
User Guide for the SPEX Software Package

Version 3.1, March, 2024

Jinhao Chen, Timothy A. Davis, Christopher Lourenco, Lorena
Mejia-Domenzain, Erick Moreno-Centeno

Texas A&M University and US Naval Academy

Contact Information: Contact Chris Lourenco, chrisjlourenco@gmail.com,
lourenco@usna.edu, or Tim Davis, timdavis@aldenmath.com,

davis@tamu.edu, DrTimothyAldenDavis@gmail.com

mailto:chrisjlourenco@gmail.com
mailto:lourenco@usna.edu
mailto:timdavis@aldenmath.com
mailto:davis@tamu.edu
DrTimothyAldenDavis@gmail.com

CONTENTS

1 SPEX Overview 5

2 Setting up SPEX 6
2.1 Licensing . 6
2.2 Installation . 6

3 General SPEX Data Structures and Macros 7
3.1 SPEX VERSION: the software package version 7
3.2 SPEX info: status codes returned by SPEX 7
3.3 SPEX pivot: enum for pivoting schemes . 7
3.4 SPEX preorder . 8
3.5 SPEX factorization algorithm . 8
3.6 SPEX options structure . 9
3.7 SPEX vector . 10
3.8 The SPEX matrix structure . 11

3.8.1 SPEX kind: enum for matrix formats 11
3.8.2 SPEX type: enum for data types of matrix entries 12
3.8.3 SPEX matrix structure . 12

3.9 The SPEX symbolic analysis struct . 14
3.9.1 SPEX factorization kind: enum for kind of factorization 14
3.9.2 SPEX symbolic analysis Data Structure 14

3.10 The SPEX factorization data structure . 15

4 SPEX Utilities 17
4.1 Overview . 17
4.2 Managing the SPEX environment . 17

4.2.1 SPEX initialize: initialize the working environment 17
4.2.2 SPEX initialize expert: initialize environment (expert version) . . 18
4.2.3 SPEX finalize: free the working environment 18
4.2.4 SPEX thread initialize: initialize working environment for a single

thread . 18

2

CONTENTS 3

4.2.5 SPEX thread finalize: finalize the working environment for a single
thread . 19

4.3 Memory Management . 19
4.3.1 SPEX calloc: allocate initialized memory 19
4.3.2 SPEX malloc: allocate uninitialized memory 20
4.3.3 SPEX realloc: resize allocated memory 20
4.3.4 SPEX free: free allocated memory . 21

4.4 SPEX options helper function . 21
4.4.1 SPEX create default options: create default SPEX options structure 21

4.5 SPEX matrix helper functions . 22
4.5.1 SPEX matrix allocate: allocate an m-by-n SPEX matrix 22
4.5.2 SPEX matrix free: free a SPEX matrix 23
4.5.3 SPEX matrix copy: make a copy of a SPEX matrix with a potentially

different matrix-format and data-type 23
4.5.4 SPEX matrix nnz: get the number of entries in a SPEX matrix 23
4.5.5 SPEX matrix check: check and optionally print a SPEX matrix 24

4.6 SPEX symbolic analysis helper function . 24
4.6.1 SPEX symbolic analysis free: free a symbolic analysis struct 24

4.7 SPEX factorization helper functions . 24
4.7.1 SPEX factorization free: Free a SPEX factorization 24

4.8 Misc Utilty Functions . 25
4.8.1 SPEX version: Return version of the code 25
4.8.2 SPEX determine symmetry: Determine if a matrix is symmetric . . . 25
4.8.3 SPEX transpose: Transpose a CSC mpz matrix 25

4.9 SPEX gmp: SPEX wrapper functions for GMP/MPFR 26
4.10 SPEX Helper Macros . 29

4.10.1 SPEX TRY and SPEX CATCH . 29
4.10.2 SPEX 1D: Access matrix entries with 1D linear indexing. 30
4.10.3 SPEX 2D: Access dense matrix with 2D indexing. 30

5 SPEX LU 31
5.1 Overview . 31
5.2 Licensing . 31
5.3 Factorization and Solve Routines . 32

5.3.1 SPEX lu analyze: symbolic analysis for LU factorization 32
5.3.2 SPEX lu factorize: Compute the LU factorization of A 32
5.3.3 SPEX lu solve: solve the linear system 33
5.3.4 SPEX lu backslash: solve a linear system 33

6 SPEX Cholesky 34
6.1 Overview . 34
6.2 Licensing . 34
6.3 Factorization and Solve Routines . 34

6.3.1 SPEX cholesky analyze: symbolic analysis for Cholesky factorization 35
6.3.2 SPEX cholesky factorize: Compute the Cholesky factorization of A 35

CONTENTS 4

6.3.3 SPEX cholesky solve: solve the linear system 36
6.3.4 SPEX cholesky backslash: solve a linear system 36

7 SPEX Backslash 37
7.1 Overview . 37
7.2 Licensing . 37
7.3 SPEX backslash: Exactly solve sparse linear systems 38

8 Using SPEX in MATLAB 39
8.1 Optional parameter settings . 39
8.2 SPEX m files for use . 40

8.2.1 spex lu backslash.m . 40
8.2.2 spex cholesky backslash.m . 41
8.2.3 spex backslash.m . 41
8.2.4 spex mex demo.m . 42

9 Using SPEX in Python 43
9.1 Optional parameter settings . 43
9.2 Functions in Python SPEX . 43

9.2.1 lu backslash . 43
9.2.2 cholesky backslash . 44
9.2.3 backslash . 44

9.3 Demo . 45

CHAPTER 1

SPEX OVERVIEW

SPEX is a software package comprising several state-of-the-art SParse EXact linear algebra
routines. It currently consists of the following:

SPEX Utilities Utility and auxiliary functions for all SPEX routines: interface to the GM-
P/MPFR library, memory management functions, the SPEX_matrix,
SPEX_factorization, and SPEX_symbolic_analysis data structures, and various
functions that are auxiliary to the factorization and solve functions. Please refer to
Chapter 4 for further details.

SPEX LU Sparse exact left-looking LU factorization to solve the linear system Ax = b.
The solution time is proportional to the arithmetic work in the bit-complexity model;
which is asymptotically efficient. Please refer to Chapter 5 for further details.

SPEX Cholesky Sparse exact left-looking and up-looking Cholesky factorizations to solve
the symmetric positive definite (SPD) linear system Ax = b. The solution time is pro-
portional to the arithmetic work in the bit-complexity model; this is an asymptotically
efficient complexity bound. Please refer to Chapter 6 for further details.

SPEX Backslash Routines to exactly solve the system Ax = b using either LU or Cholesky
factorization. This is the simplest way to access the SPEX software package. Please
refer to Chapter 7 for further details.

Location: https://github.com/clouren/SPEX and www.suitesparse.com

Required Packages: SPEX depends on the following packages:

� GNU GMP [6] and MPFR [5] libraries. Distributed under the LGPL3 and GPL2 and
can be acquired and installed from https://gmplib.org/ and http://www.mpfr.

org/, respectively.

� CMake [?], available under a BSD 3-clause license. May be independently obtained at
https://cmake.org.

� AMD [1, 2], available under a BSD 3-clause license and distributed along with SPEX.
May be independently obtained at www.suitesparse.com

� COLAMD [4, 3], available under a BSD 3-clause license and distributed along with
SPEX. May be independently obtained at www.suitesparse.com

5

https://github.com/clouren/SPEX
www.suitesparse.com
https://gmplib.org/
http://www.mpfr.org/
http://www.mpfr.org/
https://cmake.org
www.suitesparse.com
www.suitesparse.com

CHAPTER 2

SETTING UP SPEX

2.1 Licensing

Copyright: The copyright of this software is held by Christopher Lourenco, Jinhao Chen,
Lorena Mejia-Domenzain, Erick Moreno-Centeno, and Timothy A. Davis.

Contact Info: Chris Lourenco, chrisjlourenco@gmail.com lourenco@usna.edu, or Tim Davis,
timdavis@aldenmath.com, DrTimothyAldenDavis@gmail.com, or davis@tamu.edu

License: This software package is dual licensed under the GNU General Public License
version 2 or the GNU Lesser General Public License version 3. Details of this license are in
SPEX/License/license.txt. For alternative licenses, please contact the authors.

2.2 Installation

Installation of SPEX requires the cmake utility in Linux, MacOS, and Windows. With
the appropriate compiler and version of cmake, typing make under the main directory will
compile AMD, COLAMD, and SPEX to their respective build folder. All shared library
files can be found in the top level build folder. To further install the libraries onto your
computer, simply type make install. Thereafter, to use the code inside of your program,
precede your code with
#include "SPEX.h".

SPEX is also distributed with MATLAB and Python interfaces. Note that these interfaces
have been thoroughly tested in Linux and are tuned to work “out of the box” on these types
of machines. However, if the end user wishes to utilize the MATLAB or Python interfaces
within a MacOS or Windows system, they may require additional library linkage in order to
function properly. For example, on the MacOS, MATLAB R2022 does not currently support
binaries compiled on ARM architecture, thus the code would have to be compiled with x-86.

To install the MATLAB interface, navigate to the SPEX/MATLAB folder from the MATLAB
command window and type spex_mex_install which will install the MATLAB interfaces
to all SPEX packages. These packages can then be used outside of the SPEX/MATLAB folder
by using the MATLAB addpath tool. The Python interface does not need any additional
installation, but does require the Numpy, SciPy, and ctypes libraries. Note that

6

mailto:chrisjlourenco@gmail.com
mailto:lourenco@usna.edu
mailto:timdavis@aldenmath.com
DrTimothyAldenDavis@gmail.com
mailto:davis@tamu.edu

CHAPTER 3

GENERAL SPEX DATA STRUCTURES AND MACROS

The following macros/data structures are defined in SPEX.h and are used in all SPEX func-
tions.

3.1 SPEX VERSION: the software package version

SPEX defines the following strings with #define. Refer to the SPEX.h file for details.

Macro Purpose

SPEX_VERSION Current version of the code (as a string)
SPEX_VERSION_MAJOR Major version of the code
SPEX_VERSION_MINOR Minor version of the code
SPEX_VERSION_SUB Sub version of the code

3.2 SPEX info: status codes returned by SPEX

Most SPEX functions return their status to the caller as their return value, an enumerated
type called SPEX_info. All current possible values for SPEX_info are listed as follows:

0 SPEX_OK The function was successfully executed.

-1 SPEX_OUT_OF_MEMORY Out of memory

-2 SPEX_SINGULAR The input matrix A is exactly singular.

-3 SPEX_INCORRECT_INPUT One or more input arguments are incorrect.

-4 SPEX_NOTSPD The input matrix is not SPD (thus can’t use Cholesky)

-5 SPEX_INCORRECT_ALGORITHM The algorithm is not compatible with the factorization

-6 SPEX_PANIC SPEX environment error

3.3 SPEX pivot: enum for pivoting schemes

There are six available pivoting schemes provided in SPEX that can be selected with the
SPEX_options structure. If the matrix is non-singular (in an exact sense), then the pivot
is always nonzero, and is chosen as the smallest nonzero entry, with the smallest magni-
tude. This may seem counter-intuitive, but selecting a small nonzero pivot leads to smaller
growth in the number of digits in the entries of L and U. This choice does not lead to any

7

CHAPTER 3. GENERAL SPEX DATA STRUCTURES AND MACROS 8

kind of numerical inaccuracy, since SPEX is guaranteed to find an exact roundoff-error free
factorization of a non-singular matrix (unless it runs out of memory), for any nonzero pivot
choice.

