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Introduction: 
 
Exercise professionals have long sought the ability to quantify stress or training load on athletes. 
This desire is borne of the observation that athletes exhibit specific responses to particular 
stimuli.  For example, asking a runner to train 20 kilometers per week may improve fitness 
slightly, 40 kilometers somewhat more, but 60 kilometers might result in injury.  As might be 
intuitively apparent, many sporting injuries (particularly in endurance sports) are the result of 
training error (O’Toole 1992).  With this in mind, an objective system quantifying training stress 
would be helpful in planning and monitoring not only the training and development, but the health 
of the athlete. 
 
There exists a dose-response relationship between training stimulus and adaptation of the 
subject (Bannister et al 1975, Busso 2003).  Training load can be expressed simply as: 
 

Training load = Intensity · Duration (Eq. 1) 
 
It is clear that different stimuli will have different physiologic sequelae. It is less clear how to 
compare/quantify differing stimuli and their ability to affect the same response. An oversimplified 
example might be: Would a twenty minute run at 10 kph cause the same physiologic strain as 10 
minutes at 20 kph? Sports professionals may attempt to make such comparisons since the 
relationship between oxygen uptake/heart rate and velocity/work rate is essentially linear up to 
VO2max (Astrand et al 2004). However, other relevant relationships are not linear; that between 
velocity and metabolic stress (i.e. lactate production) is exponential in nature (Astrand et al 2004, 
Coyle 1999, Farrell et al 1978). Also, submaximal heart rate (HR) and oxygen uptake are 
dependant upon work rate, not the other way around. 
  
We now understand that irrespective of heart rate or absolute oxygen uptake, the work rate at 
lactate threshold (defined as a rise of serum lactate of 1 mmol/L over exercise baseline) is the 
primary determinant of endurance exercise performance (Coyle 1988, 1999). The nonlinear 
relationship between lactate and training stress was understood by E.W. Banister as early as 
1975. At that time, there was no easy/direct means of quantifying work rate objectively in the field.  
Thus, he sought to relate an easily measured parameter (heart rate) to lactate production through 
the use of a population study. He devised a system of measurement known as TRIMPS, or 
TRaining IMPulse Score. 
 

TRIMPS = Duration · Average HR during exercise · A HR-dependant, 
intensity based weighting factor (Eq. 2) 

  
The benefit of Banister’s system is that it takes into consideration the observation that higher 
workloads are more metabolically taxing (exponentially so) than lower workloads of equivalent 
duration (Bannister 1996). However, it is still dependant upon the measurement of heart rate, 
which is variable based on factors such as hydration, rest, illness, or cardiac drift. Furthermore, 
though HR is dependant upon workload, it may take minutes to stabilize when that workload 
changes. It was still necessary to find a way to quantify the work directly. 
 
In 2003, Andrew Coggan refined Banister’s concept by developing a system that also 
incorporated lactate response to workload. This system related the change in lactate 
concentration with the change in an objective measure of exercise intensity: power output. The 
relative benefits of this system are immediately apparent: power meters are extremely accurate, 
are present on cycle ergometers in most gym settings, and may be installed on standard bicycles. 
The power meter provides a direct and immediate measure of  work rate; there is no need to wait 
several minutes for heart rate or oxygen uptake to stabilize.   
 
Coggan devised a mathematical algorithm similar to that of Bannister, called the Training Stress 
Score (TSS).  
 



TSS = Exercise duration · Average power · Power-dependant, 
intensity weighting factor (Eq. 3) 

 
The power dependant intensity weighting factor was derived directly from a plot of blood lactate 
concentration as a percentage of concentration at threshold against % of threshold power. His 
work indicated a near 4

th
 power relationship between the two. 

 
  Blood lactate (% of lactate at Lactate Threshold) = 
  Power (% power @ LT)

3.90
; R

2
=0.806, n=76. (Eq. 4) 

 
It should be noted that Coggan (2003, 2006) has advocated using a 30 second rolling average to 
smooth the power data and facilitate analysis, which is sensible given the many physiologic 
processes have 30 second half-lives (e.g. HR, plasma epinephrine concentration, ventilation, 
etc). 
 
