be real (type = 1) or
complex (type = 2), and can be symmetric (symmetryflag = 0), Hermitian (symmetryflag = 1) or

352

nonsymmetric (symmetryflag = 2). The number of columns of X is given by nrhs. The linear system
is ordered using theoretical nested dissection, and the front tree is transformed using the maxzeros and
maxsize parameters. The addresses of the front tree, symbolic factorization, and three matrix objects
are returned in the last five arguments of the calling sequence.

Error checking: None presently.

2. void mkNDlinsysQR (int n1, int n2, int n3, int type, int nrhs, int seed,

int msglvl, FILE *msgFile, ETree **pfrontETree, IVL **psymbfacIVL,

InpMtx **pmtxA, DenseMtx **pmtxX, DenseMtx **pmtxB) ;

This method creates a linear system AX = B for a natural factor formulation of a n1× n2× n3 grid.
If n1, n2 and n3 are all greater than 1, the grid is formed of linear hexahedral elements and the matrix
A has 8*n1*n2*n3 rows. If one of n1, n2 and n3 is equal to 1, the grid is formed of linear quadrilateral
elements and the matrix A has 4*n1*n2*n3 rows. The entries in A and X are random numbers, B is
computed as the product of A with X . A can be real (type = 1) or complex (type = 2). The number
of columns of X is given by nrhs. The linear system is ordered using theoretical nested dissection,
and the front tree is transformed using the maxzeros and maxsize parameters. The addresses of the
front tree, symbolic factorization, and three matrix objects are returned in the last five arguments of
the calling sequence.

Error checking: None presently.

41.2 Driver programs found in the Misc directory

This section contains brief descriptions of the driver programs.

1. testNDperm msglvl msgFile n1 n2 n3 outPermFile

This driver program generates a Perm object that contains a nested dissection ordering for a n1 x n2

x n3 regular grid.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the Perm

object is written to the output file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• n1 is the number of points in the first direction.

• n2 is the number of points in the second direction.

• n3 is the number of points in the third direction.

• The outPermFile parameter is the output file for the Perm object. If outPermFile is none then
the Perm object is not written to a file. Otherwise, the Perm writeToFile() method is called to
write the object to a formatted file (if outPermFile is of the form *.permf), or a binary file (if
outPermFile is of the form *.permb).

2. testOrderViaMMD msglvl msgFile GraphFile seed ETreeFile

This program reads in a Graph object from a file and computes a multiple minimum degree ordering
of the graph.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the Perm

object is written to the output file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

353

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The seed parameter is a random number seed.

• The ETreeFile parameter is the output file for the ETree object. If ETreeFile is none then the
ETree object is not written to a file. Otherwise, the ETree writeToFile() method is called to
write the object to a formatted file (if ETreeFile is of the form *.etreef), or a binary file (if
ETreeFile is of the form *.etreeb).

3. testOrderViaND msglvl msgFile GraphFile maxdomainsize seed ETreeFile

This program reads in a Graph object from a file and computes a generalized nested dissection ordering
of the graph.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the Perm

object is written to the output file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The maxdomainsize parameter governs the partition of a graph. If a subgraph has more than
maxdomainsize vertices, it is split.

• The seed parameter is a random number seed.

• The ETreeFile parameter is the output file for the ETree object. If ETreeFile is none then the
ETree object is not written to a file. Otherwise, the ETree writeToFile() method is called to
write the object to a formatted file (if ETreeFile is of the form *.etreef), or a binary file (if
ETreeFile is of the form *.etreeb).

4. testOrderViaMS msglvl msgFile GraphFile maxdomainsize seed ETreeFile

This program reads in a Graph object from a file and computes a multisection ordering of the graph.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the Perm

object is written to the output file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The maxdomainsize parameter governs the partition of a graph. If a subgraph has more than
maxdomainsize vertices, it is split.

• The seed parameter is a random number seed.

• The ETreeFile parameter is the output file for the ETree object. If ETreeFile is none then the
ETree object is not written to a file. Otherwise, the ETree writeToFile() method is called to
write the object to a formatted file (if ETreeFile is of the form *.etreef), or a binary file (if
ETreeFile is of the form *.etreeb).

5. drawGraph msglvl msgFile inGraphFile inCoordsFile inTagsIVfile

outEPSfile linewidth1 linewidth2 bbox[4] rect[4] radius

This driver program generates a Encapsulated Postscript file outEPSfile of a 2-D graph using a Graph

object, a Coords object and a tags IV object that contains the component ids of the vertices.

See the doDraw script file in this directory for an example calling sequence.

354

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means that all
objects are written to the output file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inGraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The inCoordsFile parameter is the input file for the Coords object. It must be of the form
*.coordsf or *.coordsb. The Coords object is read from the file via the Coords readFromFile()

method.

• The inTagsIVfile parameter is the input file for the tags IV object. It must be of the form
’none’, *.ivf or *.ivb. The IV object is read from the file via the IV readFromFile() method.

• The outEPSfile parameter is the output file for the Encapsulated Postscript file.

• The linewidth1 parameter governs the linewidth of edges between vertices in the same compo-
nent.

• The linewidth2 parameter governs the linewidth of edges between vertices in different compo-
nents.

• The bbox[4] array is the bounding box for the plot. In Postscript the coordinates are in points,
where there are 72 points per inch. For example, a bounding box of 0 0 200 300 will create a
plot whose size is 2.78 inches by 4.17 inches.

• The rect[4] array is the enclosing rectangle for the plot. To put a 20 point margin around the
plot, set rect[0] = bbox[0] + 20, rect[1] = bbox[1] + 20, rect[2] = bbox[2] - 20 and
rect[3] = bbox[3] - 20.

• The radius parameter governs the size of the filled circle that is centered on each vertex. The
dimension is in points.

See Figure 41.1 for a plot of the graph of R2D100, a randomly triangulated grid with 100 vertices with
linewidth1 = 3. Figure 41.2 illustrates a domain decomposition obtained from the fishnet algorithm
of Chapter 20 with linewidth1 = 3 and linewidth2 = 0.1.

6. testSemi msglvl msgFile GraphFile ETreeFile mapFile

This program is used to compute the effect of using a semi-implicit factorization to solve

AX =

[
A0,0 A0,1

A1,0 A1,1

][
X0

X1

]
=

[
B0

B1

]
= B.

A is factored as [
A0,0 A0,1

A1,0 A1,1

]
=

[
L0,0 0
L1,0 L1,1

] [
U0,0 U0,1

0 U1,1

]
,

and to solve AX = B, we do the following steps.

• solve L0,0Y0 = B0

• solve L1,1U1,1X1 = B1 − L1,0Y0

• solve U0,0X0 = Y0 − U0,1X1

An alternative factorization is

A =

[
L0,0 0

A1,0U
−1
0,0 L1,1

] [
U0,0 L−1

0,0U0,1

0 U1,1

]
.

To solve AX = B, we do the following semi-implicit solve.

355

Figure 41.1: R2D100

356

Figure 41.2: R2D100: fishnet domain decomposition

2 2 0 4 4 4 4 4 4 4

3 3 3 3 3 3 3 0 0 5

2

2

2

2

2

2

0

3

4

4

0

1

1

1

1

0

1

3

0

0

4

2

0

2

1

2

4

3

1

4

1

3

2

1

2

3

0

2

0

1

0

1

1

0

4

3

2

1

1

0

1

1

1

0

4

2

1

1

3

1

2

1

4

1

3

1

0

2 0

0

0

0

0

1

2

1

3

0

2

0

357

• solve L0,0U0,0Z0 = B0

• solve L1,1U1,1X1 = B1 −A1,0Z0

• solve L0,0U0,0X0 = B0 −A0,1X1

When we compare the semi-implicit solve against the explicit solve, we see that the former needs A0,1

and A1,0 but not L1,0 or A0,1. and executes two solves with L0,0 and U0,0 (instead of one) and performs
a matrix-matrix multiply with A0,1 and A1,0 instead of L1,0 and U0,1. In situations where the numbers
of entries in L1,0 and U0,1 are much larger than those in A1,0 and A0,1, and the numbers of entries in
L0,0 and U0,0 are not too large, the semi-implicit factorization can be more efficient.

This program reads in three objects: a Graph object, an ETree object to specify the ordering, and an
IV map object that tells which vertices are in the which blocks of the matrix. The map from vertices to
blocks follows the same convention as the component map from the GPart object. If map[v] = 0, then
vertex v belongs to the Schur complement (1, 1) block. Otherwise, v belongs to a domain (the domain
number is map[v]) and so belongs to the (0, 0) block. The output of the program gives statistics for
storage and operation count for the two types of solves. For example,

storage: explicit = 1404, semi-implicit = 1063, ratio = 1.321

opcount: explicit = 2808, semi-implicit = 2742, ratio = 1.024

is the output using the do testSemi driver program for the R2D100 matrix.

• The msglvl parameter determines the amount of output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The GraphFile parameter is the input file for the Graph object. It must be of the form *.graphf

or *.graphb. The Graph object is read from the file via the Graph readFromFile() method.

• The ETreeFile parameter is the input file for the ETree object. It must be of the form *.etreef

or *.etreeb. The ETree object is read from the file via the ETree readFromFile() method.

• The mapFile parameter is the input file for the map IV object. It must be of the form *.ivf or
*.ivb. The IV object is read from the file via the IV readFromFile() method.

7. allInOne msglvl msgFile type symmetryflag pivotingflag

matrixFileName rhsFileName seed

This all-in-one driver program is an example that tests the serial UT DU , UHDU or LU factorization
and solve. Matrix entries are read in from a file, and then the matrix is assembled and factored. The
right hand side entries are read in from a file, and the system is solved. Three input parameters specify
the type of system (real or complex), the type of factorization (symmetric, Hermitian or nonsymmetric)
and whether pivoting is to be used for numerical stability.

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the Perm

object is written to the output file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• type is the type of entries

– 1 — (SPOOLES REAL) for real entries

– 2 — (SPOOLES COMPLEX) for complex entries

• symmetryflag defines the factorization

– 0 — (SPOOLES SYMMETRIC) for a real or complex UT DU factorization

358

– 1 — (SPOOLES SYMMETRIC) for a complex UHDU factorization

– 2 — (SPOOLES SYMMETRIC) for a real or complex LU factorization

• pivotingflag defines pivoting or not for numerical stability

– 0 — (SPOOLES NO PIVOTING) for no pivoting

– 1 — (SPOOLES PIVOTING) for pivoting

Note, the code has a pivoting threshold tau = 100 hardwired into the code.

• The matrixFileName parameter is the name of the input file for the matrix entries. For a real
matrix, this file must have the following form.

nrow ncol nent

...

irow jcol value

...

where the first line has the number of rows, columns and entries. (Note, for this driver program
nrow must be equal to ncol since we are factoring a square matrix.) Each of the nent following
lines contain one nonzero entry. For a complex matrix, the file has this structure.

nrow ncol nent

...

irow jcol real_value imag_value

...

For both real and complex entries, the entries need not be disjoint, i.e., entries with the same
irow and jcol values are summed.

• The rhsFileName parameter is the name of the input file for the right hand side matrix. It has
the following structure

nrow nrhs

...

irow value_0 value_1 ... value_\{nrhs-1\}

...

Note, nrow need not be the number of equations, here it is the number of nonzero right hand side
entries. This allows us to input sparse right hand sides without specifying the zeroes. In contrast
to the input for the matrix entries, the nonzero rows must be unique. The right hand side entries
are not assembled into a dense matrix object, but placed into the object.

• seed is a random number seed used for the ordering process.

8. patchAndGo msglvl msgFile type symmetryflag patchAndGoFlag fudge toosmall

storeids storevalues matrixFileName rhsFileName seed

This driver program is used to test the “patch-and-go” functionality for a factorization without pivoting.
When small diagonal pivot elements are found, one of three actions are taken. See the PatchAndGoInfo
object for more information.

The program reads in a matrix A and right hand side B, generates the graph for A and orders the
matrix, factors A and solves the linear system AX = B for X using multithreaded factors and solves.
Use the script file do patchAndGo for testing.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

359

• The type parameter specifies a real or complex linear system.

– type = 1 (SPOOLES REAL) for real,

– type = 2 (SPOOLES COMPLEX) for complex.

• The symmetryflag parameter specifies the symmetry of the matrix.

– type = 0 (SPOOLES SYMMETRIC) for A real or complex symmetric,

– type = 1 (SPOOLES HERMITIAN) for A complex Hermitian,

– type = 2 (SPOOLES NONSYMMETRIC)

for A real or complex nonsymmetric.

• The patchAndGoFlag specifies the “patch-and-go” strategy.

– patchAndGoFlag = 0 — if a zero pivot is detected, stop computing the factorization, set the
error flag and return.

– patchAndGoFlag = 1 — if a small or zero pivot is detected, set the diagonal entry to 1 and
the offdiagonal entries to zero.

– patchAndGoFlag = 2 — if a small or zero pivot is detected, perturb the diagonal entry.

• The fudge parameter is used to perturb a diagonal entry.

• The toosmall parameter is judge when a diagonal entry is small.

• If storeids = 1, then the locations where action was taken is stored in an IV object.

• If storevalues = 1, then the perturbations are stored in an DV object.

• The matrixFileName parameter is the name of the files where the matrix entries are read from.
The file has the following structure.

neqns neqns nent

irow jcol entry

...

where neqns is the global number of equations and nent is the number of entries in this file.
There follows nent lines, each containing a row index, a column index and one or two floating
point numbers, one if real, two if complex.

• The rhsFileName parameter is the name of the files where the right hand side entries are read
from. The file has the following structure.

nrow nrhs

irow entry ... entry

...

where nrow is the number of rows in this file and nrhs is the number of rigght and sides. There
follows nrow lines, each containing a row index and either nrhs or 2*nrhs floating point numbers,
the first if real, the second if complex.

• The seed parameter is a random number seed.

9. QRallInOne msglvl msgFile type matrixFileName rhsFileName seed

This all-in-one driver program is an example that tests the serial QR factorization and solve. Matrix
entries are read in from a file, and then the matrix is assembled and factored. The right hand side
entries are read in from a file, and the system is solved. One input parameter specifies the type of
system (real or complex).

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the Perm

object is written to the output file.

360

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• type is the type of entries

– 1 — (SPOOLES REAL) for real entries

– 2 — (SPOOLES COMPLEX) for complex entries

• The matrixFileName parameter is the name of the input file for the matrix entries. For a real
matrix, this file must have the following form.

nrow ncol nent

...

irow jcol value

...

where the first line has the number of rows, columns and entries. Each of the nent following lines
contain one nonzero entry. For a complex matrix, the file has this structure.

nrow nrhs nent

...

irow jcol real_value imag_value

...

For both real and complex entries, the entries need not be disjoint, i.e., entries with the same
irow and jcol values are summed.

• The rhsFileName parameter is the name of the input file for the right hand side matrix. It has
the following structure

nrow nrhs

...

irow value_0 value_1 ... value_\{nrhs-1\}

...

Note, nrow need not be the number of equations, here it is the number of nonzero right hand side
entries. This allows us to input sparse right hand sides without specifying the zeroes. In contrast
to the input for the matrix entries, the nonzero rows must be unique. The right hand side entries
are not assembled into a dense matrix object, but placed into the object.

• seed is a random number seed used for the ordering process.

Part VI

Multithreaded Methods

361

Chapter 42

MT directory

All methods that use multithreaded function calls are found in this directory. Three functionalities are
presently supported: matrix-matrix multiplies, sparse factorizations, and solves.

The multithreaded methods to compute Y := Y + αAX , Y := Y + αAT X and Y := Y + αAHX are
simple. Their calling sequences are almost identical to their serial counterparts: global data structures for
Y , α, A and X are followed by the number of threads, a message level and file. Thread q accesses part of A,
part of X , and computes its own Y q = αAX using those entries of A that it is responsible for. This work is
done independently by all threads. The global summation Y := Y +

∑
q Y q is done in serial mode by the

calling process.

This approach is not scalable. A better approach would be to explicitly partition A into local Aq matrices,
and use local Xq and Y q to hold rows of X and Y that have support with Aq, as is done with the distributed
MPI matrix-matrix multiplies. (With MPI there is added complexity since X and Y are distributed among
processors.)

A matrix-matrix multiply does not exist in isolation. For example, a block shifted eigensolver requires
factorizations of A − σB and multiplies using A or B. The data structure for the matrix that takes part
in the multiply needs to toggle back and for between its forms for the factor and multiply. Managing this
in a distributed environment is actually easier than a multithreaded environment, for A and B are already
distributed. Our multithreaded factorization expects A and B in global form. Insisting that A and B be
partitioned as Aq and Bq matrices is too great a burden for the user that has no need for a multithreaded
matrix-matrix multiply. Allowing the Aq matrices to overlap or point into the global A matrix in a persistent
fashion is not cleanly possible, but requires changes to the InpMtx object.

In the future we intend to provide a scalable multithreaded matrix-matrix multiply. It requires a more
in-depth consideration of the issues involved than we are able to give it at the present time.

The multithreaded factorizations A = LU and A = QR are very similar to the serial factorizations,
in both the calling sequence visible to the user and in the underlying code structure. The only additional
parameters in the calling sequence is a map from the fronts to the threads that defines who does what
computation, and a lookahead parameter that allows some ability to control and reduce the idle time during
the factorization. Inside the code, the deterministic post-order traversal of the serial factorization is replaced
by independent topological traversals of the front tree. It is the list and working storage data structures (the
ChvList, ChvManager and SubMtxManager objects) that have locks. What is done is common code between
the serial and multithreaded environments, it is the choreography, i.e., who does what, that differs.

