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CHAPTER

ONE

GETTING STARTED WITH SPARK

We begin with a very simple guide aimed at getting new users up and running with the SPARK tools. A small SPARK
example program will be used for illustration.

Note

The online version of this User’s Guide applies to the latest development version of the SPARK toolset. If you’re
using an official release, some of the described features may not apply. Refer to the version of the SPARK User’s
Guide shipping with your release, available through Help → SPARK in GNAT Studio and GNATbench IDEs, or
under share/doc/spark in your SPARK installation.

As a prerequisite, it is assumed that the SPARK tools have already been installed. As a minimum you should install:

• SPARK Pro, SPARK Discovery or SPARK Community

• GNAT Studio or the GNATbench plug-in of Eclipse

SPARK Pro is the most complete toolset for SPARK. SPARK Discovery is a reduced toolset that still allows to perform
all analyses presented in this User’s Guide, but is less powerful than SPARK Pro. Compared to SPARK Pro, SPARK
Discovery:

• only comes with one automatic prover instead of three

• does not generate counterexamples for failed proofs

• has limited proof support for programs using modular arithmetic or floating-point arithmetic

• comes without a lemma library for more difficult proofs

SPARK Community is a version packaged for free software developers, hobbyists, and students, which retains most of
the capabilities of SPARK Pro.

Note that GNAT Studio is not strictly required for SPARK as all the commands can be invoked from the command line,
or from Eclipse using the GNATbench plug-in, but the instructions in this section assume that GNAT Studio is being
used. If you are a supported user, you can get more information on how to install the tools in “AdaCore Installation
Procedures” under the “Download” tab in GNAT Tracker, or by contacting AdaCore for further advice.

The key tools that we will use in this example are GNATprove and GNAT Studio. To begin with, launch GNAT Studio
with a new default project and check that the SPARK menu is present in the menu bar.

Note

For SPARK 2005 users, this menu will appear under the name SPARK 2014, to avoid any confusion with the existing
SPARK menu for SPARK 2005 toolset.
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Now open a new file in GNAT Studio and type the following short program into it. Save this file as diff.adb.

1 procedure Diff (X, Y : in Natural; Z : out Natural) with
2 SPARK_Mode,
3 Depends => (Z => (X, Y))
4 is
5 begin
6 Z := X - X;
7 end Diff;

The program is intended to calculate the difference between X and Y and store the result in Z. This is reflected in the
aspect Depends which states that the output value of Z depends on the input values of X and Y, but, as you may have
noticed, there is a bug in the code. Note the use of aspect SPARK_Mode to identify this as SPARK code to be analysed
with the SPARK tools. To analyze this program, select SPARK → Examine File from the menu in GNAT Studio.
GNATprove executes in flow analysis mode and reports:

diff.adb:1:20: warning: unused variable "Y"
1 |procedure Diff (X, Y : in Natural; Z : out Natural) with
| ^ here

diff.adb:3:03: medium: missing dependency "null => Y"
3 | Depends => (Z => (X, Y))
| ^~~~~~~~~~~~~~~~~~~~~~

diff.adb:3:24: medium: incorrect dependency "Z => Y"
3 | Depends => (Z => (X, Y))
| ^ here

These messages are informing us that there is a discrepancy between the program’s contract (which says that the value
of Z is obtained from the values of X and Y) and its implementation (in which the value of Z is derived only from the
value of X, and Y is unused). In this case the contract is correct and the code is wrong, so fix the code by changing the
assignment statement to Z := X - Y; and re-run the analysis. This time it should report no messages.