The TSS is predicated upon the concept of Normalized Power (NP). Coggan developed this 
concept to address a point intuitively obvious to anyone who has trained using a power meter: the 
average power (AP) for an exercise task is not necessarily indicative of athlete strain unless the 
task in question is a roughly isopower effort.  For example, a one hour time-trial (TT) in flat terrain 
may be undertaken at a maximal / exhaustive effort which results in an AP of  300 watts, with little 
variation in power output (Figure 1a). Yet, a 1 hour criterium-type race that involves surges in 
pace and periods of coasting or a hilly TT may also be exhaustive, yet result in an AP of only 225 
watts (Figure 1b).  By weighting power output with a fourth power function, it becomes possible to 
make more direct comparisons between exercise tasks; utilizing Coggan’s 4

th
 power weighted 

average to “normalize” power output, the TT effort remains about 300 normalized watts, and the 
variable effort of 225 watts becomes 301 normalized watts (Figure 1a and b). As might be 
expected, NP for a variable power, maximal effort one hour TT or criterium has been shown to be 
more highly correlated to the AP obtained in a one hour maximal isopower TT than AP for the 
variable power effort is (p=.001 and p=.04, n=5) (Skiba, 2006. In review). 
 
The elegance of Coggan’s system is that while it successfully relates lactate concentration to 
power output, it is not dependant upon invasive tests. In 1988, Coyle et al. illustrated that the 
highest power output or pace an athlete can maintain over the course of an hour long exercise 
task is highly correlated with LT (Coyle et al. 1988). Thus, to determine threshold intensity, the 
athlete need only perform such a test and use the resulting average power in the calculations. 
The concept carries over to the running literature as well, where 8k-10k to 1 hour runs at the 
maximal pace sustainable for the duration of the run have been shown to be strongly correlated 
to both LT and maximal lactate steady state (MLSS); that is,  the highest exercise intensity that 
does not result in a continual increase in serum lactate (Jones and Doust 1998, Daniels 2002). 
 
Analysis has remained more difficult with regard to running, because it is impossible to wire a 
power-meter to a human being. Thus, runners have been limited to the use of Banister’s HR 
based methods for the determination of training stress, load, and response, with all of the 
associated disadvantages. However, recent technological advances (i.e. wrist-top altimeters/GPS 
receivers, shoe-worn accelerometers) have made it possible to easily and objectively measure 
and record the elements which can be used to calculate power output. This work will demonstrate 
the means to do exactly this and to apply a system of training stress quantification to the data. 



Methods: 
 
Part I: Relevant mathematics 
 
While a runner’s power output is not directly measurable without a treadmill ergometer, several 
groups have described a power-balanced supply-demand approach to running energetics.  Let C 
= the energy cost of moving forward, Caero = the energy cost of overcoming aerodynamic drag, 
and Ckin the energy cost of changes in velocity.   
 

Eaerobic !  t
-1

 + Eanaerobic !  t
-1

 = C !  V + Caero !  V + Ckin!  V (Eq. 5) 

This equation has been used successfully in the prediction of performances for middle and long 
distance running, where V = distance / time (DiPrampero et al 1986).  In this model, Caero = k !  n 

-1
 

!  d
2
 !  t

-2
, and k is the constant of air friction (in kg

-1
 !  m

-1
) with n = 0.5.  Ckin = 0.5 !  n

-1 
!  d !  t

-2
, with n 

= 0.25.  It has also been minimally modified to accurately predict performance in events ranging 
from 800M to 5k (DiPrampero et al 1986, 1993. Arsac et al 2001). 
 
It has been determined that the energy requirement (C) to cover any given distance is essentially 
independent of velocity, is consistent within individual athletes, and is equivalent to between 3.6-
4.2 J· Kg

-1
 · M

-1
. (Margaria et al 1963, Pugh 1970, Cavagna and Kaneko 1976, Fellingham et al 

1978).  Importantly, C also varies with the slope of the running surface (i) according to a 5
th

 order 
polynomial regression (Minetti 2002): 
 

Ci = 155.4i
5
 – 30.4i

4
 - 43.3i

3
 + 46.3i

2 
+ 19.5i + 3.6; n=10, R

2
 = .999 (Eq. 6) 

It should be noted that C describes the total energetic requirement, and does not address the 
efficiency of conversion from metabolic to external power available for locomotion.  However, this 
is easily rectified by multiplying by an efficiency factor (n), which numerous groups have 
demonstrated increases with velocity (Lloyd and Zacks 1971, Cavagna and Kaneko 1976, Harris 
et al 2003). This is due to the larger contribution of passive elastic return of energy from soft 
tissues with increased velocity, increasing from perhaps 0.25 to 0.35 at the slowest running 
speeds to approximately 0.5-0.7 at 8.33 m/s (30 km/h) in a reasonably linear fashion (Cavangna 
and Kaneko 1976, Arsac 2001). This improved efficiency must be adjusted for to derive the 
amount of contractile energy the athlete must expend to maintain a given velocity. Equation 5 
therefore becomes: 
 

Power (W/kg)  = (Ci !  nV - (Ci !  nV !  (.5 !  (V !  8.33
-1

))))+ Caero !  V + Ckin !  V  (Eq. 7) 

 
Where all values of C are calculated as rolling averages over 120 second intervals to account for 
the fact that the original model was validated to the 800M distance (time of slightly less than 2 
minutes), and nV is the efficiency calculated at velocity V.