Most of these same comments apply to the multithreaded solve methods. The calling sequences between
the serial and multithreaded solves differs by one parameter, a SolveMap object that maps the submatrices
of the factor matrix to the threads that will compute with them.

363

364

42.1 Data Structure

There are no multithreaded specific data structures. See the Lock object which is used to hide the particular
mutual exclusion device used by a thread library.

42.2 Prototypes and descriptions of MT methods

This section contains brief descriptions including prototypes of all methods found in the MT source directory.

42.2.1 Matrix-matrix multiply methods

There are five methods to multiply a vector times a dense matrix. The first three methods, called InpMtx MT nonsym mmm*()

are straightforward, y := y +αAx, where A is nonsymmetric, and α is real (if A is real) and complex (if A is
complex). The fourth method, InpMtx MT sym mmm(), is used when the matrix is real symmetric or complex
symmetric, though it is not necessary that only the lower or upper triangular entries are stored. (If one fills
the InpMtx object with only the entries in the lower triangle of A, and then permute the matrix PAPT , the
entries will not generally be found in only the lower or upper triangle. However, the code is still correct.)
The last method, InpMtx MT herm mmm(), is used when the matrix is complex hermitian.

1. void InpMtx_MT_nonsym_mmm (InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X,

int nthread, int msglvl, int msgFile) ;

void InpMtx_MT_sym_mmm (InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X,

int nthread, int msglvl, int msgFile) ;

void InpMtx_MT_herm_mmm (InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X,

int nthread, int msglvl, int msgFile) ;

These methods compute the matrix-vector product y := y + αAx, where y is found in the Y DenseMtx

object, α is real or complex in alpha[], A is found in the A Inpmtx object, and x is found in the X

DenseMtx object. If any of the input objects are NULL, an error message is printed and the program
exits. A, X and Y must all be real or all be complex. When A is real, then α = alpha[0]. When A

is complex, then α = alpha[0] + i* alpha[1]. This means that one cannot call the methods with
a constant as the third parameter, e.g., InpMtx MT nonsym mmm(A, Y, 3.22, X, nthread, msglvl,

msgFile), for this may result in a segmentation violation. The values of α must be loaded into an
array of length 1 or 2. The number of threads is specified by the nthread parameter; if, nthread is 1,
the serial method is called. The msglvl and msgFile parameters are used for diagnostics during the
creation of the threads’ individual data structures.

Error checking: If A, Y or X are NULL, or if coordType is not INPMTX BY ROWS, INPMTX BY COLUMNS or
INPMTX BY CHEVRONS, or if storageMode is not one of INPMTX RAW DATA, INPMTX SORTED or INPMTX BY VECTORS,
or if inputMode is not SPOOLES REAL or SPOOLES COMPLEX, an error message is printed and the program
exits.

2. void InpMtx_MT_nonsym_mmm_T (InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X,

int nthread, int msglvl, int msgFile) ;

This method computes the matrix-vector product y := y +αAT x, where y is found in the Y DenseMtx

object, α is real or complex in alpha[], A is found in the A Inpmtx object, and x is found in the X

DenseMtx object. If any of the input objects are NULL, an error message is printed and the program
exits. A, X and Y must all be real or all be complex. When A is real, then α = alpha[0]. When A

is complex, then α = alpha[0] + i* alpha[1]. This means that one cannot call the methods with
a constant as the third parameter, e.g., InpMtx MT nonsym mmm(A, Y, 3.22, X, nthread, msglvl,

msgFile), for this may result in a segmentation violation. The values of α must be loaded into an

365

array of length 1 or 2. The number of threads is specified by the nthread parameter; if, nthread is 1,
the serial method is called. The msglvl and msgFile parameters are used for diagnostics during the
creation of the threads’ individual data structures.

Error checking: If A, Y or X are NULL, or if coordType is not INPMTX BY ROWS, INPMTX BY COLUMNS or
INPMTX BY CHEVRONS, or if storageMode is not one of INPMTX RAW DATA, INPMTX SORTED or INPMTX BY VECTORS,
or if inputMode is not SPOOLES REAL or SPOOLES COMPLEX, an error message is printed and the program
exits.

3. void InpMtx_MT_nonsym_mmm_H (InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X,

int nthread, int msglvl, int msgFile) ;

This method computes the matrix-vector product y := y +αAHx, where y is found in the Y DenseMtx

object, α is complex in alpha[], A is found in the A Inpmtx object, and x is found in the X DenseMtx

object. If any of the input objects are NULL, an error message is printed and the program exits. A, X
and Y must all be complex. The number of threads is specified by the nthread parameter; if, nthread
is 1, the serial method is called. The msglvl and msgFile parameters are used for diagnostics during
the creation of the threads’ individual data structures.

Error checking: If A, Y or X are NULL, or if coordType is not INPMTX BY ROWS, INPMTX BY COLUMNS or
INPMTX BY CHEVRONS, or if storageMode is not one of INPMTX RAW DATA, INPMTX SORTED or INPMTX BY VECTORS,
or if inputMode is not SPOOLES COMPLEX, an error message is printed and the program exits.

42.2.2 Multithreaded Factorization methods

1. Chv * FrontMtx_MT_factorInpMtx (FrontMtx *frontmtx, InpMtx *inpmtx,

double tau, double droptol, ChvManager *chvmanager,

IV *ownersIV, int lookahead, double cpus[], int stats[],

int msglvl, FILE *msgFile) ;

Chv * FrontMtx_MT_factorPencil (FrontMtx *frontmtx, Pencil *pencil,

double tau, double droptol, ChvManager *chvmanager,

IV *ownersIV, int lookahead, double cpus[], int stats[],

int msglvl, FILE *msgFile) ;

These two methods compute a multithreaded factorization for a matrix A (stored in inpmtx) or a
matrix pencil A + σB (stored in pencil). The tau parameter is used when pivoting is enabled,
each entry in U and L (when nonsymmetric) will have magnitude less than or equal to tau. The
droptol parameter is used when the fronts are stored in a sparse format, each entry in U and L (when
nonsymmetric) will have magnitude greater than or equal to droptol. The map from fronts to owning
processes is found in ownersIV. The lookahead parameter governs the “upward–looking” nature of
the computations. Choosing lookahead = 0 is usually the most conservative with respect to working
storage, while positive values increase the working storage and sometimes decrease the factorization
time. On return, the cpus[] vector is filled with the following information.

• cpus[0] — time spent managing working storage.

• cpus[1] — time spent initializing the fronts and loading the original entries.

• cpus[2] — time spent accumulating updates from descendents.

• cpus[3] — time spent inserting aggregate fronts.

• cpus[4] — time spent removing and assembling aggregate fronts.

• cpus[5] — time spent assembling postponed data.

• cpus[6] — time spent to factor the fronts.

• cpus[7] — time spent to extract postponed data.

366

• cpus[8] — time spent to store the factor entries.

• cpus[9] — miscellaneous time.

On return, the stats[] vector is filled with the following information.

• stats[0] — number of pivots.

• stats[1] — number of pivot tests.

• stats[2] — number of delayed rows and columns.

• stats[3] — number of entries in D.

• stats[4] — number of entries in L.

• stats[5] — number of entries in U .

• stats[6] — number of locks of the FrontMtx object.

• stats[7] — number of locks of aggregate list.

• stats[8] — number of locks of postponed list.

Error checking: If frontmtx, inpmtxA, cpus or stats is NULL, or if msglvl > 0 and msgFile is NULL,
an error message is printed and the program exits.

42.2.3 Multithreaded QR Factorization method

1. void FrontMtx_MT_QR_factor (FrontMtx *frontmtx, InpMtx *mtxA,

ChvManager *chvmanager, IV *ownersIV, double cpus[],

double *pfacops, int msglvl, FILE *msgFile) ;

This method computes the (UT + I)D(I + U) factorization of AT A if A is real or (UH + I)D(I + U)
factorization of AHA if A is complex. The chvmanager object manages the working storage. The map
from fronts to threads is found in ownersIV. On return, the cpus[] vector is filled as follows.

• cpus[0] – time to set up the factorization.

• cpus[1] – time to set up the fronts.

• cpus[2] – time to factor the matrices.

• cpus[3] – time to scale and store the factor entries.

• cpus[4] – time to store the update entries

• cpus[5] – miscellaneous time

• cpus[6] – total time

On return, *pfacops contains the number of floating point operations done by the factorization.

Error checking: If frontmtx, frontJ or chvmanager is NULL, or if msglvl > 0 and msgFile is NULL,
an error message is printed and the program exits.

42.2.4 Multithreaded Solve method

1. void FrontMtx_MT_solve (FrontMtx *frontmtx, DenseMtx *mtxX, DenseMtx *mtxB,

SubMtxManager *mtxmanager, SolveMap *solvemap,

double cpus[], int msglvl, FILE *msgFile) ;

This method is used to solve one of three linear systems of equations using a multithreaded solve —
(UT + I)D(I + U)X = B, (UH + I)D(I + U)X = B or (L + I)D(I + U)X = B. Entries of B are read

367

from mtxB and entries of X are written to mtxX. Therefore, mtxX and mtxB can be the same object.
(Note, this does not hold true for an MPI factorization with pivoting.) The submatrix manager object
manages the working storage. The solvemap object contains the map from submatrices to threads.
The map from fronts to processes that own them is given in the ownersIV object. On return the
cpus[] vector is filled with the following. The stats[] vector is not currently used.

• cpus[0] — set up the solves

• cpus[1] — fetch right hand side and store solution

• cpus[2] — forward solve

• cpus[3] — diagonal solve

• cpus[4] — backward solve

• cpus[5] — total time in the method.

Error checking: If frontmtx, rhsmtx, mtxmanager, solvemap, cpus or stats is NULL, or if msglvl ¿ 0
and msgFile is NULL, an error message is printed and the program exits.

42.2.5 Multithreaded QR Solve method

1. void FrontMtx_MT_QR_solve (FrontMtx *frontmtx, InpMtx *mtxA, DenseMtx *mtxX,

DenseMtx *mtxB, SubMtxManager *mtxmanager, SolveMap *solvemap,

double cpus[], int msglvl, FILE *msgFile) ;

This method is used to minimize ‖B −AX‖F , where A is stored in mtxA, B is stored in mtxB, and X
will be stored in mtxX. The frontmtx object contains a (UT + I)D(I + U) factorization of AT A if A is
real or (UH + I)D(I + U) factorization of AHA if A is complex. We solve the seminormal equations
(UT + I)D(I + U)X = AT B or (UH + I)D(I + U)X = AHB for X . On return the cpus[] vector is
filled with the following.

• cpus[0] — set up the solves

• cpus[1] — fetch right hand side and store solution

• cpus[2] — forward solve

• cpus[3] — diagonal solve

• cpus[4] — backward solve

• cpus[5] — total time in the solve method.

• cpus[6] — time to compute AT B or AHB.

• cpus[7] — total time.

Only the solve is presently done in parallel.

Error checking: If frontmtx, mtxA, mtxX, mtxB, mtxmanager, solvemap or cpus is NULL, or if msglvl
¿ 0 and msgFile is NULL, an error message is printed and the program exits.

42.3 Driver programs for the multithreaded functions

1. allInOneMT msglvl msgFile type symmetryflag pivotingflag

matrixFileName rhsFileName seed nthread

This driver program reads in a matrix A and right hand side B, generates the graph for A and orders
the matrix, factors A and solves the linear system AX = B for X using multithreaded factors and
solves. Use the script file do gridMT for testing.

368

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The type parameter specifies a real or complex linear system.

– type = 1 (SPOOLES REAL) for real,

– type = 2 (SPOOLES COMPLEX) for complex.

• The symmetryflag parameter specifies the symmetry of the matrix.

– type = 0 (SPOOLES SYMMETRIC) for A real or complex symmetric,

– type = 1 (SPOOLES HERMITIAN) for A complex Hermitian,

– type = 2 (SPOOLES NONSYMMETRIC)

for A real or complex nonsymmetric.

• The pivotingflag parameter signals whether pivoting for stability will be enabled or not.

– If pivotingflag = 0 (SPOOLES NO PIVOTING), no pivoting will be done.

– If pivotingflag = 1 (SPOOLES PIVOTING), pivoting will be done to ensure that all entries
in U and L have magnitude less than tau.

• The matrixFileName parameter is the name of the files where the matrix entries are read from.
The file has the following structure.

neqns neqns nent

irow jcol entry

...

where neqns is the global number of equations and nent is the number of entries in this file.
There follows nent lines, each containing a row index, a column index and one or two floating
point numbers, one if real, two if complex.

• The rhsFileName parameter is the name of the files where the right hand side entries are read
from. The file has the following structure.

nrow nrhs

irow entry ... entry

...

where nrow is the number of rows in this file and nrhs is the number of rigght and sides. There
follows nrow lines, each containing a row index and either nrhs or 2*nrhs floating point numbers,
the first if real, the second if complex.

• The seed parameter is a random number seed.

• The nthread parameter is the number of threads.

2. patchAndGoMT msglvl msgFile type symmetryflag patchAndGoFlag fudge toosmall

storeids storevalues matrixFileName rhsFileName seed nthread

This driver program is used to test the “patch-and-go” functionality for a factorization without pivoting.
When small diagonal pivot elements are found, one of three actions are taken. See the PatchAndGoInfo
object for more information.

The program reads in a matrix A and right hand side B, generates the graph for A and orders the
matrix, factors A and solves the linear system AX = B for X using multithreaded factors and solves.
Use the script file do patchAndGo for testing.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

369

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The type parameter specifies a real or complex linear system.

– type = 1 (SPOOLES REAL) for real,

– type = 2 (SPOOLES COMPLEX) for complex.

• The symmetryflag parameter specifies the symmetry of the matrix.

– type = 0 (SPOOLES SYMMETRIC) for A real or complex symmetric,

– type = 1 (SPOOLES HERMITIAN) for A complex Hermitian,

– type = 2 (SPOOLES NONSYMMETRIC)

for A real or complex nonsymmetric.

• The patchAndGoFlag specifies the “patch-and-go” strategy.

– patchAndGoFlag = 0 — if a zero pivot is detected, stop computing the factorization, set the
error flag and return.

– patchAndGoFlag = 1 — if a small or zero pivot is detected, set the diagonal entry to 1 and
the offdiagonal entries to zero.

– patchAndGoFlag = 2 — if a small or zero pivot is detected, perturb the diagonal entry.

• The fudge parameter is used to perturb a diagonal entry.

• The toosmall parameter is judge when a diagonal entry is small.

• If storeids = 1, then the locations where action was taken is stored in an IV object.

• If storevalues = 1, then the perturbations are stored in an DV object.

• The matrixFileName parameter is the name of the files where the matrix entries are read from.
The file has the following structure.

neqns neqns nent

irow jcol entry

...

where neqns is the global number of equations and nent is the number of entries in this file.
There follows nent lines, each containing a row index, a column index and one or two floating
point numbers, one if real, two if complex.

• The rhsFileName parameter is the name of the files where the right hand side entries are read
from. The file has the following structure.

nrow nrhs

irow entry ... entry

...

where nrow is the number of rows in this file and nrhs is the number of rigght and sides. There
follows nrow lines, each containing a row index and either nrhs or 2*nrhs floating point numbers,
the first if real, the second if complex.

• The seed parameter is a random number seed.

• The nthread parameter is the number of threads.

3. testMMM msglvl msgFile dataType symflag storageMode transpose

nrow ncol nitem nrhs seed alphaReal alphaImag nthread

This driver program generates A, a nrow×ncol matrix using nitem input entries, X and Y , nrow×nrhs
matrices, is filled with random numbers. It then computes Y +α∗A∗X , Y +α∗AT ∗X or Y +α∗AH∗X .
The program’s output is a file which when sent into Matlab, outputs the error in the computation.

370

• The msglvl parameter determines the amount of output — taking msglvl >= 3 means the InpMtx
object is written to the message file.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• dataType is the type of entries, 0 for real, 1 for complex.

• symflag is the symmetry flag, 0 for symmetric, 1 for Hermitian, 2 for nonsymmetric.

• storageMode is the storage mode for the entries, 1 for by rows, 2 for by columns, 3 for by chevrons.

• transpose determines the equation, 0 for Y +α∗A∗X , 1 for Y +α∗AT ∗X or 2 for Y +α∗AH ∗X .

• nrowA is the number of rows in A

• ncolA is the number of columns in A

• nitem is the number of matrix entries that are assembled into the matrix.

• nrhs is the number of columns in X and Y .

• The seed parameter is a random number seed used to fill the matrix entries with random numbers.

• alphaReal and alphaImag form the scalar in the multiply.

• nthread is the number of threads to use.

4. testGridMT msglvl msgFile n1 n2 n3 maxzeros maxsize seed type

symmetryflag sparsityflag pivotingflag tau droptol

nrhs nthread maptype cutoff lookahead

This driver program tests the serial FrontMtx MT factor() and FrontMtx MT solve() methods for the
linear system AX = B. The factorization and solve are done in parallel. Use the script file do gridMT

for testing.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• n1 is the number of points in the first grid direction.

• n2 is the number of points in the second grid direction.

• n3 is the number of points in the third grid direction.