The pivot tolerance for two of the pivoting schemes is specified by the tol component in
SPEX_options. The pivoting schemes are as follows:

0 SPEX_SMALLEST The k-th pivot is selected as the smallest entry in the k-th
column.

1 SPEX_DIAGONAL The k-th pivot is selected as the diagonal entry. If the di-
agonal entry is zero, this method instead selects the smallest
pivot in the column.

2 SPEX_FIRST_NONZERO The k-th pivot is selected as the first eligible nonzero in the
column.

3 SPEX_TOL_SMALLEST The k-th pivot is selected as the diagonal entry if the diagonal
is within a specified tolerance of the smallest entry in the
column. Otherwise, the smallest entry in the k-th column is
selected. This is the default pivot selection strategy.

4 SPEX_TOL_LARGEST The k-th pivot is selected as the diagonal entry if the diago-
nal is within a specified tolerance of the largest entry in the
column. Otherwise, the largest entry in the k-th column is
selected.

5 SPEX_LARGEST The k-th pivot is selected as the largest entry in the k-th
column.

3.4 SPEX preorder

The SPEX Library provides three ordering schemes: no ordering, COLAMD, and AMD. In
LU factorization, the ordering is applied only to the columns, that is this ordering gives the
matrix Q. In Cholesky factorizations, the ordering is applied to both the rows and columns,
that is the ordering gives the matrices P and Q.

1 SPEX_NO_ORDERING No pre-ordering is performed on the matrix A, that is Q = I.

2 SPEX_COLAMD The rows and/or columns of A are permuted prior to fac-
torization using the COLAMD [3] ordering. This is recom-
mended for LU factorization.

3 SPEX_AMD The rows and/or columns of A are permuted prior to the
factorization using the the AMD [2]. This is recommended
for Cholesky factorization.

3.5 SPEX factorization algorithm

This code tells SPEX which factorization is being used. Importantly, this is only used
within a given solver. That is, this code is only used within LU/Cholesky factorization
codes themselves. This is NOT used in the SPEX Backslash routines as that code selects
the type of factorization using its own logic.

CHAPTER 3. GENERAL SPEX DATA STRUCTURES AND MACROS 9

1 SPEX_LU_LEFT Left-looking LU factorization

2 SPEX_CHOL_LEFT Left-looking Chokesy factorization

3 SPEX_CHOL_UP Up-looking Cholesky factorization

3.6 SPEX options structure

The SPEX_options struct stores key command parameters for various functions used in the
SPEX package. The SPEX_options* option struct contains the following components:

� option->pivot: An enum SPEX_pivot type which controls the type of pivoting used.
Default value: SPEX_SMALLEST (3).

� option->order: An enum SPEX_preorder type which controls what column ordering
is used. Default value: SPEX_COLAMD for LU and SPEX_AMD for Cholesky.

� option->tol: A double tolerance for the tolerance-based pivoting scheme, i.e.,
SPEX_TOL_SMALLEST or SPEX_TOL_LARGEST. option->tol must be in the range of
(0, 1]. Default value: 1 meaning that the diagonal entry will be selected if it has
the same magnitude as the smallest entry in the k the column.

� option->print_level: An int which controls the amount of output: 0: print nothing,
1: just errors, 2: terse, with basic stats from COLAMD/AMD and SPEX, 3: all, with
matrices and results. Default value: 0.

� option->prec: An int32_t which specifies the precision used for multiple precision
floating point numbers, (i.e., MPFR). This can be any integer larger than MPFR_PREC_MIN

(value of 1 in MPFR 4.0.2 and 2 in some legacy versions) and smaller than MPFR_PREC_MAX

(usually the largest possible integer available in your system). Default value: 128 (quad
precision).

� option->round: A mpfr_rnd_t which determines the type of MPFR rounding to
be used by SPEX. This is a parameter of the MPFR library. The options for this
parameter are:

– MPFR_RNDN: Round to nearest (roundTiesToEven in IEEE 754-2008)

– MPFR_RNDZ: Round toward zero (roundTowardZero in IEEE 754-2008)

– MPFR_RNDU: Round toward plus infinity (roundTowardPositive in IEEE 754-2008)

– MPFR_RNDD: Round toward minus infinity (roundTowardNegative in IEEE 754-
2008)

– MPFR_RNDA: Round away from zero

– MPFR_RNDF: Faithful rounding. This is not stable.

Refer to the MPFR User Guide available at https://www.mpfr.org/mpfr-current/

mpfr.pdf for details on the MPFR rounding style and any other utilized MPFR con-
vention. Default value: MPFR_RNDN.

https://www.mpfr.org/mpfr-current/mpfr.pdf
https://www.mpfr.org/mpfr-current/mpfr.pdf

CHAPTER 3. GENERAL SPEX DATA STRUCTURES AND MACROS 10

� option->algo: A SPEX_factorization_algorithm which indicates which type of fac-
torization is being used.

All SPEX routines except basic memory management routines in Sections 4.2.3-4.3.1
and SPEX_options allocation routine in 4.4.1 require option as an input argument. The
construction of the option struct can be avoided by passing NULL for the default settings.
Otherwise, the following functions create and destroy a SPEX_options structure:

Function/Macro Name Description Section

SPEX_create_default_options create and return SPEX_options

pointer with default parameters upon
successful allocation

4.4.1

SPEX_FREE destroy SPEX_options structure 4.3.4

3.7 SPEX vector

SPEX vector is a compressed sparse vector data structure which will be used for SPEX
dynamic CSC matrices. This struct is not used in SPEX version 3.0 and its funcionality will
be fully developed in a future release of SPEX; however the struct is provided here so that
future versions of SPEX have backward compatibility.

This is NOT intended to be used for building any n-by-1 vector (e.g., the right-hand-
side vector b in Ax=b), which should be considered as a n-by-1 SPEX_matrix. This struct
contains the following components:

� vector->nz: The number of explicit entries in the vector. Data Type: int64_t.

� vector->nzmax: The size of the i and x arrays. Note that nz ≤ nzmax. Data Type:
int64_t.

� vector->i: An array of size nzmax containing the row indices of all explicit entries in
the vector. The last (nzmax-nz) entries are undefined. Data Type: int64_t*.

� vector->x: An array of size nzmax containing the numeric values of all explicit entries
in the vector. The last (nzmax-nz) entries are undefined. Data Type: mpz_t*.

� vector->scale: Scaling parameter. The actual value of the k-th nonzero should
be computed as x[k]*scale. Both x[k]*scale and x[k]/mpq_denref(scale) must
be integer for all entries, where mpq_denref(scale) is a GMP macro that gives the
denominator of scale. This is used to skip explicit update(s) for a column/row of
the factorization matrix, when all entries are to be multiplied with the same scaling
factor(s). Data Type: mpq_t.

In the current release, the SPEX_vector is only used as a part of the SPEX_matrix struct
and is always a NULL pointer.

CHAPTER 3. GENERAL SPEX DATA STRUCTURES AND MACROS 11

3.8 The SPEX matrix structure

SPEX operates on matrices stored in any of the 16 different matrix formats: 15 of which are
combinations of matrix formats and entry data-types: {Static Compressed Sparse Column
(CSC), triplet, dense}×{ mpz_t, mpq_t, mpfr_t, int64_t, or double}, and the 16th of which
is the dynamic CSC matrix with mpz_t entries. Using the SPEX matrix copy function, a
matrix of any given form and data-type can be copied and converted into a matrix of any
one of the 16 matrix-form and data-type combinations.

Most routines require the matrix to be in CSC form with mpz_t (i.e., arbitrary-sized
integer) data type. This data structure stores the matrix A as a sequence of three arrays:

� A->p: Column pointers; an array of size n+1. The row indices of column j are located
in positions A->p[j] to A->p[j+1]-1 of the array A->i. Data type: int64_t.

� A->i: Row indices; an array of size equal to the number of entries in the matrix. The
entry A->i[k] is the row index of the kth nonzero in the matrix. Data type: int64_t.

� A->x: Numeric entries. The entry A->x[k] is the numeric value of the kth nonzero
in the matrix. The array A->x has a union type and must be accessed via a suffix
according to the type of A. For details, please refer to Section 3.8.

An example matrix A with mpz_t type is stored as follows (note that indexing is zero
based as per the C convention).

A =


1 0 0 1
2 0 4 12
7 1 1 1
0 2 3 0


A->p = [0, 3, 5, 8, 11]

A->i = [0, 1, 2, 2, 3, 1, 2, 3, 0, 1, 2]

A->x.mpz = [1, 2, 7, 1, 2, 4, 1, 3, 1, 12, 1]

For example, the last column appears in positions 8 to 10 of A->i and A->x.mpz, with
row indices 0, 1, and 2, and values a03 = 1, a13 = 12, and a23 = 1.

3.8.1 SPEX kind: enum for matrix formats

The SPEX library provides four available matrix formats: sparse CSC (compressed sparse
column), sparse triplet, dense and sparse dynamic CSC.

0 SPEX_CSC Matrix is in compressed sparse column format.

1 SPEX_TRIPLET Matrix is in sparse triplet format.

2 SPEX_DENSE Matrix is in dense format.

3 SPEX_DYNAMIC_CSC Matrix is in dynamic CSC format.

CHAPTER 3. GENERAL SPEX DATA STRUCTURES AND MACROS 12

3.8.2 SPEX type: enum for data types of matrix entries

The SPEX library provides five data types for matrix entries: mpz_t, mpq_t, mpfr_t, int64_t
and double.

0 SPEX_MPZ Matrix entries are in mpz_t type: an integer of arbitrary size.

1 SPEX_MPQ Matrix entries are in mpq_t type: a rational number with
arbitrary-sized integer numerator and denominator.

2 SPEX_MPFR Matrix entries are in mpfr_t type: a floating-point number
of arbitrary precision.

3 SPEX_INT64 Matrix entries are in int64_t type.

4 SPEX_FP64 Matrix entries are in double type.

3.8.3 SPEX matrix structure

A matrix SPEX_matrix *A has the following components:

� A->kind: Indicating the kind of matrix A: CSC, triplet, dense or dynamic CSC. Data
Type: SPEX_kind.

� A->type: Indicating the type of entries in matrix A: mpz_t, mpq_t, mpfr_t, int64_t
or double. Data Type: SPEX_type.

� A->m: Number of rows in the matrix. Data Type: int64_t.

� A->n: Number of columns in the matrix. Data Type: int64_t.

� A->scale: A scaling parameter for matrix of mpz_t type. For all matrices whose entries
are stored in data type other than mpz_t, SPEX assumes and maintains A->scale = 1.
This is used to ensure that entry can be represented as an integer in an mpz_t matrix
if these entries are converted from non-integer type data (such as double, variable
precision floating point, or rational). Data Type: mpq_t.

� A->nzmax: The allocated size of the vectors A->i, A->j and A->x. Note that A->nzmax
≥ nnz(A), where nnz(A) is the return value of SPEX_matrix_nnz(A,option). Data
Type: int64_t.

� A->nz: The number of nonzeros in the matrix A, if A is a triplet matrix (ignored for
matrices in CSC, dense or dynamic CSC formats). Data Type: int64_t.

� A->p: An array of size A->n+1 which contains column pointers of A, if A is a CSC
matrix (NULL for matrices in triplet or dense formats). Data Type: int64_t*.

� A->p_shallow: A boolean indicating whether A->p is shallow. A shallow pointer is
one that refers to a component of another matrix or data structure. If A->p is shallow,
then it should not be modified as part of the A matrix, and it is not freed if A is freed.
Data Type: bool.