Having established that the program is free from flow errors, now let’s run the tools in proof mode to check for run-time
errors. Select SPARK → Prove File from the menu in GNAT Studio, and click on Execute in the resulting dialog box.
GNATprove now attempts to show, using formal verification, that the program is free from run-time errors. But it finds
a problem and highlights the assignment statement in red, reporting:

diff.adb:6:11: high: range check might fail, cannot prove lower bound for X - Y
6 | Z := X - Y;
| ~~^~~

e.g. when X = 0
and Y = 1

reason for check: result of subtraction must fit in the target type of the assignment
possible fix: add precondition (X >= Natural'First + Y) to subprogram at line 1
1 |procedure Diff (X, Y : in Natural; Z : out Natural) with
| ^ here

This means that the tools are unable to show that the result of subtracting one Natural number from another will be
within the range of the type Natural, which is hopefully not too surprising! There are various ways in which this
could be addressed depending on what the requirements are for this subprogram, but for now let’s change the type of
parameter Z from Natural to Integer. If the analysis is re-run with this change in place then GNATprove will report
no issues. All checks are proved so we can be confident that no exceptions will be raised by the execution of this code.

12 Chapter 1. Getting Started with SPARK



SPARK User’s Guide, Release 15.0

This short example was intended to give a flavor of the types of analysis that can be performed with the SPARK tools.
A more in-depth example is presented later in SPARK Tutorial.
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CHAPTER

TWO

INTRODUCTION

SPARK is a programming language and a set of verification tools designed to meet the needs of high-assurance software
development. SPARK is based on Ada, both subsetting the language to remove features that defy verification, but also
extending the system of contracts and aspects to support modular, formal verification.

The new aspects support abstraction and refinement and facilitate deep static analysis to be performed including flow
analysis and formal verification of an implementation against a specification.

The current version of SPARK, sometimes referred to as SPARK 2014, is a much larger and more flexible language than
its predecessor SPARK 2005. The language can be configured to suit a number of application domains and standards,
from server-class high-assurance systems (such as air-traffic management applications), to embedded, hard real-time,
critical systems (such as avionic systems complying with DO-178C Level A).

A major feature of SPARK is the support for a mixture of proof and other verification methods such as testing, which
facilitates in particular the use of unit proof in place of unit testing; an approach now formalized in DO-178C and the
DO-333 formal methods supplement. Certain units may be formally proven and other units validated through testing.

SPARK is supported by various tools in the GNAT toolsuite:

• the GNAT compiler

• the GNAT Studio integrated development environment

• the GNATtest tool for unit testing harness generation

• the GNATprove tool for formal program verification

The remainder of this document is structured as follows:

• Installation of GNATprove goes through the installation steps on different platforms.

• Identifying SPARK Code describes the various means to identify the part of the program in SPARK that should
be analyzed.

• Overview of SPARK Language provides an overview of the SPARK language.

• SPARK Tutorial gives an introduction to writing, testing and proving SPARK programs.

• Formal Verification with GNATprove describes the use of the GNATprove formal verification tool.

• Applying SPARK in Practice lists the main objectives and project scenarios for using SPARK.
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CHAPTER

THREE

INSTALLATION OF GNATPROVE

In general, you will need to install a recent version of GNAT toolchain to compile SPARK programs. You will need to
install one toolchain for each platform that you target, for example one toolchain for native compilation on your machine
and one toolchain for cross compilation to an embedded platform.

For analyzing SPARK programs, we recommend to first install GNAT Studio and then install GNATprove under the
same location. Alternatively, you can install the GNATbench plug-in for Eclipse instead of GNAT Studio, using the
Eclipse installation mechanism. The same version of GNAT Studio or GNATbench can support both native and cross
compilations, as well as SPARK analysis.

If you choose to install GNATprove in a different location, you should also modify the environment variables
GPR_PROJECT_PATH (if you installed GNAT). On Windows, edit the value of GPR_PROJECT_PATH under the Envi-
ronment Variables panel, and add to it the value of <GNAT install dir>/lib/gnat and <GNAT install dir>/
share/gpr (so that SPARK can find library projects installed with GNAT) and <SPARK install dir>/lib/gnat
(so that GNAT can find the SPARK lemma library project installed with SPARK, for details see Manual Proof Using
SPARK Lemma Library). On Linux/Mac with Bourne shell, use:

export GPR_PROJECT_PATH=<GNAT install dir>/lib/gnat:<GNAT install dir>/share/gpr:<SPARK␣
↪→install dir>/lib/gnat:$GPR_PROJECT_PATH

or on Linux/Mac with C shell:

setenv GPR_PROJECT_PATH <GNAT install dir>/lib/gnat:<GNAT install dir>/share/gpr:<SPARK␣
↪→install dir>/lib/gnat:$GPR_PROJECT_PATH

See below for detailed installation instructions of GNAT Studio and GNATprove.

