
StandardFF

( Version 1.0 )

September 2023

Frank Lübeck

Frank Lübeck Email: Frank.Luebeck@Math.RWTH-Aachen.De
Homepage: https://www.math.rwth-aachen.de/~Frank.Luebeck

mailto://Frank.Luebeck@Math.RWTH-Aachen.De
https://www.math.rwth-aachen.de/~Frank.Luebeck


StandardFF 2

Copyright
© 2020- by Frank Lübeck

This package may be distributed under the terms and conditions of the GNU Public License Version 3 or
later, see https://www.gnu.org/licenses.

Colophon

This package implements the constructions in the paper [Lüb23], that is it provides relatively easy to reproduce
generators of finite fields and compatible generators of their multiplicative cyclic subgroups.

https://www.gnu.org/licenses


Contents

1 Introduction to StandardFF package 4
1.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Standard finite fields 5
2.1 Definition of standard finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Creating standard finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Elements in standard finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Embeddings of standard finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Standard generators of cyclic groups 12
3.1 Generators of multiplicative groups . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Utilities from the StandardFF package 14
4.1 A simple bijection on a range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Finding linear combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Irreducibility over finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Connection to Conway polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Discrete logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.6 Minimal polynomials of sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7 Brauer characters with respect to different lifts . . . . . . . . . . . . . . . . . . . . . 18
4.8 Known factorizations of multiplicative group orders . . . . . . . . . . . . . . . . . . 20
4.9 Some loops for StandardFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.10 Undocumented features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

References 23

Index 24

3



Chapter 1

Introduction to StandardFF package

1.1 Aim

This GAP-package provides a reference implementation for the standardized constructions of finite
fields and generators of cyclic subgroups defined in the article [Lüb23].

The main functions are FF (2.2.1) to construct the finite field of order pn and
StandardCyclicGenerator (3.1.1) to construct a standardized generator of the multiplicative sub-
group of a given order m in such a finite field. The condition on m is that it divides pn−1 and that GAP
can factorize this number. (The factorization of the multiplicative group order pn −1 is not needed.)

Each field of order pn comes with a natural Fp-basis which is a subset of the natural basis of each
extension field of order pnm. The union of these bases is a basis of the algebraic closure of Fp. Each
element of the algebraic closure can be identified by its degree d over its prime field and a number
0 ≤ k ≤ pd −1 (see SteinitzPair (2.4.1)) or, equivalently, by a certain multivariate polynomial (see
AsPolynomial (2.3.1)). This can be useful for transferring finite field elements between programs
which use the same construction of finite fields.

The standardized generators of multiplicative cyclic groups have a nice compatibility property:
There is a unique group isomorphism from the multiplicative group F̄×

p of the algebraic closure of the
finite field with p elements into the group of complex roots of unity whose order is not divisible by p
which maps a standard generator of order m to exp(2πi/m). In particular, the minimal polynomials
of standard generators of order pn − 1 for all n fulfill the same compatibility conditions as Conway
polynomials (see ConwayPolynomial (Reference: ConwayPolynomial)). This can provide an al-
ternative for the lifts used by BrauerCharacterValue (Reference: BrauerCharacterValue) which
works for a much wider set of finite field elements where Conway polynomials are very difficult or
impossible to compute.

A translation of existing Brauer character tables relative to the lift defined by Conway poly-
nomials to the lift defined by our StandardCyclicGenerator (3.1.1) can be computed with
StandardValuesBrauerCharacter (4.7.1), provided the relevant Conway polynomials are known.

The article [Lüb23] also defines a standardized embedding of GAPs finite fields constructed with
GF (Reference: GF for field size) into the algebraic closure of the prime field Fp constructed here.
This is available with StandardIsomorphismGF (2.4.5).

4



Chapter 2

Standard finite fields

2.1 Definition of standard finite fields

In [Lüb23] we define for each prime p and positive integer n a standardized model for the finite field
with pn elements. This is done by defining for each prime r polynomials of degree r which define
recursively r-power extensions of the prime field GF(p) and by combining these for all r|n in a
unique tower of extensions of finite fields where the successive degrees are non-decreasing primes.

Relative to this tower of prime degree extensions the resulting field comes with a natural basis over
the prime field which we call the tower basis. This construction has the nice property that whenever
n|m then the tower basis of the field with pn elements is a subset of the tower basis of the field with
pm elements. (See [Lüb23] for more details.)

Expressing elements as linear combination of the tower basis we define a bijection from the ele-
ments in the field of order pn to the range [0..p^n-1]; we call the number assigned to an element its
Steinitz number.

Via this construction each element in the algebraic closure of GF(p) can be identified by its degree
d over the prime field and its Steinitz number in the field with pd elements (we call this a Steinitz pair).

Since arithmetic in simple algebraic extensions is more efficient than in iterated extensions we
construct the fields recursively as simple extensions, and including information about the base change
between the tower basis and the basis given by the powers of the generator.

