
User’s Guide for ParU, an unsymmetric multifrontal
multithreaded sparse LU factorization package

Mohsen Aznaveh*, Timothy A. Davis

VERSION 0.1.3, Mar 22, 2024

Abstract

ParU is an implementation of the multifrontal sparse LU factorization method.
Parallelism is exploited both in the BLAS and across different frontal matrices using
OpenMP tasking, a shared-memory programming model for modern multicore archi-
tectures. The package is written in C++ and real sparse matrices are supported.

ParU, Copyright (c) 2022, Mohsen Aznaveh and Timothy A. Davis, All Rights
Reserved. SPDX-License-Identifier: GNU GPL 3.0

1 Introduction

The algorithms used in ParU will be discussed in a companion paper, ?. This document
gives detailed information on the installation and use of ParU. ParU is a parallel sparse
direct solver. This package uses OpenMP tasking for parallelism. ParU calls UMFPACK
for the symbolic analysis phase, after that, some symbolic analysis is done by ParU itself,
and then the numeric phase starts. The numeric computation is a task parallel phase using
OpenMP, and each task calls parallel BLAS; i.e. nested parallelism. The performance of
BLAS has a heavy impact on the performance of ParU. Moreover, the way parallel BLAS
can be called in a nested environment can also be very important for ParU’s performance.

1.0.1 Instructions on using METIS

SuiteSparse is now on METIS 5.1.0, distributed along with SuiteSparse itself. Its use is op-
tional, however. ParU is using AMD as the default ordering. METIS tends to give orderings
that are good for parallelism. However, the METIS itself can be slow. As a result, the sym-
bolic analysis using METIS can be slow, but usually, the factorization is faster. Therefore,
depending on your use case, either use METIS, or you can compile and run your code without
using METIS. If you are using METIS on an unsymmetric case, UMFPACK has to form the
Matrix ATA. This matrix can be a dense matrix and takes a lot of resources to form it. To
avoid such conditions, you can use the ordering strategy UMFPACK_ORDERING_METIS_GUARD

*email: aznaveh@tamu.edu. http://www.suitesparse.com.

1

that is introduced in UMFPACK version 6.0. This ordering strategy use COLAMD instead
of METIS in those cases.

Note that METIS is not bug-free; it can occasionally cause segmentation faults, par-
ticularly if used when finding basic solutions to underdetermined systems with many more
columns than rows. ParU does not solve such systems anyway but you might see some
problems with other SuiteSparse packages.

2 Using ParU in C and C++

ParU relies on CHOLMOD for its basic sparse matrix data structure, a compressed sparse
column format. CHOLMOD provides interfaces to the AMD, COLAMD, and METIS or-
dering methods and many other functions. ParU also relies on UMFPACK Version 6.0 or
higher for symbolic analysis.

2.1 Installing the C/C++ library on Linux/Unix

In Linux/MacOs, type make at the command line in either the SuiteSparse directory (which
compiles all of SuiteSparse) or in the SuiteSparse/ParU directory (which just compiles ParU
and the libraries it requires). ParU will be compiled; you can type make demos to run a set
of simple demos.

The use of make is optional. The top-level ParU/Makefile is a simple wrapper that uses
cmake to do the actual build.

To fully test the coverage of the lines ParU, go to the Tcov directory and type make. This
will work for Linux only.

To install the shared library into /usr/local/lib and /usr/local/include, do make install.
To uninstall, do make uninstall. For more options, see the ParU/README.md file.

2.2 C/C++ Example

The C++ interface is written using only real matrices. The simplest function computes the
MATLAB equivalent of x=A\b and is almost as simple: Below is a simple C++ program that
illustrates the use of ParU. The program reads in a problem from stdin in MatrixMarket
format [3], solves it, and prints the norm of A and the residual. Some error testing code
is omited to simplify showing how the program works. The full program can be found in
ParU/Demo/paru_demo.cpp

#include "ParU.hpp"

int main(int argc, char **argv)

{

cholmod_common Common, *cc;

cholmod_sparse *A;

ParU_Symbolic *Sym = NULL;

//~~~~~~~~~Reading the input matrix and test if the format is OK~~~~~~~~~~~~

// start CHOLMOD

2

cc = &Common;

int mtype;

cholmod_l_start(cc);