3.1 System Requirements
Formal verification is complex and time consuming, so GNATprove will benefit from all the speed (CPU) and memory
(RAM) that can be made available. A minimum of 2 GB of RAM per core is recommended. More complex analyses
will require more memory. A recommended configuration for running GNATprove on large systems is an x86-64
machine running Linux 64bits or Windows 64bits with at least 8 cores and 16 GB of RAM. Slower machines can be
used to analyze small subsystems, but a minimum of 2.8Ghz CPU and 2 GB of RAM is required.

3.2 Installation under Windows
If not already done, first run the GNAT Studio installer by e.g. double clicking on gnatstudio-<version>-i686-pc-
mingw32.exe and follow the instructions.
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Note

If you’re using GNAT Community instead of GNAT Pro, you should run instead the GNAT Community installer,
which installs GNAT Studio and SPARK.

Then similarly run the GNATprove installer, by e.g. double clicking on spark-<version>-x86-windows-bin.exe. If you
intend to install GNATprove in a location where a previous installation of GNATprove exists, we recommend that you
uninstall the previous installation first.

You should have sufficient rights for installing the package (administrator or normal rights depending on whether it is
installed for all users or a single user).

3.3 Installation under Linux/Mac
If not already done, you need to extract and install the GNAT Studio compressed tarball and then run the install, e.g.:

$ gzip -dc gnatstudio-<version>-<platform>-bin.tar.gz | tar xf -
$ cd gnatstudio-<version>-<platform>-bin
$ ./doinstall

Then follow the instructions displayed.

Note

If you’re using GNAT Community instead of GNAT Pro, you should install instead the GNAT Community package,
which installs GNAT Studio and SPARK.

Then do the same with the SPARK tarball, e.g.:

$ gzip -dc spark-<version>-<platform>-bin.tar.gz | tar xf -
$ cd spark-<version>-<platform>-bin
$ ./doinstall

Note that you need to have sufficient rights for installing the package at the chosen location (e.g. root rights for installing
under /opt/spark).

3.4 Installation of the FSF version of SPARK
A so-called FSF version of SPARK is freely available.

3.4.1 Manual install
You can download a “gnatprove” package from this github project. Extracting the package and adding the bin directory
to your PATH is enough. You can get the GNAT compiler from the same link, and there is a different project for
GNATStudio, the IDE.

3.4.2 Install using alire
You can obtain SPARK via Alire. To do this, follow the installation instructions of Alire, then you can add the
gnatprove dependency to an alire project using:
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alr with gnatprove

Alire will download gnatprove if necessary. You can then call gnatprove from the command line or in your editor
after setting the environment for your Alire project using:

eval `alr printenv`

3.4.3 The older GNAT Community version
There is an older community version of the tools, packaged with GNAT and GNATStudio. You can download it from
AdaCore’s website.

3.4. Installation of the FSF version of SPARK 19
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CHAPTER

FOUR

IDENTIFYING SPARK CODE

In general a program can have some parts that are in SPARK (and follow all the rules in the SPARK Reference Manual),
and some parts that are full Ada. Pragma or aspect SPARK_Mode is used to identify which parts are in SPARK (by default
programs are in full Ada).

This section contains a simple description of pragma and aspect SPARK_Mode. See Aspect and Pragma SPARK_Mode
for the complete description.

Note that GNATprove only analyzes parts of the code that are identified as being in SPARK using pragma or aspect
SPARK_Mode.

4.1 Mixing SPARK Code and Ada Code
An Ada program unit or other construct is said to be “in SPARK” if it complies with the restrictions required to permit
formal verification given in the SPARK Reference Manual. Conversely, an Ada program unit or other construct is “not
in SPARK” if it does not meet these requirements, and so is not amenable to formal verification.