• maxzeros is used to merge small fronts together into larger fronts. Look at the ETree object for
the ETree mergeFronts{One,All,Any}() methods.

• maxsize is used to split large fronts into smaller fronts. See the ETree splitFronts() method.

• The seed parameter is a random number seed.

• The type parameter specifies a real or complex linear system.

– type = 1 (SPOOLES REAL) for real,

– type = 2 (SPOOLES COMPLEX) for complex.

• The symmetryflag parameter specifies the symmetry of the matrix.

– type = 0 (SPOOLES SYMMETRIC) for A real or complex symmetric,

– type = 1 (SPOOLES HERMITIAN) for A complex Hermitian,

– type = 2 (SPOOLES NONSYMMETRIC)

for A real or complex nonsymmetric.

• The sparsityflag parameter signals a direct or approximate factorization.

371

– sparsityflag = 0 (FRONTMTX DENSE FRONTS) implies a direct factorization, the fronts will
be stored as dense submatrices.

– sparsityflag = 1 (FRONTMTX SPARSE FRONTS) implies an approximate factorization. The
fronts will be stored as sparse submatrices, where the entries in the triangular factors will be
subjected to a drop tolerance test — if the magnitude of an entry is droptol or larger, it will
be stored, otherwise it will be dropped.

• The pivotingflag parameter signals whether pivoting for stability will be enabled or not.

– If pivotingflag = 0 (SPOOLES NO PIVOTING), no pivoting will be done.

– If pivotingflag = 1 (SPOOLES PIVOTING), pivoting will be done to ensure that all entries
in U and L have magnitude less than tau.

• The tau parameter is an upper bound on the magnitude of the entries in L and U when pivoting
is enabled.

• The droptol parameter is a lower bound on the magnitude of the entries in L and U when the
approximate factorization is enabled.

• The nrhs parameter is the number of right hand sides to solve as one block.

• The nthread parameter is the number of threads.

• The maptype parameter determines the type of map from fronts to processes to be used during
the factorization

– 1 – wrap map

– 2 – balanced map

– 3 – subtree-subset map

– 4 – domain decomposition map

– 5 – improved domain decomposition map

See the ETree methods for constructing maps.

• The cutoff parameter is used for domain decomposition maps. We try to construct domains
(each domain is owned by a single thread) that contain 0 ≤ cutoff ≤ 1 of the rows and columns
of the matrix. Try to choose cutoff to be 1/nthread or 1/(2*nthread).

• The lookahead parameter controls the degree that a thread will look past a stalled front in order
to do some useful work. ⁀lookahead = 0 implies a thread will not look ahead, while lookahead =

k implies a thread will look k ancestors up the front tree to find useful work. Bewarned, while a
thread is doing useful work further up the tree, the stalled front may be ready, so large values of
lookahead can be detrimental to a fast computation. In addition, a positive value of lookahead
means a larger storage footprint taken by the factorization.

5. testQRgridMT msglvl msgFile n1 n2 n3 seed nrhs type

nthread maptype cutoff

This driver program tests the serial FrontMtx QR factor() and FrontMtx QR solve() methods for
the least squares problem minX ‖F −AX‖F . The factorization and solve are done in parallel.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• n1 is the number of points in the first grid direction.

• n2 is the number of points in the second grid direction.

• n3 is the number of points in the third grid direction.

372

• The seed parameter is a random number seed.

• The nrhs parameter is the number of right hand sides to solve as one block.

• The type parameter specifies a real or complex linear system.

– type = 1 (SPOOLES REAL) for real,

– type = 2 (SPOOLES COMPLEX) for complex.

• The nthread parameter is the number of threads.

• The maptype parameter determines the type of map from fronts to processes to be used during
the factorization

– 1 – wrap map

– 2 – balanced map

– 3 – subtree-subset map

– 4 – domain decomposition map

– 5 – improved domain decomposition map

See the ETree methods for constructing maps.

• The cutoff parameter is used for domain decomposition maps. We try to construct domains
(each domain is owned by a single thread) that contain 0 ≤ cutoff ≤ 1 of the rows and columns
of the matrix. Try to choose cutoff to be 1/nthread or 1/(2*nthread).

Part VII

MPI Methods

373

Chapter 43

MPI directory

All methods that use MPI constructs are found in this directory. There are a remarkably small number
when one considers that the numeric functionality of this library has been extended to a distributed memory
system. Most of the necessary data structures exist equally well as a global object for a serial or multithreaded
application or as a distributed object for a distributed memory application.

There is very little new numeric code in this directory. The “chores” — what is done and how — is
unchanged from the serial codes. The “choreography” — who does what when — is unchanged from the
multithreaded codes. All that was necessary to add the explicit message passing demanded by the MPI
environment.

All communication is “safe”, meaning that the programs will complete when using an MPI implemen-
tation that conforms to the standard. We use non-blocking communication, i.e., communication calls that
are guaranteed to complete, namely MPI Alltoall(), MPI Sendrecv(), MPI Bcast(), MPI Allgather(),
MPI Irecv() and MPI Isend().

43.1 Data Structure

There is one MPI specific data structure, used in the distributed matrix-matrix multiply.

43.1.1 MatMulInfo : Matrix-matrix multiply information object

The distributed matrix-matrix multiply is a very complex operation. We want to compute Y := Y + αAX ,
where Y , A and X are distributed matrices. Processor q owns the local matrices Y q, Aq and Xq. The entries
of Aq do not travel among the processors, it is the entries of X and/or the partial entries of the product
αAX that are communicated. Each processor performs the local computation Y q

supp = αAqXq
supp, where

the rows of Xq
supp correspond to the columns of Aq with a nonzero entry, and the rows of Y q

supp correspond

to the rows of Aq with a nonzero entry. (Something similar holds for the operations Y := Y + αAT X
and Y := Y + αAT X .) This requires entries of X to be gathered into Xq

supp and the entries of Y q
supp be

scatter/added into Y .

The MatMulInfo object stores all the necessary information to make this happen. There is one MatMulInfo
object per processor. It has the following fields.

• symflag — symmetry flag for A

– 0 (SPOOLES SYMMETRIC) – symmetric matrix

– 1 (SPOOLES HERMITIAN) – hermitian matrix

375

376

– 2 (SPOOLES NONSYMMETRIC) – nonsymmetric matrix

• opflag — operation flag for the multiply

– 0 (MMM WITH A) — perform Y := Y + αAX

– 1 (MMM WITH AT) — perform Y := Y + αAT X

– 2 (MMM WITH AH) — perform Y := Y + αAHX

• IV *XownedIV — list of rows of X that are owned by this processor, these form the rows of Xq.

• IV *XsupIV — list of rows of X that are accessed by this processor, these form the rows of Xq
supp

• IV *XmapIV — a map from the global ids of the rows of Xq
supp to their local ids within Xq

supp

• IVL *XsendIVL — list r holds the local row ids of the owned rows of Xq that must be sent from this
processor to processor r

• IVL *XrecvIVL — list r holds the local row ids of the supported rows of Xq
supp that will be received

from processor r.

• IV *YownedIV — list of rows of Y that are owned by this processor, these form the rows of Y q.

• IV *YsupIV — list of rows of Y that are updated by this processor, these form the rows of Y q
supp

• IV *YmapIV — a map from the global ids of the rows of Y q
supp to their local ids within Y q

supp

• IVL *YsendIVL — list r holds the local row ids of the supported rows of Y q
supp that must be sent from

this processor to processor r

• IVL *YrecvIVL — list r holds the local row ids of the owned rows of Y q that will be received from
processor r.

• DenseMtx *Xsupp — a temporary data structure to hold Xq
supp.

• DenseMtx *Ysupp — a temporary data structure to hold Y q
supp.

See the methods MatMul MPI setup(), MatMul setLocalIndices(), MatMul setGlobalIndices(), MatMul MPI mmm()

and MatMul cleanup() which use the MatMulInfo data object.

43.2 Prototypes and descriptions of MPI methods

This section contains brief descriptions including prototypes of all methods found in the MPI source directory.

43.2.1 Split and redistribution methods

In a distributed environment, data must be distributed, and sometimes during a computation, data must be
re-distributed. These methods split and redistribute four data objects.

1. void DenseMtx_MPI_splitByRows (DenseMtx *mtx, IV *mapIV, int stats[], int msglvl,

FILE *msgFile, int firsttag, MPI_Comm comm) ;

This method splits and redistributes the DenseMtx object based on the mapIV object that maps rows to
processes. The messages that will be sent require nproc consecutive tags — the first is the parameter
firsttag. On return, the stats[] vector contains the following information.

377

stats[0] — # of messages sent stats[1] — # of bytes sent
stats[2] — # of messages received stats[3] — # of bytes received

Note, the values in stats[] are incremented, i.e., the stats[] vector is not zeroed at the start of the
method, and so can be used to accumulated information with multiple calls.

Error checking: If mtx or rowmapIV is NULL, or if msglvl > 0 and msgFile is NULL, or if firsttag <

0 or firsttag + nproc is larger than the largest available tag, an error message is printed and the
program exits.

2. DenseMtx * DenseMtx_MPI_splitFromGlobalByRows (DenseMtx *Xglobal, DenseMtx *Xlocal,

IV *rowmapIV, int root, int stats[], int msglvl,

FILE *msgFile, int firsttag, MPI_Comm comm) ;

This method is used when the Xglobal DenseMtx matrix object is owned by processor root and
redistributed to the other processors.

Xglobal is pertinent only to processor root. If the local matrix Xlocal is NULL, and if the local matrix
will be nonempty, then it is created. If the local matrix is not NULL, then it will be returned. The
remaining input arguments are the same as for the DenseMtx MPI splitByRows() method.

Error checking: Processor root does a fair amount of error checking — it ensures that Xglobal is
valid, that firsttag is valid, and that the rowmapIV object is valid. The return code is broadcast to
the other processors. If an error is found, the processors call MPI Finalize() and exit.

3. DenseMtx * DenseMtx_MPI_mergeToGlobalByRows (DenseMtx *Xglobal, DenseMtx *Xlocal,

IV *rowmapIV, int root, int stats[], int msglvl,

FILE *msgFile, int firsttag, MPI_Comm comm) ;

This method is used when the processors own a partitioned DenseMtx object and it must be assembled
onto the root processor. Each processor owns a Xlocal matrix (which may be NULL). The global
matrix will be accumulated in the Xglobal object.

Xglobal is pertinent only to processor root. If the global matrix Xglobal is NULL, and if the global
matrix will be nonempty, then it is created. If the global matrix is not NULL, then it will be returned.
The remaining input arguments are the same as for the DenseMtx MPI splitByRows() method.

Error checking: Each processor does a fair amount of error checking — they ensure that firsttag is
valid, that the types of the local matrices are identical, and that the number of columns of the local
matrices are identical, If there is any error detected by any of the processors, they call MPI Finalize()

and exit.

4. void InpMtx_MPI_split (InpMtx *inpmtx, IV *mapIV, int stats[], int msglvl,

FILE *msgFile, int firsttag, MPI_Comm comm) ;

This method splits and redistributes the InpMtx object based on the mapIV object that maps the
InpMtx object’s vectors (rows, columns or chevrons) to processes. The the vectors are defined by the
first coordinate of the InpMtx object. For the distributed LU , UT DU and UHDU factorizations, we
use the chevron coordinate type to store the matrix entries. This method will redistribute a matrix
by rows if the coordinate type is 1 (for rows) and mapIV is a row map. Similarly, this method will
redistribute a matrix by columns if the coordinate type is 2 (for columns) and mapIV is a column map.
See the InpMtx object for details. The messages that will be sent require nproc consecutive tags — the
first is the parameter firsttag. On return, the stats[] vector contains the following information.

stats[0] — # of messages sent stats[1] — # of bytes sent
stats[2] — # of messages received stats[3] — # of bytes received

378

Note, the values in stats[] are incremented, i.e., the stats[] vector is not zeroed at the start of the
method, and so can be used to accumulated information with multiple calls.

Error checking: If firsttag < 0 or firsttag + nproc is larger than the largest available tag, an
error message is printed and the program exits.

5. InpMtx * InpMtx_MPI_splitFromGlobal (InpMtx *Aglobal, InpMtx *Alocal,

IV *mapIV, int root, int stats[], int msglvl,

FILE *msgFile, int firsttag, MPI_Comm comm) ;

This method is used when the Aglobal InpMtx matrix object is owned by processor root and redis-
tributed to the other processors.

Aglobal is pertinent only to processor root. If the local matrix Alocal is NULL, and if the local matrix
will be nonempty, then it is created. If the local matrix is not NULL, then it will be returned. The
remaining input arguments are the same as for the InpMtx MPI split() method.

Error checking: Processor root does a fair amount of error checking — it ensures that Aglobal is
valid, that firsttag is valid, and that the mapIV object is valid. The return code is broadcast to the
other processors. If an error is found, the processors call MPI Finalize() and exit.

6. void Pencil_MPI_split (Pencil *pencil, IV *mapIV, int tag, int stats[],

int msglvl, FILE *msgFile, MPI_Comm comm) ;

This method splits and redistributes the matrix pencil based on the mapIV object that maps rows
and columns to processes. This is a simple wrapper around the InpMtx MPI split() method. The
messages that will be sent require 2*nproc consecutive tags — the first is the parameter firsttag.
On return, the stats[] vector contains the following information.

stats[0] — # of messages sent stats[1] — # of bytes sent
stats[2] — # of messages received stats[3] — # of bytes received

Note, the values in stats[] are incremented, i.e., the stats[] vector is not zeroed at the start of the
method, and so can be used to accumulated information with multiple calls.

Error checking: If firsttag < 0 or firsttag + 2*nproc is larger than the largest available tag, an
error message is printed and the program exits.

7. void FrontMtx_MPI_split (FrontMtx *frontmtx, SolveMap *solvemap, int stats[],

int msglvl, FILE *msgFile, int firsttag, MPI_Comm comm) ;

Used after the factorization, this method is used instead of the FrontMtx splitUpperMatrices() and
FrontMtx splitLowerMatrices()methods. The method splits and redistributes the FrontMtx object
based on the solvemap object that maps submatrices to processes. The firsttag is the first tag that
will be used for all messages. Unfortunately, the number of different tags that are necessary is not
known prior to entering this method. On return, the stats[] vector contains the following information.

stats[0] — # of messages sent stats[1] — # of bytes sent
stats[2] — # of messages received stats[3] — # of bytes received

Note, the values in stats[] are incremented, i.e., the stats[] vector is not zeroed at the start of the
method, and so can be used to accumulated information with multiple calls.

Error checking: If mtx or rowmapIV is NULL, or if msglvl > 0 and msgFile is NULL, or if firsttag <

0 is larger than the largest available tag, an error message is printed and the program exits.

379

43.2.2 Gather and scatter methods

These method gather and scatter/add rows of DenseMtx objects. These operations are performed during the
distributed matrix-matrix multiply. The gather operation Xq

supp ← X is performed by DenseMtx MPI gatherRows(),
while the scatter/add operation Y q := Y q +

∑
r Y r

supp is performed by DenseMtx MPI scatterAddRows().

1. void DenseMtx_MPI_gatherRows (DenseMtx *Y, DenseMtx *X, IVL *sendIVL,

IVL *recvIVL, int stats[], int msglvl,

FILE *msgFile, int tag, MPI_Comm comm) ;

This method is used to gather rows of X, a globally distributed matrix, into Y, a local matrix. List q
of sendIVL contains the local row ids of the local part of X that will be sent to processor q. List q of
recvIVL contains the local row ids of Y that will be received from processor q.

This method uses tags in the range [tag,tag+nproc*nproc). On return, the following statistics will
have been added.

stats[0] — # of messages sent stats[1] — # of bytes sent
stats[2] — # of messages received stats[3] — # of bytes received

This method is safe in the sense that it uses only non-blocking sends and receives, MPI Isend() and
MPI Irecv().

Error checking: If Y, X, sendIVL or recvIVL is NULL, or if msglvl > 0 and msgFile is NULL, or if tag
< 0 or tag + nproc*nproc is larger than the largest available tag, an error message is printed and the
program exits.

2. void DenseMtx_MPI_scatterAddRows (DenseMtx *Y, DenseMtx *X, IVL *sendIVL,

IVL *recvIVL, int stats[], int msglvl,

FILE *msgFile, int tag, MPI_Comm comm) ;

This method is used to scatter/add rows of X, a globally distributed matrix, into Y, a local matrix.
List q of sendIVL contains the local row ids of the local part of X that will be sent to processor q. List
q of recvIVL contains the local row ids of Y that will be received from processor q.

This method uses tags in the range [tag,tag+nproc*nproc). On return, the following statistics will
have been added.

stats[0] — # of messages sent stats[1] — # of bytes sent
stats[2] — # of messages received stats[3] — # of bytes received

This method is safe in the sense that it uses only non-blocking sends and receives, MPI Isend() and
MPI Irecv().

Error checking: If Y, X, sendIVL or recvIVL is NULL, or if msglvl > 0 and msgFile is NULL, or if tag
< 0 or tag + nproc*nproc is larger than the largest available tag, an error message is printed and the
program exits.

