
SPOOLES: An Object-Oriented Sparse Matrix Library ∗

Cleve Ashcraft† Roger Grimes‡

1 Overview

Solving sparse linear systems of equations is a common and important component of a
multitude of scientific and engineering applications. The SPOOLES software package1

provides this functionality with a collection of software objects and methods. The
package provides a choice of three sparse matrix orderings (minimum degree, nested
dissection and multisection), supports pivoting for numerical stability (when required),
can compute direct or drop tolerance factorizations, and the computations are based on
BLAS3 numerical kernels to take advantage of high performance computing architectures.
The factorizations and solves are supported in serial, multithreaded (using POSIX threads)
and MPI environments.

The first step to solving a linear system AX = B is to construct “objects” to hold the
entries and structure of A, and the entries of X and B. SPOOLES provides a flexible
set of methods to assemble a sparse matrix. The “input matrix” object allows a choice of
coordinate systems (by rows, by columns, and other ways), flexible input (input by single
entries, (partial) rows or columns, dense submatrices, or any combination), resizes itself as
necessary, and assembles, sorts and permutes its entries. It is also a distributed object for
MPI environments. Matrix entries can be created and assembled on different processors,
and methods exist to assemble and redistribute the matrix entries as necessary.

There are three methods to order a sparse matrix: minimum degree, generalized nested
dissection and multisection. The latter two orderings depend on a domain/separator tree
that is constructed using a graph partitioning method. Domain decomposition is used to
find an initial separator, and a sequence of network flow problems are solved to smooth the
separator. The qualities of our nested dissection and multisection orderings are comparable
to other state of the art packages.

Factorizations of square matrices have the form A = PLDUQ and A = PLDLT P T ,
where P and Q are permutation matrices. Square systems of the form A + σB may also
be factored and solved (as found in shift-and-invert eigensolvers), as well as full rank
overdetermined linear systems, where a QR factorization is computed and the solution
found by solving the semi-normal equations.

∗This research was supported in part by the DARPA Contract DABT63-95-C-0122, the DoD High

Performance Computing Modernization Program Common HPC Software Support Initiative and by the

Director, Office of Computational and Technology Research, Division of Mathematical, Information, and

Computational Sciences of the U.S. Department of Energy under contract number DE-AC03-76SF00098.

This research used resources of the National Energy Research Scientific Computing Center, which is

supported by the Office of Energy Research of the U.S. Department of Energy.
†
cleve.ashcraft@boeing.com, Boeing Shared Services Group, P. O. Box 24346, Mail Stop 7L-22, Seattle,

Washington 98124.
‡
roger.g.grimes@boeing.com, Boeing Shared Services Group P. O. Box 24346, Mail Stop 7L-22, Seattle,

Washington 98124.
1
SPOOLES is an acronym for SParse Object-Oriented Linear Equations Solver.

1

The SPOOLES Library 2

When pivoting for stability is enabled, the magnitudes of the off-diagonal entries in L
and U are bounded above by a user supplied constant. The “front matrix” is our object that
computes a sparse factorization, stores the factor entries, and performs the forward and
backsolves. The factorizations are done using a panel-based block general sparse algorithm
in order to efficiently support pivoting for stability. The solves are done using a two-
dimensional submatrix-based algorithm. The factorization can be direct, where the fronts
and submatrices are computed and stored as dense submatrices, or approximate, where
small entries are dropped from the factors and submatrices are stored as sparse matrices.

The factorization and solves may be computed in three modes: serial, multithreaded
using POSIX threads, or with MPI. There is considerable code overlap between the serial,
threaded and MPI versions. In all cases, the important computational kernels are based
on BLAS-3 like operations. “What” is done, i.e., what data structures take part in what
computations, is the same across all three environments. “Who” does what, i.e., what
thread or processor does what computation, is the same for the multithreaded and MPI
versions. The MPI code adds little more than explicit message passing of data structures.

The development of this software was funded by DARPA2 and the DoD3 with the
express purpose that others (academic, government, industrial and commercial) could easily
incorporate the data structures and algorithms into application codes. The SPOOLES

library is totally within the public domain; there are absolutely no licensing restrictions as
with other software packages. The web page http://www.netlib.org/linalg/spooles

contains the latest release of the package — full source code and postscript files of the user
and reference manuals.