Within a single Ada unit, constructs which are “in” and “not in” SPARK may be mixed at a fine level in accordance
with the following two general principles:

• SPARK code shall only reference SPARK declarations, but a SPARK declaration which requires a completion
may have a non-SPARK completion.

• SPARK code may enclose non-SPARK code.

• non-SPARK code may enclose SPARK code only at library level. A subprogram body which is not in SPARK
cannot contain SPARK code.

More specifically, non-SPARK completions of SPARK declarations are allowed for subprogram declarations, package
declarations, task type declarations, protected type declarations, private type declarations, private extension declara-
tions, and deferred constant declarations. [Strictly speaking, the private part of a package, a task type or a protected
type is considered to be part of its completion for purposes of the above rules; this is described in more detail below].

When a non-SPARK completion is provided for a SPARK declaration, the user has an obligation to ensure that the non-
SPARK completion is consistent (with respect to the semantics of SPARK) with its SPARK declaration. For example,
SPARK requires that a function call has no side effects. If the body of a given function is in SPARK, then this rule
is enforced via various language rules; otherwise, it is the responsibility of the user to ensure that the function body
does not violate this rule. As with other such constructs (notably pragma Assume), failure to meet this obligation can
invalidate any or all analysis (proofs and/or flow analysis) associated with the SPARK portion of a program. A non-
SPARK completion meets this obligation if it is semantically equivalent (with respect to dynamic semantics) to some
notional completion that could have been written in SPARK.

When a non-SPARK package declaration or body is included in a SPARK subprogram or package, the user has an
obligation to ensure that the non-SPARK declaration is consistent (with respect to the semantics of SPARK) with
a hypothetical equivalent SPARK declaration. For example, SPARK requires that package elaboration code cannot
modify variables defined outside of the package.
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The SPARK semantics (specifically including flow analysis and proof) of a “mixed” program which meets the afore-
mentioned requirement are well defined - they are the semantics of the equivalent 100% SPARK program. For the
semantics of other “mixed” programs refer to the Ada Reference Manual.

In the case of a package, a task type, or a protected type, the specification/completion division described above is a
simplification of the true situation. For instance, a package is divided into 4 sections, not just 2: its visible part, its
private part, the declarations of its body, and the statement list of its body. For a given package and any number N in
the range 0 .. 4, the first N sections of the package might be in SPARK while the remainder is not.

For example, the following combinations may be typical:

• Package specification in SPARK. Package body not in SPARK.

• Visible part of package specification in SPARK. Private part and body not in SPARK.

• Package specification in SPARK. Package body almost entirely in SPARK, with a small number of subprogram
bodies not in SPARK.

• Package specification in SPARK, with all subprogram bodies imported from another language.

• Package specification contains a mixture of declarations which are in SPARK and not in SPARK. The latter
declarations are only visible and usable from client units which are not in SPARK.

Task types and protected types are similar to packages but only have 3 sections instead of 4. The statement list section
of the body is missing.

Another typical use is to exempt part of a subprogram from analysis by isolating it in a local subprogram whose body
is not in SPARK.

Such patterns are intended to allow for application of formal verification to a subset of a program, and the combination
of formal verification with more traditional testing (see Applying SPARK in Practice).

4.2 Project File Setup
The project file is used to identify coarsely which parts of a program are in SPARK. To get more details on project file
setup, see section Setting Up a Project File.

4.2.1 Setting the Default SPARK_Mode
There are two possible defaults:

1. No value of SPARK_Mode is specified as a configuration pragma. In that case, only the parts of the program
explicitly marked with SPARK_Mode => On are in SPARK. This default is recommended if only a small number
of units or subprograms are in SPARK.

2. A value of SPARK_Mode => On is specified as a configuration pragma. In that case, all the program should be in
SPARK, except for those parts explicitly marked with SPARK_Mode => Off or a configuration pragma of Auto
inside files. This mode is recommended if most of the program is in SPARK.