2.2 Creating standard finite fields

2.2.1 Constructing standard finite fields

▷ StandardFiniteField(p, n) (function)

▷ FF(p, n) (function)

Returns: a finite field
▷ StandardPrimeDegreePolynomial(p, r, k) (function)

Returns: a polynomial of degree r
The arguments are a prime p and a positive integer n . The function FF (or its synomym

StandardFiniteField) is one of the main functions of this package. It returns a standardized
field F of order pn . It is implemented as a simple extension over the prime field GF(p) using
AlgebraicExtension (Reference: AlgebraicExtension)

5



StandardFF 6

The polynomials used for the prime degree extensions are accessible with
StandardPrimeDegreePolynomial. For arguments p, r, k it returns the irreducible poly-
nomial of degree r for the k-th iterated extension of degree r over the prime field. The polynomial
is in the variable xr_k and the coefficients can contain variables xr_l with l < k.

Example
gap> Fp := FF(2, 1);
GF(2)
gap> F := FF(2, 100);
FF(2, 100)
gap> Size(F);
1267650600228229401496703205376
gap> p := NextPrimeInt(10^50);
100000000000000000000000000000000000000000000000151
gap> K := FF(p, 60);
FF(100000000000000000000000000000000000000000000000151, 60)
gap> LogInt(Size(K), 10);
3000
gap> F := FF(13, 9*5);
FF(13, 45)
gap> StandardPrimeDegreePolynomial(13, 3, 1);
x3_1^3+Z(13)^7
gap> StandardPrimeDegreePolynomial(13, 3, 2);
x3_2^3-x3_1
gap> StandardPrimeDegreePolynomial(13, 5, 1);
x5_1^5+Z(13)^4*x5_1^2+Z(13)^4*x5_1-Z(13)^0

2.2.2 Filters for standard fields

▷ IsStandardPrimeField(F) (property)

▷ IsStandardFiniteField(F) (property)

▷ IsStandardFiniteFieldElement(x) (Category)

Returns: true or false
These properties identify the finite fields constructed with FF (2.2.1). Prime fields constructed as

FF(p, 1) have the property IsStandardPrimeField. They are identical with GF(p), but calling
them via FF (2.2.1) we store some additional information in these objects.

The fields constructed by FF(p,k) with k > 1 have the property IsStandardFiniteField. Ele-
ments x in such a field are in IsStandardFiniteFieldElement.

Example
gap> F := FF(19,1);
GF(19)
gap> IsStandardFiniteField(F);
false
gap> IsStandardPrimeField(F);
true
gap> F := FF(23,48);
FF(23, 48)
gap> IsStandardFiniteField(F);
true
gap> IsStandardFiniteFieldElement(Random(F));
true



StandardFF 7

2.3 Elements in standard finite fields

For fields in IsStandardFiniteField (2.2.2) we provide functions to map elements to their linear
combination of the tower basis, to their Steinitz number and Steinitz pair, or to their representing
multivariate polynomial with respect to all prime degree extensions, and vice versa.

2.3.1 Maps for elements of standard finite fields

▷ AsVector(a) (method)

Returns: a vector over prime field of F
▷ ElementVector(F, v) (method)

Returns: an element in F
▷ AsPolynomial(a) (method)

Returns: a polynomial in variables of the tower of F
▷ ElementPolynomial(F, pol) (method)

Returns: an element in F
▷ SteinitzNumber(a) (method)

Returns: an integer
▷ ElementSteinitzNumber(F, nr) (method)

Returns: an element in F
Here, F is always a standard finite field (IsStandardFiniteField (2.2.2)) and a is an element

of F .
AsVector (2.3.1) returns the coefficient vector of a with respect to the tower basis of F . And vice

versa ElementVector returns the element of F with the given coefficient vector.
Similarly, AsPolynomial (2.3.1) returns the (reduced) polynomial in the indeterminates defining

the tower of F . Here, for each prime r dividing the degree of the field the polynomial defining the k-th
extension of degree r over the prime field is written in the variable xr_k. And ElementPolynomial
returns the element of F represented by the given polynomial (which does not need to be reduced).

Finally, SteinitzNumber returns the Steinitz number of a . And ElementSteinitzNumber re-
turns the element with given Steinitz number.

Example
gap> F := FF(17, 12);
FF(17, 12)
gap> a := PrimitiveElement(F);; a := a^11-3*a^5+a;
ZZ(17,12,[0,1,0,0,0,14,0,0,0,0,0,1])
gap> v := AsVector(a);
< immutable compressed vector length 12 over GF(17) >
gap> a = ElementVector(F, v);
true
gap> ExtRepOfObj(a) = v * TowerBasis(F);
true
gap> pol := AsPolynomial(a);;
gap> ElementPolynomial(F, pol^10) = a^10;
true
gap> nr := SteinitzNumber(a);
506020624175737
gap> a = ElementSteinitzNumber(F, nr);
true
gap> ## primitive element of FF(17, 6)



StandardFF 8

gap> y := ElementSteinitzNumber(F, 17^5);
ZZ(17,12,[0,0,1,0,0,0,12,0,0,0,5,0])
gap> y = ValuePol([0,0,1,0,0,0,12,0,0,0,5,0], PrimitiveElement(F));
true
gap> x6 := Indeterminate(FF(17,1), "x6");;
gap> MinimalPolynomial(FF(17,1), y, x6) = DefiningPolynomial(FF(17,6));
true

2.4 Embeddings of standard finite fields

The tower basis of a standard finite field F contains the tower basis of any subfield. This yields a
construction of canonical embeddings of all subfields of F into F. And one can easily read off the
smallest subfield containing an element in F from its coefficient vector with respect to the tower basis.
Each element of the algebraic closure of FF(p,1) is uniquely determined by its degree d and its
Steinitz number in FF(p, d).