// A = mread (stdin) ; read in the sparse matrix A

A = (cholmod_sparse *)cholmod_l_read_matrix(stdin, 1, &mtype, cc);

//~~~~~~~~~~~~~~~~~~~Starting computation~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ParU_Control Control;

ParU_Ret info;

info = ParU_Analyze(A, &Sym, &Control);

ParU_Numeric *Num;

info = ParU_Factorize(A, Sym, &Num, &Control);

double my_time = omp_get_wtime() - my_start_time;

//~~~~~~~~~~~~~~~~~~~Test the results ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

int64_t m = Sym->m;

if (info == PARU_SUCCESS)

{

double *b = (double *)malloc(m * sizeof(double));

double *xx = (double *)malloc(m * sizeof(double));

for (int64_t i = 0; i < m; ++i) b[i] = i + 1;

info = ParU_Solve(Sym, Num, b, xx, &Control);

printf("Solve time is %lf seconds.\n", my_solve_time);

double resid, anorm, xnorm;

info = ParU_Residual(A, xx, b, m, resid, anorm, xnorm, &Control);

printf("Residual is |%.2e|, anorm is %.2e, xnorm is %.2e and rcond is"

" %.2e.\n", resid, anorm, xnorm, Num->rcond);

free(b);

free(xx);

}

//~~~~~~~~~~~~~~~~~~~End computation~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

int max_threads = omp_get_max_threads();

BLAS_set_num_threads(max_threads);

//~~~~~~~~~~~~~~~~~~~Free Everything~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ParU_Freenum(&Num, &Control);

ParU_Freesym(&Sym, &Control);

cholmod_l_free_sparse(&A, cc);

cholmod_l_finish(cc);

}

A simple demo for the C interface is shown next. You can see the complete demo in
ParU/Demo/paru_simple.c

#include "ParU_C.h"

int main(int argc, char **argv)

3

{

cholmod_common Common, *cc;

cholmod_sparse *A;

ParU_C_Symbolic *Sym;

//~~~~~~~~~Reading the input matrix and test if the format is OK~~~~~~~~~~~~

// start CHOLMOD

cc = &Common;

int mtype;

cholmod_l_start(cc);

// A = mread (stdin) ; read in the sparse matrix A

A = (cholmod_sparse *)cholmod_l_read_matrix(stdin, 1, &mtype, cc);

//~~~~~~~~~~~~~~~~~~~Starting computation~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

printf("================= ParU, a simple demo, using C interface : ====\n");

ParU_C_Control Control;

ParU_C_Init_Control(&Control);

ParU_Ret info;

info = ParU_C_Analyze(A, &Sym, &Control);

printf("Input matrix is %ldx%ld nnz = %ld \n", Sym->m, Sym->n, Sym->anz);

ParU_C_Numeric *Num;

info = ParU_C_Factorize(A, Sym, &Num, &Control);

if (info != PARU_SUCCESS)

{

printf("ParU: factorization was NOT successfull.");

if (info == PARU_OUT_OF_MEMORY) printf("\nOut of memory\n");

if (info == PARU_INVALID) printf("\nInvalid!\n");

if (info == PARU_SINGULAR) printf("\nSingular!\n");

}

else

{

printf("ParU: factorization was successfull.\n");

}

//~~~~~~~~~~~~~~~~~~~ Computing Ax = b ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

if (info == PARU_SUCCESS)

{

int64_t m = Sym->m;

double *b = (double *)malloc(m * sizeof(double));

double *xx = (double *)malloc(m * sizeof(double));

for (int64_t i = 0; i < m; ++i) b[i] = i + 1;

info = ParU_C_Solve_Axb(Sym, Num, b, xx, &Control);

double resid, anorm, xnorm;

info = ParU_C_Residual_bAx(A, xx, b, m, &resid, &anorm, &Control);

printf("Residual is |%.2e|, anorm is %.2e, xnorm is %.2e and rcond is"

" %.2e.\n", resid, anorm, xnorm, Num->rcond);

4

free(b);

free(xx);

}

//~~~~~~~~~~~~~~~~~~~End computation~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ParU_C_Freenum(&Num, &Control);