Here is how to specify a value of SPARK_Mode => On as a configuration pragma:

project My_Project is
package Compiler is
for Local_Configuration_Pragmas use "spark.adc";

end Compiler;
end My_Project;

where spark.adc is a configuration file containing at least the following line:
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pragma SPARK_Mode (On);

4.2.2 Specifying Files To Analyze
By default, all files from a project are analyzed by GNATprove. It may be useful to restrict the set of files to analyze to
speedup analysis if only a subset of the files contain SPARK code.

The set of files to analyze can be identified by specifying a different value of various project attributes in the mode used
for formal verification:

• Source_Dirs: list of source directory names

• Source_Files: list of source file names

• Source_List_File: name of a file listing source file names

For example:

project My_Project is

Mode := External ("GPR_TOOL", "");

case Mode is
when "gnatprove" =>
for Source_Dirs use ("dir1", "dir2");
for Source_Files use ("file1.ads", "file2.ads", "file1.adb", "file2.adb");

when others =>
for Source_Dirs use (...);

end case;

package Compiler is
case Mode is
when "gnatprove" =>
for Switches ("Ada") use ...

when others =>
for Switches ("Ada") use ...

end case;
end Compiler;

end My_Project;

4.2.3 Excluding Files From Analysis
When choosing a default value of SPARK_Mode => On, it may be needed to exclude some files from analysis (for
example, because they contain non-SPARK code, or code that does not need to be formally analyzed).

The set of files to exclude can be identified by specifying a different value of various project attributes in the mode used
for formal verification:

• Excluded_Source_Dirs: list of excluded source directory names

• Excluded_Source_Files: list of excluded source file names

• Excluded_Source_List_File: name of a file listing excluded source file names

For example:
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project My_Project is
package Compiler is
for Local_Configuration_Pragmas use "spark.adc";

end Compiler;

Mode := External ("GPR_TOOL", "");

case Mode is
when "gnatprove" =>
for Excluded_Source_Files use ("file1.ads", "file1.adb", "file2.adb");

when others =>
null;

end case;

end My_Project;

4.2.4 Using Multiple Projects
Sometimes, it is more convenient to analyze a subset of the source files with the default SPARK_Mode => On and the
rest of the source files with no setting for SPARK_Mode. In that case, one can use two project files with different defaults,
with each source file in one of the projects only. Files in one project can still refer to files in the other project by using
a limited with clause between projects, as follows:

limited with "project_b"
project My_Project_A is
package Compiler is
for Local_Configuration_Pragmas use "spark.adc";

end Compiler;
for Source_Files use ("file1.ads", "file2.ads", "file1.adb", "file2.adb");

end My_Project_A;

limited with "project_a"
project My_Project_B is
for Source_Files use ("file3.ads", "file4.ads", "file3.adb", "file4.adb");

end My_Project_B;

where spark.adc is a configuration file containing at least the following line:

pragma SPARK_Mode (On);

4.3 Using SPARK_Mode in Code
The pragma or aspect SPARK_Mode can be used in the code to identify precisely which parts of a program are in SPARK.

4.3.1 Basic Usage
The form of a pragma SPARK_Mode is as follows:

pragma SPARK_Mode [ (Auto | On | Off) ]

For example:
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pragma SPARK_Mode (On);
package P is

The value Auto is only allowed in configuration pragmas, either in a configuration pragma file, or inside a source file.
Thus, value Auto is not allowed in aspect SPARK_Mode. Having a value Auto means that the file is analyzed as if no
value of SPARK_Mode was specified, which is useful in cases where SPARK_Mode => On is specified in a configuration
pragma file for the complete project, but a file contains both entities compatible with SPARK and entities not in SPARK.

The form of an aspect SPARK_Mode is as follows:

with SPARK_Mode => [ On | Off ]

For example:

package P with
SPARK_Mode => On

is

A default argument of On is assumed for any SPARK_Mode pragma or aspect for which no argument is explicitly
specified.