CHAPTER 3. GENERAL SPEX DATA STRUCTURES AND MACROS 13

� A->i: An array of size A->nzmax which contains the row indices of the nonzeros in A,
if A is a CSC or triplet matrix (NULL for dense matrices). The matrix is zero-based, so
row indices are in the range of [0, A->m−1]. Data Type: int64_t*.

� A->i_shallow: A boolean indicating whether A->i is shallow. Data Type: bool.

� A->j: An array of size A->nzmax which contains the column indices of the nonzeros in
A, if A is a triplet matrix (NULL for matrices in CSC or dense formats). The matrix is
zero-based, so column indices are in the range of [0, A->n−1]. Data Type: int64_t*.

� A->j_shallow: A boolean indicating whether A->j is shallow. Data Type: bool.

� A->x: An array of size A->nzmax which contains the numeric values of the matrix. This
array is a union, and must be accessed via one of: A->x.mpz, A->x.mpq, A->x.mpfr,
A->x.int64, or A->x.fp64, depending on the A->type parameter. Data Type: union.

� A->x_shallow: A boolean indicating whether A->x is shallow. Data Type: bool.

� A->v: If the matrix is a SPEX_DYNAMIC_CSC this is an array of size A->n, each of which
is a dynamic column vector. Data Type: SPEX_vector**. Always NULL in SPEX 3.0

Specifically, for different kinds of A of size A->m × A->n with nz nonzero entries, its
components are defined as:

� (0) SPEX_CSC: A sparse matrix in CSC (compressed sparse column) format. A->p is
an int64_t array of size A->n+1, A->i is an int64_t array of size A->nzmax (with
nz ≤ A->nzmax), and A->x.TYPE is an array of size A->nzmax of matrix entries (TYPE
is one of mpz, mpq, mpfr, int64, or fp64). The row indices of column j appear in
A->i [A->p [j] ... A->p [j+1]-1], and the values appear in the same locations in
A->x.TYPE. The A->j array is NULL. A->nz is ignored; the number of entries in A is
given by A->p [A->n]. Row indices need not be sorted in each column, but duplicates
cannot appear.

� (1) SPEX_TRIPLET: A sparse matrix in triplet format. A->i and A->j are both int64_t

arrays of size A->nzmax, and A->x.TYPE is an array of values of the same size. The kth
tuple has row index A->i [k], column index A->j [k], and value A->x.TYPE [k],
with 0 ≤ k < A->nz. The A->p array is NULL. Triplets can be unsorted, but duplicates
cannot appear.

� (2) SPEX_DENSE: A dense matrix. The integer arrays A->p, A->i, and A->j are all
NULL. A->x.TYPE is a pointer to an array of size A->m*A->n, stored in column-oriented
format. The value of A(i, j) is A->x.TYPE [p] with p = i+ j∗A->m. A->nz is ignored;
the number of entries in A is A->m × A->n.

� (3) SPEX_DYNAMIC_CSC: Currently unused

CHAPTER 3. GENERAL SPEX DATA STRUCTURES AND MACROS 14

A may contain shallow components, A->p, A->i, A->j, and A->x. For example, if
A->p_shallow is true, then a non-NULL A->p is a pointer to a read-only array, and the A->p

array is not freed by SPEX_matrix_free. If A->p is NULL (for a triplet or dense matrix),
then A->p_shallow has no effect.

The SPEX package has a set of functions to allocate, copy(convert), query and destroy
a SPEX matrix, SPEX_matrix, as shown in the following table.

Function Name Description Section

SPEX_matrix_allocate allocate a m-by-n SPEX_matrix 4.5.1

SPEX_matrix_free destroy a SPEX_matrix and free its al-
located memory

4.5.2

SPEX_matrix_copy make a copy of a matrix, into another
kind and/or type

4.5.3

SPEX_matrix_nnz get the number of entries in a matrix 4.5.4

SPEX_matrix_check check the validity of a matrix and
print it

4.5.5

3.9 The SPEX symbolic analysis struct

The symbolic analysis structure handles all preorderings and graphical struture information
for each factorization within SPEX. First, section 3.9.1 discusses an enum for the type of
factorization and next section 3.9.2 discusses the components of this data structure.

3.9.1 SPEX factorization kind: enum for kind of factorization

The SPEX library currently provides two types of factorizations: LU and Cholesky. The
value SPEX_QR_FACTORIZATION is reserved for future development.

0 SPEX_LU_FACTORIZATION LU factorization is being used

1 SPEX_CHOLESKY_FACTORIZATION Cholesky factorization is being used

2 SPEX_QR_FACTORIZATION QR factorization is being used
(reserved for future use)

3.9.2 SPEX symbolic analysis Data Structure

A symbolic analysis SPEX_symbolic_analysis *S has the following components:

� S->kind: Indicating the kind of factorization either LU or Cholesky. Data type:
SPEX_factorization_kind

� S->P_perm: Row permutation for Cholesky and LU factorization. Data type: int64_t*

� S->Pinv_perm: Inverse row permutation for Cholesky and LU factorization. Data
type: int64_t*

� S->Q_perm: Column permutation for LU factorization. This is always NULL and ignored
for Cholesky factorization since its row and column permutations are the same. Data
type: int64_t*

CHAPTER 3. GENERAL SPEX DATA STRUCTURES AND MACROS 15

� S->Qinv_perm: Inverse column permutation for LU factorization. This is always NULL
and ignored for Cholesky factorization since its inverse row and column permutations
are the same. Data type: int64_t*

� S->lnz: Approximate number of nonzeros in L. In LU factorization, this is a crude
estimate based on either AMD or COLAMD. In Cholesky factorization, if AMD is
used, this is the exact number of nonzeros in L. Data type: int64_t

� S->unz: Approximate number of nonzeros in U . In LU factorization, this is a crude
estimate based on either AMD or COLAMD. In Cholesky factorization this is not used.
Data type: int64_t

� S->parent: This is the elimination tree of the input matrix for Cholesky factorization.
This is always NULL for LU factorization. Data type: int64_t*

� S->cp: Column pointers of L for Cholesky factorization. This is always NULL for LU
factorization. Data type: int64_t*

This data type is constructed when analysis is called in the appropriate factorizations.
See sections 5.3.1 and 6.3.1 for further details. To free this data structure, the function
SPEX_symbolic_analysis_free is used and discussed further in section 4.6.

3.10 The SPEX factorization data structure

The SPEX_factorization object holds an LU or Cholesky numerical factorization. The in-
troduction of this structure is one of the largest API update for SPEX 2.0, as the components
of all factorizations are now held in this structure instead of being carried around by the
user. The components of the factorization structure are accessible to the user application.
However, they should only be modified by calling SPEX methods. Changing them directly
can lead to undefined behavior.

The components of a SPEX_factorization* F are as follows:

� F->kind: Indicating the kind of factorization either LU or Cholesky. Data type:
SPEX_factorization_kind

� F->updatable: a flag that indicates whether the factorization is in an updatable for-
mat. Reserved for future development. Data type: bool

� F->scale_for_A: Scaling factor of the input matrix A. As discussed in section 3.8, all
matrices in SPEX are integral, thus, if A must be scaled the scaling factor applied is
stored here. Data type: mpq_t

� F->L: The lower triangular matrix for either LU or Cholesky factorization. Data type:
SPEX_matrix*

� F->U: The upper triangular matrix for LU factorization. This is always NULL for
Cholesky factorization. Data type: SPEX_matrix*

CHAPTER 3. GENERAL SPEX DATA STRUCTURES AND MACROS 16

� F->Q: The matrix for (future) QR factorization. Provided here so that future versions
of SPEX have backward compatibility. Data type: SPEX_matrix*

� F->R: The right triangular matrix for (future) QR factorization. Provided here so that
future versions of SPEX have backward compatibility. Data type: SPEX_matrix*

� F->rhos: An n× 1 dense matrix containing the pivot values used for LU or Cholesky
factorization. Data type: SPEX_matrix*

� F->P_perm: Row permutation of the LU or Cholesky factors. Data type: int64_t*

� F->Pinv_perm: Inverse row permutation of the LU or Cholesky factors. Data type:
int64_t*

� F->Q_perm: Column permutation of the LU factors. This is NULL and ignored for
Cholesky factorization. Data type: int64_t*

� F->Qinv_perm: Inverse column permutation of the LU factors. This is NULL and
ignored for Cholesky factorization. Data type: int64_t*

A SPEX_factorization is constructed by the appropriate factorizations (see sections
5.3.2 and 6.3.2 for further details). To free this data structure, the function SPEX_factorization_free

is used and discussed further in section 4.7.1.

CHAPTER 4

SPEX UTILITIES

4.1 Overview

SPEX Util contains utility and auxiliary functions for the SPEX factorizations. Additionally,
SPEX Util provides a wrapper class for the GNU Multiple Precision Arithmetic (GMP)
[6] and GNU Multiple Precision Floating Point Reliable (MPFR) [5] libraries that prevent
memory leaks and improve the overall stability of these external libraries. SPEX Util is
written in ANSI C.

4.2 Managing the SPEX environment

Either SPEX_initialize or SPEX_initialize_expert (but not both) must be called prior
to using any other SPEX functions. Otherwise, all SPEX user-callable functions would
return SPEX_PANIC. SPEX_finalize must be called as the last SPEX function. Note that if
a user is working in a multi threaded environment then only one user thread should call the
SPEX_initialize and SPEX_finalize functions.

Subsequent SPEX sessions can be restarted after a call to SPEX_finalize, by calling
either SPEX_initialize or SPEX_initialize_expert (but not both), followed by a final
call to SPEX_finalize when finished.

4.2.1 SPEX initialize: initialize the working environment

SPEX_info SPEX_initialize

(

void

) ;

SPEX_initialize initializes the working environment for SPEX functions. SPEX utilizes
a specialized memory management scheme in order to prevent potential memory failures
caused by GMP and MPFR libraries. Either this function or SPEX_initialize_expert

must be called prior to using any other function in the library. Returns SPEX_PANIC if
SPEX has already been initialized, or SPEX_OK if successful.

17

CHAPTER 4. SPEX UTILITIES 18

4.2.2 SPEX initialize expert: initialize environment (expert ver-
sion)

SPEX_info SPEX_initialize_expert

(

void* (*MyMalloc) (size_t), // user-defined malloc

void* (*MyCalloc) (size_t, size_t), // user-defined calloc

void* (*MyRealloc) (void *, size_t), // user-defined realloc

void (*MyFree) (void *) // user-defined free

) ;

SPEX_initialize_expert is the same as SPEX_initialize except that it allows for a
redefinition of custom memory functions that are used for SPEX and GMP/ MPFR. The
four inputs to this function are pointers to four functions with the same signatures as the
ANSI C malloc, calloc, realloc, and free functions. That is:

#include <stdlib.h>

void *malloc (size_t size) ;

void *calloc (size_t nmemb, size_t size) ;

void *realloc (void *ptr, size_t size) ;

void free (void *ptr) ;

Returns SPEX_PANIC if SPEX has already been initialized, or SPEX_OK if successful.

4.2.3 SPEX finalize: free the working environment

SPEX_info SPEX_finalize

(

void

) ;

SPEX_finalize finalizes the working environment for SPEX library, and frees any internal
workspace created by SPEX. It must be called as the last SPEX_* function called, except
that a subsequent call to SPEX_initialize* may be used to start another SPEX session.
Returns SPEX_PANIC if SPEX has not been initialized, or SPEX_OK if successful.