ParU_C_Freesym(&Sym, &Control);

cholmod_l_free_sparse(&A, cc);

cholmod_l_finish(cc);

}

2.3 C/C++ Syntax

ParU_Ret is the output structure of all ParU routines in C and C++. The user must check
the output before continuing and computing further the result of prior routine. You can see
the user callable routines in ParU/Include/ParU.hpp. The following is a list of user-callable
C++ functions and what they can do:

1. ParU_Version: return the version of the ParU package you are using.

2. ParU_Analyze: Symbolic analysis is done in this routine. UMFPACK is called here and
after that, some more specialized symbolic computation is done for ParU. ParU_Analyze
is called once and can be used for different ParU_Factorize calls for the matrices that
have the same pattern.

3. ParU_Factorize: Numeric factorization is done in this routine. Scaling and making
Sx (scaled and staircase structure) matrix, computing factors, and permutations are
here. ParU_Symbolic structure which is computed in ParU_Analyze is an input in this
routine.

4. ParU_Solve: Using symbolic analysis and factorization phase output to solve Ax = b.
In all the solve routines Num structure must come with the same Sym struct that comes
from ParU_Factorize. This routine is overloaded and can solve different systems. It
has versions that keep a copy of x or overwrite it. Also, it can solve multiple right-hand
side problems.

5. ParU_Lsolve

6. ParU_Usolve

7. ParU_perm FIXME name

8. ParU_inv_perm FIXME name

9. ParU_Residual: This function computes |Ax− b| one norm of matrix A and one norm
of x (or X for multiple right handside).

10. ParU_Freenum: frees the numerical part of factorization.

5

11. ParU_Freesym: frees the symbolic part of factorization.

The C interface is quite similar to the C++ interface, and you can see the C user callable
routines in ParU/Include/ParU_C.h. The following is a list of user-callable C functions and
what they can do:

1. ParU_C_Version: return the version of the ParU package you are using.

2. ParU_C_Init_Control: Initialize C Control object before using it.

3. ParU_C_Analyze: Symbolic analysis is done in this routine. UMFPACK is called here;
after that, some more specialized symbolic computation is done for ParU. ParU_C_Analyze
is called once and can be used for different ParU_C_Factorize calls for the matrices
that have the same pattern.

4. ParU_C_Factorize: Numeric factorization is done in this routine. Scaling and making
Sx (scaled and staircase structure) matrix, computing factors, and permutations are
here. ParU_C_Symbolic structure which is computed in ParU_C_Analyze is an input
in this routine.

5. ParU_C_Solve_Axx, ParU_C_Solve_Axb, ParU_C_Solve_AXX and ParU_C_Solve_AXB,
Using symbolic analysis and factorization phase output to solve Ax = b. In all the
solve routines Num structure must come with the same Sym struct that comes from
ParU_C_Factorize.

6. ParU_C_Residual_bAx: This function computes |Ax − b| one norm of matrix A and
one norm of x

7. ParU_C_Residual_BAX: This function computes |AX − B| one norm of matrix A and
one norme of X

8. ParU_C_Freenum: frees the numerical part of factorization.

9. ParU_C_Freesym: frees the symbolic part of factorization.

2.4 Details of the C/C++ Syntax

For further details on how to use the C/C++ syntax, please refer to the definitions and
descriptions in the following files:

1. SuiteSparse/ParU/Include/ParU.hpp describes each C++ function. Only double

and square matrices are supported.

2. SuiteSparse/ParU/Include/ParU_C.h describes the C-callable functions.

There are C/C++ options to control ParU, which is an input argument to several rou-
tines. When you make C++ ParU_Control object, it is initialized with default values. The
user can change the values. When using C ParU_C_Control, you have to fully initialize it
or call ParU_C_Init_Control before using it.