2.4.1 SteinitzPair

▷ SteinitzPair(a) (operation)

Returns: a pair of integers
▷ SteinitzPair(K, snr) (method)

Returns: a pair of integers
▷ SteinitzNumber(K, pair) (method)

Returns: an integer
The argument a must be an element in IsStandardFiniteFieldElement (2.2.2). Then

SteinitzPair returns a pair [d, nr] where d is the degree of a over the prime field FF(p, 1)
and nr is the Steinitz number of a considered as element of FF(p, d).

In the second variant a standard finite field K is given and the Steinitz number of an element in K
and the result is the Steinitz pair of the corresponding element.

The inverse map is provided by a method for SteinitzNumber (2.4.1) which gets a standard finite
field and a Steinitz pair.

Example
gap> F := FF(7, 360);
FF(7, 360)
gap> t := ElementSteinitzNumber(F, 7^10);; # prim. elt of FF(7,12)
gap> sp := SteinitzPair(t);
[ 12, 117649 ]
gap> H := FF(7, 12);
FF(7, 12)
gap> b := ElementSteinitzNumber(H, 117649);
ZZ(7,12,[0,1,0,0,0,0,0,0,0,0,0,0])
gap> Value(MinimalPolynomial(FF(7,1), t), b);
ZZ(7,12,[0])
gap> nr := SteinitzNumber(t);
282475249
gap> nr = SteinitzNumber(F, sp);
true
gap> sp = SteinitzPair(F, nr);
true



StandardFF 9

2.4.2 Embedding (for standard finite fields)

▷ Embedding(H, F) (method)

Returns: a field homomorphism
Let F and H be standard finite fields and H be isomorphic to a subfield of F . This function returns

the canonical embedding of H into F .
Example

gap> F := FF(7, 360);
FF(7, 360)
gap> H := FF(7, 45);
FF(7, 45)
gap> emb := Embedding(H, F);
MappingByFunction( FF(7, 45), FF(7, 360), function( x ) ... end )
gap> y := PrimitiveElement(H);
ZZ(7,45,[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
gap> x := y^emb;;
gap> ((y+One(H))^12345)^emb = (x+One(F))^12345;
true
gap> PreImageElm(emb, x^5);
ZZ(7,45,[0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
gap> PreImageElm(emb, PrimitiveElement(F));
fail
gap> SteinitzNumber(y);
13841287201
gap> SteinitzNumber(x) mod 10^50;
72890819326613454654477690085519113574118965817601
gap> SteinitzPair(x);
[ 45, 13841287201 ]

2.4.3 ZZ

▷ ZZ(p, n, coeffs) (operation)

▷ ZZ(p, n, ffe) (operation)

Returns: an element in FF(p, n)
For a prime p , positive integer n and an integer list coeffs this function returns the element

in FF(p, n) represented by the polynomial with coefficient list coeffs modulo p . Elements in
standard finite fields are also printed in this way.

For convenience the third argument ffe can be in ‘GF(p,n)‘ (see GF (Reference: GF for char-
acteristic and degree) and IsFFE (Reference: IsFFE)). This returns the image of ffe under the
StandardIsomorphismGF (2.4.5) of FF(p,n).

Example
gap> x := ZZ(19,5,[1,2,3,4,5]);
ZZ(19,5,[1,2,3,4,5])
gap> a := PrimitiveElement(FF(19,5));
ZZ(19,5,[0,1,0,0,0])
gap> x = [1,2,3,4,5]*[a^0,a^1,a^2,a^3,a^4];
true
gap> One(FF(19,5)); # elements in prime field abbreviated
ZZ(19,5,[1])



StandardFF 10

gap> One(FF(19,5)) = ZZ(19,5,[1]);
true
gap> ZZ(19,5,Z(19^5)); # zero of ConwayPolynomial(19,5)
ZZ(19,5,[12,5,3,4,5])

2.4.4 MoveToSmallestStandardField

▷ MoveToSmallestStandardField(x) (function)

▷ \+(x, y) (method)

▷ \*(x, y) (method)

▷ \-(x, y) (method)

▷ \/(x, y) (method)

Returns: a field element
Here x and y must be elements in standard finite fields (of the same characteristic).
Then MoveToSmallestStandardField returns the element x as element of the smallest possible

degree extension over the prime field.
The arithmetic operations are even possible when x and y are not represented as elements in the

same field. In this case the elements are first mapped to the smallest field containing both.
Example

gap> F := FF(1009,4);
FF(1009, 4)
gap> G := FF(1009,6);
FF(1009, 6)
gap> x := (PrimitiveElement(F)+One(F))^13;
ZZ(1009,4,[556,124,281,122])
gap> y := (PrimitiveElement(G)+One(G))^5;
ZZ(1009,6,[1,5,10,10,5,1])
gap> x+y;
ZZ(1009,12,[557,0,936,713,332,0,462,0,843,191,797,0])
gap> x-y;
ZZ(1009,12,[555,0,73,713,677,0,97,0,166,191,212,0])
gap> x*y;
ZZ(1009,12,[253,289,700,311,109,851,345,408,813,657,147,887])
gap> x/y;
ZZ(1009,12,[690,599,714,648,184,217,563,130,251,675,73,782])
gap> z := -y + (x+y);
ZZ(1009,12,[556,0,0,713,0,0,784,0,0,191,0,0])
gap> SteinitzPair(z);
[ 4, 125450261067 ]
gap> x=z;
true
gap> MoveToSmallestStandardField(z);
ZZ(1009,4,[556,124,281,122])

2.4.5 StandardIsomorphismGF

▷ StandardIsomorphismGF(F) (function)

Returns: a field isomorphism



StandardFF 11

The argument F must be a standard finite field, say FF(p,n) such that GAP can generate GF(p,n).
This function returns the field isomorphism from GF(p,n) to F , which sends Z(p,n) to the element
with Steinitz pair computed by SteinitzPairConwayGenerator (4.4.3).