2 Design Philosophy

The complexity of over 120,000 lines of C code is managed by thirty-eight objects and over
1300 different functions. Encapsulation is the cardinal rule — an object knows and operates
on itself, but has very limited knowledge of other objects. Encapsulation is a custom
enforced by discipline rather than a language feature. Inheritance is only mildly missed.
We have three different tree objects that could benefit from inheritance, but as a whole, the
object hierarchy is very flat. What is more important are the informal “protocols” (from
Objective-C) or “interfaces” (from Java) that the objects follow. In short, it is possible to
follow good object-oriented design principles without explicit language support.

Each object has its own directory and three subdirectories: one holds source code, one
holds driver programs to exercise and validate the object’s functionality, and one hold LATEX
and HTML files for documentation. The LATEX files form either a stand-alone document
or a chapter of the larger reference manual. Certification programs for the numeric objects
frequently generate output files that may be run through MATLAB to check the validity
of numeric functions. We are thus able to have a great deal of confidence in the building
blocks of the larger computations such as the factors and solves.

3 Matrix Orderings

The library has three options for ordering sparse matrices: multiple minimum degree,
generalized nested dissection, and multisection [6]. Our minimum degree ordering is very
similar in quality and ordering time to Liu’s GENMMD software [15].

2DARPA Contract DABT63-95-C-0122.
3DoD High Performance Computing Modernization Program Common HPC Software Support Initiative.

The SPOOLES Library 3

To generate both nested dissection and multisection orderings, we perform a graph
partitioning step and construct a domain/separator tree. The process is recursive in nature.
We examine a subgraph, find a separator for the subgraph, split the subgraph into two or
more components, link the subgraphs to the separator with a parent-child relation, and
repeat the operation on each of the new subgraphs. A parameter dictates how large a
subgraph can be before it is not split further into subgraphs, thus the process is really an
incomplete recursive dissection. Figure 3 shows the process on a 7 × 7 grid. Subgraphs
with three or fewer nodes were not split, but left as “domains”.

Fig. 1. Recursive Dissection process: (a) 7 × 7 grid, (b) domains and separators overlaid

on grid, (c) domains and separators numbered, (d) domain/separator tree, (e) the 15 × 15

domain/separator block matrix, × denotes nonzero block in A, + denotes nonzero fill-in block in L

or U .

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

(a)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

(b)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

14

3 5 4

0 2 1

6

10 12 11

7 9 8

13

(c)

(e)

×××××××
××××
×××

× ××
××× ×
×× ×

× × ×

×××××××
××××
×××

× ××
××× ×
×× ×

× × ×

×+ ×+×× +× +××
×
+

×
+

×

×
+

×
+
×

(d)

✁
✁

❆
❆

✁
✁

❆
❆

✁
✁

❆
❆

✁
✁

❆
❆

�
�

❅
❅

�
�

❅
❅

✟✟✟✟

❍❍❍❍

0 1 3 4 7 8 10 11

2 5 9 12

6 13

14

Once the domain/separator tree has been constructed, we evaluate a nested dissection or
multisection ordering using our minimum degree code. This second step is really an ordering
with constraints, [16], where vertices are assigned to a stage when they can be eliminated.
For a nested dissection ordering, a vertex in a domain or separator is ordered before any
vertices that are in its parent, grandparent, etc, separators, i.e., the relative precedence of
the separators is respected. For a multisection ordering, vertices in all domains are in the
first stage, while vertices in all separators are in the second stage.

The nested dissection and multisection orderings have been tested against two other
state-of-the-art software packages, METIS [14] from the University of Minnesota, and the
SGI’s EXTREME software (a descendent of the CHACO package [12] with improvements
[13].) The qualities of the three orderings are very close over a large selection of structural
analysis matrices, some very large.

The SPOOLES Library 4

4 Factors and Solve

We consider the matrix A as a block matrix,

A =





A1,1 A1,2 · · · A1,N

A2,1 A2,2 · · · A2,N

...
...