4.2.4 SPEX thread initialize: initialize working environment for a
single thread

SPEX_info SPEX_thread_initialize

(

void

);

SPEX_thread_initialize initializes the working environment of SPEX for a single user
thread. If the user is working in a multithreaded environment, they must call this function
at the beginning of each user thread. Returns SPEX_OK if successful or SPEX_PANIC if SPEX
was already initialized.

CHAPTER 4. SPEX UTILITIES 19

This function is only required for a multithreaded user application that calls SPEX
functions from threads other than the primary thread that called SPEX_initialize.

When the primary thread of the user application starts, it must call SPEX_initialize.
When the user application enters a parallel region (say with OpenMP) or creates its own
threads with a threading library, each user thread must call SPEX_thread_initialize when
it starts, and SPEX_thread_finalize when it finishes.

An example usage can be found in the SPEX/Demo folder in the spex_demo_threaded.c

main program.

4.2.5 SPEX thread finalize: finalize the working environment for
a single thread

SPEX_info SPEX_thread_finalize

(

void

);

SPEX_thread_finalize finalizes the working environment and frees any internal workspace
created by SPEX for a single user thread. If the user is working in a multithreaded envi-
ronment, they must call this function at the end of each user thread. Returns SPEX_OK if
successful or SPEX_PANIC if SPEX was not initialized.

4.3 Memory Management

The routines in this section are used to allocate and free memory for the data structures
used in SPEX. By default, SPEX relies on the SuiteSparse memory management functions,
SuiteSparse_malloc, SuiteSparse_calloc, SuiteSparse_realloc, and SuiteSparse_free.
By default, those functions rely on the ANSI C malloc, calloc, realloc, and free, but
this may be changed by initializing the SPEX environment with SPEX_initialize_expert.

4.3.1 SPEX calloc: allocate initialized memory

void *SPEX_calloc

(

size_t nitems, // number of items to allocate

size_t size // size of each item

) ;

SPEX_calloc allocates a block of memory for an array of nitems elements, each of them
size bytes long, and initializes all its bits to zero. If any input is less than 1, it is treated as
if equal to 1. If the function failed to allocate the requested block of memory, then a NULL

pointer is returned. Returns NULL if SPEX has not been initialized.

CHAPTER 4. SPEX UTILITIES 20

4.3.2 SPEX malloc: allocate uninitialized memory

void *SPEX_malloc

(

size_t size // size of memory space to allocate

) ;

SPEX_malloc allocates a block of size bytes of memory, returning a pointer to the
beginning of the block. The content of the newly allocated block of memory is not initialized,
remaining with indeterminate values. If size is less than 1, it is treated as if equal to 1. If
the function fails to allocate the requested block of memory, then a NULL pointer is returned.
Returns NULL if SPEX has not been initialized.

4.3.3 SPEX realloc: resize allocated memory

void *SPEX_realloc // pointer to reallocated block, or original block

// if the realloc failed

(

int64_t nitems_new, // new number of items

int64_t nitems_old, // previous/old number of items

size_t size_of_item, // size of each item

void *p, // pointer to reallocate

bool *ok // true if success, false on failure

) ;

SPEX_realloc is a wrapper for realloc. If p is non-NULL on input, it points to a previously
allocated array of size nitems_old × size_of_item. The array is reallocated to be of size
nitems_new× size_of_item. If p is NULL on input, then a new array of that size is allocated.
On success, a pointer to the new array is returned. Returns ok as false if SPEX has not
been initialized.

If the reallocation fails, p is not modified, and ok is returned as false to indicate that
the reallocation failed. If the size decreases or remains the same, then the method always
succeeds (ok is returned as true), unless SPEX has not been initialized.

Typical usage: the following code fragment allocates an array of 10 int’s, and then
increases the size of the array to 20 int’s. If the SPEX_malloc succeeds but the SPEX_realloc
fails, then the array remains unmodified, of size 10.

int *p ;

p = SPEX_malloc (10 * sizeof (int)) ;

if (p == NULL) { error here ... }

printf ("p points to an array of size 10 * sizeof (int)\n") ;

bool ok ;

p = SPEX_realloc (20, 10, sizeof (int), p, &ok) ;

if (ok) printf ("p has size 20 * sizeof (int)\n") ;

else printf ("realloc failed; p still has size 10 * sizeof (int)\n") ;

SPEX_free (p) ;

CHAPTER 4. SPEX UTILITIES 21

4.3.4 SPEX free: free allocated memory

void SPEX_free

(

void *p // Pointer to memory space to free

) ;

SPEX_free frees the memory previously allocated by a call to SPEX_calloc, SPEX_malloc,
or SPEX_realloc. If p is NULL on input, then no action is taken (this is not an error condi-
tion). To guard against freeing the same memory space twice, the following macro SPEX_FREE

is provided, which calls SPEX_free and then sets the freed pointer to NULL.

#define SPEX_FREE(p) \

{ \

SPEX_free (p) ; \

(p) = NULL ; \

}

No action is taken if SPEX has not been initialized.

4.4 SPEX options helper function

The SPEX_options structure contains numerous parameters that may be modified to change
the behavior of the SPEX functions. Default values of these parameters will lead to good
performance in most cases. The following helper functions are provided.

4.4.1 SPEX create default options: create default SPEX options struc-
ture

SPEX_options* SPEX_create_default_options

(

void

) ;

SPEX_create_default_options creates and returns a pointer to a SPEX_options struct
with default parameters upon successful allocation, which are discussed in Section 3.6. To
safely free the SPEX_options* option structure, simply use
SPEX_FREE(option). All functions that require SPEX_options *option as an input ar-
gument can have a NULL pointer passed instead. In this case, the default value of the
corresponding command option is used.

CHAPTER 4. SPEX UTILITIES 22

4.5 SPEX matrix helper functions

These functions provide several utilities for a SPEX_matrix.

4.5.1 SPEX matrix allocate: allocate an m-by-n SPEX matrix

SPEX_info SPEX_matrix_allocate

(

SPEX_matrix **A_handle, // matrix to allocate

SPEX_kind kind, // CSC, triplet, dense or SPEX_DYNAMIC_CSC

SPEX_type type, // mpz, mpq, mpfr, int64, or double

int64_t m, // # of rows

int64_t n, // # of columns

int64_t nzmax, // max # of entries

bool shallow, // if true, matrix is shallow. A->p, A->i, A->j,

// A->x are all returned as NULL and must be set

// by the caller. All A->*_shallow are returned

// as true. Ignored for SPEX_DYNAMIC_CSC

// kind matrix.

bool init, // If true, and the data types are mpz, mpq, or

// mpfr, the entries of A->x are initialized

// (using the proper SPEX_mp*_init function).

// If false, the mpz, mpq, and mpfr arrays are

// allocated but not initialized. Meaningless

// for data types FP64 or INT64. Ignored if kind

// is SPEX_DYNAMIC_CSC or shallow is true.

const SPEX_options *option

) ;

SPEX_matrix_allocate allocates memory space for a m-by-n SPEX_matrix whose kind
(CSC, triplet, dense, or dynamic CSC) and data type (mpz, mpq, mpfr, int64 or fp64) is
specified. On input, the SPEX matrix that A_handle points to is NULL. On output, A_handle
points to a SPEX matrix of specified type, kind and size.

For a CSC, triplet or dense matrix, if shallow is true, all components (A->p, A->i, A->j,
A->x) are returned as NULL, and their shallow flags are all true. The pointers A->p, A->i,
A->j, and/or A->x can then be assigned from arrays in the calling application. If shallow
is false, the appropriate individual arrays are allocated (via SPEX_calloc). The second
boolean parameter init is used if the entries are mpz_t, mpq_t, or mpfr_t. Specifically, if
init is true, the individual entries within A->x.TYPE are initialized using the appropriate
SPEX_mp*_init function. Otherwise, if init is false, the A->x.TYPE array is allocated (via
SPEX_calloc) and left that way. They are not otherwise initialized, and attempting to access
the values of these uninitialized entries will lead to undefined behavior.

For a SPEX_DYNAMIC_CSC matrix, type, shallow and init are ignored (since it only
allows mpz_t entries). Moreover, each column of the returned SPEX_DYNAMIC_CSC matrix
will be allocated as SPEX_vector with zero available entry. Additional reallocation for each
column will be needed.

CHAPTER 4. SPEX UTILITIES 23

4.5.2 SPEX matrix free: free a SPEX matrix

SPEX_info SPEX_matrix_free

(

SPEX_matrix **A_handle, // matrix to free

const SPEX_options *option

) ;

SPEX_matrix_free frees the SPEX_matrix *A. Note that the input of the function is the
pointer to the pointer of a SPEX_matrix structure. This is because this function internally
sets the pointer of a SPEX_matrix to be NULL to prevent potential segmentation fault that
could be caused by double free.

4.5.3 SPEX matrix copy: make a copy of a SPEX matrix with a po-
tentially different matrix-format and data-type

SPEX_info SPEX_matrix_copy

(

SPEX_matrix **C_handle, // matrix to create (never shallow)

// inputs, not modified:

SPEX_kind C_kind, // C->kind: CSC, triplet, dense, or dynamic

SPEX_type C_type, // C->type: mpz_t, mpq_t, mpfr_t, int64_t, or double

const SPEX_matrix *A, // matrix to make a copy of (may be shallow)

const SPEX_options *option

) ;

SPEX_matrix_copy makes a deep copy of a SPEX_matrix *A as a new SPEX_matrix *C,
which can be any of the 16 matrix formats discussed in Section 3.8. That is, the new matrix
C can be exactly the same as A or any other type or kind different than A. On input, the
SPEX matrix that C_handle points to must be NULL and will be ignored, and A is a valid
matrix that can be potentially shallow. On output, C_handle points to the matrix C, which
is a copy of A of kind kind and type type.

Results are undefined for an invalid input matrix A. Though all matrices generated from
any SPEX user-callable functions are valid, they could become invalid when user directly
modifies their component(s). To check the validity of the input matrix, call SPEX_matrix_check
(Section 4.5.5).

4.5.4 SPEX matrix nnz: get the number of entries in a SPEX matrix

SPEX_info SPEX_matrix_nnz // return # of entries in A, or -1 on error

(

int64_t *nnz,

const SPEX_matrix *A, // matrix to query

const SPEX_options *option

) ;

SPEX_matrix_nnz returns an integer, nnz, which is equal to the number of entries in a
SPEX_matrix *A. For details regarding how the number of entries is obtained for different
kinds of matrices, refer to Section 3.8. For any matrix with invalid dimension(s), nnz is
returned as -1.

CHAPTER 4. SPEX UTILITIES 24

4.5.5 SPEX matrix check: check and optionally print a SPEX matrix

SPEX_info SPEX_matrix_check // returns a SPEX status code

(

const SPEX_matrix *A, // matrix to check

const SPEX_options* option // defines the print level

) ;

SPEX_matrix_check checks the validity of a SPEX_matrix *A in any of the 16 matrix
formats discussed in Section 3.8. In addition, it prints the matrix and any error found
with proper print level specified by option->print_level. Specifically, SPEX_matrix_check
prints nothing for print_level=0 (default); or just errors for print_level=1; or errors and
terse output of the matrix for print_level=2; or errors and detailed output of the matrix
for print_level=3. As mentioned, if default settings are desired, option can be input as
NULL.

4.6 SPEX symbolic analysis helper function

4.6.1 SPEX symbolic analysis free: free a symbolic analysis struct

SPEX_info SPEX_symbolic_analysis_free

(

SPEX_symbolic_analysis **S_handle, // Structure to be deleted

const SPEX_options *option

);

SPEX_symbolic_analysis_free frees the memory of the SPEX_symbolic_analysis *S

that S_handle points to. On output, the symbolic analysis S is set to NULL.