43.2.3 Symbolic Factorization methods

1. IVL * SymbFac_MPI_initFromInpMtx (ETree *etree, IV *frontOwnersIV,

InpMtx *inpmtx, int stats[], int msglvl,

FILE *msgFile, int firsttag, MPI_Comm comm) ;

IVL * SymbFac_MPI_initFromPencil (ETree *etree, IV *frontOwnersIV,

Pencil *pencil, int stats[], int msglvl,

FILE *msgFile, int firsttag, MPI_Comm comm) ;

380

These methods are used in place of the Symbfac initFrom{InpMtx,Pencil}()methods to compute the
symbolic factorization. The ETree object is assumed to be replicated over the processes. The InpMtx

and Pencil objects are partitioned among the processes. Therefore, to compute the IVL object that
contains the symbolic factorization is a distributed, cooperative process. At the end of the symbolic
factorization, each process will own a portion of the IVL object. The IVL object is neither replicated
nor partitioned (except in trivial cases), but the IVL object on each process contains just a portion,
usually not much more than what it needs to know for its part of the factorization and solves.

This method uses tags in the range [tag,tag+nfront). On return, the following statistics will have
been added.

stats[0] — # of messages sent stats[1] — # of bytes sent
stats[2] — # of messages received stats[3] — # of bytes received

This method is safe in the sense that it uses only non-blocking sends and receives, MPI Isend() and
MPI Irecv().

Error checking: If etree, inpmtx, pencil or frontOwnersIV is NULL, or if msglvl > 0 and msgFile

is NULL, or if tag < 0 or tag + nfront is larger than the largest available tag, an error message is
printed and the program exits.

43.2.4 Numeric Factorization methods

1. Chv * FrontMtx_MPI_factorPencil (FrontMtx *frontmtx, Pencil *pencil, double tau,

double droptol, ChvManager *chvmanager, IV *frontOwnersIV,

int lookahead, int *perror, double cpus[], int stats[],

int msglvl, FILE *msgFile, int firsttag, MPI_Comm comm) ;

Chv * FrontMtx_MPI_factorInpMtx (FrontMtx *frontmtx, InpMtx *inpmtx, double tau,

double droptol, ChvManager *chvmanager, IV *frontOwnersIV,

int lookahead, int *perror, double cpus[], int stats[],

int msglvl, FILE *msgFile, int firsttag, MPI_Comm comm) ;

These methods are used to compute the numeric factorization and are very similar to the multithreaded
FrontMtx MT factorPencil() and FrontMtx MT factorInpMtx() methods. All that has been added
is the code to send and receive the Chv messages. The input firsttag parameter is used to tag
the messages during the factorization. This method uses tags in the range [firsttag, firsttag +

3*nfront + 3).

On return, *perror holds an error flag. If the factorization completed without any error detected,
*perror will be negative. Otherwise it holds the id of a front where the factorization failed. Currently,
this can happen only if pivoting is not enabled and a zero pivot was detected.

The return value is a pointer to a list of Chv objects that hold entries of the matrix that could not be
factored. This value should be NULL in all cases. We have left this return behavior as a hook for future
implementation of a multi-stage factorization.

On return, the cpus[] vector has the following information.

cpus[0] – initialize fronts
cpus[1] – load original entries
cpus[2] – update fronts
cpus[3] – insert aggregate data
cpus[4] – assemble aggregate data
cpus[5] – assemble postponed data
cpus[6] – factor fronts

cpus[7] – extract postponed data
cpus[8] – store factor entries
cpus[9] – post initial receives
cpus[10] – check for received messages
cpus[11] – post initial sends
cpus[12] – check for sent messages

381

On return, the stats[] vector has the following information.

stats[0] — # of pivots
stats[1] — # of pivot tests
stats[2] — # of delayed rows and columns
stats[3] — # of entries in D
stats[4] — # of entries in L
stats[5] — # of entries in U
stats[6] — # of aggregate messages sent
stats[7] — # of bytes sent in aggregate messages
stats[8] — # of aggregate messages received
stats[9] — # of bytes received in aggregate messages
stats[10] — # of postponed messages sent
stats[11] — # of bytes sent in postponed messages
stats[12] — # of postponed messages received
stats[13] — # of bytes received in postponed messages
stats[14] — # of active Chv objects (working storage)
stats[15] — # of active bytes in working storage
stats[16] — # of requested bytes for working storage

Error checking: If frontmtx, pencil, frontOwnersIV, cpus or stats is NULL, or if tau < 1.0 or
droptol < 0.0, or if firsttag < 0 or firsttag + 3*nfront + 2 is larger than the largest available
tag, or if msglvl > 0 and msgFile is NULL, an error message is printed and the program exits.

43.2.5 Post-processing methods

1. void FrontMtx_MPI_postProcess (FrontMtx *frontmtx, IV *frontOwnersIV, int stats[],

int msglvl, FILE *msgFile, int firsttag, MPI_Comm comm) ;

After the factorization is complete, the factor matrices are split into submatrices. This method replaces
the serial FrontMtx postProcess() method. The messages that will be sent require at most 5*nproc
consecutive tags — the first is the parameter firsttag.

Error checking: If frontmtx, frontOwnersIV or stats is NULL, or if firsttag < 0 or firsttag +

5*nproc, is larger than the largest available tag, or if msglvl > 0 and msgFile is NULL, an error
message is printed and the program exits.

2. void FrontMtx_MPI_permuteUpperAdj (FrontMtx *frontmtx, IV *frontOwnersIV, int stats[],

int msglvl, FILE *msgFile, int firsttag, MPI_Comm comm) ;

void FrontMtx_MPI_permuteLowerAdj (FrontMtx *frontmtx, IV *frontOwnersIV, int stats[],

int msglvl, FILE *msgFile, int firsttag, MPI_Comm comm) ;

If pivoting takes place during the factorization, the off diagonal blocks of the factor matrices must be
permuted prior to being split into submatrices. To do this, the final rows and columns of the factor
matrix must be made known to the different processors. The messages that will be sent require at
most nproc consecutive tags — the first is the parameter firsttag.

Error checking: If frontmtx, frontOwnersIV or stats is NULL, or if firsttag < 0 or firsttag +

nproc, is larger than the largest available tag, or if msglvl > 0 and msgFile is NULL, an error message
is printed and the program exits.

3. void IV_MPI_allgather (IV *iv, IV *ownersIV, int stats[], int msglvl,

FILE *msgFile, int firsttag, MPI_Comm comm) ;

After a factorization with pivoting, the frontsizesIV object needs to be made global on each processor.
This methods takes the individual entries of an IV object whose owners are specified by the ownersIV

382

object, and communicates the entries around the processors until the global IV object is present on
each. The messages that will be sent require at most nproc consecutive tags — the first is the parameter
firsttag.

Error checking: If iv, ownersIV or stats is NULL, or if firsttag < 0 or firsttag + nproc, is larger
than the largest available tag, or if msglvl > 0 and msgFile is NULL, an error message is printed and
the program exits.

4. void IVL_MPI_allgather (IVL *ivl, IV *ownersIV, int stats[], int msglvl,

FILE *msgFile, int firsttag, MPI_Comm comm) ;

When the FrontMtx object is split into submatrices, each processor accumulates the structure of
the block matrix for the fronts its owns. This structure must be global to all processors before the
submatrix map can be computed. This method takes a partitioned IVL object and communicates the
entries among the processors until the global IVL object is present on each. Which processor owns
what lists of the IVL object is given by the ownersIV object. The messages that will be sent require
at most nproc consecutive tags — the first is the parameter firsttag.

Error checking: If ivl, ownersIV or stats is NULL, or if firsttag < 0 or firsttag + nproc, is larger
than the largest available tag, or if msglvl > 0 and msgFile is NULL, an error message is printed and
the program exits.

43.2.6 Numeric Solve methods

1. void FrontMtx_MPI_solve (FrontMtx *frontmtx, DenseMtx *mtxX, DenseMtx *mtxB,

SubMtxManager *mtxmanager, SolveMap *solvemap, double cpus[],

int stats[], int msglvl, FILE *msgFile, int firsttag, MPI_Comm comm) ;

This method is used to compute the forward and backsolves. Its structure is very, very similar to the
multithreaded FrontMtx MT solve() method. All that has been added is the code to send and receive
the SubMtx messages. The method uses tags in the range [firsttag, firsttag + 2*nfront). On
return, the cpus[] vector has the following information.

cpus[0] — setup the solves
cpus[1] — load rhs and store solution
cpus[2] — forward solve

cpus[3] — diagonal solve
cpus[4] — backward solve
cpus[5] — miscellaneous

On return, the following statistics will have been added.

stats[0] — # of solution messages sent
stats[1] — # of aggregate messages sent
stats[2] — # of solution bytes sent
stats[3] — # of aggregate bytes sent
stats[4] — # of solution messages received
stats[5] — # of aggregate messages received
stats[6] — # of solution bytes received
stats[7] — # of aggregate bytes received

Error checking: If frontmtx, mtxX, mtxB, mtxmanager, solvemap, cpus or stats is NULL, or if firsttag
< 0 or firsttag + 2*nfront is larger than the largest available tag, or if msglvl > 0 and msgFile

is NULL, an error message is printed and the program exits.

383

43.2.7 Matrix-matrix multiply methods

The usual sequence of events is as follows.

• Set up the data structure via a call to MatMul MPI setup().

• Convert the local Aq matrix to local indices via a call to MatMul setLocalIndices().

• Compute the matrix-matrix multiply with a call to MatMul MPI mmm(). Inside this method, the MPI
methods DenseMtx MPI gatherRows() and DenseMtx MPI scatterAddRows() are called, along with a
serial InpMtx matrix-matrix multiply method.

• Clean up and free data structures via a call to MatMul cleanup().

• Convert the local Aq matrix to global indices via a call to MatMul setGlobalIndices().

1. MatMulInfo * MatMul_MPI_setup (InpMtx *A, int symflag, int opflag,

IV *XownersIV, IV *YownersIV int stats[],

int msglvl, FILE *msgFile, MPI_Comm comm) ;

This method is used to set up and return the MatMulInfo data structure that stores the information for
the distributed matrix-matrix multiply. The symflag parameter specifies the symmetry of the matrix.

• 0 (SPOOLES SYMMETRIC)

• 1 (SPOOLES HERMITIAN)

• 2 (SPOOLES NONSYMMETRIC)

The opflag parameter specifies what type of operation will be performed.

• 0 (MMM WITH A) — Y := Y + αAX

• 1 (MMM WITH AT) — Y := Y + αAT X

• 2 (MMM WITH AH) — Y := Y + αAHX

The XownersIV object is the map from the rows of X to their owning processors. The YownersIV

object is the map from the rows of Y to their owning processors.

On return, the following statistics will have been added.

stats[0] — # of messages sent stats[1] — # of bytes sent
stats[2] — # of messages received stats[3] — # of bytes received

This method calls makeSendRecvIVLs().

Error checking: If A, XownersIV, YownersIV or stats is NULL, or if msglvl > 0 and msgFile is NULL,
an error message is printed and the program exits.

2. void MatMul_setLocalIndices (MatMulInfo *info, InpMtx *A) ;

void MatMul_setGlobalIndices (MatMulInfo *info, InpMtx *A) ;

The first method maps the indices of A (which are assumed to be global) into local indices. The second
method maps the indices of A (which are assumed to be local) back into global indices. It uses the
XmapIV, XsupIV YmapIV and YsupIV objects that are contained in the info object. These are serial
methods, performed independently on each processor.

Error checking: If info or A is NULL, an error message is printed and the program exits.

384

3. void MatMul_MPI_mmm (MatMulInfo *info, DenseMtx *Yloc, double alpha[], InpMtx *A,

DenseMtx *Xloc, int stats[], int msglvl, FILE *msgFile, MPI_Comm comm) ;

This method computes a distributed matrix-matrix multiply Y := Y + αAX , Y := Y + αAT X or
Y := Y + αAHX , depending on how the info object was set up. NOTE: A must have local indices,
use MatMul setLocalIndices() to convert from global to local indices. Xloc and Yloc contain the
owned rows of X and Y , respectively.

On return, the following statistics will have been added.

stats[0] — # of messages sent stats[1] — # of bytes sent
stats[2] — # of messages received stats[3] — # of bytes received

This method calls makeSendRecvIVLs().

Error checking: If info, Yloc, alpha, A, Xloc or stats is NULL, or if msglvl > 0 and msgFile is NULL,
an error message is printed and the program exits.

4. void MatMul_cleanup (MatMulInfo *info) ;

This method free’s the data structures owned by the info object, and then free’s the object. processor.

Error checking: If info is NULL, an error message is printed and the program exits.

43.2.8 Broadcast methods

1. ETree * ETree_MPI_Bcast (ETree *etree, int root,

int msglvl, FILE *msgFile, MPI_Comm comm) ;

This method is a broadcast method for an ETree object. The root processor broadcasts its ETree

object to the other nodes and returns a pointer to its ETree object. A node other than root free’s its
ETree object (if not NULL), receives root’s ETree object, and returns a pointer to it.

Error checking: None presently.

2. Graph * Graph_MPI_Bcast (Graph *etree, int root,

int msglvl, FILE *msgFile, MPI_Comm comm) ;

This method is a broadcast method for an Graph object. The root processor broadcasts its Graph

object to the other nodes and returns a pointer to its Graph object. A node other than root, clears
the data in its Graph object, receives the Graph object from the root and returns a pointer to it.

Error checking: None presently.

3. IVL * IVL_MPI_Bcast (IVL *obj, int root,

int msglvl, FILE *msgFile, MPI_Comm comm) ;

This method is a broadcast method for an IVL object. The root processor broadcasts its IVL object
to the other nodes and returns a pointer to its IVL object. A node other than root, clears the data in
its IVL object, receives the IVL object from the root and returns a pointer to it.

Error checking: None presently.

4. IV * IV_MPI_Bcast (IV *obj, int root,

int msglvl, FILE *msgFile, MPI_Comm comm) ;

This method is a broadcast method for an IV object. The root processor broadcasts its IV object to
the other nodes and returns a pointer to its IV object. A node other than root, clears the data in its
IV object, receives the IV object from the root and returns a pointer to it.

Error checking: None presently.

385

43.2.9 Utility methods

1. IVL * InpMtx_MPI_fullAdjacency (InpMtx *inpmtx, int stats[],

int msglvl, FILE *msgFile, MPI_Comm comm) ;

IVL * Pencil_MPI_fullAdjacency (Pencil *pencil, int stats[],

int msglvl, FILE *msgFile, MPI_Comm comm) ;

These methods are used to return an IVL object that contains the full adjacency structure of the
graph of the matrix or matrix pencil. The matrix or matrix pencil is distributed among the processes,
each process has a local portion of the matrix or matrix pencil. The returned IVL object contains
the structure of the global graph. The stats[] vector must have at least four fields. On return, the
following statistics will have been added.

stats[0] — # of messages sent stats[1] — # of bytes sent
stats[2] — # of messages received stats[3] — # of bytes received

Error checking: If inpmtx, pencil or stats is NULL, or if msglvl > 0 and msgFile is NULL, an error
message is printed and the program exits.

2. ChvList * FrontMtx_MPI_aggregateList (FrontMtx *frontmtx, IV *frontOwnersIV,

int stats[], int msglvl, FILE *msgFile, int tag, MPI_Comm comm) ;

This method is used in place of the FrontMtx aggregateList() method to initialize the aggregate
list object. Since the symbolic factorization data is distributed among the processes, the number
of incoming aggregates for a front and the number of different processes contributing to a front —
information necessary to initialize the list object — must be computed cooperatively. This method
uses tag as the message tag for all messages communicated during this method. The stats[] vector
must have at least four fields. On return, the following statistics will have been added.

stats[0] — # of messages sent stats[1] — # of bytes sent
stats[2] — # of messages received stats[3] — # of bytes received

Error checking: If frontmtx or frontOwnersIV is NULL, or if tag < 0 or tag is larger than the largest
available tag, an error message is printed and the program exits.

3. IV * FrontMtx_MPI_colmapIV (FrontMtx *frontmtx, IV *frontOwnersIV,

int msglvl, FILE *msgFile, MPI_Comm comm) ;

IV * FrontMtx_MPI_rowmapIV (FrontMtx *frontmtx, IV *frontOwnersIV,

int msglvl, FILE *msgFile, MPI_Comm comm) ;

For a factorization with pivoting, the elimination of some rows and columns may be delayed from the
front that initially contains them to an ancestor front. The solution and right hand side entries would
therefore need to be redistributed. To do so requires new row and column maps, maps from the row
or column to the processor that owns them. These two methods construct that map. The routine uses
the MPI Allgather() and MPI Bcast() methods, so no unique tag values are needed.

Error checking: None at present.

4. IVL *

IVL_MPI_alltoall (IVL *sendIVL, IVL *recvIVL, int stats[], int msglvl,

FILE *msgFile, int firsttag, MPI_Comm comm) ;

This method is used during the setup for matrix-vector multiplies. Each processor has computed
the vertices it needs from other processors, these lists are contained in sendIVL. On return, recvIVL
contains the lists of vertices this processor must send to all others.

This method uses tags in the range [tag,tag+nproc-1). On return, the following statistics will have
been added.

386

stats[0] — # of messages sent stats[1] — # of bytes sent
stats[2] — # of messages received stats[3] — # of bytes received

This method is safe in the sense that it uses only MPI Sendrecv().

Error checking: If sendIVL or stats is NULL, or if msglvl > 0 and msgFile is NULL, or if tag < 0

or tag + nproc is larger than the largest available tag, an error message is printed and the program
exits.