. . . · · ·

AN,1 AN,2
... AN,N





and its factorization A = LDU is blocked in the same manner. Each block corresponds to
a front or supernode, in the contexts of the multifrontal [7] and supernodal general sparse
algorithms. Recall that A is sparse, and that most of the submatrices will be zero, and
those not zero will likely be sparse. The triangular factor matrices L and U will also be
sparse, (though not as sparse as A) and will suffer fill-in. It is important to only store
and compute with true nonzero entries of L, D and U , important enough that we define
some new notation. The matrix UJ,∂J contains the nonzero columns of UJ,J+1:N and L∂J,J

contains the nonzero rows of LJ+1:N,J . The ∂ sign in ∂J is meant to suggest boundary of
J .

We use the Crout reduction variant of Gaussian elimination, where at step J , the J ’th
block of D, the J ’th row of U , and the J ’th column of L are computed using the preceding
blocks of D, rows of U and columns of L. The matrix equation for this step is

[
AJ,J AJ,∂J

A∂J,J 0

]

=
∑

I≤J

[
LJ,IDI,IUI,J LJ,IDI,IUI,∂J

L∂J,IDI,IUI,J 0

]

,

where the L∗,I , DI,I and UI,∗ matrices have already been computed. The computation of
L∂J,J , LJ,J , DJ,J , UJ,J and UJ,∂J is done in two steps. We first compute the fully assembled
front matrix

TJ = AJ −
∑

I<J

T I
J ,(1)

which is short for
[

TJ,J TJ,∂J

T∂J,J 0

]

=

[
AJ,J AJ,∂J

A∂J,J 0

]

−
∑

I<J

[
LJ,IDI,IUI,J LJ,IDI,IUI,∂J

L∂J,IDI,IUI,J 0

]

.

T I
J contains the update from front I to front J . Given the fully assembled front matrix TJ ,

we then perform the factorization internal to the front, and compute the factor submatrices
via the formulae below.

TJ,J = LJ,JDJ,JUJ,J , TJ,∂J = LJ,JDJ,JUJ,∂J , and T∂J,J = L∂J,JDJ,JUJ,J

The TJ matrix is contained in the Chv object. The name comes from chevron, the
arrowhead-shaped military insignia. When A is symmetric, only the TJ,∂J matrix and upper
triangle of TJ,J are stored. A Chv object can contain real or complex entries. The storage
is aligned by rows of the upper triangle and columns of the lower triangle, to allow easy
assembly of original entries and delayed rows and columns, simple pivot searches and tests,
and vector based computations during the internal factorization. Changing the particular
storage format of the Chv object would have little ripple effect throughout the rest of the
library. Indeed, an earlier version of the Chv object stored TJ,J , TJ,∂J and T∂J,J as dense

The SPOOLES Library 5

submatrices, and changing the storage scheme to the present one required no modification
to other objects.

Once DJ,J , LJ,J , L∂J,J , UJ,J and UJ,∂J are computed, they are stored in SubMtx objects.
This object is designed to hold small to medium sized dense or sparse matrices, which form
the atomic data structures of the factors. The SubMtx object can hold real or complex
entries, and has row and column indices. The format can be dense or sparse by rows or
columns (for L∂J,J and UJ,∂J), dense subrows or subcolumns (useful for LJ,J and UJ,J), and
diagonal or block diagonal with 1 × 1 and 2 × 2 pivots to hold DJ,J .

The Chv objects are temporary objects that exist only during the factorization to hold
TJ , the working storage for a front. The SubMtx objects that hold LJ,J , DJ,J and UJ,J are
persistent — they form part of the factor matrix object. The SubMtx objects that hold
L∂J,J and UJ,∂J are not persistent, as we now describe.

The factorization as it now stands, where DJ,J , LJ,J , L∂J,J , UJ,J and UJ,∂J are stored in
SubMtx objects, has no parallelism for the forward and backsolves aside from that available
from the domain/separator tree. This is because the SubMtx object is atomic, i.e., its entries
are not split among processors, and its computations (e.g., yJ := yJ − UJ,∂Jx∂J during
the backward solve) are performed in a non-preemptable fashion. To achieve parallelism
within a separator, it is necessary to split the UJ,∂J and L∂J,J matrices into smaller UJ,K

and LK,J submatrices. When pivoting is enabled, this separation cannot be done during
the factorization, because rows and/or columns may move from front to front before they
are eliminated, and so the exact decomposition of the rows of LK,J and columns of UJ,K is
not known until the factorization completes. Thus, a post-processing step converts the the
UJ,∂J and L∂J,J matrices into smaller UJ,K and LK,J submatrices.