Example
gap> F := FF(13,21);
FF(13, 21)
gap> iso := StandardIsomorphismGF(F);
MappingByFunction( GF(13^21), FF(13, 21), function( x ) ... end )
gap> K := GF(13,21);
GF(13^21)
gap> x := Random(K);;
gap> l := [1,2,3,4,5];;
gap> ValuePol(l, x)^iso = ValuePol(l, x^iso);
true
gap> y := ElementSteinitzNumber(F, SteinitzPairConwayGenerator(F)[2]);;
gap> PreImageElm(iso, y);
z



Chapter 3

Standard generators of cyclic groups

3.1 Generators of multiplicative groups

The multiplicative group of each finite field is cyclic and so for each divisor m of its order there is a
unique subgroup of order m.

In [Lüb23] we define standardized generators xm of these cyclic groups in the standard finite fields
described in chapter 2 which fulfill the following compatibility condition: If k|m then xm/k

m = xk.
The condition that xm can be computed is that m can be factorized. (If we do not know the prime

divisors of m then we cannot show that a given element has order m.) Note that this means that we
can compute xm in FF(p,n) when m|(pn − 1) and we know the prime divisors of m, even when the
factorization of (pn −1) is not known.

In the case that the factorization of m = pn − 1 is known the corresponding xm is a standardized
primitive root of FF(p,n) that can be computed.

Let l|n and set m = pn − 1 and k = pl − 1. Then xm and xk are the standard primitive roots of
FF(p,n) and FF(p,l) (considered as subfield of FF(p,n)), respectively. The compatibity condition
says that xm/k

m = xk. This shows that the minimal polynomials of xm and xk over the prime field ful-
fill the same compatibility conditions as Conway polynomials (see ConwayPolynomial (Reference:
ConwayPolynomial).

3.1.1 StandardCyclicGenerator

▷ StandardCyclicGenerator(F[, m]) (operation)

▷ StandardPrimitiveRoot(F) (attribute)

Returns: an element of F or fail
The argument F must be a standard finite field (see FF (2.2.1)) and m a positive integer. If m

does not divide |F |−1 the function returns fail. Otherwise a standardized element xm of order m is
returned, as described above.

The argument m is optional, if not given its default value is |F | − 1. In this case xm can also be
computed with the attribute StandardPrimitiveRoot.

Example
gap> F := FF(67, 18); # Conway polynomial was hard to compute
FF(67, 18)
gap> x := PrimitiveElement(F);
ZZ(67,18,[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
gap> xprim := StandardPrimitiveRoot(F);;

12



StandardFF 13

gap> k := (Size(F)-1) / Order(x);
6853662165340556076084083497526
gap> xm := StandardCyclicGenerator(F, Order(x));;
gap> xm = xprim^k;
true
gap> F := FF(23, 201); # factorization of (|F| - 1) not known
FF(23, 201)
gap> m:=79*269*67939;
1443771689
gap> (Size(F)-1) mod m;
0
gap> OrderMod(23, m);
201
gap> xm := StandardCyclicGenerator(F, m);;
gap> IsOne(xm^m);
true
gap> ForAll(Factors(m), r-> not IsOne(xm^(m/r)));
true
gap> F := FF(7,48);
FF(7, 48)
gap> K := FF(7,12);
FF(7, 12)
gap> emb := Embedding(K, F);;
gap> x := StandardPrimitiveRoot(F);;
gap> y := StandardPrimitiveRoot(K);;
gap> y^emb = x^((Size(F)-1)/(Size(K)-1));
true
gap> v := Indeterminate(FF(7,1), "v");
v
gap> px := MinimalPolynomial(FF(7,1), x, v);;
gap> py := MinimalPolynomial(FF(7,1), y, v);;
gap> Value(py, PowerMod(v, (Size(F)-1)/(Size(K)-1), px)) mod px;
0*Z(7)



Chapter 4

Utilities from the StandardFF package

4.1 A simple bijection on a range

4.1.1 StandardAffineShift

▷ StandardAffineShift(q, i) (function)

Returns: an integer in range [0..q-1]
This function returns (mi +a) mod q , where m is the largest integer prime to q and ≤ 4q/5, and

a is the largest integer ≤ 2q/3.
For fixed q this function provides a bijection on the range [0..q-1].

Example
gap> List([0..10], i-> StandardAffineShift(11, i));
[ 7, 4, 1, 9, 6, 3, 0, 8, 5, 2, 10 ]

4.2 Finding linear combinations

4.2.1 FindLinearCombination

▷ FindLinearCombination(v, start) (function)

Returns: a pair [serec, lk] of a record and vector or fail
Repeated calls of this function build up a semiechelon basis from the given arguments v which

must be row vectors. To initialize a computation the function is called with a start vector v and
false as second argument. The return value is a pair [serec, lk] where serec is a record which
collects data from the previous calls of the function and lk is a row vector which expresses v as linear
combination of the vectors from previous calls, or fail if there is no such linear combination. In the
latter case the data in the record is extended with the linearly independent vector v.