 
Part II: Data analysis 
 
 
A.  Lactate/Velocity Data 
 
In order to discern the precise correlation velocity/power and lactate concentration, mean lactate 
vs. velocity data for runners were obtained from data previously reported by Held and Marti (Held 
and Marti 1995). The experimental subjects were members of the Swiss national teams in several 
sports. The athletes were exercised via a standard protocol on a treadmill.  Beginning at 
approximately 3.5 m/sec, treadmill velocity was maintained for three minutes, after which there 
was a 30 second pause to facilitate collection of a capillary blood sample from the ear lobe. 
Treadmill speed was then increased by 0.5 m/sec, and the process was repeated until volitional 
fatigue. 
 
To ensure the results were applicable to well-trained endurance athletes, the top 10% of 
performances were analyzed.  These amounted to 32 trained male runners and 15 trained female 
runners. Standard deviation in maximal speed was 0.2 m/sec for men and 0.3 m/sec for women 
(Held and Marti 1995). Velocity/power at LT was deduced by measurement at the first rise of 
lactate of 1 mmol above exercise baseline.  In order to facilitate comparisons between data sets, 
the velocities and equivalent power outputs were plotted as percentages of their respective 
values at LT, and regressions were generated using Microsoft Excel. In order to make a 
comparison with less-aerobically fit athletes, this analysis was repeated with the 10% worst 
performers reported by the group.  
 
The data from each individual analysis was then plotted together, and a regression was 
calculated that would apply to the greatest number of trained athletes. 
 
 

 
   



 
Results: 
 
The relationship between velocity/power and lactate concentration in the top 10% of runners was 
best described by an exponential function. This is not surprising given the number of investigators 
who have reported this in the past (Farrell et al 1979, Hermansen and Stensvold 1972,  Saltin 
and Karlsson 1971).  However, a power function resulted in a similar fit and simplified the 
following mathematics.   
 
 Men (Best 10%): 
 YLactate (% lactate at LT) = X Power (% of Power at LT)

4.2925 
 , N=32, R

2
=.9062  

 Women (Best 10%): 
 YLactate (% lactate at LT) = X Power (% of Power at LT)

4.5971 
 , N=15, R

2
=.9454 

 
            (Eqs. 11a and 11b; Figures 2a and 2b) 
 
The relationship between velocity/power and lactate concentration in the worst 10% of runners 
was also best described by an exponential function, with a similar fit from a power function. 
 

Men (Worst 10%): 
 YLactate (% lactate at LT) = X Power (% of Power at LT)

2.5441 
 , N=32, R

2
=.9909  

 Women (Worst 10%): 
 YLactate (% lactate at LT) = X Power (% of Power at LT)

2.4913
 , N=15, R

2
=.9846 

 
(Eqs. 12a and 12b; Figures 3a and 3b) 

 
A regression was then calculated across all data sets. 
 
 All Athletes: 
 YLactate (% lactate at LT) = X Power (%  of Power at LT)

3.5249
, N=94, R

2
 = 0.865 

 
(Eqn. 14; Figure 4) 
 

 



Discussion: 
 
As expected, all curves fit to the lactate/velocity plots exhibited an exponential pattern as has 
been observed in the literature for many years. To make the following mathematics easier, 
relationships were derived using a best fit power function as was done by Coggan, which also 
provided a good model as seen in the results section. Interestingly, the relationship of lactate 
concentration to velocity changed from near a 4

th
 power correlation in the athletes of highest 

fitness to a squared function in the less aerobically fit athletes. This relationship appears to be 
preserved with relationship to other data sets, and most likely reflects improvements in lactate 
clearance with increasing athlete fitness (Coggan AR, private communication). 
 
Coggan reported similar data in 2003; a near fourth-power correlation. However, his data set was 
not reported in terms of the relative fitness of the athletes. Rather, he chose to consider the 
athletes as a whole to find a function applicable to the most number of people (Coggan AR, 
private communication). This approach seems sensible, and was repeated here for precisely this 
reason. 
 