4.1 A parallel factorization

There are three atomic operations during a serial factorization

• load AJ,J , AJ,∂J and A∂J,J into TJ ,

• update TJ using DI,I , L∂I,I and UI,∂I for those I whose LJ,I and/or UI,J is not zero,

• and compute DJ,J , LJ,J , L∂J,J , UJ,J and UJ,∂J from the fully assembled TJ .

The first step is not a candidate to parallelize because there are so few operations involved.
The third cannot be parallelized if pivoting for stability is to be supported in an efficient
manner. The second step is most rich in floating point operations, and it is this step that
we parallelize.

In the multithreaded and parallel environments there is a concept of ownership of the
fronts. One thread or processor owns a front and is responsible for assembling any original
entries and computing the factor submatrices once it is assembled. We use a map function
to define ownership, q = m(J) means that processor q owns front J . We chose to follow
the fan-in paradigm [3], where the owner of front I performs the updates from I to all
other fronts. In a distributed environment, the factor submatrices do not travel between
processors during the factorization. Instead, processor q computes T q

J , the aggregate update
matrix that consists of all updates from fronts owned by q to front J . We can now rewrite
equation (1) for a parallel environment.

TJ = AJ −
∑

q

T q
J where T q

J =
∑

I<J

m(I)=q

T I
J(2)

The SPOOLES Library 6

The fully assembled front is composed of AJ , the original matrix entries, plus a sum of
some number of T q

J temporary matrices, each a Chv object. It is the T q
J matrices that

are computed independently, and in the MPI environment, are communicated between
processors.

The parallel factorization can be considered a simultaneous traversal of the front tree
by all the threads or processors. When visiting front J , thread q computes as much of T q

J

as possible, and if it owns front J , it assembles TJ . (In the MPI environment, processor q
receives the T ∗

J aggregate update matrices from the other processors.) When TJ is complete,
it is then factored. Inside a thread or processor, one does not wait at a front until it can
be completed. Each thread or processor maintains a queue of fronts that are ready to have
action taken on them. A front is removed from the queue when all work for it on that
thread or processor is complete, and a front is added to the queue when all work on its
children is complete. A lookahead parameter [4] allows a thread or processor to look further
up the tree in order to reduce the idle time.

4.2 Pivoting for stability

To ensure stability of the factorization, we bound the magnitudes of entries in both L and
U by a user supplied tolerance. For the symmetric case, the algorithm is described and
analyzed in [5]. For the nonsymmetric case, it is known as rook pivoting [8, 17]. Partial
pivoting, where rows (or columns) are interchanged, bounds entries only in L (or U).

In most cases, pivoting adds little cost to a serial or parallel factorization, as long as
the pivot tolerance and/or matrix structure does not induce too many postponed rows and
columns. We recommend bounding the magnitude of entries in L and U by 100, or 1000,
and for most matrices we have encountered that require pivoting for stability, an additional
5 – 10% of factorization time is necessary.

When TJ is completely assembled, pivot elements can be chosen from TJ,J . For
symmetric and Hermitian matrices, we use the Fast Bunch-Parlett algorithm [5] to find
a 1 × 1 or 2 × 2 pivot block. For a nonsymmetric matrix, we locate a local maximum
element in TJ,J , one with the largest magnitude in its row and column. It is then tested,
where we evaluate a bound on the magnitude of the entries of L and U in its row and
column of TJ that would arise if the pivot were to be eliminated. If the pivot passes the
test, the TJ matrix is permuted so the pivot lies in the upper left corner. The first row(s)
and column(s) are scaled by the inverse of the pivot block, and a rank-1 or rank-2 update is
made to the remainder of the TJ matrix. The process then continues on the uneliminated
rows and columns in the front.