In the following example we show how to compute a divisor of the minimal polynomial of a
matrix.

Example
gap> mat := Product(GeneratorsOfGroup(Sp(30,5)));;
gap> x := Indeterminate(GF(5), "x");;
gap> v := (mat^0)[1];;
gap> b := FindLinearCombination(v, false);;
gap> repeat
> v := v*mat;
> l := FindLinearCombination(v, b[1]);

14



StandardFF 15

> until IsList(l[2]);
gap> mp := Value(UnivariatePolynomial(GF(5),
> Concatenation(-l[2], [One(GF(5))])), x);
x^30+Z(5)^3*x^29+Z(5)^3*x+Z(5)^0
gap> # equal to minimal polynomial because of degree
gap> mp = Value(MinimalPolynomial(GF(5), mat), x);
true

4.3 Irreducibility over finite fields

4.3.1 IsIrreducibleCoeffList

▷ IsIrreducibleCoeffList(coeffs, q) (function)

Returns: true or false
The argument coeffs must be a list of elements in a finite field with q elements (or some subfield

of it).
The function checks if the univariate polynomial f with coefficient list coeffs (ending with the

leading coefficient) is irreducible over the field with q elements.
The algorithm computes the greatest common divisor of f with Xqi −X for i = 1,2, . . . up to half

of the degree of f .
Example

gap> cs := Z(3)^0 * ConwayPol(3,8);
[ Z(3), Z(3), Z(3), 0*Z(3), Z(3)^0, Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
gap> IsIrreducibleCoeffList(cs, 3);
true
gap> F := FF(17,4);; x := PrimitiveElement(F);;
gap> cs := [x, x+x^0, 0*x, x^0];
[ ZZ(17,4,[0,1,0,0]), ZZ(17,4,[1,1,0,0]), ZZ(17,4,[0]), ZZ(17,4,[1]) ]
gap> while not IsIrreducibleCoeffList(cs, 17^4) do
> cs[1] := cs[1] + One(F);
> od;
gap> cs;
[ ZZ(17,4,[8,1,0,0]), ZZ(17,4,[1,1,0,0]), ZZ(17,4,[0]), ZZ(17,4,[1]) ]

4.4 Connection to Conway polynomials

4.4.1 FindConjugateZeroes

▷ FindConjugateZeroes(K, cpol, qq) (function)

Returns: a list of field elements
The arguments must be a finite field K , a polynomial cpol over K (or its coefficient list) and

the order qq of a subfield of K . The polynomial must have coeffcients in the subfield with qq
elements, must be irreducible over this subfield and split into linear factors over K . The function
FindConjugateZeroes returns the list of zeroes of cpol in K .

Example
gap> K := GF(67,18);
GF(67^18)
gap> F := FF(67,18);
FF(67, 18)



StandardFF 16

gap> p1 := DefiningPolynomial(K);;
gap> p2 := DefiningPolynomial(F);;
gap> lK := FindConjugateZeroes(K, p2, 67);;
gap> lF := FindConjugateZeroes(F, p1, 67);;
gap> Minimum(List(lF, SteinitzNumber));
12274789318154414216760893584069

4.4.2 ZeroesConway

▷ ZeroesConway(F) (function)

Returns: a list of field elements
Here, F must be a standard finite field, say of degree n over the prime field with p elements. This

function returns the same as FindConjugateZeroes(F, One(F)*ConwayPol(p, n), p) (using a
specific implementation).

Example
gap> F := FF(23,29);
FF(23, 29)
gap> l := Set(FindConjugateZeroes(F, One(F)*ConwayPol(23,29), 23));;
gap> l = Set(ZeroesConway(F));
true

4.4.3 SteinitzPairConwayGenerator

▷ SteinitzPairConwayGenerator(F) (function)

Returns: a pair of integers
For a standard finite field F of order q for which a Conway polynomial (see ConwayPolynomial

(Reference: ConwayPolynomial)) is known this function returns the SteinitzPair (2.4.1) for the
element of F corresponding to Z(q) (which is by definition the zero of the Conway polynomial in F
with the smallest Steinitz number which is compatible with the choice in all proper subfields).

This is used to construct the StandardIsomorphismGF (2.4.5) for F .
Example

gap> F := FF(23,18);
FF(23, 18)
gap> st := SteinitzPairConwayGenerator(F);
[ 18, 1362020736983803830549380 ]
gap> st9 := SteinitzPairConwayGenerator(FF(23,9));
[ 9, 206098743447 ]
gap> st6 := SteinitzPairConwayGenerator(FF(23,6));
[ 6, 45400540 ]
gap> z := ElementSteinitzNumber(F, st[2]);;
gap> z9 := ElementSteinitzNumber(F, SteinitzNumber(F, st9));;
gap> z6 := ElementSteinitzNumber(F, SteinitzNumber(F, st6));;
gap> e9 := (Size(F)-1)/(23^9-1);
1801152661464
gap> e6 := (Size(F)-1)/(23^6-1);
21914624580056211
gap> z9 = z^e9;
true
gap> z6 = z^e6;
true



StandardFF 17

gap> l := Filtered(ZeroesConway(F), x-> x^e9 = z9 and x^e6 = z6);;
gap> List(l, SteinitzNumber);
[ 1362020736983803830549380 ]

4.5 Discrete logarithms

4.5.1 DLog

▷ DLog(base, x[, m]) (function)

Returns: an integer
The argument base must be a multiplicative element and x must lie in the cyclic group generated

by base . The third argument m must be the order of base or its factorization. If m is not given, it is
computed first. This function returns the discrete logarithm, that is an integer e such that base e = x .