4.7 SPEX factorization helper functions

These functions provide several utilities for a SPEX_factorization

4.7.1 SPEX factorization free: Free a SPEX factorization

SPEX_info SPEX_factorization_free

(

SPEX_factorization **F_handle, // Structure to be deleted

const SPEX_options *option

);

SPEX_factorization_free frees the memory of the SPEX_factorization *F that F_handle
points to, and sets F to NULL.

CHAPTER 4. SPEX UTILITIES 25

4.8 Misc Utilty Functions

4.8.1 SPEX version: Return version of the code

SPEX_info SPEX_version

(

int version [3], // SPEX major, minor, and sub version

char date [128] // date of this version

)

SPEX_version returns the library version and date. The version array contains the three
version numbers that are available at compile-time #define’d values: SPEX_VERSION_MAJOR,
SPEX_VERSION_MINOR, and SPEX_VERSION_SUB, in that order. The SPEX_version function
allows the user application to check which version of SPEX it has been linked with. The
three #define’d values allow the user application to know which version of SPEX was used at
compile-time, which might not be the same version that was linked later on. The date is the
string SPEX_DATE, in the form "Mar 31, 2023" for example. The string is null-terminated.

4.8.2 SPEX determine symmetry: Determine if a matrix is symmetric

SPEX_info SPEX_determine_symmetry

(

bool *is_symmetric, // true if symmetric

SPEX_matrix* A, // Input matrix to be checked for symmetry

const SPEX_options* option // Command options

);

SPEX_determine_symmetry checks if A is pattern and numerically symmetric. It first
checks for pattern symmetry. If it is pattern symmetric, it is checked for numerical symmetry.
If A is a symmetric matrix, is_symmetric is returned as true.

4.8.3 SPEX transpose: Transpose a CSC mpz matrix

SPEX_info SPEX_transpose

(

SPEX_matrix **C_handle, // C = A’

SPEX_matrix *A, // Matrix to be transposed

const SPEX_options *option

);

SPEX_transpose sets C = AT . Currently, it is only supported if A is CSC and mpz_t.
Returns SPEX_OK if successful otherwise returns the appropriate error code.

4.9 SPEX gmp: SPEX wrapper functions for GMP/MPFR

SPEX provides a wrapper class for all GMP and MPFR functions used by SPEX. The
wrapper class provides error-handling for out-of-memory conditions that are not handled by
the GMP and MPFR libraries. These wrapper functions are used inside all SPEX functions,
wherever any GMP or MPFR functions are used. These functions may also be called by the
end-user application.

Each wrapped function has the same name as its corresponding GMP/MPFR func-
tion with the added prefix SPEX_. For example, the default GMP function mpz_mul is
changed to SPEX_mpz_mul. Each SPEX GMP/MPFR function returns SPEX_OK if success-
ful or the correct error code if not. The following table gives a brief list of each currently
covered SPEX GMP/MPFR function. Each function is declared in SPEX.h and defined in
SPEX/SPEX_Util/Source/SPEX_gmp.c.

MPFR Function SPEX_MPFR Function Description

n = mpfr_asprintf(&buff, fmt, ...) n = SPEX_mpfr_asprintf(&buff, fmt, ...) Print format to allocated string
mpfr_free_str(buff) SPEX_mpfr_free_str(buff) Free string allocated by MPFR
mpfr_init2(x, s) SPEX_mpfr_init2(x, s) Initialize x with s bits
mpfr_set_prec(x, s) SPEX_mpfr_set_prec(x, s) Set x to contain s bits
mpfr_clear(x) SPEX_mpfr_clear(x) Safely free mpfr_t value
mpfr_set_null(x) SPEX_mpfr_set_null(x) Initialize the (pointer) contents of a mpfr_t value
mpfr_set(x, y, rnd) SPEX_mpfr_set(x, y, rnd) x = y
mpfr_set_d(x, y, rnd) SPEX_mpfr_set_d(x, y, rnd) x = y (double)
mpfr_set_si(x, y, rnd) SPEX_mpfr_set_si(x, y, rnd) x = y (int64_t)
mpfr_set_q(x, y, rnd) SPEX_mpfr_set_q(x, y, rnd) x = y (mpq_t)
mpfr_set_z(x, y, rnd) SPEX_mpfr_set_z(x, y, rnd) x = y (mpz_t)
r = mpfr_get_z(x, y, rnd) SPEX_mpfr_get_z(x, y, rnd) (mpz_t) x = y
mpfr_get_q(x, y) SPEX_mpfr_get_q(x, y, rnd) (mpq_t) x = y
x = mpfr_get_d(y, rnd) SPEX_mpfr_get_d(x, y, rnd) (double) x = y
x = mpfr_get_si(y, rnd) SPEX_mpfr_get_si(x, y, rnd) (int64_t) x = y
mpfr_mul(x, y, z, rnd) SPEX_mpfr_mul(x, y, z, rnd) x = y ∗ z (mpfr_t)
mpfr_mul_d(x, y, z, rnd) SPEX_mpfr_mul_d(x, y, z, rnd) x = y ∗ z (double)
mpfr_div_d(x, y, z, rnd) SPEX_mpfr_div_d(x, y, z, rnd) x = y/z (double)
mpfr_ui_pow_ui(x, y, z, rnd) SPEX_mpfr_ui_pow_ui(x, y, z, rnd) x = yz (uint64_t)
sgn = mpfr_sgn(x) SPEX_mpfr_sgn(sgn, x) sgn = sgn(x)
mpfr_free_cache() SPEX_mpfr_free_cache() Free all caches and pools used by

MPFR internally

CHAPTER 4. SPEX UTILITIES 27

GMP Function SPEX_GMP Function Description

n = gmp_fscanf(fp, fmt, ...) n = SPEX_gmp_fscanf(fp, fmt, ...) Read from file fp
mpz_init(x) SPEX_mpz_init(x) Initialize x
mpz_init2(x, size) SPEX_mpz_init2(x, size) Initialize x to size bits
mpz_clear(x) SPEX_mpz_clear(x) Safely free mpz_t value
mpz_set(x, y) SPEX_mpz_set(x, y) x = y (mpz_t)
mpz_set_null(x) SPEX_mpz_set_null(x) Initialize the (pointer) contents of a mpz_t value
mpz_set_ui(x, y) SPEX_mpz_set_ui(x, y) x = y (uint64_t)
mpz_set_si(x, y) SPEX_mpz_set_si(x, y) x = y (int64_t)
x = mpz_get_d(y) SPEX_mpz_get_d(x, y) (double) x = y
x = mpz_get_si(y) SPEX_mpz_get_si(x, y) (int64_t) x = y
mpz_mul(x, y, z) SPEX_mpz_mul(x, y, z) x = y ∗ z
mpz_mul_si(x, y, z) SPEX_mpz_mul(x, y, z) x = y ∗ z(int64_t)
mpz_sub(x, y, z) SPEX_mpz_sub(x, y, z) x = y − z
mpz_submul(x, y, z) SPEX_mpz_submul(x, y, z) x = x− y ∗ z
mpz_cdiv_qr(q, r, x, y) SPEX_mpz_cdiv_qr(q, r, x, y) q = ceil(x/y), r = x− q ∗ y
mpz_divexact(x, y, z) SPEX_mpz_divexact(x, y, z) x = y/z
gcd = mpz_gcd(x, y) SPEX_mpz_gcd(gcd, x, y) gcd = gcd(x, y)
lcm = mpz_lcm(x, y) SPEX_mpz_lcm(lcm, x, y) lcm = lcm(x, y)
mpz_neg(x, y) SPEX_mpz_neg(x, y) x = −y
mpz_abs(x, y) SPEX_mpz_abs(x, y) x = |y|
r = mpz_cmp(x, y) SPEX_mpz_cmp(r, x, y) r = sgn(x− y)
r = mpz_cmp_ui(x, y) SPEX_mpz_cmp_ui(r, x, y) r = sgn(x− y) (uint64_t)
r = mpz_cmpabs_ui(x, y) SPEX_mpz_cmpabs_ui(r, x, y) r = sgn(|x| − |y|) (uint64_t)
sgn = mpz_sgn(x) SPEX_mpz_sgn(sgn, x) sgn = sgn(x)
size = mpz_sizeinbase(x, base) SPEX_mpz_sizeinbase(size, x, base) size of x in base
mpq_init(x) SPEX_mpq_init(x) Initialize x
mpq_set_null(x) SPEX_mpq_set_null(x) Initialize the (pointer) contents of a mpq_t value
mpq_clear(x) SPEX_mpq_clear(x) Safely free mpq_t value
mpq_set(x, y) SPEX_mpq_set(x, y) x = y
mpq_set_z(x, y) SPEX_mpq_set_z(x, y) x = y (mpz)
mpq_set_d(x, y) SPEX_mpq_set_d(x, y) x = y (double)
mpq_set_ui(x, y, z) SPEX_mpq_set_ui(x, y, z) x = y/z (uint64_t/uint64_t)
mpq_set_si(x, y, z) SPEX_mpq_set_si(x, y, z) x = y/z (int64_t/uint64_t)
mpq_set_num(x, y) SPEX_mpq_set_num(x, y) num(x) = y
mpq_set_den(x, y) SPEX_mpq_set_den(x, y) den(x) = y
x = mpq_get_d(y) SPEX_mpq_get_d(x, y) (double) x = y
mpq_neg(x, y) SPEX_mpq_neg(x, y) x = −y
mpq_abs(x, y) SPEX_mpq_abs(x, y) x = |y|
mpq_add(x, y, z) SPEX_mpq_add(x, y, z) x = y + z
mpq_mul(x, y, z) SPEX_mpq_mul(x, y, z) x = y ∗ z
mpq_div(x, y, z) SPEX_mpq_div(x, y, z) x = y/z
r = mpq_cmp(x, y) SPEX_mpq_cmp(r, x, y) r = sgn(x− y)
r = mpq_cmp_ui(x, n, d) SPEX_mpq_cmp_ui(r, x, n, d) r = sgn(x− n/d) (uint64_t/uint64_t)
sgn = mpq_sgn(x) SPEX_mpq_sgn(sgn, x) sgn = sgn(x)
r = mpq_equal(x, y) SPEX_mpq_equal(r, x, y) r 6= 0 if x = y, r = 0 if x 6= y

If additional GMP and MPFR functions are needed in the end-user application, this
wrapper mechanism can be extended to those functions, which requires user to edit the
source files of the SPEX library, (i.e., both SPEX.h and SPEX_gmp.c). Below are instructions
on how to do this.

Given a GMP function void gmpfunc(TYPEa a, TYPEb b, ...), where TYPEa and TYPEb

can be GMP type data (mpz_t, mpq_t and mpfr_t, for example) or non-GMP type data (int,
double, for example), and they need not to be the same. A wrapper for a new GMP or

CHAPTER 4. SPEX UTILITIES 28

MPFR function can be created by following this outline:

SPEX_info SPEX_gmpfunc

(

TYPEa a,

TYPEb b,

...