It is possible that we cannot eliminate all of the rows and columns in TJ,J . (For a trivial
example, consider the case when TJ,J is zero.) Permuting the pivot elements into the upper

left part of TJ,J is equivalent to replacing TJ by T̂J , where

T̂J =

[
PJ 0
0 I

]

TJ

[
QJ 0
0 I

]

=

[
PJ 0
0 I

] [
TJ,J TJ,∂J

T∂J,J 0

] [
QJ 0
0 I

]

.

If we think of J as representing an index set (a set of rows and columns), then we can
partition J into two sets: Je, a set of eliminated rows and columns, and Jd, a set of delayed
rows and columns. (For a symmetric or Hermitian matrix, the row and column index sets
for Je are identical, for we choose a 1× 1 pivot from the diagonal, or a 2× 2 pivot with two
diagonal elements. For a nonsymmetric matrix, the row and column index sets for Je will
likely be different, but we use Je to represent both. The same remarks hold for Jd.) The

The SPOOLES Library 7

permuted front matrix T̂J can be written as a 3 × 3 block matrix,

T̂J =




LJe,JeDJe,JeUJe,Je LJe,JeDJe,JeUJe,Jd

LJe,JeDJe,JeUJe,∂J

LJd,JeDJe,JeUJe,Je T̂Jd,Jd
T̂Jd,∂J

L∂J,Je
DJe,JeUJe,Je T̂∂J,Jd

0





The first block row and column of T̂J contain factor submatrices. The trailing 2× 2 block,
which contains rows and columns whose elimination is delayed, is also stored in a Chv

object. It must be merged into the front that is the parent of J in the front tree. (For our
example from Figure 3, any postponed rows and columns from front 2 will be merged into
front 5, the parent of front 2.

Equation 1 can be modified to account for delayed rows and columns.

TJ = AJ −
∑

I<J

T Ie

J ⊕
∑

p(I)=J

T̂ Id

J(3)

where Ie are the eliminated rows and columns of I,

T Ie

J =

[
LJ,IeDIe,IeUIe,J LJ,IeDIe,IeUIe,∂J

L∂J,Ie
DIe,IeUIe,J 0

]

and T̂Id
=

[
T̂Id,Id

T̂Id,∂I

T̂∂I,Id

]

,

and ⊕ is a symbol for “concatenate” or “extend”. The upper left hand block of TJ will
contain rows and columns from J as well as Id for each child I of J .

4.3 Parallelism and pivoting

A parallel factorization that pivots for stability is very similar to one that does not pivot.
The equation for the fully assembled front matrix is

TJ = AJ −
∑

q

T q
J ⊕

∑

p(I)=J

T̂Id
, where T q

J =
∑

I<J

m(I)=q

T Ie

J .(4)

The fully assembled front matrix is the sum of AJ (the original entries of A), the T q
J matrices

(updates from different threads or processors), and the T̂Id
(delayed rows and columns from

the children fronts). All that is different is that the T̂Id
matrices (stored in Chv objects,

just like the T q
J matrices) must be communicated between processors.

5 Results

The SPOOLES library has been ported and tested to a variety of platforms: SparcStations
under Solaris, SGI Origin 2000, IBM SP2, HP V-class multiprocessors, the Cray T3E, and
a network of Intel workstations running MPI under Linux. The serial performance is good.
Benchmarks show that the factor and solves run at about the same speed as a respected
commercial code, BCSLIB-EXT, inside the CSAR Nastran Finite Element software. The
solver has been incorporated into a second finite element package for commercial release,
where it has been ported to use threads on multiple processor WindowsNT workstations.

There are two drawbacks to the SPOOLES library.

• Presently, it is an in-core code, there is no capability to compute the factorization or
perform solves while keeping part of the factor matrices on a disk file. This limits the
effectiveness of the library for very large linear systems.

The SPOOLES Library 8

• Because of the design decision to efficiently support pivoting for numerical stability,
the factorization is performed using a one-dimensional data decomposition where
the front matrices are stored as Chv objects, as opposed to a two-dimensional
submatrix decomposition (as is done during the solves). It is well known that a
1-D decomposition suffers in a parallel environment due to increased message traffic
and a longer critical path through the execution graph [18]. Benchmarking studies
confirm this, for there is decent performance for small numbers of processors, but in
order to maintain efficiency as the number of processors increases, the problem size
must increase at a much faster rate.