If m is prime then Shanks’ algorithm is used (which needs O(
√
m) space and time). Otherwise let

m = rl and e = a+br with 0 ≤ a < r. Then a = DLog(base l,x l,r) and b = DLog(base r,x/base a, l).
This function is used for a method of LogFFE (Reference: LogFFE).

Example
gap> F := FF(67, 12);
FF(67, 12)
gap> st := SteinitzPairConwayGenerator(F);
[ 12, 5118698034368952035290 ]
gap> z := ElementSteinitzNumber(F, st[2]);;
gap> x := StandardPrimitiveRoot(F);;
gap> DLog(z, x, Size(F)-1);
231901568073107448223
gap> K := GF(67,12);
GF(67^12)
gap> zz := Z(67^12);
z
gap> LogFFE(zz^2+1, zz);
1667375214152688471247

4.6 Minimal polynomials of sequences

4.6.1 InvModCoeffs

▷ InvModCoeffs(fcoeffs, gcoeffs) (operation)

Returns: a list of fail
The arguments fcoeffs and gcoeffs are coeffient lists of two polynomials f and g. This op-

eration returns the coefficient list of the inverse f−1 modulo g, if f and g are coprime, and fail
otherwise.

The default method computes the inverse by the extended Euclidean algorithm.
Example

gap> f := Z(13)^0*[ 1, 10, 1, 11, 0, 1 ];;
gap> g := Z(13)^0*[ 5, 12, 5, 12, 2, 0, 2 ];;
gap> InvModCoeffs(f, g);
fail
gap> GcdCoeffs(f, g);
[ Z(13)^0, 0*Z(13), Z(13)^0 ]



StandardFF 18

gap> f[1]:=f[1]+1;;
gap> finv := InvModCoeffs(f, g);
[ Z(13)^9, Z(13)^10, Z(13)^10, Z(13)^8, Z(13)^5, Z(13)^6 ]
gap> pr := ProductCoeffs(finv, f);;
gap> ReduceCoeffs(pr, g);; ShrinkRowVector(pr);; pr;
[ Z(13)^0 ]

4.6.2 BerlekampMassey

▷ BerlekampMassey(u) (function)

Returns: a list of field elements
The argument u is a list of elements in a field F . This function implements the Berlekamp-Massey

algorithm which returns the shortest sequence c of elements in F such that for each i > l, the length of
c, we have u[i] = ∑

l
j=1 u [i− j]c[ j].

Example
gap> x := Indeterminate(GF(23), "x");;
gap> f := x^5 + Z(23)^16*x + Z(23)^12;;
gap> u := List([1..50], i-> Value(x^i mod f, 0));;
gap> c := BerlekampMassey(u);;
gap> ForAll([6..50], i-> u[i] = Sum([1..5], j-> u[i-j]*c[j]));
true
gap> -c;
[ 0*Z(23), 0*Z(23), 0*Z(23), Z(23)^16, Z(23)^12 ]

4.6.3 MinimalPolynomialByBerlekampMassey

▷ MinimalPolynomialByBerlekampMassey(x) (function)

▷ MinimalPolynomialByBerlekampMasseyShoup(x) (function)

Returns: the minimal polynomial of x
Here x must be an element of an algebraic extension field F/K. (K must be the

LeftActingDomain (Reference: LeftActingDomain) of F). This function computes the minimal
polynomial of x over K by applying the Berlekamp-Massey algorithm to the list of traces of x i.

The second variant uses the algorithm by Shoup in [Sho99].
Example

gap> x := Indeterminate(GF(23), "x");;
gap> f := x^5 + Z(23)^16*x + Z(23)^12;;
gap> F := AlgebraicExtension(GF(23), f);;
gap> mp := MinimalPolynomialByBerlekampMassey(PrimitiveElement(F));;
gap> Value(mp, x) = f;
true
gap> mp = MinimalPolynomialByBerlekampMasseyShoup(PrimitiveElement(F));
true

4.7 Brauer characters with respect to different lifts

Let G be a finite group, g ∈ G, and ρ : G → GL(d, pn)be a representation over a finite field. The Brauer
character value χ(g) of ρ at g is defined as the sum of the eigenvalues of ρ(g) in the algebraic closure
of Fp lifted to complex roots of unity.



StandardFF 19

The lift used by BrauerCharacterValue (Reference: BrauerCharacterValue) and in the com-
putation of many Brauer character tables (available through the CTblLib package) is defined by Con-
way polynomials (see ConwayPolynomial (Reference: ConwayPolynomial)): They define the prim-
itive root Z(q) in GF(q) which is mapped to exp(2πi/(q−1)) (that is E(q-1) in GAP).

Another lift is defined by the function StandardCyclicGenerator (3.1.1) provided by this pack-
age. Here, StandardCyclicGenerator(F, m) is mapped to exp(2πi/m) (that is E(m) in GAP).

The following function translates between these two lifts.