5. void * makeSendRecvIVLs (IV *supportedIV, IV *globalmapIV, IVL *sendIVL, IVL *recvIVL,

int stats[], int msglvl, FILE *msgFile, int firsttag, MPI_Comm comm) ;

The purpose of this method to analyze and organize communication. It was written in support of a
distributed matrix-vector multiply but can be used for other applications.

Each processor has a list of items it ”supports” or needs found in the supportedIV object. The
globalmapIV object contains the map from items to owning processors. We need to figure out what
items this processor will send to and receive from each other processor. This information is found in
the sendIVL and recvIVL objects.

On return, list jproc of sendIVL contains the items owned by this processor and needed by jproc.
On return, list jproc of recvIVL contains the items needed by this processor and owned by jproc.

This method initializes the recvIVL object, and then calls IVL MPI alltoall() to construct the
sendIVL object. This method uses tags in the range [tag,tag+nproc*nproc). On return, the following
statistics will have been added.

stats[0] — # of messages sent stats[1] — # of bytes sent
stats[2] — # of messages received stats[3] — # of bytes received

This method is safe in the sense that it uses only MPI Sendrecv().

Error checking: If sendIVL or stats is NULL, or if msglvl > 0 and msgFile is NULL, or if tag < 0

or tag + nproc is larger than the largest available tag, an error message is printed and the program
exits.

6. int maxTagMPI (MPI_Comm comm) ;

This method returns the maximum tag value for the communicator comm.

Error checking: None at present.

43.3 Driver programs

1. allInOne msglvl msgFile type symmetryflag pivotingflag seed

This driver program is an example program for reading in a linear system and right hand side, ordering
the matrix, factoring the matrix, and solving the system. Use the script file do AllInOne for testing.

The files names for the matrix and right hand side entries are hardcoded. Processor q reads in matrix
entries from file matrix.q.input and right hand side entries from file rhs.q.input. The format for
the matrix files is as follows:

neqns neqns nent

irow jcol entry

...

387

where neqns is the global number of equations and nent is the number of entries in this file. There
follows nent lines, each containing a row index, a column index and one or two floating point numbers,
one if real, two if complex. The format for the right hand side file is similar:

nrow nrhs

irow entry ... entry

...

where nrow is the number of rows in this file and nrhs is the number of rigght and sides. There follows
nrow lines, each containing a row index and either nrhs or 2*nrhs floating point numbers, the first if
real, the second if complex.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The type parameter specifies whether the linear system is real (type = 1) or complex (type =
2).

• The symmetryflag parameter specifies whether the matrix is symmetric (symmetryflag = 0),
Hermitian (symmetryflag = 1) or nonsymmetric (symmetryflag = 2)

• The pivotingflag parameter specifies whether pivoting will be performed during the factoriza-
tion, yes (symmetryflag = 0) or no (symmetryflag = 2). The pivot tolerance is hardcoded as
tau = 100.0.

• The seed parameter is a random number seed.

2. patchAndGoMPI msglvl msgFile type symmetryflag patchAndGoFlag

fudge toosmall storeids storevalues seed

This driver program is used to test the “patch-and-go” functionality for a factorization without pivoting.
When small diagonal pivot elements are found, one of three actions are taken. See the PatchAndGoInfo
object for more information.

The program reads in a matrix A and right hand side B, generates the graph for A and orders the
matrix, factors A and solves the linear system AX = B for X .

The files names for the matrix and right hand side entries are hardcoded. Processor q reads in matrix
entries from file patchMatrix.q.input and right hand side entries from file patchRhs.q.input. The
format for the matrix files is as follows:

neqns neqns nent

irow jcol entry

...

where neqns is the global number of equations and nent is the number of entries in this file. There
follows nent lines, each containing a row index, a column index and one or two floating point numbers,
one if real, two if complex. The format for the right hand side file is similar:

nrow nrhs

irow entry ... entry

...

where nrow is the number of rows in this file and nrhs is the number of rigght and sides. There follows
nrow lines, each containing a row index and either nrhs or 2*nrhs floating point numbers, the first if
real, the second if complex. Use the script file do patchAndGo for testing.

388

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The type parameter specifies a real or complex linear system.

– type = 1 (SPOOLES REAL) for real,

– type = 2 (SPOOLES COMPLEX) for complex.

• The symmetryflag parameter specifies the symmetry of the matrix.

– type = 0 (SPOOLES SYMMETRIC) for A real or complex symmetric,

– type = 1 (SPOOLES HERMITIAN) for A complex Hermitian,

– type = 2 (SPOOLES NONSYMMETRIC)

for A real or complex nonsymmetric.

• The patchAndGoFlag specifies the “patch-and-go” strategy.

– patchAndGoFlag = 0 — if a zero pivot is detected, stop computing the factorization, set the
error flag and return.

– patchAndGoFlag = 1 — if a small or zero pivot is detected, set the diagonal entry to 1 and
the offdiagonal entries to zero.

– patchAndGoFlag = 2 — if a small or zero pivot is detected, perturb the diagonal entry.

• The fudge parameter is used to perturb a diagonal entry.

• The toosmall parameter is judge when a diagonal entry is small.

• If storeids = 1, then the locations where action was taken is stored in an IV object.

• If storevalues = 1, then the perturbations are stored in an DV object.

• The seed parameter is a random number seed.

3. testGather msglvl msgFile type nrow ncol inc1 inc2 seed

This driver program test the DenseMtx MPI gatherRows() method. Each processor creates part of a
distributed matrix X and fills its entries with entries known to all processors. (Xj,k = j + k ∗ nproc
if real and Xj,k = j + k ∗ nproc + i ∗ 2 ∗ (j + k ∗ nproc)) if complex. The mapping from rows of X to
processors is random. Each processor then generates a random vector that contains its rows in a local
Y , which will be filled with the corresponding rows of X . The rows of X are then gathered into Y ,
and the local errors are computed. The global error is written to the results file by processor zero.

Use the script file do gather for testing.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The type parameter specifies whether the linear system is real (type = 1) or complex (type =
2).

• nrow is the number of rows in X.

• ncol is the number of columns in X.

• inc1 is the row increment for X.

• inc2 is the column increment for X.

• The seed parameter is a random number seed.

389

4. testGraph_Bcast msglvl msgFile type nvtx nitem root seed

This driver program tests the distributed Graph MPI Bcast() method. Processor root generates a
random graph of type type (see the documentation for the Graph object in chapter 21) with nvtx

vertices. The random graph is constructed via an InpMtx object using nitem edges. Processor root

then sends its Graph object to the other processors. Each processor computes a checksum for its object,
and the error are collected on processor 0. Use the script file do Graph Bcast for testing.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The type parameter specifies the type of the graph, unweighted, weighted vertices, weighted
edges, and combinations.

• The nvtx parameter specifies the number of vertices in the graph.

• The nitem parameter is used to specify the number of edges that form the graph. An upper
bound on the number of edges is nvtx + 2*nitem.

• root is the root processor for the broadcast.

• The seed parameter is a random number seed.

5. testGridMPI msglvl msgFile n1 n2 n3 maxzeros maxsize seed type

symmetryflag sparsityflag pivotingflag tau droptol lookahead

nrhs maptype cutoff

This driver program creates and solves the linear system AX = Y where the structure of A is from
a n1× n2× n3 regular grid operator and is ordered using nested dissection. The front tree is formed
allowing maxzeros in a front with a maximum of maxsize vertices in a non-leaf front. Process 0

generates the linear system and broadcasts the front tree to the other processes. Using maptype, the
processes generate the owners map for the factorization in parallel. The A, X and Y matrices are
then distributed among the processes. The symbolic factorization is then computed in parallel, the
front matrix is initialized, and the factorization is computed in parallel. If pivoting has taken place,
the solution and right hand side matrices are redistributed as necessary. The matrix is post-processed
where it is converted to a submatrix storage format. Each processor computes the identical solve map,
and the front matrix is split among the processes. The linear system is then solved in parallel and the
error is computed. Use the script file do gridMPI for testing.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The n1 parameter is the number of grid points in the first direction.

• The n2 parameter is the number of grid points in the second direction.

• The n3 parameter is the number of grid points in the third direction.

• The maxzeros parameter is the maximum number of zero entries allowed in a front.

• The maxsize parameter is the maximum number of internal rows and columns allowed in a front.

• The seed parameter is a random number seed.

• The type parameter specifies whether the linear system is real or complex. Use 1 for real and 2

for complex.

• The symmetryflag parameter denotes the presence or absence of symmetry.

390

– Use 0 for a real or complex symmetric matrix A. A (UT + I)D(I + U) factorization is
computed.

– Use 1 for a complex Hermitian matrix A. A (UH + I)D(I + U) factorization is computed.

– Use 2 for a real or complex nonsymmetric matrix A. A (L + I)D(I + U) factorization is
computed.

• The sparsityflag parameter denotes a direct or approximate factorization. Valid values are 0

for a direct factorization and 1 is for an approximate factorization.

• The pivotingflag parameter denotes whether pivoting is to be used in the factorization. Valid
values are 0 for no pivoting and 1 to enable pivoting.

• The tau parameter is used when pivoting is enabled, in which case it is an upper bound on the
magnitude of an entry in the triangular factors L and U .

• The droptol parameter is used when an approximate factorization is requested, in which it is a
lower bound on the magnitude of an entry in L and U .

• The lookahead parameter governs the “upward–looking” nature of the factorization. Choosing
lookahead = 0 is usually the most conservative with respect to working storage, while positive
values increase the working storage and sometimes decrease the factorization time.

• The nrhs parameter is the number of right hand sides.

• The maptype parameter is the type of factorization map.

– 1 — a wrap map via a post-order traversal

– 2 — a balanced map via a post-order traversal

– 3 — a subtree–subset map

– 4 — a domain decomposition map

• The cutoff parameter is used with the domain decomposition map, and specifies the maximum
fraction of the vertices to be included into a domain. Try cutoff = 1/nproc or 1/(2*nproc).

6. testIV_allgather msglvl msgFile n seed

This driver program tests the distributed IV MPI allgather() method. Each processor generates the
same owners[] map and fills an IV object with random entries for the entries which it owns. The
processors all-gather the entries of the vector so each processor has a copy of the global vector. Each
processor computes a checksum of the vector to detect errors. Use the script file do IVallgather for
testing.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The n parameter is the length of the vector.

• The seed parameter is a random number seed.

7. testIVL_alltoall msglvl msgFile n seed

This driver program tests the distributed IVL MPI alltoall()method. This is used by the makeSendRecvIVLs
method when setting up the distributed matrix-matrix multiply. Each processor constructs a “receive”
IVL object with nproc lists. List iproc contains a set of ids of items that this processor will receive
from processor iproc. The processors then call IVL MPI allgather to create their “send” IVL object,
where list iproc contains a set of ids of items that this processor will send to processor iproc. The set
of lists in all the “receive” IVL objects is exactly the same as the set of lists in all the “send” objects.
This is an “all-to-all” scatter/gather operation. Had the lists be stored contiguously or at least in one
block of storage, we could have used the MPI Alltoallv() method.

Use the script file do IVL alltoall for testing.

391

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The n parameter is an upper bound on list size and element value.

• The seed parameter is a random number seed.

8. testIVL_allgather msglvl msgFile nlist seed

This driver program tests the distributed IVL MPI allgather() method. Each processor generates
the same owners[] map and fills an IVL object with random entries for the lists which it owns. The
processors all-gather the entries of the IVL object so each processor has a copy of the global object.
Each processor computes a checksum of the lists to detect errors. Use the script file do IVLallgather

for testing.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The nlist parameter is the number of lists.

• The seed parameter is a random number seed.

9. testIVL_Bcast msglvl msgFile nlist maxlistsize root seed

This driver program tests the distributed IVL MPI Bcast() method. Processor root generates a ran-
dom IVL object with nlist lists. The size of each list is bounded above by maxlistsize. Processor
root then sends its IVL object to the other processors. Each processor computes a checksum for its
object, and the error are collected on processor 0. Use the script file do IVL Bcast for testing.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The nlist parameter specifies the number of lists.

• The maxlist parameter is an upper bound on the size of each list.

• root is the root processor for the broadcast.

• The seed parameter is a random number seed.

10. testMMM msglvl msgFile nrowA ncolA nentA ncolX coordType

inputMode symflag opflag seed real imag

This driver program tests the distributed matrix-matrix multiply Y := Y + αAX , Y := Y + αAT X or
Y := Y + αAHX . Process zero creates Y , A and X and computes Z = Y + αAX , Z = Y + αAT X
or Z = Y + αAHX . Using random maps, it distributes A, X and Y among the other processors.
The information structure is created using MatMul MPI setup(). The local matrix Aq is mapped to
local coordinates. The matrix-matrix multiply is computed, and then all the Y q local matrices are
gathered onto processor zero into Y , which is then compared with Z that was computed using a serial
matrix-matrix multiply. The error is written to the message file by processor zero. Use the script file
do MMM for testing.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

392

• The nrowA parameter is the number of rows in A.

• The ncolA parameter is the number of columns in A.

• The nentA parameter is the number of entries to be put into A.

• The nrowX parameter is the number of rows in X .

• The coordType parameter defines the coordinate type that will be used during the redistribution.
Valid values are 1 for rows, 2 for columns and 3 for chevrons.

• The inputMode parameter defines the mode of input. Valid values are 1 for real entries and 2 for
complex entries.

• The symflag parameter specifies whether the matrix is symmetric (symflag = 0), Hermitian
(symflag = 1) or nonsymmetric (symflag = 2)

• The opflag parameter specifies the type of multiply, 0 for Y := Y +αAX , 1 for Y := Y +αAT X
or 2 for Y := Y + αAHX .

• The seed parameter is a random number seed.

• The real parameter is the real part of the scalar α.

• The imag parameter is the imaginary part of the scalar α, ignored for real entries.

11. testScatterDenseMtx msglvl msgFile nrow ncol inc1 inc2 seed root

This driver program exercises the DenseMtx MPI splitFromGlobalByRows() method to split or redis-
tribute by rows a DenseMtx dense matrix object. Process root generates the DenseMtx object. A
random map is generated (the same map on all processes) and the object is redistributed using this
random map. The local matrices are then gathered into a second global matrix on processor root and
the two are compared. Use the script file do ScatterDenseMtx for testing.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The nrow parameter is the number of rows for the matrix.

• The ncol parameter is the number of columns for the matrix.

• The inc1 parameter is the row increment for the matrix. Valid values are 1 for column major
and ncol for row major.

• The inc2 parameter is the column increment for the matrix. Valid values are 1 for row major
and nrow for column major.

• The seed parameter is a random number seed.

• The root parameter is the root processor for the scatter and gather.

12. testScatterInpMtx msglvl msgFile neqns seed

coordType inputMode inInpMtxFile root

This driver program tests the distributed InpMtx MPI splitFromGlobal() method to split a InpMtx

sparse matrix object. Process root reads in the InpMtx object. A random map is generated (the same
map on all processes) and the object is scattered from processor root to the other processors. Use the
script file do ScatterInpMtx for testing.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

393

• The neqns parameter is the number of equations for the matrix.

• The seed parameter is a random number seed.

• The coordType parameter defines the coordinate type that will be used during the redistribution.
Valid values are 1 for rows, 2 for columns and 3 for chevrons.

• The inputMode parameter defines the mode of input. Valid values are 0 for indices only, 1 for
real entries and 2 for complex entries.

• The inInpMtxFile parameter is the name of the file that contain the InpMtx object.

13. testSplitDenseMtx msglvl msgFile nrow ncol inc1 inc2 seed

This driver program tests the distributed DenseMtx MPI splitByRows()method to split or redistribute
by rows a DenseMtx dense matrix object. Process zero generates the DenseMtx object. It is then split
among the processes using a wrap map. A random map is generated (the same map on all processes)
and the object is redistributed using this random map. Use the script file do SplitDenseMtx for
testing.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The nrow parameter is the number of rows for the matrix.

• The ncol parameter is the number of columns for the matrix.

• The inc1 parameter is the row increment for the matrix. Valid values are 1 for column major
and ncol for row major.

• The inc2 parameter is the column increment for the matrix. Valid values are 1 for row major
and nrow for column major.

• The seed parameter is a random number seed.

14. testSplitInpMtx msglvl msgFile neqns seed coordType inputMode inInpMtxFile

This driver program tests the distributed InpMtx MPI split() method to split or redistribute a InpMtx

sparse matrix object. Process zero reads in the InpMtx object. It is then split among the processes
using a wrap map. A random map is generated (the same map on all processes) and the object is
redistributed using this random map. Use the script file do SplitInpMtx for testing.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The neqns parameter is the number of equations for the matrix.

• The seed parameter is a random number seed.

• The coordType parameter defines the coordinate type that will be used during the redistribution.
Valid values are 1 for rows, 2 for columns and 3 for chevrons.

• The inputMode parameter defines the mode of input. Valid values are 0 for indices only, 1 for
real entries and 2 for complex entries.

• The inInpMtxFile parameter is the name of the file that contain the InpMtx object.

15. testSymbFac msglvl msgFile inGraphFile inETreeFile seed

This driver program tests the distributed SymbFac MPI initFromInpMtx() method that forms a IVL

object that contains the necessary parts of a symbolic factorization for each processor. The pro-
gram reads in the global Graph and ETree objects. Each processor creates a global InpMtx object

394

from the structure of the graph and computes a global symbolic factorization object using the serial
SymbFac initFromInpMtx() method. The processors then compute a map from fronts to processors,
and each processor throws away the unowned matrix entries from the InpMtx object. The processors
then compute their necessary symbolic factorizations in parallel. For a check, they compare the two
symbolic factorizations for error. Use the script file do symbfac for testing.