To illustrate these two points, Table 1 contains some results for solving linear systems arising
from 27-point operators on 3-d n × n × n grids. The results were obtained from John Wu
of NERSC on the Cray T3E. The lower left corner entries, large n and small numbers of
processors, are empty because of memory limitations. The lower right corner entries, large
n and large numbers of processors, are empty because of MPI resource limitations.

Table 1

Average factorization megaflops per processor for 27-point operators on an n×n×n grid using

the nested dissection ordering and a subtree-subcube map on the Cray T3E.

of processors
n 1 2 4 8 16 32 64 128 256 512

20 100 84 68 50 25 17 8 4 1
24 111 91 80 60 40 23 12 6 2
28 117 101 90 61 49 29 16 8 4 2
34 130 116 103 84 61 36 22 12 6 3
40 128 115 99 74 48 29 16 8
48 129 113 88 61 38 21 11
56 122 100 72 47 27

The matrices were ordered using nested dissection. The maximum size of a front was set
to 64 internal rows and columns, and the fronts were mapped to processors using a subtree-
subcube mapping. Matrices of this form are an interesting test collection. The ratio of
factor operations to factor entries is fairly high, which leads to good computational rates,
and mimics many of the finite element matrices we see with several degrees of freedom
per grid point. The front tree is very well balanced, except for the lower regions of the
tree when using many processors. The factor operations are O(n6), while the number of
bytes communicated is O(pn4), so the ratio of computation over communication is O(n2/p).
Keeping this ratio constant while doubling the number of processors means that n must
increase to

√
2n, and the size of the linear system from n3 to 2

√
2n3.

The (n, p) pairs in this table were chosen to follow this rule: “down-2, over-1” diagonals
have nearly constant n2/p values. Big O() notation can be deceptive when lower order
terms have a significant influence. Table 2 contains the actual ratio of operations to bytes
communicated during the factorizations.

Better performance, as measured by a large computation to communication ratio, can
be achieved in two ways. One can turn to a submatrix-based algorithm [10] used by the
PSPASES [9] and MUPS [1] software. These methods have O(

√
pn4) communication,

which leads to a ratio of O(n2/
√

p). But recall, submatrix-based methods are inefficient
when pivoting for stability is required.

The SPOOLES Library 9

Table 2

Operations per byte communicated during the factorization of 27-point operators on an n×n×n

grid using the nested dissection ordering and a subtree-subcube map

of processors
n 2 4 8 16 32 64 128 256 512

20 597 112 37 15 7 4 3 2 1
24 869 162 54 21 10 6 4 2 2
28 1198 222 74 29 13 7 4 3 2
34 1800 323 110 44 19 10 6 4 3
40 2525 466 154 61 27 13 7 5 4
48 3690 679 224 88 39 18 10 6 4
56 5076 932 308 121 53 25 12 7 5

There is another method that maintains the 1-D decomposition for the fronts (which
is crucial for pivoting) but requires O(

√
pn4) communication. The fan-both method [2]

communicates T q
J aggregate update matrices, but also UJ,∂J and L∂J,J factor submatrices.

It is parameterized via the relation p = p1 ·p2, where p is the number of processors. The fan-
in method is a special case where p1 = 1. The fan-out method [11] is a special case where
p2 = 1. Table 3 contains the operations/byte-communicated results for the 56 × 56 × 56
grid using up to 512 processors. There is some improvement to be gained over the fan-in
method for moderate to large numbers of processors. We intend to provide a fan-both
implementation in a future release of the library.