)

{

// Start the GMP Wrappter

// uncomment one of the following:

// If this function is not modifying any GMP/MPFR type variable, use

//SPEX_GMP_WRAPPER_START;

// If this function is modifying mpz_t type (say TYPEa = mpz_t), use

//SPEX_GMPZ_WRAPPER_START(a) ;

// If this function is modifying two variables of mpz_t type (say

// TYPEa = mpz_t, TYPEb = mpz_t), use

//SPEX_GMPZ_WRAPPER_START2(a, b) ;

// If this function is modifying mpq_t type (say TYPEa = mpq_t), use

//SPEX_GMPQ_WRAPPER_START(a) ;

// If this function is modifying mpfr_t type (say TYPEa = mpfr_t), use

//SPEX_GMPFR_WRAPPER_START(a) ;

// Call the GMP function

gmpfunc(a,b,...) ;

//Finish the wrapper and return ok if successful.

SPEX_GMP_WRAPPER_FINISH;

return SPEX_OK;

}

CHAPTER 4. SPEX UTILITIES 29

Note that, other than SPEX_mpfr_fprintf, SPEX_gmp_fprintf, SPEX_gmp_printf and
SPEX_gmp_fscanf, all of the wrapped GMP/MPFR functions always return SPEX_info to
the caller. Therefore, for some GMP/MPFR functions that have their own return value.
For example, for int mpq_cmp(const mpq_t a, const mpq_t b), the return value becomes
a parameter of the wrapped function. In general, a GMP/MPFR function in the form
of TYPEr gmpfunc(TYPEa a, TYPEb b, ...), the wrapped function can be constructed as
follows:

SPEX_info SPEX_gmpfunc

(

TYPEr *r, // return value of the GMP/MPFR function

TYPEa a,

TYPEb b,

...

)

{

// Start the GMP Wrappter

//SPEX_GMP_WRAPPER_START;

// Call the GMP function

*r = gmpfunc(a,b,...) ;

//Finish the wrapper and return ok if successful.

SPEX_GMP_WRAPPER_FINISH;

return SPEX_OK;

}

4.10 SPEX Helper Macros

In addition to the functionality described in this section; SPEX offers several helper macros
to increase ease for the end user application. The first two macros are a simple try/catch
mechanism which can be used to wrap functions for error handling. The next two give an
easy interface to access entries (i, j) in a matrix.

4.10.1 SPEX TRY and SPEX CATCH

In a robust application, the return values from SPEX should be checked and properly handled
in the case an error occurs. SPEX is written in C and thus it cannot rely on the try/catch
mechanism of C++. Thus, SPEX_TRY and SPEX_CHECK aim to achieve this goal. We provide
SPEX_TRY and leave SPEX_CATCH to the user to define.

#define SPEX_TRY(method) \

{ \

SPEX_info info = (method) ; \

if (info != SPEX_OK) \

{ \

SPEX_CATCH (info) ; \

CHAPTER 4. SPEX UTILITIES 30

} \

}

An example definition of a SPEX_CATCH is below. This example assumes that the user
needs to free a matrix and return an error code.

#define SPEX_CATCH(info) \

{ \

SPEX_matrix_free (&A, NULL) ; \

fprintf (stderr, "SPEX failed: info %d, \

line %d, file %s\n", \

info, __LINE__, __FILE__) ; \

return (info) ; \

}

With this mechanism, the user can safely wrap any SPEX function which returns SPEX_info
with SPEX_TRY. For example, one can wrap.

4.10.2 SPEX 1D: Access matrix entries with 1D linear indexing.

#define SPEX_1D(A,k,type) ((A)->x.type [k])

This allows the kth entry of a matrix stored in any kind (CSC, triplet, dense) of any
type (mpq, mpz, int64, double, int) to be returned. For example, to return the nth entry of
a CSC matrix with mpz_t data types, one would use SPEX_1D(A, n, mpz).

4.10.3 SPEX 2D: Access dense matrix with 2D indexing.

#define SPEX_2D(A,i,j,type) SPEX_1D (A, (i)+(j)*((A)->m), type)

This allows the (i, j) entry of a dense matrix of any type (mpq, mpz, int64, double, int).
For example to return the (m,n) entry of a dense matrix with mpq_t data types, one would
use SPEX_2D(A, m, n, mpq).

CHAPTER 5

SPEX LU

5.1 Overview

SPEX LU is a software package designed to exactly solve unsymmetric sparse linear systems,
Ax = b, where A ∈ Qn×n, b ∈ Qn×r, and x ∈ Qn×r. This package performs a left-looking,
roundoff-error-free (REF) LU factorization PAQ = LDU , where L and U are integer, D is
diagonal, and P and Q are row and column permutations, respectively. Note that, in order
to solve a linear system, the matrix D is never explicitly computed nor needed; thus this
package uses only the matrices L and U . The theory associated with this code is the Sparse
Left-looking Integer-Preserving (SLIP) LU factorization [7]. Aside from solving sparse linear
systems exactly, one of the key goals of this package is to provide a framework for other
solvers to benchmark the reliability and stability of their linear solvers, as our final solution
vector x is guaranteed to be exact. SPEX LU is written in ANSI C and is accompanied by
a MATLAB interface.

Version 1.1.2 of SPEX Left LU was published in ACM TOMS as: Lourenco, C., Chen,
J., Moreno-Centeno, E., & Davis, T. A. (2022). Algorithm 1021: SPEX Left LU, Exactly
Solving Sparse Linear Systems via a Sparse Left-looking Integer-preserving LU Factorization.
ACM Transactions on Mathematical Software (TOMS), 48(2), 1-23.

5.2 Licensing

Copyright: The copyright of this software is held by Christopher Lourenco, Jinhao Chen,
Erick Moreno-Centeno, and Timothy A. Davis.

Contact Info: Contact Chris Lourenco, chrisjlourenco@gmail.com, or Tim Davis, tim-
davis@aldenmath.com, davis@tamu.edu, or DrTimothyAldenDavis@gmail.com

License: This software package is dual licensed under the GNU General Public License
version 2 or the GNU Lesser General Public License version 3. Details of this license are in
SPEX/License/license.txt. For alternative licenses, please contact the authors.

31

mailto:chrisjlourenco@gmail.com
mailto:timdavis@aldenmath.com
mailto:timdavis@aldenmath.com
mailto:davis@tamu.edu
DrTimothyAldenDavis@gmail.com

CHAPTER 5. SPEX LU 32

5.3 Factorization and Solve Routines

To factorize and solve a linear system Ax = b via the SPEX Left LU factorization, a user
must call analyze, factorize, and solve. The functions are explained below:

5.3.1 SPEX lu analyze: symbolic analysis for LU factorization

SPEX_info SPEX_lu_analyze

(

SPEX_symbolic_analysis** S_handle, // symbolic analysis including

// column perm. and nnz of L and U

const SPEX_matrix *A, // Input matrix

const SPEX_options *option // Control parameters, if NULL, use default

) ;

SPEX_lu_analyze performs symbolic analysis for the REF LU factorization. On input,
the SPEX_symbolic_analysis *S that S_handle points to is undefined; A must be a square
matrix of SPEX_CSC kind; and option contains any command parameters (default settings
are used if option is input as NULL). On output, S contains the column preordering of A and
estimates on the number of nonzeros in L and U . The type of ordering can be chosen with
option->order. It is suggested that COLAMD is used.

5.3.2 SPEX lu factorize: Compute the LU factorization of A

SPEX_info SPEX_lu_factorize

(

// output:

SPEX_factorization **F_handle, // LU factorization

// input:

const SPEX_matrix *A, // matrix to be factored

const SPEX_symbolic_analysis *S, // symbolic analysis

const SPEX_options* option // command options

) ;

SPEX_lu_factorize performs the left-looking LU factorization. On input, the
SPEX_factorization *F that F_handle points to is undefined; A must be a square ma-
trix of SPEX_CSC SPEX_MPZ format; S is obtained from SPEX_lu_analyze that contains the
column ordering of A; and option contains any command parameters (default settings are
used if option is input as NULL). On output, A, S, and option are unmodified and F contains
the REF LU factorization of A.

If any error occurs, F is returned as NULL, and an appropriate error code is returned.

CHAPTER 5. SPEX LU 33

5.3.3 SPEX lu solve: solve the linear system

SPEX_info SPEX_lu_solve // solves the linear system LD^(-1)U x = b

(

// Output

SPEX_matrix **x_handle, // rational solution to the system

// input/output:

SPEX_factorization *F, // The LU factorization.

// input:

const SPEX_matrix *b, // right hand side vector

const SPEX_options* option // Command options

) ;

SPEX_lu_solve obtains the solution of mpq_t type to the linear system Ax = b upon a
successful factorization. This function may be called after a successful return from
SPEX_lu_factorize.

On input, SPEX_matrix *x that x_handle points to is undefined; F must be a valid
LU factorization; and b must be a dense mpz_t matrix with same number of rows as F->L;
Default settings are used if option is input as NULL. Upon successful completion, the function
returns SPEX_OK, and x contains the solution of mpq_t type with dense format to the linear
system Ax = b. In case of failure, x is returned as NULL and the appropriate error code is
returned.

5.3.4 SPEX lu backslash: solve a linear system

SPEX_info SPEX_lu_backslash

(

// Output

SPEX_matrix **X_handle, // Final solution vector

// Input

SPEX_type type, // Type of output desired. Must be

// SPEX_FP64, SPEX_MPFR, or SPEX_MPQ

const SPEX_matrix* A, // Input matrix of SPEX_CSC SPEX_MPZ

const SPEX_matrix* b, // Right hand side vector(s). Must be

// SPEX_DENSE SPEX_MPZ

const SPEX_options* option // Command options (Default if NULL)

) ;

SPEX_lu_backslash solves the linear system Ax = b and returns the solution as a dense
matrix of mpq_t, mpfr_t or double entries. This function performs symbolic analysis, fac-
torization, and solving all in one line. It can be thought of as an exact version of MATLAB
sparse backslash.

On input, SPEX_matrix *x that X_handle points to is undefined. type must be one of:
SPEX_MPQ, SPEX_MPFR or SPEX_FP64 to specify the data type of the solution entries. A should
be a square CSC mpz_t matrix while b should be a dense mpz_t matrix. In addition, A->m
should be equal to b->m. Default settings are used if option is input as NULL.

Upon successful completion, the function returns SPEX_OK, and x contains the solution
of data type specified by type to the linear system Ax = b. In case of failure, x is returned
as NULL and the appropriate error code is returned.

CHAPTER 6

SPEX CHOLESKY

6.1 Overview

SPEX Cholesky is a software package designed to exactly solve symmetric positive definite
linear systems, Ax = b where A ∈ Qn×n, b ∈ Qn×r, and x ∈ Qn×r. This package performs
either a left-looking or up-looking sparse roundoff-error-free Cholesky factorization PAP T =
LDLT where L is integer, and P is the symmetric permutation.

Note that, in order to solve a linear system, the matrix D is never explicitly computed
nor needed; thus this package uses only the matrix L. The theory associated with this code
can be found at [8]. SPEX Cholesky is written in ANSI C and is accompanied by MATLAB
and Python interfaces.

6.2 Licensing

Copyright: The copyright of this software is held by Christopher Lourenco, Lorena Mejia
Domenzain, Jinhao Chen, Erick Moreno-Centeno, and Timothy A. Davis.

Contact Info: Contact Chris Lourenco, chrisjlourenco@gmail.com, or Tim Davis, tim-
davis@aldenmath.com, davis@tamu.edu, or DrTimothyAldenDavis@gmail.com

License: This software package is dual licensed under the GNU General Public License
version 2 or the GNU Lesser General Public License version 3. Details of this license are in
SPEX/License/license.txt. For alternative licenses, please contact the authors.