Utilizing a scheme similar to Coggan’s, it is now possible to calculate lactate-normalized power 
output values and corresponding training stresses given the appropriate recorded values from an 
exercise bout. The algorithm is as follows:       
   

1. Find the athlete’s velocity at LT by a 10 km to one hour maximal run. 
2. Convert this velocity to a power value using Equation 7. 
3. Analyze the data from a particular workout from an athlete’s log, computing 120 second 

rolling averages from velocity and slope data. 
4. Raise the values in step 3 to the 4

th
 power. 

5. Average values from step 4. 
6. Take the 4th root of step 5. This is the Lactate-Normalized Power. 
7. Divide Lactate Normalized Power by Threshold Power from step 2 to get the Intensity 

Weighting Fraction. 
8. Multiply the Lactate Normalized Power by the duration of the workout in seconds to 

obtain the normalized work performed in joules. 
9. Multiply value obtained in step 8 by the Intensity Weighting Fraction to get a raw 

training stress value. 
10. Divide the values from step 9 by the amount of work performed during the 10k to 1 hr 

test (threshold power in watts x number of seconds). 
11. Multiply the number from step 10 by 100 to obtain the final training stress in GOVSS

TM
 

(Gravity Ordered Velocity Stress Score). 
 
 
As was intimated earlier, this system is easily realized given that wrist-top GPS receivers are now 
inexpensive and directly measure and record all necessary variables. Furthermore, their output is 
readily downloadable to various software packages for analysis. The calculations can be carried 
out utilizing a spreadsheet program such as Microsoft Excel. (A worksheet automating these 
calculations is available at http://www.physfarm.com). 
 
The utility of this work is clear. The GOVSS algorithm allows comparison between different 
training tasks (i.e. hilly vs. flat runs, short/intense interval efforts vs. longer, steadier paced 
efforts).  This permits a more accurate measurement of athlete training stress, and should 
facilitate analysis of athlete performance with respect to that stress. Furthermore, in the case of 
injury, it is possible to quantify the amount of stress / rate of stress increase over time that yielded 
the injury, and therefore avoid it in the future.  
 
There are shortcomings to this means of calculating the energy cost of running.  The first  is that 
the absolute energy requirement will be slightly different for each person given their personal 
characteristics (the athlete’s individual energy cost of running or absolute efficiency, for instance). 



However, because these sources of error are apparently consistent, it will affect the accuracy but 
not the precision of the model. Another important consideration is that the aerodynamic cost of 
running is not adjusted for temperature or barometric pressure. However, this did not preclude the 
validity of the model in the work of DiPrampero et al (1986, 1993).  Furthermore, it is important to 
realize that both Caero and the term describing the change in kinetic energy are extremely small at 
typical endurance running velocities, with Caero describing 8-10% and Ckin approximately 1% 
respectively of the total power requirement (Arsac 2001).   
 
Pilot studies have indicated that the GOVSS algorithm above permits the quantification of training 
stress on a more replicable basis than TRIMPS (Skiba 2006, in press) (Figure 5). Furthermore, 
GOVSS has been shown to be an acceptable input function for systems based performance 
prediction equations such as those developed by Banister, Fitz-Clarke and Morton (1990, 1991) 
(Skiba 2006, in press). Work is in progress which focuses on a comparison between TRIMPS and 
GOVSS as input functions into these performance prediction equations.  
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Figures 1A and 1B: Graphical comparison between average power (AP, dashed line) and 
Normalized Power (NP, solid line) for isopower and variable power maximal time trial efforts (top 
and bottom, respectively). Power output is recorded as a 30 second rolling average. Note that 
while AP changes between efforts, normalized power remains essentially constant. Data from: 
Skiba, 2006 (in review).



 
Figures 2a and 2b:  Graphical representation of the relationship between velocity and lactate 
concentration as percentages of respective values at LT for males (top, N=32) and females 
(bottom, N=15) in the top 10% of athletes. Data from: Held and Marti, 1995. 



 
Figures 3a and 3b:  Graphical representation of the relationship between velocity and lactate 
concentration as percentages of respective values at LT for males (top, N=32) and females 
(bottom, N=15) in the bottom 10% of athletes. Data from: Held and Marti, 1995. 



 
Figure 4: Graphical representation of the relationship between velocity and lactate concentration 
as percentages of respective values at LT for all athletes, N=94. Data from: Held and Marti, 1995. 
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Figure 5: Graphical representation of the relationship between TRIMPS (gray) and GOVSS 
(black) for the same 6.5k run conducted on different days. Run 3 was conducted at an 
environmental temperature 10 degrees centigrade warmer than Runs 1 and 2. Data from: Skiba, 
2006 (in press). 
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