We compute the equation and nonminimal resolution F of the carpet of type (a,b) where $a \ge b$ over a larger finite prime field, lift the complex to the integers, which is possible since the coefficients are small. Finally we study the nonminimal strands over ZZ by computing the Smith normal form. The resulting data allow us to compute the Betti tables for arbitrary primes.
i1 : a=5,b=5
o1 = (5, 5)
o1 : Sequence
|
i2 : h=carpetBettiTables(a,b)
-- 0.00163259 seconds elapsed
-- 0.00445483 seconds elapsed
-- 0.0183954 seconds elapsed
-- 0.0088742 seconds elapsed
-- 0.00265251 seconds elapsed
0 1 2 3 4 5 6 7 8 9
o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
0: 1 . . . . . . . . .
1: . 36 160 315 288 . . . . .
2: . . . . . 288 315 160 36 .
3: . . . . . . . . . 1
0 1 2 3 4 5 6 7 8 9
2 => total: 1 36 167 370 476 476 370 167 36 1
0: 1 . . . . . . . . .
1: . 36 160 322 336 140 48 7 . .
2: . . 7 48 140 336 322 160 36 .
3: . . . . . . . . . 1
0 1 2 3 4 5 6 7 8 9
3 => total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o2 : HashTable
|
i3 : T= carpetBettiTable(h,3)
0 1 2 3 4 5 6 7 8 9
o3 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o3 : BettiTally
|
i4 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
ZZ
o4 : Ideal of --[x ..x , y ..y ]
3 0 5 0 5
|
i5 : elapsedTime T'=minimalBetti J
-- 0.132806 seconds elapsed
0 1 2 3 4 5 6 7 8 9
o5 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o5 : BettiTally
|
i6 : T-T'
0 1 2 3 4 5 6 7 8 9
o6 = total: . . . . . . . . . .
1: . . . . . . . . . .
2: . . . . . . . . . .
3: . . . . . . . . . .
o6 : BettiTally
|
i7 : elapsedTime h=carpetBettiTables(6,6);
-- 0.00320563 seconds elapsed
-- 0.0134088 seconds elapsed
-- 0.103685 seconds elapsed
-- 1.2689 seconds elapsed
-- 0.349494 seconds elapsed
-- 0.0299939 seconds elapsed
-- 0.00485514 seconds elapsed
-- 3.99129 seconds elapsed
|
i8 : keys h
o8 = {0, 2, 3, 5}
o8 : List
|
i9 : carpetBettiTable(h,7)
0 1 2 3 4 5 6 7 8 9 10 11
o9 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 . . . . . .
2: . . . . . . 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o9 : BettiTally
|
i10 : carpetBettiTable(h,5)
0 1 2 3 4 5 6 7 8 9 10 11
o10 = total: 1 55 320 891 1408 1275 1275 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 120 . . . . .
2: . . . . . 120 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o10 : BettiTally
|