For example:

package P is
pragma SPARK_Mode; -- On is implicit here

or

package P with
SPARK_Mode -- On is implicit here

is

We say that a package or a subprogram is library-level if it is either top-level (i.e. it is a library unit; its declaration is
the outermost program unit declared in a given compilation unit) or declared immediately within another library-level
package (which excludes, for example, declarations inside subprogram bodies). For example, all the packages in the
following code snippet are library-level packages:

package P is
package Q is
package R is

...
package body P is
package S is
package T is

The SPARK_Mode pragma can be used in the following places in the code:

• as a configuration pragma at unit level (even before with-clauses) in particular for unit-level generic instantiations

• immediately within a library-level package spec

• immediately within a library-level package body

• immediately following the private keyword of a library-level package spec

• immediately following the begin keyword of a library-level package body

• immediately following a library-level subprogram spec
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• immediately within a library-level subprogram body

• immediately within a library-level task spec

• immediately within a library-level task body

• immediately following the private keyword of a library-level task spec

• immediately within a library-level protected spec

• immediately within a library-level protected body

• immediately following the private keyword of a library-level protected spec

The SPARK_Mode aspect can be used in the following places in the code:

• on a library-level package spec or body

• on a library-level subprogram spec or body

• on a library-level task spec or body

• on a library-level protected spec or body

If a SPARK_Mode pragma or aspect is not specified for a subprogram, package, task or protected spec/body, then its
value is inherited from the current mode that is active at the point where the declaration occurs.

Note that a generic package instance is considered to be declared at its instantiation point. For example, a generic
package cannot be both marked SPARK_Mode and instantiated in a subprogram body.

4.3.2 Consistency Rules
The basic rule is that you cannot turn SPARK_Mode back On, once you have explicitly turned if Off. So the following
rules apply:

If a subprogram spec has SPARK_Mode Off, then the body cannot have SPARK_Mode On.

For a package, we have four parts:

1. the package public declarations

2. the package private part

3. the body of the package

4. the elaboration code after begin

For a package, the rule is that if you explicitly turn SPARK_Mode Off for any part, then all the following parts cannot
have SPARK_Mode On. Note that this may require repeating a pragma SPARK_Mode (Off) in the body. For example, if
we have a configuration pragma SPARK_Mode (On) that turns the mode On by default everywhere, and one particular
package spec has pragma SPARK_Mode (Off), then that pragma will need to be repeated in the package body.

Task types and protected types are handled similarly. If SPARK_Mode is set to Off on one part, it cannot be set to On
on the following parts, among the three parts:

1. the spec

2. the private part

3. the body

There is an exception to this rule, when SPARK_Mode occurs in the code of a generic instantiated in code where
SPARK_Mode is Off. In that case, occurrences of SPARK_Mode in the generic are ignored for this instance.
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4.3.3 Examples of Use
Verifying Selected Subprograms

If only a few selected subprograms are in SPARK, then it makes sense to set no default for SPARK_Mode, and instead
set SPARK_Mode => On directly on the subprograms of interest. For example:

1 package Selected_Subprograms is
2

3 procedure Critical_Action with
4 SPARK_Mode => On;
5

6 procedure Sub_Action (X : out Boolean) with
7 Post => X = True;
8

9 procedure Non_Critical_Action;
10

11 end Selected_Subprograms;

Note that, although the bodies of procedures Sub_Action and Non_Critical_Action are not analyzed, it is valid to
call Sub_Action in the body of procedure Critical_Action, even without specifying SPARK_Mode => On on the
spec of Sub_Action. Indeed, GNATprove checks in that case that the spec of Sub_Action is in SPARK.