• The msglvl parameter determines the amount of output. Use msglvl = 1 for just timing output.

• The msgFile parameter determines the message file — if msgFile is stdout, then the message
file is stdout, otherwise a file is opened with append status to receive any output data.

• The inGraphFile parameter is the input file for the Graph object.

• The inETreeFile parameter is the input file for the ETree object.

• The seed parameter is a random number seed.

Bibliography

[1] P. Amestoy, T. Davis, and I. Duff. An approximate minimum degree ordering algorithm. SIAM J.
Matrix Anal. Appl., 17:886–905, 1996.

[2] S. L. Anderson. Random number generators on vector supercomputers and other advanced architectures.
SIAM Review, 32:221–251, 1990.

[3] C. Ashcraft. Compressed graphs and the minimum degree algorithm. SIAM J. Sci. Comput., 16:1404–
1411, 1995.

[4] C. Ashcraft and R. Grimes. The influence of relaxed supernode partitions on the multifrontal method.
ACM Trans. Math. Software, 15:291–309, 1989.

[5] C. Ashcraft and J. W. H. Liu. Using domain decompositions to find graph bisectors. BIT, 37:506–534,
1997.

[6] C. Ashcraft and J. W. H. Liu. Applications of the Dulmage-Mendelsohn decomposition and network
flow to graph bisection improvement. SIAM J. Matrix Analysis and Applic., 19:325–354, 1998.

[7] J. L. Bentley and M. D. McIlroy. Engineering a sort function. Software – Practice and Experience,
23(11):1249–1265, 1993.

[8] M. V. Bhat, W. G. Habashi, J. W. H. Liu, V. N. Nguyen, and M. F. Peeters. A note on nested dissection
for rectangular grids. SIAM J. Matrix Analysis and Applic., 14:253–258, 1993.

[9] A. C. Damhaug. Sparse Solution of Finite Element Equations. PhD thesis, The Norwegian Institute of
Technology, 1992.

[10] I. Duff and J. Reid. The multifrontal solution of indefinite sparse symmetric linear equations. ACM
Trans. Math. Software, 6:302–325, 1983.

[11] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman. Applications of an element model for Gaussian
elimination. In J. R. Bunch and D. J. Rose, editors, Sparse Matrix Computations, pages 85–96. Academic
Press, 1976.

[12] J. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB: design and implementation. SIAM
J. Matrix Analysis and Applic., 13:335–356, 1992.

[13] B. Hendrickson and E. Rothberg. Improving the runtime and quality of nested dissection ordering.
SIAM J. Sci. Comput., 20:468–489, 1998.

[14] G. Karypis and V. Kumar. Metis 4.0: Unstructured graph partitioning and sparse matrix ordering
system. Technical report, Department of Computer Science, University of Minnesota, 1998. Available
on the WWW at URL http://www.cs.umn.edu/˜metis.

395

396

[15] J. W. H. Liu. On the storage requirement in the out-of-core multifrontal method for sparse factorization.
ACM Trans. on Math. Software, 12:249–264, 1986.

[16] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM J. Matrix Analysis and Applic.,
11:134–172, 1990.

[17] J. W. H. Liu. A generalized envelope method for sparse factorization by rows. ACM Trans. on Math.
Software, 17:112–129, 1991.

[18] E. Ng and P. Raghavan. Minimum deficiency ordering. In Second SIAM Conference on Sparse Matrices,
1996. Conference presentation.

[19] E. Rothberg. Ordering sparse matrices using approximate minimum local fill. In Second SIAM Confer-
ence on Sparse Matrices, 1996. Conference presentation.

[20] E. Rothberg and S. C. Eisenstat. Node selection strategies for bottom-up sparse matrix ordering. SIAM
J. Matrix Anal., 19:682–695, 1998.

Index

A2 applyQT(), 29
A2 clearData(), 26
A2 column(), 27
A2 columnMajor(), 31
A2 complexEntry(), 27
A2 computeQ(), 28
A2 copy(), 32
A2 copyEntriesToVector(), 33
A2 entries(), 26
A2 extractColumn(), 31
A2 extractColumnDV(), 31
A2 extractColumnZV(), 31
A2 extractRow(), 31
A2 extractRowDV(), 31
A2 extractRowZV(), 31
A2 fillRandomNormal(), 32
A2 fillRandomUniform(), 32
A2 fillWithIdentity(), 32
A2 free(), 26
A2 frobNorm(), 29
A2 inc1(), 26
A2 inc2(), 26
A2 infinityNorm(), 29
A2 infinityNormOfColumn(), 29
A2 infinityNormOfRow(), 30
A2 init(), 28
A2 makeStaircase(), 28
A2 maxabs(), 29
A2 ncol(), 26
A2 new(), 26
A2 nrow(), 26
A2 oneNorm(), 29
A2 oneNormOfColumn(), 29
A2 oneNormOfRow(), 29
A2 permuteColumns(), 30
A2 permuteRows(), 30
A2 pointerToComplexEntry(), 27
A2 pointerToRealEntry(), 27
A2 QRreduce(), 28
A2 readFromBinaryFile(), 33
A2 readFromFile(), 33
A2 readFromFormattedFile(), 33

A2 realEntry(), 27
A2 row(), 27
A2 rowMajor(), 31
A2 setColumn(), 32
A2 setColumnDV(), 32
A2 setColumnZV(), 32
A2 setComplexEntry(), 27
A2 setDefaultFields(), 26
A2 setRealEntry(), 27
A2 setRow(), 31
A2 setRowDV(), 32
A2 setRowZV(), 32
A2 shiftBase(), 30
A2 sizeOf(), 30
A2 sortColumnsUp(), 30
A2 sortRowsUp(), 30
A2 sub(), 33
A2 subA2(), 28
A2 swapColumns(), 33
A2 swapRows(), 33
A2 transpose(), 31
A2 twoNormOfColumn(), 29
A2 twoNormOfRow(), 30
A2 writeForHumanEye(), 34
A2 writeForMatlab(), 34
A2 writeStats(), 34
A2 writeToBinaryFile(), 34
A2 writeToFile(), 34
A2 writeToFormattedFile(), 34
A2 zero(), 32

bicgstabl(), 304
bicgstabr(), 304
BKL clearData(), 118
BKL domAdjToSep(), 120
BKL eval(), 120
BKL evalfcn(), 120
BKL evalgain(), 120
BKL exhSearch(), 120
BKL fidmat(), 121
BKL flipDomain(), 119
BKL free(), 118

397

398

BKL greyCodeDomain(), 119
BKL init(), 118
BKL new(), 118
BKL segColor(), 119
BKL setColorWeights(), 119
BKL setDefaultFields(), 118
BKL setInitPart(), 119
BKL setRandomColors(), 119
BPG clearData(), 124
BPG DMdecomposition(), 126
BPG DMviaMaxFlow(), 126
BPG free(), 124
BPG init(), 125
BPG initFromColoring(), 125
BPG levelStructure(), 125
BPG makeGraphXbyX(), 125
BPG makeGraphYbyY(), 125
BPG new(), 124
BPG pseudoperipheralnode(), 125
BPG readFromBinaryFile(), 127
BPG readFromFile(), 126
BPG readFromFormattedFile(), 126
BPG setDefaultFields(), 124
BPG writeForHumanEye(), 127
BPG writeStats(), 127
BPG writeToBinaryFile(), 127
BPG writeToFile(), 127
BPG writeToFormattedFile(), 127

Chv addChevron(), 229
Chv assembleChv(), 229
Chv assemblePostponedData(), 229
Chv clearData(), 224
Chv columnIndices(), 225
Chv complexEntry(), 226
Chv copyBigEntriesToVector(), 232
Chv copyEntriesToVector(), 231
Chv copyTrailingPortion(), 232
Chv countBigEntries(), 231
Chv countEntries(), 230
Chv diagLocation(), 225
Chv dimensions(), 224
Chv entries(), 225
Chv factorWithNoPivoting(), 230
Chv factorWithPivoting(), 229
Chv fastBunchParlettPivot(), 228
Chv fill11block(), 234
Chv fill12block(), 234
Chv fill21block(), 234
Chv findPivot(), 228
Chv free(), 224

Chv frobNorm(), 234
Chv id(), 224
Chv init(), 226
Chv initFromBuffer(), 226
Chv initWithPointers(), 226
Chv locationOfComplexEntry(), 226
Chv locationOfRealEntry(), 225
Chv maxabs(), 234
Chv maxabsInChevron(), 230
Chv maxabsInColumn(), 227
Chv maxabsInColumn11(), 227
Chv maxabsInDiagonal11(), 227
Chv maxabsInRow(), 227
Chv maxabsInRow11(), 227
Chv nbytesInWorkspace(), 233
Chv nbytesNeeded(), 233
Chv nent(), 225
Chv new(), 224
Chv quasimax(), 227
Chv r1upd(), 230
Chv r2upd(), 230
Chv realEntry(), 225
Chv rowIndices(), 225
Chv setComplexEntry(), 226
Chv setDefaultFields(), 224
Chv setFields(), 233
Chv setNbytesInWorkspace(), 233
Chv setRealEntry(), 225
Chv shift(), 233
Chv sub(), 234
Chv swapColumns(), 233
Chv swapRows(), 232
Chv swapRowsAndColumns(), 233
Chv symmetryFlag(), 224
Chv type(), 224
Chv updateH(), 228
Chv updateN(), 228
Chv updateS(), 228
Chv workspace(), 225
Chv writeForHumanEye(), 234
Chv writeForMatlab(), 234
Chv zero(), 234
Chv zeroOffdiagonalOfChevron(), 230
ChvList addObjectToList(), 242
ChvList clearData(), 241
ChvList free(), 241
ChvList getList(), 242
ChvList init(), 242
ChvList isCountZero(), 242
ChvList isListNonempty(), 242
ChvList new(), 241

399

ChvList setDefaultFields(), 241
ChvList writeForHumanEye(), 242
ChvManager clearData(), 244
ChvManager free(), 245
ChvManager init(), 245
ChvManager new(), 244
ChvManager newObjectOfSizeNbytes(), 245
ChvManager releaseListOfObjects(), 245
ChvManager releaseObject(), 245
ChvManager setDefaultFields(), 244
ChvManager writeForHumanEye(), 245
Coords clearData(), 37
Coords free(), 37
Coords init(), 37
Coords init27P(), 37
Coords init9P(), 37
Coords max(), 38
Coords min(), 38
Coords new(), 36
Coords readFromBinaryFile(), 39
Coords readFromFile(), 38
Coords readFromFormattedFile(), 39
Coords setDefaultFields(), 37
Coords setValue(), 38
Coords sizeOf(), 38
Coords value(), 38
Coords writeForHumanEye(), 39
Coords writeStats(), 39
Coords writeToBinaryFile(), 39
Coords writeToFile(), 39
Coords writeToFormattedFile(), 39
CVcopy(), 84
CVfill(), 84
CVfp80(), 84
CVfprintf(), 84
CVfree(), 84
CVfscanf(), 84
CVinit(), 84
CVinit2(), 84

DDsepInfo clearData(), 172
DDsepInfo free(), 172
DDsepInfo new(), 172
DDsepInfo setDefaultFields(), 172
DDsepInfo writeCpuTimes(), 173
DenseMtx addRow(), 251
DenseMtx addVectorIntoRow(), 251
DenseMtx checksums(), 251
DenseMtx clearData(), 247
DenseMtx colCopy(), 302
DenseMtx colDotProduct(), 302

DenseMtx colGenAxpy(), 302
DenseMtx colid(), 247
DenseMtx column(), 249
DenseMtx columnIncrement(), 247
DenseMtx columnIndices(), 248
DenseMtx complexEntry(), 248
DenseMtx copyRow(), 250
DenseMtx copyRowAndIndex(), 250
DenseMtx copyRowIntoVector(), 251
DenseMtx copyVectorIntoRow(), 251
DenseMtx dimensions(), 247
DenseMtx entries(), 248
DenseMtx fillRandomEntries(), 251
DenseMtx free(), 247
DenseMtx frobNorm(), 301
DenseMtx init(), 249
DenseMtx initAsSubmatrix(), 249
DenseMtx initFromBuffer(), 249
DenseMtx initWithPointers(), 249
DenseMtx maxabs(), 251
DenseMtx mmm(), 302
DenseMtx MPI gatherRows(), 379
DenseMtx MPI mergeToGlobalByRows(), 377
DenseMtx MPI scatterAddRows(), 379
DenseMtx MPI splitByRows(), 376
DenseMtx MPI splitFromGlobalByRows(), 377
DenseMtx nbytesInWorkspace(), 250
DenseMtx nbytesNeeded(), 250
DenseMtx new(), 247
DenseMtx permuteColumns(), 250
DenseMtx permuteRows(), 250
DenseMtx readFromBinaryFile(), 252
DenseMtx readFromFile(), 252
DenseMtx readFromFormattedFile(), 252
DenseMtx realEntry(), 248
DenseMtx row(), 249
DenseMtx rowid(), 247
DenseMtx rowIncrement(), 248
DenseMtx rowIndices(), 248
DenseMtx scale(), 251
DenseMtx setA2(), 249
DenseMtx setComplexEntry(), 248
DenseMtx setDefaultFields(), 247
DenseMtx setFields(), 250
DenseMtx setNbytesInWorkspace(), 250
DenseMtx setRealEntry(), 248
DenseMtx sort(), 250
DenseMtx sub(), 251
DenseMtx twoNormOfColumn(), 302
DenseMtx workspace(), 248
DenseMtx writeForHumanEye(), 252

400

DenseMtx writeForMatlab(), 253
DenseMtx writeStats(), 252
DenseMtx writeToBinaryFile(), 252
DenseMtx writeToFile(), 252
DenseMtx writeToFormattedFile(), 252
DenseMtx zero(), 251
Drand clearData(), 49
Drand fillDvector(), 50
Drand fillIvector(), 50
Drand fillZvector(), 50
Drand free(), 49
Drand init(), 49
Drand new(), 49
Drand setDefaultFields(), 49
Drand setNormal(), 50
Drand setSeed(), 49
Drand setSeeds(), 49
Drand setUniform(), 50
Drand value(), 50
drawGraphEPS(), 351
DSTree clearData(), 130
DSTree domainWeight(), 132
DSTree free(), 130
DSTree init1(), 130
DSTree init2(), 131
DSTree mapIV(), 130
DSTree MS2stages(), 131
DSTree MS3stages(), 131
DSTree ND2stages(), 131
DSTree NDstages(), 131
DSTree new(), 130
DSTree readFromBinaryFile(), 133
DSTree readFromFile(), 132
DSTree readFromFormattedFile(), 133
DSTree renumberViaPostOT(), 132
DSTree separatorWeight(), 132
DSTree setDefaultFields(), 130
DSTree sizeOf(), 132
DSTree stagesViaDomainWeight(), 132
DSTree tree(), 130
DSTree writeForHumanEye(), 133
DSTree writeStats(), 133
DSTree writeToBinaryFile(), 133
DSTree writeToFile(), 133
DSTree writeToFormattedFile(), 133
DV2isortDown(), 103
DV2isortUp(), 103
DV2qsortDown(), 104
DV2qsortUp(), 104
DV clearData(), 42
DV copy(), 45

DV entries(), 43
DV entry(), 43
DV fill(), 45
DV first(), 45
DV free(), 42
DV init(), 43
DV init1(), 43
DV init2(), 43
DV log10profile(), 45
DV max(), 44
DV size(), 42
DV min(), 44
DV new(), 42
DV next(), 45
DV owned(), 42
DV push(), 44
DV ramp(), 44
DV readFromBinaryFile(), 46
DV readFromFile(), 45
DV readFromFormattedFile(), 46
DV setDefaultFields(), 42
DV setEntry(), 43
DV setMaxsize(), 43
DV setSize(), 44
DV shiftBase(), 44
DV shuffle(), 44
DV size(), 42
DV sizeAndEntries(), 43
DV sizeOf(), 45
DV sortDown(), 44
DV sortUp(), 44
DV sum(), 44
DV writeForHumanEye(), 46
DV writeForMatlab(), 46
DV writeStats(), 46
DV writeToBinaryFile(), 46
DV writeToFile(), 46
DV writeToFormattedFile(), 46
DV zero(), 45
DVadd(), 85
DVaxpy(), 85
DVaxpy11(), 86
DVaxpy12(), 86
DVaxpy13(), 86
DVaxpy21(), 86
DVaxpy22(), 85
DVaxpy23(), 85
DVaxpy31(), 85
DVaxpy32(), 85
DVaxpy33(), 85
DVaxpyi(), 86