Table 3

Operations per byte communicated for the fan-both factorizations on a 56 × 56 × 56 grid. The

anti-diagonals contain results for a constant number of processors. The boldface number on an

anti-diagonal is the best for that number of processors.

p2

p1 1 2 4 8 16 32 64 128 256 512

1 — 5076 932 308 121 53 25 12 7 5
2 352 279 213 141 82 42 22 12 8
4 110 95 83 68 48 31 19 12
8 47 42 39 34 28 21 15

16 24 14 20 19 16 14
32 14 12 12 11 10
64 9 8 8 8

128 7 6 6
256 6 6
512 5

6 Summary

The SPOOLES library is an object oriented C library for solving real or complex
sparse linear systems of equations. It contains state-of-the-art ordering algorithms, and
computes matrix factorizations and solves in serial, multithreaded (using POSIX threads)

The SPOOLES Library 10

and distributed environments using MPI. The package was funded by DARPA and DoD
and is completely within the public domain, free of any license issues. More information
can be found at the netlib website, http://www.netlib.org/linalg/spooles.

References

[1] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent, Multifrontal parallel distributed symmetric
and unsymmetric solvers, Tech. Rep. TR/PA/98/22, CERFACS, 1998.

[2] C. Ashcraft, The fan-both family of column-based distributed Cholesky factorization algorithms,
in Graph Theory and Sparse Matrix Computation, Springer-Verlag, 1993, pp. 159–190.

[3] C. Ashcraft, S. Eisenstat, and J. W. H. Liu, A fan-in algorithm for distributed sparse numerical
factorization, SIAM J. Sci. Stat. Comput., 11 (1990).

[4] C. Ashcraft, S. C. Eisenstat, J. W. H. Liu, B. W. Peyton, and A. H. Sherman, A compute-ahead
fan-in scheme for parallel sparse matrix factorization, in Fourth Canadian Supercomputing
Symposium (1990), D. Pelletier, ed., June, 1990, pp. 351–361.

[5] C. Ashcraft, R. G. Grimes, and J. G. Lewis, Accurate symmetric indefinite linear equation
solvers, Tech. Rep. ISSTECH-95-029, Boeing Computer Services, 1995. Accepted for
publication in SIAM J. Matrix. Anal.

[6] C. Ashcraft and J. W. H. Liu, Robust ordering of sparse matrices using multisection, SIAM J.
Matrix Analysis and Applic., 19 (1998), pp. 816–832.

[7] I. Duff and J. Reid, The multifrontal solution of indefinite sparse symmetric linear equations,
ACM Trans. Math. Software, 6 (1983), pp. 302–325.

[8] L. V. Foster, The growth factor and efficiency of Gaussian elimination with rook pivoting.
Accepted for publication in J. Comp. and Appl. Math.

[9] A. Gupta, F. Gustavson, M. Joshi, G. Karypis, and V. Kumar, Design and implementation of
a scalable parallel direct solver for sparse symmetric positive definite systems, in Eight SIAM
Conference Conference on Parallel processing, 1997.

[10] A. Gupta, G. Karypis, and V. Kumar, Highly scalable parallel algorithms for sparse matrix
factorization, IEEE Transactions on Parallel and Distributed Systems, 8 (1997), pp. 502–520.

[11] M. Heath, ed., Communication reduction in parallel sparse Cholesky on a hypercube, SIAM
Press, 1987.

[12] B. Hendrickson and R. Leland, The Chaco user’s guide, Tech. Rep. SAND93-2339, Sandia
National Laboratories, Albuquerque, NM, 1993.

[13] B. Hendrickson and E. Rothberg, Improving the runtime and quality of nested dissection
ordering, SIAM J. Sci. Comput., 20 (1998), pp. 468–489.

[14] G. Karypis and V. Kumar, Metis 4.0: Unstructured graph partitioning and sparse matrix
ordering system, tech. rep., Department of Computer Science, University of Minnesota, 1998.
Available on the WWW at URL http://www.cs.umn.edu/˜metis.

[15] J. W. H. Liu, Modification of the minimum degree algorithm by multiple elimination, ACM
Trans. on Math. Software, 11 (1985), pp. 141–153.

[16] , On the minimum degree ordering with constraints, SIAM J. Sci. Stat. Comput., 10
(1989), pp. 1136–1145.

[17] L. Neal and G. Poole, A geometric analysis of Gaussian elimination II., Linear Alg. and Appl.,
173 (1992), pp. 239–264.

[18] R. Schreiber, Scalability of sparse direct solvers, in Graph Theory and Sparse Matrix
Computation, Springer-Verlag, 1993, pp. 191–211.