1 package body Selected_Subprograms is
2

3 procedure Critical_Action with
4 SPARK_Mode => On
5 is
6 -- this procedure body is analyzed
7 X : Boolean;
8 begin
9 Sub_Action (X);

10 pragma Assert (X = True);
11 end Critical_Action;
12

13 procedure Sub_Action (X : out Boolean) is
14 begin
15 -- this procedure body is not analyzed
16 X := True;
17 end Sub_Action;
18

19 procedure Non_Critical_Action is
20 begin
21 -- this procedure body is not analyzed
22 null;
23 end Non_Critical_Action;
24

25 end Selected_Subprograms;

Verifying Selected Units

If only a few selected units are in SPARK, then it makes sense to set no default for SPARK_Mode, and instead set
SPARK_Mode => On directly on the units of interest. For example:
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1 package Selected_Units with
2 SPARK_Mode => On
3 is
4

5 procedure Critical_Action;
6

7 procedure Sub_Action (X : out Boolean) with
8 Post => X = True;
9

10 procedure Non_Critical_Action with
11 SPARK_Mode => Off;
12

13 end Selected_Units;

Note that procedure Sub_Action can be called inside SPARK code, because its spec is in SPARK, even though its
body is marked SPARK_Mode => Off. On the contrary, procedure Non_Critical_Action whose spec is marked
SPARK_Mode => Off cannot be called inside SPARK code.

1 package body Selected_Units with
2 SPARK_Mode => On
3 is
4

5 procedure Critical_Action is
6 -- this procedure body is analyzed
7 X : Boolean;
8 begin
9 Sub_Action (X);

10 pragma Assert (X = True);
11 end Critical_Action;
12

13 procedure Sub_Action (X : out Boolean) with
14 SPARK_Mode => Off
15 is
16 begin
17 -- this procedure body is not analyzed
18 X := True;
19 end Sub_Action;
20

21 procedure Non_Critical_Action with
22 SPARK_Mode => Off
23 is
24 begin
25 -- this procedure body is not analyzed
26 null;
27 end Non_Critical_Action;
28

29 end Selected_Units;
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Excluding Selected Unit Bodies

If a unit spec is in SPARK, but its body is not in SPARK, the spec can be marked with SPARK_Mode => On and the
body with SPARK_Mode => Off. This allows client code in SPARK to use this unit. If SPARK_Mode is On by default,
then it need not be repeated on the unit spec.

1 package body Exclude_Unit_Body with
2 SPARK_Mode => Off
3 is
4 -- this package body is not analyzed
5

6 Value : T := new Integer;
7

8 function Get_Value return Integer is
9 begin

10 return Value.all;
11 end Get_Value;
12

13 procedure Set_Value (V : Integer) is
14 begin
15 Value.all := V;
16 end Set_Value;
17

18 end Exclude_Unit_Body;

Note that the private part of the spec (which is physically in the spec file, but is logically part of the implementation)
can be excluded as well, by using a pragma SPARK_Mode (Off) at the start of the private part.

1 package Exclude_Unit_Body with
2 SPARK_Mode => On
3 is
4

5 type T is private;
6

7 function Get_Value return Integer;
8

9 procedure Set_Value (V : Integer) with
10 Post => Get_Value = V;
11

12 private
13 pragma SPARK_Mode (Off);
14

15 -- the private part of the package spec is not analyzed
16

17 type T is access Integer;
18 end Exclude_Unit_Body;

This scheme also works on generic units, which can then be instantiated both in code where SPARK_Mode is On, in
which case only the body of the instantiated generic is excluded, or in code where SPARK_Mode is Off, in which case
both the spec and the body of the instantiated generic are excluded.

1 generic
2 type T is private;
3 package Exclude_Generic_Unit_Body with

(continues on next page)
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(continued from previous page)

4 SPARK_Mode => On
5 is
6 procedure Process (X : in out T);
7 end Exclude_Generic_Unit_Body;

1 package body Exclude_Generic_Unit_Body with
2 SPARK_Mode => Off
3 is
4 -- this package body is not analyzed
5 procedure Process (X : in out T) is
6 begin
7 null;
8 end Process;
9 end Exclude_Generic_Unit_Body;

1 with Exclude_Generic_Unit_Body;
2 pragma Elaborate_All (Exclude_Generic_Unit_Body);
3

4 package Use_Generic with
5 SPARK_Mode => On
6 is
7 -- the spec of this generic instance is analyzed
8 package G1 is new Exclude_Generic_Unit_Body (Integer);
9

10 procedure Do_Nothing;
11

12 end Use_Generic;

1 package body Use_Generic with
2 SPARK_Mode => Off
3 is
4 type T is access Integer;
5

6 -- this generic instance is not analyzed
7 package G2 is new Exclude_Generic_Unit_Body (T);
8

9 procedure Do_Nothing is
10 begin
11 null;
12 end Do_Nothing;
13

14 end Use_Generic;

Excluding Selected Parts of a Unit

If most units are in SPARK except from some subprograms and packages, it makes sense to set the default to
SPARK_Mode (On), and set SPARK_Mode => Off on non-SPARK declarations. We assume here that a value of
SPARK_Mode => On is specified as a configuration pragma.