4.7.1 StandardValuesBrauerCharacter

▷ StandardValuesBrauerCharacter(tab, bch) (function)

Returns: a Brauer character
▷ IsGaloisInvariant(tab, bch) (function)

Returns: true or false
The argument tab must be a Brauer character table for which the Brauer characters are defined

with respect to the lift given by Conway polynomials. And bch must be an irreducible Brauer charac-
ter of this table.

The function StandardValuesBrauerCharacter recomputes the values corresponding to the
lift given by StandardCyclicGenerator (3.1.1), provided that the Conway polynomials for com-
puting the Frobenius character values of bch are available. If Conway polynomials are missing the
corresponding character values are substituted by fail. If the result does not contain fail it is a
class function which is Galois conjugate to bch (see GaloisCyc (Reference: GaloisCyc for a class
function)).

The utility IsGaloisInvariant returns true if all Galois conjugates of bch are Brauer charac-
ters in tab . If this is the case then different lifts will permute the Galois conjugates and all of them
are Brauer characters with respect to any lift.

WARNING: The result of this function may not be a valid Brauer character for the table tab (that
is an integer linear combination of irreducible Brauer characters in tab ). For a proper handling of
several lifts the data structure of Brauer character tables needs to be extended (it must refer to the
lift), and then the result of this function should return a Brauer character of another table that refers to
another lift.

Example
gap> tab := BrauerTable("M", 19);
BrauerTable( "M", 19 )
gap> # cannot translate some values to different lift
gap> fail in AsList(StandardValuesBrauerCharacter(tab, Irr(tab)[16]));
true
gap> # but table contains the irreducible Brauer characters for any lift
gap> ForAll(Irr(tab), bch-> IsGaloisInvariant(tab, bch));
true
gap> tab := BrauerTable("A18", 3);
BrauerTable( "A18", 3 )
gap> # here different lifts lead to different Brauer character tables
gap> bch := Irr(tab)[38];;
gap> IsGaloisInvariant(tab, bch);
false
gap> new := StandardValuesBrauerCharacter(tab, bch);;
gap> fail in AsList(new);
false



StandardFF 20

gap> Position(Irr(tab), new);
fail

The inverse of a lift is used to reduce character values in characteristic 0 modulo a prime
p. Choosing a lift is equivalent to choosing a p-modular system. GAP has the function
FrobeniusCharacterValue (Reference: FrobeniusCharacterValue) which computes this reduc-
tion with respect to the lift defined by Conway polynomials.

Here is the corresponding function with respect to the lift constructed in this package.

4.7.2 Frobenius character values

▷ SmallestDegreeFrobeniusCharacterValue(cyc, p) (function)

Returns: a positive integer or fail
▷ StandardFrobeniusCharacterValue(cyc, F) (function)

Returns: an element of F or fail
The argument cyc must be a cyclotomic whose conductor and denominator are not divisible by

the prime integer p or the characteristic of the standard finite field F .
The order of the multiplicative group of F must be divisible by the conductor of cyc .
Then StandardFrobeniusCharacterValue returns the image of cyc in F under the homomor-

phism which maps the root of unity E(n) to the StandardCyclicGenerator (3.1.1) of order n in F .
If the conditions are not fulfilled the function returns fail.

The function SmallestDegreeFrobeniusCharacterValue returns the smallest degree of a field
over the prime field of order p containing the image of cyc .

Example
gap> SmallestDegreeFrobeniusCharacterValue(E(13), 19);
12
gap> F := FF(19,12);
FF(19, 12)
gap> x := StandardFrobeniusCharacterValue(E(13),F);;
gap> x^13;
ZZ(19,12,[1])
gap> x = StandardCyclicGenerator(F, 13);
true
gap> cc := (E(13)+1/3)^4;;
gap> xx := StandardFrobeniusCharacterValue(cc, F);;
gap> xx = StandardFrobeniusCharacterValue(E(13)+1/3, F)^4;
true

4.8 Known factorizations of multiplicative group orders

4.8.1 CANFACT

▷ CANFACT (global variable)

This variable contains a list where for each prime p < 10000 the entry CANFACT[p] holds a list of
integers i such that the number pi−1 (the order of the multiplicative group of the finite field FF(p,i))
can be factored by GAP in a short time. This is based on the enormous efforts to find factors of
numbers of this form, see [Cro].



StandardFF 21

For p < 10 the range of considered exponents is 2 ≤ i ≤ 2000, for 10 < p < 100 it is 2 ≤ i ≤ 500,
and for 100 < p < 10000 it is 2 ≤ i ≤ 100.

These data describe (in May 2022) 112968 pairs p, i such that
StandardPrimitiveRoot(FF(p,i)) can be computed in reasonable time. Only for 10858
of these cases GAP knows or can easily compute the corresponding Conway polynomial (see
ConwayPolynomial (Reference: ConwayPolynomial)).

The current content of CANFACT was generated after updating the data in the FactInt package
concerning factors of numbers of the form an ±1. If you want to use that list you should also update
your GAP installation with:

Example
FetchMoreFactors(

"https://maths-people.anu.edu.au/~brent/ftp/factors/factors.gz",
false);

FetchMoreFactors(
"http://myfactorcollection.mooo.com:8090/brentdata/May31_2022/factors.gz",
true);

4.9 Some loops for StandardFF

4.9.1 Computing all fields in various ranges

▷ AllPrimeDegreePolynomials(p, bound) (function)

▷ AllFF(p, bound) (function)

▷ AllPrimitiveRoots(p, bound) (function)

▷ AllPrimitiveRootsCANFACT() (function)

▷ AllFieldsWithConwayPolynomial(["ConwayGen"][,] ["MiPo"]) (function)

These function compute all fields in some range, sometimes with further data. All functions return
a list with some timings and print a log-file in the current directory.