401

DVcompress(), 86
DVcopy(), 86
DVdot(), 86
DVdot11(), 88
DVdot12(), 88
DVdot13(), 88
DVdot21(), 87
DVdot22(), 87
DVdot23(), 87
DVdot31(), 87
DVdot32(), 87
DVdot33(), 86
DVdoti(), 88
DVfill(), 88
DVfprintf(), 84
DVfree(), 84
DVfscanf(), 85
DVgather(), 88
DVgatherAddZero(), 88
DVgatherZero(), 88
DVinit(), 84
DVinit2(), 84
DVinvPerm(), 88
DVisascending(), 102
DVisdescending(), 102
DVisortDown(), 103
DVisortUp(), 103
DVIVisortDown(), 103
DVIVisortUp(), 103
DVIVqsortDown(), 104
DVIVqsortUp(), 104
DVmax(), 88
DVmaxabs(), 88
DVmin(), 88
DVminabs(), 89
DVperm(), 89
DVqsortDown(), 104
DVqsortUp(), 104
DVramp(), 89
DVscale(), 89
DVscatter(), 89
DVscatterAdd(), 89
DVscatterAddZero(), 89
DVscatterZero(), 89
DVshuffle(), 90
DVsub(), 89
DVsum(), 89
DVsumabs(), 89
DVswap(), 89
DVzero(), 90

EGraph clearData(), 136
EGraph free(), 136
EGraph init(), 136
EGraph make27P(), 137
EGraph make9P(), 136
EGraph mkAdjGraph(), 136
EGraph new(), 136
EGraph readFromBinaryFile(), 137
EGraph readFromFile(), 137
EGraph readFromFormattedFile(), 137
EGraph setDefaultFields(), 136
EGraph writeForHumanEye(), 138
EGraph writeStats(), 138
EGraph writeToBinaryFile(), 137
EGraph writeToFile(), 137
EGraph writeToFormattedFile(), 137
ETree backSolveProfile(), 153
ETree backwardOps(), 145
ETree balancedMap(), 152
ETree bndwghts(), 142
ETree bndwghtsIV(), 142
ETree clearData(), 141
ETree compress(), 147
ETree ddMap(), 152
ETree ddMapNew(), 152
ETree expand(), 145
ETree factorEntriesIV(), 145
ETree fch(), 142
ETree forwardOps(), 145
ETree forwSolveProfile(), 153
ETree free(), 141
ETree frontBoundarySize(), 142
ETree frontSize(), 142
ETree FSstorageProfile(), 153
ETree fundChainMap(), 147
ETree fundSupernodeMap(), 147
ETree GSstorageProfile(), 152
ETree init1(), 143
ETree initFromDenseMatrix(), 143
ETree initFromFile(), 144
ETree initFromGraph(), 143
ETree initFromGraphWithPerms(), 143
ETree initFromSubtree(), 144
ETree leftJustify(), 147
ETree leftJustifyD(), 147
ETree leftJustifyI(), 147
ETree maxNindAndNent(), 143
ETree mergeFrontsAll(), 151
ETree mergeFrontsAny(), 151
ETree mergeFrontsOne(), 150
ETree MFstackProfile(), 152

402

ETree MPI Bcast(), 384
ETree msByDepth(), 148
ETree msByNentCutoff(), 149
ETree msByNopsCutoff(), 149
ETree msByNvtxCutoff(), 148
ETree msStats(), 149
ETree nentMetric(), 146
ETree new(), 141
ETree newToOldFrontPerm(), 148
ETree newToOldVtxPerm(), 148
ETree nExternalOpsInFront(), 145
ETree nFactorEntries(), 144
ETree nFactorEntriesInFront(), 144
ETree nFactorIndices(), 144
ETree nFactorOps(), 144
ETree nfront(), 141
ETree nInternalOpsInFront(), 145
ETree nodwghts(), 142
ETree nodwghtsIV(), 142
ETree nopsMetric(), 146
ETree nvtx(), 141
ETree nvtxMetric(), 146
ETree oldToNewFrontPerm(), 148
ETree oldToNewVtxPerm(), 148
ETree optPart(), 149
ETree par(), 142
ETree permuteVertices(), 148
ETree readFromBinaryFile(), 153
ETree readFromFile(), 153
ETree readFromFormattedFile(), 153
ETree root(), 141
ETree setDefaultFields(), 141
ETree sib(), 142
ETree sizeOf(), 144
ETree spliceTwoEtrees(), 145
ETree splitFronts(), 151
ETree subtreeSubsetMap(), 152
ETree transform(), 151
ETree transform2(), 151
ETree tree(), 141
ETree vtxToFront(), 142
ETree vtxToFrontIV(), 142
ETree wrapMap(), 152
ETree writeForHumanEye(), 154
ETree writeStats(), 154
ETree writeToBinaryFile(), 154
ETree writeToFile(), 153
ETree writeToFormattedFile(), 154

fp2DGrid(), 349
fp3DGrid(), 349

FrontMtx aggregateList(), 263
FrontMtx assemblePostponedData(), 264
FrontMtx backwardSetup(), 268
FrontMtx backwardVisit(), 268
FrontMtx clearData(), 259
FrontMtx colmapIV(), 269
FrontMtx columnIndices(), 260
FrontMtx diagMtx(), 260
FrontMtx diagonalVisit(), 267
FrontMtx factorInpMtx(), 264
FrontMtx factorPencil(), 264
FrontMtx factorSetup(), 262
FrontMtx factorVisit(), 262
FrontMtx forwardSetup(), 268
FrontMtx forwardVisit(), 267
FrontMtx free(), 259
FrontMtx frontSize(), 260
FrontMtx frontTree(), 260
FrontMtx inertia(), 270
FrontMtx init(), 261
FrontMtx initFromSubMtx(), 319
FrontMtx initialFrontDimensions(), 260
FrontMtx initializeFront(), 262
FrontMtx loadActiveLeaves(), 263
FrontMtx loadActiveRoots(), 268
FrontMtx loadEntries(), 263
FrontMtx loadRightHandSide(), 267
FrontMtx lowerAdjFronts(), 261
FrontMtx lowerBlockIVL(), 261
FrontMtx lowerMtx(), 261
FrontMtx makeLowerBlockIVL(), 269
FrontMtx makeUpperBlockIVL(), 269
FrontMtx MPI aggregateList(), 385
FrontMtx MPI colmapIV(), 385
FrontMtx MPI factorInpMtx(), 380
FrontMtx MPI factorPencil(), 380
FrontMtx MPI permuteLowerAdj(), 381
FrontMtx MPI permuteUpperAdj(), 381
FrontMtx MPI postProcess(), 381
FrontMtx MPI rowmapIV(), 385
FrontMtx MPI solve(), 382
FrontMtx MPI split(), 378
FrontMtx MT factorInpMtx(), 365
FrontMtx MT factorPencil(), 365
FrontMtx MT QR factor(), 366
FrontMtx MT QR solve(), 367
FrontMtx MT solve(), 366
FrontMtx nactiveChild(), 263
FrontMtx neqns(), 259
FrontMtx new(), 259
FrontMtx nfront(), 259

403

FrontMtx nLowerBlocks(), 261
FrontMtx nSolveOps(), 270
FrontMtx nUpperBlocks(), 261
FrontMtx ownedColumns(), 269
FrontMtx ownedRows(), 269
FrontMtx permuteLowerAdj(), 267
FrontMtx permuteLowerMatrices(), 267
FrontMtx permuteUpperAdj(), 267
FrontMtx permuteUpperMatrices(), 267
FrontMtx postList(), 263
FrontMtx postProcess(), 266
FrontMtx QR assembleFront(), 265
FrontMtx QR factor(), 266
FrontMtx QR factorVisit(), 265
FrontMtx QR setup(), 265
FrontMtx QR solve(), 269
FrontMtx QR storeFront(), 266
FrontMtx QR storeUpdate(), 266
FrontMtx readFromBinaryFile(), 270
FrontMtx readFromFile(), 270
FrontMtx readFromFormattedFile(), 270
FrontMtx rowIndices(), 260
FrontMtx rowmapIV(), 269
FrontMtx setDefaultFields(), 259
FrontMtx setFrontSize(), 260
FrontMtx setupFront(), 262
FrontMtx solve(), 268
FrontMtx solveOneColumn(), 302
FrontMtx splitLowerMatrices(), 267
FrontMtx splitUpperMatrices(), 267
FrontMtx storeFront(), 264
FrontMtx storePostponedData(), 264
FrontMtx storeSolution(), 268
FrontMtx update(), 263
FrontMtx upperAdjFronts(), 261
FrontMtx upperBlockIVL(), 261
FrontMtx upperMtx(), 260
FrontMtx writeForHumanEye(), 271
FrontMtx writeForMatlab(), 271
FrontMtx writeStats(), 271
FrontMtx writeToBinaryFile(), 271
FrontMtx writeToFile(), 270
FrontMtx writeToFormattedFile(), 270
FVadd(), 99
FVaxpy(), 99
FVaxpyi(), 99
FVcompress(), 99
FVcopy(), 99
FVdot(), 99
FVfill(), 99
FVfprintf(), 99

FVfree(), 98
FVfscanf(), 99
FVgather(), 99
FVgatherAddZero(), 99
FVgatherZero(), 99
FVinit(), 98
FVinit2(), 98
FVinvPerm(), 99
FVmax(), 99
FVmaxabs(), 100
FVmin(), 100
FVminabs(), 100
FVperm(), 100
FVramp(), 100
FVscale(), 100
FVscatter(), 100
FVscatterAddZero(), 100
FVscatterZero(), 100
FVshuffle(), 100
FVsub(), 100
FVsum(), 100
FVsumabs(), 100
FVswap(), 100
FVzero(), 100

GPart bndWeightsIV(), 169
GPart clearData(), 168
GPart DDviaFishnet(), 169
GPart DDviaProjection(), 169
GPart domSegMap(), 170
GPart free(), 168
GPart identifyWideSep(), 170
GPart init(), 168
GPart makeYCmap(), 170
GPart new(), 167
GPart RBviaDDsep(), 172
GPart setCweights(), 168
GPart setDefaultFields(), 167
GPart setMessageInfo(), 168
GPart sizeOf(), 168
GPart smoothBisector(), 171
GPart smoothBy2layers(), 171
GPart smoothYSep(), 171
GPart split(), 169
GPart TwoSetViaBKL(), 170
GPart validVtxSep(), 168
GPart vtxIsAdjToOneDomain(), 169
Graph adjAndEweights(), 181
Graph adjAndSize(), 181
Graph clearData(), 179
Graph componentMap(), 181

404

Graph componentStats(), 181
Graph compress(), 180
Graph compress2(), 180
Graph equivMap(), 180
Graph expand(), 180
Graph expand2(), 180
Graph externalDegree(), 181
Graph fillFromOffsets(), 179
Graph free(), 179
Graph init1(), 179
Graph init2(), 179
Graph isSymmetric(), 182
Graph MPI Bcast(), 384
Graph new(), 178
Graph readFromBinaryFile(), 182
Graph readFromFile(), 182
Graph readFromFormattedFile(), 182
Graph setDefaultFields(), 178
Graph setListsFromOffsets(), 180
Graph sizeOf(), 181
Graph subGraph(), 181
Graph wirebasketStages(), 180
Graph writeForHumanEye(), 183
Graph writeStats(), 183
Graph writeToBinaryFile(), 183
Graph writeToFile(), 182
Graph writeToFormattedFile(), 182
Graph writeToMetisFile(), 183

I2Ohash clearData(), 53
I2Ohash free(), 53
I2Ohash init(), 53
I2Ohash insert(), 54
I2Ohash locate(), 54
I2Ohash measure(), 54
I2Ohash new(), 53
I2Ohash remove(), 54
I2Ohash setDefaultFields(), 53
I2Ohash writeForHumanEye(), 54
I2OP fprintf(), 106
I2OP free(), 106
I2OP init(), 106
I2OP initStorage(), 106
Ideq clear(), 75
Ideq clearData(), 75
Ideq free(), 75
Ideq head(), 75
Ideq insertAtHead(), 76
Ideq insertAtTail(), 76
Ideq new(), 75
Ideq removeFromHead(), 75

Ideq removeFromTail(), 76
Ideq resize(), 75
Ideq setDefaultFields(), 75
Ideq tail(), 76
Ideq writeForHumanEye(), 76
IIheap clearData(), 57
IIheap free(), 57
IIheap init(), 57
IIheap insert(), 57
IIheap new(), 56
IIheap print(), 57
IIheap remove(), 57
IIheap root(), 57
IIheap setDefaultFields(), 57
IIheap sizeOf(), 57
ILUMtx clearData(), 274
ILUMtx factor(), 275
ILUMtx fillRandom(), 276
ILUMtx free(), 274
ILUMtx init(), 275
ILUMtx new(), 274
ILUMtx setDefaultFields(), 274
ILUMtx solveVector(), 275
ILUMtx writeForMatlab(), 276
InpMtx adjForATA(), 289
InpMtx changeCoordType(), 284
InpMtx changeStorageMode(), 284
InpMtx checksums(), 291
InpMtx clearData(), 281
InpMtx complexVector(), 283
InpMtx convertToVectors(), 290
InpMtx coordType(), 281
InpMtx dropLowerTriangle(), 290
InpMtx dropOffDiagonalEntries(), 290
InpMtx dropUpperTriangle(), 290
InpMtx dvec(), 283
InpMtx free(), 281
InpMtx fullAdjacency(), 289
InpMtx fullAdjacency2(), 289
InpMtx herm gmmm(), 288
InpMtx herm gmvm(), 289
InpMtx herm mmm(), 287
InpMtx herm mmmVector(), 288
InpMtx init(), 284
InpMtx initFromSubmatrix(), 290
InpMtx inputChevron(), 285
InpMtx inputColumn(), 285
InpMtx inputComplexChevron(), 285
InpMtx inputComplexColumn(), 285
InpMtx inputComplexEntry(), 285
InpMtx inputComplexMatrix(), 286

405

InpMtx inputComplexRow(), 285
InpMtx inputComplexTriples(), 286
InpMtx inputEntry(), 285
InpMtx inputMatrix(), 286
InpMtx inputMode(), 282
InpMtx inputRealChevron(), 285
InpMtx inputRealColumn(), 285
InpMtx inputRealEntry(), 285
InpMtx inputRealMatrix(), 286
InpMtx inputRealRow(), 285
InpMtx inputRealTriples(), 286
InpMtx inputRow(), 285
InpMtx inputTriples(), 286
InpMtx ivec1(), 282
InpMtx ivec2(), 282
InpMtx log10profile(), 291
InpMtx mapEntries(), 286
InpMtx mapToLowerTriangle(), 290
InpMtx mapToUpperTriangle(), 290
InpMtx mapToUpperTriangleH(), 290
InpMtx maxnent(), 282
InpMtx maxnvector(), 282
InpMtx MPI alltoall, 385
InpMtx MPI fullAdjacency(), 385
InpMtx MPI split(), 377
InpMtx MPI splitFromGlobal(), 378
InpMtx MT herm mmm(), 364
InpMtx MT nonsym mmm(), 364
InpMtx MT nonsym mmm H(), 365
InpMtx MT nonsym mm Tm(), 364
InpMtx MT sym mmm(), 364
InpMtx nent(), 282
InpMtx new(), 281
InpMtx nonsym gmmm(), 288
InpMtx nonsym gmmm H(), 288
InpMtx nonsym gmmm T(), 288
InpMtx nonsym gmvm(), 289
InpMtx nonsym gmvm H(), 289
InpMtx nonsym gmvm T(), 289
InpMtx nonsym mmm(), 287
InpMtx nonsym mmm H(), 287
InpMtx nonsym mmm T(), 287
InpMtx nonsym mmmVector(), 288
InpMtx nonsym mmmVector H(), 288
InpMtx nonsym mmmVector T(), 288
InpMtx nvector(), 282
InpMtx offsets(), 283
InpMtx permute(), 287
InpMtx randomMatrix(), 291
InpMtx range(), 283
InpMtx readFromBinaryFile(), 292

InpMtx readFromFile(), 292
InpMtx readFromFormattedFile(), 292
InpMtx readFromHBFile(), 293
InpMtx realVector(), 283
InpMtx resizeMultiple(), 282
InpMtx setCoordType(), 284
InpMtx setDefaultFields(), 281
InpMtx setMaxnent(), 283
InpMtx setMaxnvector(), 284
InpMtx setNent(), 283
InpMtx setNvector(), 284
InpMtx setResizeMultiple(), 284
InpMtx sizes(), 283
InpMtx sortAndCompress(), 290
InpMtx storageMode(), 282
InpMtx supportNonsym(), 286
InpMtx supportNonsymH(), 286
InpMtx supportNonsymT(), 286
InpMtx supportSym(), 286
InpMtx supportSymH(), 286
InpMtx sym gmmm(), 288
InpMtx sym gmvm(), 289
InpMtx sym mmm(), 287
InpMtx sym mmmVector(), 288
InpMtx vecids(), 283
InpMtx vector(), 283
InpMtx writeForHumanEye(), 292
InpMtx writeForMatlab(), 293
InpMtx writeStats(), 293
InpMtx writeToBinaryFile(), 292
InpMtx writeToFile(), 292
InpMtx writeToFormattedFile(), 292
IP fp80(), 105
IP fprintf(), 105
IP free(), 105
IP init(), 105
IP mergeSortUp(), 106
IP mergeUp(), 105
IP radixSortDown(), 106
IP radixSortUp(), 106
IV2DVisortDown(), 102
IV2DVisortUp(), 102
IV2DVqsortDown(), 103
IV2DVqsortUp(), 103
IV2DVsortUpAndCompress(), 105
IV2isortDown(), 102
IV2isortUp(), 102
IV2qsortDown(), 103
IV2qsortUp(), 103
IV2sortUpAndCompress(), 104
IV2ZVisortDown(), 103