6

Here is the list of control options (both in C and C++):

ParU_Control default value explanation

mem_chunk 1024 ∗ 1024 chunk size for memset and memcpy
paru_max_threads 0 initialized with omp_max_threads

umfpack_ordering UMFPACK_ORDERING_AMD default UMFPACK ordering
umfpack_strategy UMFPACK_STRATEGY_AUTO default UMFPACK strategy
umfpack_default_singleton 1 default filter singletons if true
relaxed_amalgamation_threshold 32 threshold for relaxed amalgamation
scale 1 if 1 matrix will be scaled using max_row

panel_width 32 width of panel for dense factorizaiton
paru_strategy PARU_STRATEGY_AUTO default strategy for ParU
piv_toler 0.1 tolerance for accepting sparse pivots
diag_toler 0.001 tolerance for accepting symmetric pivots
trivial 4 Do not call BLAS for smaller dgemms
worthwhile_dgemm 512 dgemms bigger than worthwhile are tasked
worthwhile_trsm 4096 trsm bigger than worthwhile are tasked

The first row of the options is either used in symbolic or numerical analysis. The second
row of the options is used in the symbolic analysis. In the symbolic analysis phase, only the
matrix pattern is probed. The third row of control options shows those that have an impact
on numerical analysis.

paru_max_threads is initalized by omp_max_threads if the user do not provide a smaller
number.

If paru_strategy is set to PARU_STRATEGY_AUTO ParU uses the same strategy as UMF-
PACK. However, the user can ask UMFPACK for an unsymmetric strategy but use a sym-
metric strategy for ParU. Usually, UMFPACK chooses a good ordering; however, there might
be cases where users prefer unsymmetric ordering on UMFPACK but symmetric computa-
tion on ParU.

3 Requirements and Availability

ParU requires several Collected Algorithms of the ACM: CHOLMOD [4, 7] (version 1.7 or
later), AMD [1, 2], COLAMD [5, 6] and UMFPACK [8] for its ordering/analysis phase and
for its basic sparse matrix data structure, and the BLAS [9] for dense matrix computations
on its frontal matrices. An efficient implementation of the BLAS is strongly recommended,
either vendor-provided (such as the Intel MKL, the AMD ACML, or the Sun Performance
Library) or other high-performance BLAS such as those of [10]. Note that while ParU uses
nested parallelism heavily the right options for the BLAS library must be chosen to get a
good performance.

The use of OpenMP tasking is optional, but without it, only parallelism within the BLAS
can be exploited (if available). See ParU/Doc/LICENSE for the license. Alternative licenses
are also available; contact the authors for details.

7

References

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering
algorithm. SIAM J. Matrix Anal. Appl., 17(4):886–905, 1996.

[2] P. R. Amestoy, T. A. Davis, and I. S. Duff. Algorithm 837: AMD, an approximate
minimum degree ordering algorithm. ACM Trans. Math. Software, 30(3):381–388, 2004.

[3] R. F. Boisvert, R. Pozo, K. Remington, R. Barrett, and J. J. Dongarra. The Matrix
Market: A web resource for test matrix collections. In R. F. Boisvert, editor, Quality of
Numerical Software, Assessment and Enhancement, pages 125–137. Chapman & Hall,
London, 1997. (http://math.nist.gov/MatrixMarket).

[4] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 887:
CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM
Trans. Math. Software, 35(3), 2009.

[5] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. Algorithm 836: COLAMD, a
column approximate minimum degree ordering algorithm. ACM Trans. Math. Software,
30(3):377–380, 2004.

[6] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. A column approximate
minimum degree ordering algorithm. ACM Trans. Math. Software, 30(3):353–376, 2004.

[7] T. A. Davis and W. W. Hager. Dynamic supernodes in sparse Cholesky up-
date/downdate and triangular solves. ACM Trans. Math. Software, 35(4), 2009.

[8] Timothy A. Davis. Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal
method. ACM Trans. Math. Softw., 30(2):196–199, jun 2004.

[9] J. J. Dongarra, J. J. Du Croz, I. S. Duff, and S. Hammarling. A set of Level 3 Basic
Linear Algebra Subprograms. ACM Trans. Math. Software, 16:1–17, 1990.

[10] K. Goto and R. van de Geijn. High performance implementation of the level-3 BLAS.
ACM Trans. Math. Software, 35(1):4, July 2008. Article 4, 14 pages.

8

	Introduction
	Instructions on using METIS

	Using ParU in C and C++
	Installing the C/C++ library on Linux/Unix
	C/C++ Example
	C/C++ Syntax
	Details of the C/C++ Syntax

	Requirements and Availability