AllPrimeDegreePolynomials computes all irreducible polynomials of prime degree needed for
the construction of all finite fields of order p i, 1 ≤ i ≤ bound . This is the most time consuming part
in the construction of the fields.

AllFF computes all FF(p,i) for 1 ≤ i ≤ bound . When the previous function was called before
for the same range, this function spends most of its time by computing the minimal polynomials of
the standardized primitive elements of FF(p,i).

AllPrimitiveRoots computes the standardized primitive roots in FF(p,i) for 1 ≤ i ≤ bound .
The most time consuming cases are when a large prime divisor r of pi −1 already divides p j −1 for
some j < i (but then r divides i/ j). Cases where GAP cannot factorize pi−1 (that is i is not contained
in CANFACT[p]) are skipped.

AllPrimitiveRootsCANFACT does the same as the previous function for all pairs p, i stored in
CANFACT (4.8.1).

AllFieldsWithConwayPolynomial computes all FF(p,i) for the cases where GAP knows
the precomputed ConwayPolynomial(p,i). With the optional argument "ConwayGen the func-
tion computes for all fields the SteinitzPairConwayGenerator (4.4.3) and writes it into a file
SteinitzPairConway. With the optional argument "MiPo" the function also computes the minimal
polynomials of the StandardPrimitiveRoot (3.1.1) and writes it to a file MiPoPrimitiveRoots
(these polynomials have the same compatibility properties as Conway polynomials).



StandardFF 22

4.10 Undocumented features

We mention some features of this package which may be temporary, vanish or changed.
A directory ntl contains some simple standalone programs which use the library NTL [Sho].

There is a function StandardIrreducibleCoeffListNTL(K, d, a) which can be used instead
of StandardIrreducibleCoeffListNTL(K, d, a) when K is a prime field. This gives a good
speedup for not too small d, say d > 500.



References

[Cro] J. Crombie. Factor collection an ± 1. http://myfactorcollection.mooo.com:8090/.
20

[Lüb23] F. Lübeck. Standard generators of finite fields and their cyclic subgroups. J. Symbolic
Comput., 117:51--67, 2023. Similar to arXiv 2107.02257. 2, 4, 5, 12

[Sho] V. Shoup. Ntl: A library for doing number theory. https://libntl.org/. 22

[Sho99] V. Shoup. Efficient computation of minimal polynomials in algebraic extensions of finite
fields. In Proceedings of the 1999 International Symposium on Symbolic and Algebraic
Computation (Vancouver, BC), page 53--58. ACM, New York, 1999. 18

23

http://myfactorcollection.mooo.com:8090/
https://libntl.org/


Index

\*
for standard finite field elements, 10

\+
for standard finite field elements, 10

\/
for standard finite field elements, 10

\-
for standard finite field elements, 10

AllFF, 21
AllFieldsWithConwayPolynomial, 21
AllPrimeDegreePolynomials, 21
AllPrimitiveRoots, 21
AllPrimitiveRootsCANFACT, 21
AsPolynomial

for elements in standard finite fields, 7
AsVector

for elements in standard finite fields, 7

BerlekampMassey, 18

CANFACT, 20

DLog, 17

ElementPolynomial, 7
ElementSteinitzNumber, 7
ElementVector, 7
Embedding

for standard finite fields, 9

FF, 5
FindConjugateZeroes, 15
FindLinearCombination, 14

InvModCoeffs, 17
IsGaloisInvariant, 19
IsIrreducibleCoeffList, 15
IsStandardFiniteField, 6
IsStandardFiniteFieldElement, 6
IsStandardPrimeField, 6

MinimalPolynomialByBerlekampMassey, 18
MinimalPolynomialByBerlekampMassey-

Shoup, 18
MoveToSmallestStandardField, 10

SmallestDegreeFrobeniusCharacterValue,
20

StandardAffineShift, 14
StandardCyclicGenerator, 12
StandardFiniteField, 5
StandardFrobeniusCharacterValue, 20
StandardIsomorphismGF, 10
StandardPrimeDegreePolynomial, 5
StandardPrimitiveRoot, 12
StandardValuesBrauerCharacter, 19
SteinitzNumber, 7

for Steinitz pair, 8
SteinitzPair, 8

for Steinitz number, 8
SteinitzPairConwayGenerator, 16

ZeroesConway, 16
ZZ, 9

for IsFFE, 9

24


	Introduction to StandardFF package
	Aim

	Standard finite fields
	Definition of standard finite fields
	Creating standard finite fields
	Elements in standard finite fields
	Embeddings of standard finite fields

	Standard generators of cyclic groups
	Generators of multiplicative groups

	Utilities from the StandardFF package
	A simple bijection on a range
	Finding linear combinations
	Irreducibility over finite fields
	Connection to Conway polynomials
	Discrete logarithms
	Minimal polynomials of sequences
	Brauer characters with respect to different lifts
	Known factorizations of multiplicative group orders
	Some loops for StandardFF
	Undocumented features

	References
	Index