406

IV2ZVisortUp(), 103
IV2ZVqsortDown(), 104
IV2ZVqsortUp(), 104
IV2ZVsortUpAndCompress(), 105
IV clearData(), 59
IV copy(), 62
IV decrement(), 63
IV entries(), 60
IV entry(), 60
IV fill(), 62
IV filterKeep(), 62
IV filterPurge(), 62
IV findValue(), 63
IV findValueAscending(), 63
IV findValueDescending(), 63
IV first(), 62
IV fp80(), 64
IV free(), 59
IV increment(), 62
IV init(), 60
IV init1(), 60
IV init2(), 60
IV inverseMap(), 63
IV max(), 61
IV maxsize(), 60
IV min(), 61
IV MPI allgather(), 381
IV MPI Bcast(), 384
IV new(), 59
IV next(), 62
IV owned(), 59
IV push(), 61
IV ramp(), 61
IV readFromBinaryFile(), 64
IV readFromFile(), 63
IV readFromFormattedFile(), 64
IV setDefaultFields(), 59
IV setEntry(), 60
IV setMaxsize(), 61
IV setSize(), 61
IV shiftBase(), 61
IV shuffle(), 62
IV size(), 60
IV sizeAndEntries(), 60
IV sizeOf(), 62
IV sortDown(), 61
IV sortUp(), 61
IV targetEntries(), 63
IV writeForHumanEye(), 64
IV writeForMatlab(), 64
IV writeStats(), 64

IV writeToBinaryFile(), 64
IV writeToFile(), 64
IV writeToFormattedFile(), 64
IVcompress(), 97
IVcopy(), 97
IVDVisortDown(), 102
IVDVisortUp(), 102
IVDVqsortDown(), 103
IVDVqsortUp(), 103
IVDVsortUpAndCompress(), 104
IVfill(), 97
IVfp80(), 97
IVfprintf(), 97
IVfree(), 97
IVfscanf(), 97
IVgather(), 97
IVinit(), 96
IVinit2(), 96
IVinverse(), 97
IVinvPerm(), 97
IVisascending(), 102
IVisdescending(), 102
IVisortDown(), 102
IVisortUp(), 102
IVL absorbIVL(), 71
IVL clearData(), 67
IVL equivMap1(), 70
IVL equivMap2(), 70
IVL expand(), 71
IVL firstInList(), 69
IVL free(), 67
IVL incr(), 68
IVL init(), 68
IVL init2(), 68
IVL init3(), 68
IVL initFromSubIVL(), 69
IVL listAndSize(), 69
IVL make13P(), 71
IVL make27P(), 72
IVL make5P(), 71
IVL make9P(), 71
IVL mapEntries(), 71
IVL max(), 70
IVL maxListSize(), 70
IVL maxnlist(), 68
IVL min(), 70
IVL MPI allgather(), 382
IVL MPI Bcast(), 384
IVL new(), 67
IVL nextInList(), 69
IVL nlist(), 68

407

IVL overwrite(), 71
IVL readFromBinaryFile(), 72
IVL readFromFile(), 72
IVL readFromFormattedFile(), 72
IVL setDefaultFields(), 67
IVL setincr(), 68
IVL setList(), 69
IVL setMaxnlist(), 69
IVL setNlist(), 69
IVL setPointerToList(), 70
IVL sizeOf(), 70
IVL sortUp(), 70
IVL sum(), 70
IVL tsize(), 68
IVL type(), 68
IVL writeForHumanEye(), 72
IVL writeStats(), 73
IVL writeToBinaryFile(), 72
IVL writeToFile(), 72
IVL writeToFormattedFile(), 72
IVlocateViaBinarySearch(), 97
IVmax(), 97
IVmaxabs(), 97
IVmin(), 98
IVminabs(), 98
IVperm(), 98
IVqsortDown(), 103
IVqsortUp(), 103
IVramp(), 98
IVscatter(), 98
IVshuffle(), 98
IVsortUpAndCompress(), 104
IVsum(), 98
IVsumabs(), 98
IVswap(), 98
IVzero(), 98
IVZVisortDown(), 103
IVZVisortUp(), 103
IVZVqsortDown(), 103
IVZVqsortUp(), 103
IVZVsortUpAndCompress(), 104

localND2D(), 349
localND3D(), 349
Lock clearData(), 78
Lock free(), 78
Lock init(), 78
Lock lock(), 78
Lock new(), 78
Lock setDefaultFields(), 78
Lock unlock(), 78

makeSendRecvIVLs, 386
MatMul cleanup(), 384
MatMul MPI mmm(), 384
MatMul MPI setup(), 383
MatMul setGlobalIndices(), 383
MatMul setLocalIndices(), 383
maxTagMPI(), 386
mkNDlinsys(), 351
mkNDlinsysQR(), 352
mkNDperm(), 348
mkNDperm2(), 348
mlbicgstabl(), 304
mlbicgstabr(), 304
MSMD approxDegree(), 195
MSMD cleanEdgeList(), 195
MSMD cleanReachSet(), 194
MSMD cleanSubtreeList(), 194
MSMD clearData(), 193
MSMD eliminateStage(), 194
MSMD eliminateStep(), 194
MSMD eliminateVtx(), 194
MSMD exactDegree2(), 195
MSMD exactDegree3(), 195
MSMD fillPerms(), 194
MSMD findInodes(), 194
MSMD free(), 193
MSMD frontETree(), 194
MSMD init(), 193
MSMD makeSchurComplement(), 195
MSMD new(), 192
MSMD order(), 193
MSMD setDefaultFields(), 192
MSMD update(), 195
MSMDinfo clearData(), 192
MSMDinfo free(), 192
MSMDinfo isValid(), 192
MSMDinfo new(), 191
MSMDinfo print(), 192
MSMDinfo setDefaultFields(), 192
MSMDvtx print(), 195

Network addArc(), 201
Network augmentPath(), 201
Network clearData(), 200
Network findAugmentingPath(), 201
Network findMaxFlow(), 201
Network findMincutFromSink(), 202
Network findMincutFromSource(), 202
Network free(), 200
Network init(), 201
Network new(), 200

408

Network setDefaultFields(), 200
Network setMessageInfo(), 201
Network writeForHumanEye(), 202
Network writeStats(), 202

orderViaBestOfNDandMS(), 350
orderViaMMD(), 350
orderViaMS(), 350
orderViaND(), 350

PatchAndGoInfo clearData(), 312
PatchAndGoInfo free(), 312
PatchAndGoInfo init(), 313
PatchAndGoInfo new(), 312
PatchAndGoInfo setDefaultFields(), 312
pcgl(), 304, 305
pcgr(), 304
PCVcopy(), 101
PCVfree(), 101
PCVinit(), 101
PCVsetup(), 101
PDVcopy(), 101
PDVfree(), 101
PDVinit(), 101
PDVsetup(), 101
Pencil changeCoordType(), 315
Pencil changeStorageMode(), 315
Pencil clearData(), 315
Pencil convertToVectors(), 315
Pencil free(), 315
Pencil fullAdjacency(), 316
Pencil init(), 315
Pencil mapToLowerTriangle(), 315
Pencil mapToUpperTriangle(), 316
Pencil mmm(), 316
Pencil MPI fullAdjacency(), 385
Pencil MPI split(), 378
Pencil new(), 315
Pencil permute(), 316
Pencil readFromFiles(), 316
Pencil setDefaultFields(), 315
Pencil setup(), 316
Pencil sortAndCompress(), 315
Pencil writeForHumanEye(), 316
Pencil writeStats(), 316
Perm checkPerm(), 80
Perm clearData(), 80
Perm compress(), 81
Perm fillNewToOld(), 80
Perm fillOldToNew(), 80
Perm free(), 80

Perm initWithTypeAndSize(), 80
Perm new(), 79
Perm readFromBinaryFile(), 81
Perm readFromFile(), 81
Perm readFromFormattedFile(), 81
Perm releaseNewToOld(), 81
Perm releaseOldToNew(), 81
Perm setDefaultFields(), 80
Perm sizeOf(), 80
Perm writeForHumanEye(), 82
Perm writeStats(), 82
Perm writeToBinaryFile(), 82
Perm writeToFile(), 81
Perm writeToFormattedFile(), 82
PFVcopy(), 102
PFVfree(), 102
PFVinit(), 102
PFVsetup(), 102
PIVcopy(), 101
PIVfree(), 101
PIVinit(), 101
PIVsetup(), 101

SemiImplMtx clearData(), 318
SemiImplMtx free(), 319
SemiImplMtx initFromFrontMtx(), 319
SemiImplMtx new(), 318
SemiImplMtx setDefaultFields(), 318
SemiImplMtx solve(), 319
SemiImplMtx stats(), 320
SemiImplMtx writeForHumanEye(), 320
SolveMap backwardSetup(), 206
SolveMap clearData(), 204
SolveMap colidsLower(), 205
SolveMap colidsUpper(), 205
SolveMap ddMap(), 206
SolveMap forwardSetup(), 206
SolveMap free(), 204
SolveMap init(), 205
SolveMap lowerAggregateIV(), 207
SolveMap lowerSolveIVL(), 206
SolveMap mapLower(), 205
SolveMap mapUpper(), 205
SolveMap nblockLower(), 205
SolveMap nblockUpper(), 204
SolveMap new(), 204
SolveMap nfront(), 204
SolveMap nproc(), 204
SolveMap owners(), 205, 206
SolveMap randomMap(), 206
SolveMap readFromBinaryFile(), 207

409

SolveMap readFromFile(), 207
SolveMap readFromFormattedFile(), 207
SolveMap rowidsLower(), 205
SolveMap rowidsUpper(), 205
SolveMap setDefaultFields(), 204
SolveMap symmetryflag(), 204
SolveMap upperAggregateIV(), 207
SolveMap upperSolveIVL(), 206
SolveMap writeForHumanEye(), 208
SolveMap writeStats(), 208
SolveMap writeToBinaryFile(), 208
SolveMap writeToFile(), 207
SolveMap writeToFormattedFile(), 208
SubMtx blockDiagonalInfo(), 327
SubMtx clearData(), 325
SubMtx columnIndices(), 325
SubMtx complesEntry(), 327
SubMtx denseInfo(), 326
SubMtx denseSubcolumnsInfo(), 327
SubMtx denseSubrowsInfo(), 326
SubMtx diagonalInfo(), 327
SubMtx dimensions(), 325
SubMtx fillColumnDV(), 331
SubMtx fillColumnZV(), 331
SubMtx fillRowDV(), 331
SubMtx fillRowZV(), 331
SubMtx free(), 325
SubMtx ids(), 325
SubMtx init(), 328
SubMtx initFromBuffer(), 328
SubMtx initRandom(), 328
SubMtx initRandomLowerTriangle(), 328
SubMtx initRandomUpperTriangle(), 328
SubMtx locationOfComplexEntry(), 328
SubMtx locationOfRealEntry(), 327
SubMtx maxabs(), 331
SubMtx nbytesInUse(), 330
SubMtx nbytesInWorkspace(), 330
SubMtx nbytesNeeded(), 330
SubMtx new(), 325
SubMtx readFromBinaryFile(), 332
SubMtx readFromFile(), 331
SubMtx readFromFormattedFile(), 331
SubMtx realEntry(), 327
SubMtx rowIndices(), 325
SubMtx scale1vec(), 329
SubMtx scale2vec(), 329
SubMtx scale3vec(), 329
SubMtx setDefaultFields(), 325
SubMtx setFields(), 330
SubMtx setIds(), 325

SubMtx setNbytesInWorkspace(), 330
SubMtx solve(), 329
SubMtx solveH(), 329
SubMtx solveT(), 329
SubMtx solveupd(), 329
SubMtx solveupdH(), 330
SubMtx solveupdT(), 330
SubMtx sortColumnsUp(), 330
SubMtx sortRowsUp(), 330
SubMtx sparseColumnsInfo(), 326
SubMtx sparseRowsInfo(), 326
SubMtx sparseTriplesInfo(), 326
SubMtx workspace(), 330
SubMtx writeForHumanEye(), 332
SubMtx writeForMatlab(), 332
SubMtx writeStats(), 332
SubMtx writeToBinaryFile(), 332
SubMtx writeToFile(), 332
SubMtx writeToFormattedFile(), 332
SubMtx zero(), 331
SubMtxList addObjectToList(), 339
SubMtxList clearData(), 338
SubMtxList free(), 338
SubMtxList getList(), 339
SubMtxList init(), 339
SubMtxList isCountZero(), 339
SubMtxList isListNonempty(), 339
SubMtxList new(), 338
SubMtxList setDefaultFields(), 338
SubMtxList writeForHumanEye(), 339
SubMtxManager clearData(), 341
SubMtxManager free(), 342
SubMtxManager init(), 342
SubMtxManager new(), 341
SubMtxManager newObjectOfSizeNbytes(), 342
SubMtxManager releaseListOfObjects(), 342
SubMtxManager releaseObject(), 342
SubMtxManager setDefaultFields(), 341
SubMtxManager writeForHumanEye(), 342
SymbFac initFromGraph(), 343
SymbFac initFromInpMtx(), 344
Symbfac initFromPencil(), 344
SymbFac MPI initFromInpMtx(), 379
SymbFac MPI initFromPencil(), 379

tfqmrl(), 304
tfqmrr(), 304
Tree clearData(), 210
Tree compress(), 214
Tree drawToEPS(), 215
Tree fch(), 210

410

Tree fillBothPerms(), 215
Tree fillNewToOldPerm(), 215
Tree fillOldToNewPerm(), 215
Tree free(), 210
Tree fundChainMap(), 214
Tree getSimpleCoords(), 215
Tree height(), 212
Tree init1(), 211
Tree init2(), 211
Tree init3(), 211
Tree initFromSubtree(), 211
Tree leftJustify(), 214
Tree leftJustifyD(), 214
Tree leftJustifyI(), 214
Tree maximizeGainIV(), 213
Tree maxNchild(), 212
Tree nchild(), 212
Tree nchildIV(), 212
Tree new(), 210
Tree nleaves(), 212
Tree nnodes(), 210
Tree nroots(), 212
Tree par(), 210
Tree permute(), 215
Tree postOTfirst(), 212
Tree postOTnext(), 212
Tree preOTfirst(), 212
Tree preOTnext(), 212
Tree readFromBinaryFile(), 216
Tree readFromFile(), 216
Tree readFromFormattedFile(), 216
Tree root(), 210
Tree setDefaultFields(), 210
Tree setDepthDmetric(), 213
Tree setDepthImetric(), 213
Tree setFchSibRoot(), 211
Tree setHeightDmetric(), 213
Tree setHeightImetric(), 213
Tree setRoot(), 211
Tree setSubtreeDmetric(), 213
Tree setSubtreeImetric(), 213
Tree sib(), 210
Tree sizeOf(), 212
Tree writeForHumanEye(), 217
Tree writeStats(), 217
Tree writeToBinaryFile(), 216
Tree writeToFile(), 216
Tree writeToFormattedFile(), 216

Zabs(), 90
zbicgstabl(), 305

zbicgstabr(), 305
zmlbicgstabl(), 305
zmlbicgstabr(), 305
zpcgl(), 306
zpcgr(), 306
Zrecip(), 90
Zrecip2(), 90
ztfqmrl(), 305
ztfqmrr(), 305
ZV clearData(), 109
ZV copy(), 112
ZV entries(), 110
ZV entry(), 110
ZV fill(), 112
ZV free(), 109
ZV init(), 110
ZV init1(), 110
ZV init2(), 111
ZV log10profile(), 112
ZV maxabs(), 111
ZV size(), 110
ZV minabs(), 111
ZV new(), 109
ZV owned(), 109
ZV pointersToEntry(), 110
ZV push(), 111
ZV readFromBinaryFile(), 112
ZV readFromFile(), 112
ZV readFromFormattedFile(), 112
ZV setDefaultFields(), 109
ZV setEntry(), 110
ZV setMaxsize(), 111
ZV setSize(), 111
ZV shiftBase(), 111
ZV size(), 109
ZV sizeAndEntries(), 110
ZV sizeOf(), 111
ZV writeForHumanEye(), 113
ZV writeForMatlab(), 113
ZV writeStats(), 113
ZV writeToBinaryFile(), 113
ZV writeToFile(), 113
ZV writeToFormattedFile(), 113
ZV zero(), 112
ZVaxpy(), 90
ZVaxpy11(), 92
ZVaxpy12(), 91
ZVaxpy13(), 91
ZVaxpy21(), 91
ZVaxpy22(), 91
ZVaxpy23(), 91

411

ZVaxpy31(), 91
ZVaxpy32(), 91
ZVaxpy33(), 90
ZVcopy(), 92
ZVdotC(), 92
ZVdotC11(), 96
ZVdotC12(), 96
ZVdotC13(), 95
ZVdotC21(), 95
ZVdotC22(), 95
ZVdotC23(), 95
ZVdotC31(), 95
ZVdotC32(), 94
ZVdotC33(), 94
ZVdotiC(), 92
ZVdotiU(), 92
ZVdotU(), 92
ZVdotU11(), 94
ZVdotU12(), 94
ZVdotU13(), 94
ZVdotU21(), 93
ZVdotU22(), 93
ZVdotU23(), 93
ZVdotU31(), 93
ZVdotU32(), 92
ZVdotU33(), 92
ZVfprintf(), 90
ZVgather(), 96
ZVinit(), 90
ZVmaxabs(), 96
ZVminabs(), 96
ZVscale(), 96
ZVscatter(), 96
ZVsub(), 96
ZVzero(), 96