6.3 Factorization and Solve Routines

To factorize and solve a linear system Ax = b via the SPEX Cholesky factorization, a user
must call analyze, factorize, and solve. The functions are explained below:

34

mailto:chrisjlourenco@gmail.com
mailto:timdavis@aldenmath.com
mailto:timdavis@aldenmath.com
mailto:davis@tamu.edu
DrTimothyAldenDavis@gmail.com

CHAPTER 6. SPEX CHOLESKY 35

6.3.1 SPEX cholesky analyze: symbolic analysis for Cholesky fac-
torization

SPEX_info SPEX_cholesky_analyze

(

// Output

SPEX_symbolic_analysis** S_handle, // Symbolic analysis data structure

// Input

const SPEX_matrix* A, // Input matrix of SPEX_CSC

const SPEX_options* option // Command options (Default if NULL)

);

SPEX_cholesky_analyze performs symbolic analysis for the REF Cholesky factorization.
On input, the SPEX_symbolic_analysis *S that S_handle points to is undefined; A must
be an SPD matrix of SPEX_CSC kind; and option contains any command parameters (default
settings are used if option is input as NULL). On output, S contains the row and column
ordering of A, the exact number of nonzeros in L, the elimination tree of A, and the column
pointers of L. The type of ordering can be chosen with option->order. It is suggested that
AMD is used.

6.3.2 SPEX cholesky factorize: Compute the Cholesky factoriza-
tion of A

SPEX_info SPEX_cholesky_factorize

(

// Output

SPEX_factorization **F_handle, // Cholesky factorization struct

//Input

const SPEX_matrix* A, // CSC MPZ Matrix to be factored

const SPEX_symbolic_analysis* S,// Symbolic analysis struct from

// SPEX_Chol_analyze.

const SPEX_options* option // command options, option->chol_type can be

// either CHOL_UP (default) or CHOL_LEFT.

);

SPEX_cholesky_factorize performs the REF Cholesky factorization via either the up-
looking (default) or left-looking manner (specified by option->chol_type). On input, the
SPEX_factorization *F that F_handle points to is undefined; A must be an SPD matrix
of SPEX_CSC SPEX_MPZ format; S is obtained from SPEX_Chol_analyze that contains the
column/row ordering of A; and option contains any command parameters (default settings
are used if option is input as NULL). On output, A, S, and option are unmodified and F

contains the REF Cholesky factorization of A.
If error occurs, F is returned as NULL, and an appropriate error code is returned.

CHAPTER 6. SPEX CHOLESKY 36

6.3.3 SPEX cholesky solve: solve the linear system

SPEX_info SPEX_cholesky_solve // solves the linear system LD^(-1)L^T x = b

(

// Output

SPEX_matrix** x_handle, // rational solution to the system.

// input/output:

SPEX_factorization *F, // The non-updatable Cholesky factorization.

// input:

const SPEX_matrix* b, // Right hand side vector

const SPEX_options* option // command options

);

SPEX_cholesky_solve obtains the solution of mpq_t type to the linear system Ax = b
upon a successful factorization. This function may be called after a successful return from
SPEX_Chol_factorize.

On input, SPEX_matrix *x that x_handle points to is undefined; F must be a valid
Cholesky factorization and b must be dense mpz_t with same number of rows as F->L. Default
settings are used if option is input as NULL. Upon successful completion, the function returns
SPEX_OK, and x contains the solution of mpq_t type with dense format to the linear system
Ax = b. In case of failure, x is returned as NULL and the appropriate error code is returned.

6.3.4 SPEX cholesky backslash: solve a linear system

SPEX_info SPEX_cholesky_backslash

(

// Output

SPEX_matrix** x_handle, // Final solution vector(s)

// Input

SPEX_type type, // Type of output desired. Must be

// SPEX_FP64, SPEX_MPFR, or SPEX_MPQ

const SPEX_matrix* A, // Input matrix of SPEX_CSC SPEX_MPZ

const SPEX_matrix* b, // Right hand side vector(s). Must be

// SPEX_DENSE SPEX_MPZ

const SPEX_options* option // Command options (Default if NULL)

);

SPEX_cholesky_backslash solves the linear system Ax = b and returns the solution
as a dense matrix of mpq_t, mpfr_t or double entries. This function performs symbolic
analysis, factorization, and solving all in one line. It can be thought of as an exact version of
MATLAB sparse backslash for SPD matrices. If A is not SPD, this function will not work
and LU factorization must be used.

On input, SPEX_matrix *x that x_handle points to is undefined. type must be one of:
SPEX_MPQ, SPEX_MPFR or SPEX_FP64 to specify the data type of the solution entries. A should
be a square CSC mpz_t matrix while b should be a dense mpz_t matrix. In addition, A->m
should be equal to b->m. Default settings are used if option is input as NULL.

Upon successful completion, the function returns SPEX_OK, and x contains the solution
of data type specified by type to the linear system Ax = b. In case of failure, x is returned
as NULL and the appropriate error code is returned.

CHAPTER 7

SPEX BACKSLASH

7.1 Overview

SPEX Backslash is a software package designed to exactly solve sparse linear systems, Ax = b
where A ∈ Qn×n, b ∈ Qn×r, and x ∈ Qn×r. This package determines the appropraite
factorization to apply based on the structure of the input matrix.

SPEX Backslash is written in ANSI C and is accompanied by MATLAB and Python
interfaces.

7.2 Licensing

Copyright: The copyright of this software is held by Christopher Lourenco, Lorena Mejia
Domenzain, Jinhao Chen, Erick Moreno-Centeno, and Timothy A. Davis.

Contact Info: Contact Chris Lourenco, chrisjlourenco@gmail.com, or Tim Davis, tim-
davis@aldenmath.com, davis@tamu.edu, or DrTimothyAldenDavis@gmail.com

License: This software package is dual licensed under the GNU General Public License
version 2 or the GNU Lesser General Public License version 3. Details of this license are in
SPEX/License/license.txt. For alternative licenses, please contact the authors.

37

mailto:chrisjlourenco@gmail.com
mailto:timdavis@aldenmath.com
mailto:timdavis@aldenmath.com
mailto:davis@tamu.edu
DrTimothyAldenDavis@gmail.com

CHAPTER 7. SPEX BACKSLASH 38

7.3 SPEX backslash: Exactly solve sparse linear systems

SPEX_info SPEX_backslash

(

// Output

SPEX_matrix **X_handle, // On output: Final solution vector

// On input: undefined

// Input

SPEX_type type, // Type of output desired. Must be

// SPEX_FP64, SPEX_MPFR, or SPEX_MPQ

const SPEX_matrix* A, // Input matrix of SPEX_CSC SPEX_MPZ

const SPEX_matrix* b, // Right hand side vector(s). Must be

// SPEX_DENSE SPEX_MPZ

const SPEX_options* option // Command options (Default if NULL)

);

SPEX_backslash exactly solves the linear system Ax = b using the appropriate factor-
ization. On input, SPEX_matrix *x that X_handle points to is undefined. type must be one
of: SPEX_MPQ, SPEX_MPFR or SPEX_FP64 to specify the data type of the solution entries. A

should be a square CSC mpz_t matrix while b should be a dense mpz_t matrix. In addition,
A->m should be equal to b->m. Default settings are used if option is input as NULL.

This function first checks the symmetry of A. If A is numerically and pattern symmetric,
SPEX Cholesky factorization is attempted. If the Cholesky factorization is successful, it is
used to solve Ax = b. Otherwise, LU factorization is used.

Upon successful completion, the function returns SPEX_OK, and x contains the solution
of data type specified by type to the linear system Ax = b. If an error occurs, x is freed and
the appropriate error code is returned.

CHAPTER 8

USING SPEX IN MATLAB

The MATLAB interface of SPEX can be installed by navigating to the MATLAB folder and
typing spex_mex_install. Doing so installs SPEX and allows the use of 3 mex functions
spex_lu_backslash.m, spex_cholesky_backslash.m, and spex_backslash.m. First, this
section describes the option struct in Section 8.1. The use of the factorization is discussed
in Section 8.2. The SPEX/SPEX/MATLAB folder must be in your MATLAB path.

8.1 Optional parameter settings

The SPEX MATLAB interface includes an option struct as in optional input parameter that
modifies behavior. If this parameter is not provided, default parameter settings are used.
The elements of the option struct are listed below. Any fields not present in the struct are
treated as their default values.

� option.pivot: This parameter is a string that controls the pivoting scheme used.
When selecting a pivot entry in a given column, the factorization method uses one
of the following pivoting strategies. Note that importantly this is only valid for LU
factorization:

– ’smallest’: (default) smallest pivot,

– ’diagonal’: diagonal pivot if possible, otherwise smallest pivot,

– ’first’: first nonzero pivot in each column,

– ’tol smallest’: diagonal pivot with a tolerance (option.tol) for the smallest
pivot,

– ’tol largest’: diagonal pivot with a tolerance (option.tol) for the largest
pivot,

– ’largest’: largest pivot.

� option.order: This parameter is a string controls the fill-reducing column preordering
used. This is valid for either LU or Cholesky as Backslash will choose its own ordering.

– ’none’: no column ordering; factorize A as-is.

– ’colamd’: COLAMD ordering (default for LU)

39

CHAPTER 8. USING SPEX IN MATLAB 40

– ’amd’: AMD ordering (default for Cholesky)

� option.tol: This parameter determines the tolerance used if one of the threshold
pivoting schemes is chosen. The default value is 1 and this parameter can take any
value in the range (0, 1]. This is only valid for LU factorization.

� option.solution: a string determining how x is to be returned:

– ’double’: x is converted to a 64-bit floating-point approximate solution. This is
the default.

– ’vpa’: x is returned as a vpa array with option.digits digits (default is given
by the MATLAB digits function). The result may be inexact, if an entry in
x cannot be represented in the specified number of digits. To convert this x to
double, use x=double(x).

– ’char’: x is returned as a cell array of strings, where x {i} =

’numerator/denominator’ and both numerator and denominator are arbitrary-
length strings of decimal digits. The result is always exact, although x cannot
be directly used in MATLAB for numerical calculations. It can be inspected or
analyzed using MATLAB string manipulation. To convert x to vpa, use x=vpa(x).
To convert x to double, use x=double(vpa(x)).

� option.digits: the number of decimal digits to use for x, if option.solution is
’vpa’. Must be in range 2 to 229.

� option.print: display the inputs and outputs (0: nothing (default), 1: just errors, 2:
terse, 3: all).

8.2 SPEX m files for use

8.2.1 spex lu backslash.m

The spex_lu_backslash.m function solves the linear system Ax = b where A ∈ Rn×n,
x ∈ Rn×m and b ∈ Rn×m. The final solution vector(s) obtained via this function are exact
prior to their conversion to double precision.

This function expects as input a sparse matrix A and dense set of right hand side vectors
b. Optionally, option struct can be passed in. Currently, there are 2 ways to use this
function outlined below:

� x = spex_lu_backslash(A,b) returns the solution to Ax = b using default settings.
The solution vectors are more accurate than the solution obtained via x = A \ b. The
solution x is returned as a MATLAB double matrix.

� x = spex_lu_backslash(A,b,option) returns the solution to Ax = b using non-
default settings from the option struct.

CHAPTER 8. USING SPEX IN MATLAB 41

If the result x is held as a MATLAB double matrix, in conventional floating-point rep-
resentation (double), it is guaranteed to be exact only if the exact solution can be held in
double without modification.

The solution x may also be returned as a MATLAB vpa array, or as a cell array of strings;
See Section 8.1 for details.

8.2.2 spex cholesky backslash.m

The spex_cholesky_backslash.m function solves the linear system Ax = b where A ∈ Rn×n,
x ∈ Rn×m and b ∈ Rn×m. The final solution vector(s) obtained via this function are exact
prior to their conversion to double precision. Note that A must be SPD otherwise this
function returns an error.

This function expects as input a sparse matrix A and dense set of right hand side vectors
b. Optionally, option struct can be passed in. Currently, there are 2 ways to use this
function outlined below:

� x = spex_cholesky_backslash(A,b) returns the solution to Ax = b using default set-
tings. The solution vectors are more accurate than the solution obtained via x = A \ b.
The solution x is returned as a MATLAB double matrix.

� x = spex_cholesky_backslash(A,b,option) returns the solution to Ax = b using
non-default settings from the option struct.

If the result x is held as a MATLAB double matrix, in conventional floating-point rep-
resentation (double), it is guaranteed to be exact only if the exact solution can be held in
double without modification.

The solution x may also be returned as a MATLAB vpa array, or as a cell array of strings;
See Section 8.1 for details.

8.2.3 spex backslash.m

The spex_backslash.m function solves the linear system Ax = b where A ∈ Rn×n, x ∈ Rn×m

and b ∈ Rn×m. The final solution vector(s) obtained via this function are exact prior to their
conversion to double precision.

This function expects as input a sparse matrix A and dense set of right hand side vectors
b. Optionally, option struct can be passed in. If A is numerically symmetric, it attempts a
Cholesky factorization. If the Cholesky fails or if the matrix is not numerically symmetric
it performs an LU factorization. Currently, there are 2 ways to use this function outlined
below:

� x = spex_backslash(A,b) returns the solution to Ax = b using default settings. The
solution vectors are more accurate than the solution obtained via x = A \ b. The
solution x is returned as a MATLAB double matrix.

� x = spex_backslash(A,b,option) returns the solution to Ax = b using non-default
settings from the option struct.

CHAPTER 8. USING SPEX IN MATLAB 42

If the result x is held as a MATLAB double matrix, in conventional floating-point rep-
resentation (double), it is guaranteed to be exact only if the exact solution can be held in
double without modification.

The solution x may also be returned as a MATLAB vpa array, or as a cell array of strings;
See Section 8.1 for details.

8.2.4 spex mex demo.m

This function provides a demo of the SPEX library. It shows the usage for an exact solution
as well as error checking and tuning the parameters. The typical output of this function
may be seen in the provided MATLAB/html folder.

CHAPTER 9

USING SPEX IN PYTHON

The Python interface of SPEX can be installed by navigating to the Python folder and typing
make. Doing so allows the use of the Python SPEX library. First, this section describes the
Option object in Section 9.1. The use of SPEX to solve Ax = b is discussed in Section 9.2.

9.1 Optional parameter settings

The SPEX Python interface includes an object as an optional input parameter that modifies
behaviour. If this is not provided, default parameter settings are used.

� output: This parameter is a string that determines how the solution is to be returned

– ’double’: x is converted to a 64-bit floating-point approximate solution. This is
the default.

– ’string’: x is returned as an array of strings.

� ordering: This parameter is a string that controls the fill-reducing column preordering
used. By default it is initialized as None, if this option is chosen, the solve functions
use the appropriate default ordering (AMD for Cholesky and COLAMD for Left LU).

– ’none’: no column ordering; factorize A as-is.

– ’colamd’: COLAMD ordering

– ’amd’: AMD ordering

9.2 Functions in Python SPEX

9.2.1 lu backslash

The lu_backslash function solves the linear system Ax = b whereA ∈ Rn×n, x ∈ Rn×1 and
b ∈ Rn×1. The final solution vector(s) obtained via this function are exact prior to their
conversion to double precision.

The LU function expects as input a scipy sparse matrix A and a right hand side vector b.
Optionally, option object can be passed in. Currently, there are 2 ways to use this function
outlined below:

43

CHAPTER 9. USING SPEX IN PYTHON 44

� x=SPEX.lu_backslash(A,b) returns the solution to Ax = b using default settings.
The solution x is returned as a numpy double array.

� x=SPEX.lu_backslash(A,b,options) returns the solution to Ax = b using non-
default settings from the option object.

If the result x is held as a numpu double array, in conventional floating-point representation
(double), it is guaranteed to be exact only if the exact solution can be held in double without
modification.

The solution x may also be returned as a list of strings; See Section 9.1 for details.

9.2.2 cholesky backslash

The cholesky_backslash function solves the linear system Ax = b whereA ∈ Rn×n, x ∈ Rn×1

and b ∈ Rn×1. The final solution vector(s) obtained via this function are exact prior to their
conversion to double precision. Note that A must be symmetric positive definite.

The Cholesky function expects as input a scipy sparse matrix A and a right hand side
vector b. Optionally, option object can be passed in. Currently, there are 2 ways to use this
function outlined below:

� x=SPEX.cholesky_backslash(A,b) returns the solution to Ax = b using default set-
tings. The solution x is returned as a numpy double array.

� x=SPEX.cholesky_backslash(A,b,options) returns the solution to Ax = b using
non-default settings from the option object.

If the result x is held as a numpu double array, in conventional floating-point representation
(double), it is guaranteed to be exact only if the exact solution can be held in double without
modification.

The solution x may also be returned as a list of strings; See Section 9.1 for details.

9.2.3 backslash

The backslash function solves the linear system Ax = b whereA ∈ Rn×n, x ∈ Rn×1 and
b ∈ Rn×1. The final solution vector(s) obtained via this function are exact prior to their
conversion to double precision. Note that A must be symmetric positive definite.

The Backslash function expects as input a scipy sparse matrix A and a right hand side
vector b. Optionally, option object can be passed in. If A is numerically symmetric, it
attempts a Cholesky factorization. If the Cholesky fails or if the matrix is not numerically
symmetric it performs an LU factorization. Currently, there are 2 ways to use this function
outlined below:

� x=SPEX.backslash(A,b) returns the solution to Ax = b using default settings. The
solution x is returned as a numpy double array.

� x=SPEX.backslash(A,b,options) returns the solution to Ax = b using non-default
settings from the option object.

CHAPTER 9. USING SPEX IN PYTHON 45

If the result x is held as a numpu double array, in conventional floating-point representation
(double), it is guaranteed to be exact only if the exact solution can be held in double without
modification.

The solution x may also be returned as a list of strings; See Section 9.1 for details.

9.3 Demo

There is a file that provides a demo of the SPEX library in Python demo.py. It shows the
usage for an exact solution as well as tuning the parameters.

BIBLIOGRAPHY

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree or-
dering algorithm, SIAM Journal on Matrix Analysis and Applications, 17 (1996), pp. 886–
905.

[2] , Algorithm 837: AMD, an approximate minimum degree ordering algorithm, ACM
Transactions on Mathematical Software (TOMS), 30 (2004), pp. 381–388.

[3] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng, Algorithm 836: CO-
LAMD, a column approximate minimum degree ordering algorithm, ACM Transactions
on Mathematical Software (TOMS), 30 (2004), pp. 377–380.

[4] , A column approximate minimum degree ordering algorithm, ACM Transactions on
Mathematical Software (TOMS), 30 (2004), pp. 353–376.

[5] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, MPFR:
a multiple-precision binary floating-point library with correct rounding, ACM Transac-
tions on Mathematical Software (TOMS), 33 (2007), p. 13.

[6] T. Granlund et al., GNU MP 6.0 Multiple Precision Arithmetic Library, Samurai
Media Limited, 2015.

[7] C. Lourenco, A. R. Escobedo, E. Moreno-Centeno, and T. A. Davis, Exact
solution of sparse linear systems via left-looking roundoff-error-free LU factorization in
time proportional to arithmetic work, SIAM Journal on Matrix Analysis and Applications,
40 (2019), pp. 609–638.

[8] C. J. Lourenco and E. Moreno-Centeno, Exactly solving sparse rational linear
systems via roundoff-error-free cholesky factorizations, SIAM Journal on Matrix Analysis
and Applications, 43 (2022), pp. 439–463.

46

	SPEX Overview
	Setting up SPEX
	Licensing
	Installation

	General SPEX Data Structures and Macros
	SPEX_VERSION: the software package version
	SPEX_info: status codes returned by SPEX
	SPEX_pivot: enum for pivoting schemes
	SPEX_preorder
	SPEX_factorization_algorithm
	SPEX_options structure
	SPEX_vector
	The SPEX_matrix structure
	SPEX_kind: enum for matrix formats
	SPEX_type: enum for data types of matrix entries
	SPEX_matrix structure

	The SPEX_symbolic_analysis struct
	SPEX_factorization_kind: enum for kind of factorization
	SPEX_symbolic_analysis Data Structure

	The SPEX_factorization data structure

	SPEX Utilities
	Overview
	Managing the SPEX environment
	SPEX_initialize: initialize the working environment
	SPEX_initialize_expert: initialize environment (expert version)
	SPEX_finalize: free the working environment
	SPEX_thread_initialize: initialize working environment for a single thread
	SPEX_thread_finalize: finalize the working environment for a single thread

	Memory Management
	SPEX_calloc: allocate initialized memory
	SPEX_malloc: allocate uninitialized memory
	SPEX_realloc: resize allocated memory
	SPEX_free: free allocated memory

	SPEX_options helper function
	SPEX_create_default_options: create default SPEX_options structure

	SPEX_matrix helper functions
	SPEX_matrix_allocate: allocate an m-by-n SPEX_matrix
	SPEX_matrix_free: free a SPEX_matrix
	SPEX_matrix_copy: make a copy of a SPEX_matrix with a potentially different matrix-format and data-type
	SPEX_matrix_nnz: get the number of entries in a SPEX_matrix
	SPEX_matrix_check: check and optionally print a SPEX_matrix

	SPEX_symbolic_analysis helper function
	SPEX_symbolic_analysis_free: free a symbolic analysis struct

	SPEX_factorization helper functions
	SPEX_factorization_free: Free a SPEX factorization

	Misc Utilty Functions
	SPEX_version: Return version of the code
	SPEX_determine_symmetry: Determine if a matrix is symmetric
	SPEX_transpose: Transpose a CSC mpz matrix

	SPEX_gmp: SPEX wrapper functions for GMP/MPFR
	SPEX Helper Macros
	SPEX_TRY and SPEX_CATCH
	SPEX_1D: Access matrix entries with 1D linear indexing.
	SPEX_2D: Access dense matrix with 2D indexing.

	SPEX LU
	Overview
	Licensing
	Factorization and Solve Routines
	SPEX_lu_analyze: symbolic analysis for LU factorization
	SPEX_lu_factorize: Compute the LU factorization of A
	SPEX_lu_solve: solve the linear system
	SPEX_lu_backslash: solve a linear system

	SPEX Cholesky
	Overview
	Licensing
	Factorization and Solve Routines
	SPEX_cholesky_analyze: symbolic analysis for Cholesky factorization
	SPEX_cholesky_factorize: Compute the Cholesky factorization of A
	SPEX_cholesky_solve: solve the linear system
	SPEX_cholesky_backslash: solve a linear system

	SPEX Backslash
	Overview
	Licensing
	SPEX_backslash: Exactly solve sparse linear systems

	Using SPEX in MATLAB
	Optional parameter settings
	SPEX m files for use
	spex_lu_backslash.m
	spex_cholesky_backslash.m
	spex_backslash.m
	spex_mex_demo.m

	Using SPEX in Python
	Optional parameter settings
	Functions in Python SPEX
	lu_backslash
	cholesky_backslash
	backslash

	Demo