1 package Exclude_Selected_Parts is
2

(continues on next page)
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3 procedure Critical_Action;
4

5 procedure Non_Critical_Action;
6

7 package Non_Critical_Data with
8 SPARK_Mode => Off
9 is

10 type T is access Integer;
11 X : T;
12 function Get_X return Integer;
13 end Non_Critical_Data;
14

15 end Exclude_Selected_Parts;

Note that procedure Non_Critical_Action can be called inside SPARK code, because its spec is in SPARK, even
though its body is marked SPARK_Mode => Off.

Note also that the local package Non_Critical_Data can contain any non-SPARK types, variables and subprograms,
as it is marked SPARK_Mode => Off. It may be convenient to define such a local package to gather non-SPARK
declarations, which allows to mark globally the unit Exclude_Selected_Parts with SPARK_Mode => On.

1 package body Exclude_Selected_Parts is
2

3 procedure Critical_Action is
4 begin
5 -- this procedure body is analyzed
6 Non_Critical_Action;
7 end Critical_Action;
8

9 procedure Non_Critical_Action with
10 SPARK_Mode => Off
11 is
12 begin
13 -- this procedure body is not analyzed
14 null;
15 end Non_Critical_Action;
16

17 package body Non_Critical_Data with
18 SPARK_Mode => Off
19 is
20 -- this package body is not analyzed
21 function Get_X return Integer is
22 begin
23 return X.all;
24 end Get_X;
25 end Non_Critical_Data;
26

27 end Exclude_Selected_Parts;
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CHAPTER

FIVE

OVERVIEW OF SPARK LANGUAGE

This chapter provides an overview of the SPARK language, detailing for each feature its consequences in terms of
execution and formal verification. This is not a reference manual for the SPARK language, which can be found in:

• the Ada Reference Manual (for Ada features), and

• the SPARK Reference Manual (for SPARK-specific features)

More details on how GNAT compiles SPARK code can be found in the GNAT Reference Manual.

SPARK can be seen as a large subset of Ada with additional aspects/pragmas/attributes. It includes in particular:

• rich types (subtypes with bounds not known statically, discriminant records, subtype predicates, access types)

• flexible features to structure programs (function and operator overloading, early returns and exits, raise state-
ments)

• code sharing features (generics, expression functions)

• object oriented features (tagged types, dispatching)

• concurrency features (tasks, protected objects)

In the rest of this chapter, the marker Supported in Ada 2005 (resp. Supported in Ada 2012 or Supported in Ada 2022)
is used to denote that a feature defined in Ada 2005 (resp. Ada 2012 or Ada 2022) is supported in SPARK, and the
marker Requires Ravenscar/Jorvik profile is used to denote that a concurrency feature from Ada which belongs to the
Ravenscar or Jorvik profiles is supported in SPARK. The marker Specific to SPARK is used to denote that a feature is
specific to SPARK. Both the GNAT compiler and GNATprove analyzer support all features listed here.

Some code snippets presented in this section are available in the example called gnatprove_by_example distributed
with the SPARK toolset. It can be found in the share/examples/spark directory below the directory where the
toolset is installed, and can be accessed from the IDE (either GNAT Studio or GNATBench) via the Help → SPARK
→ Examples menu item.

5.1 Language Restrictions

5.1.1 Excluded Ada Features
To facilitate formal verification, SPARK enforces a number of global simplifications to Ada. The most notable simpli-
fications are:

• Uses of access types and allocators must follow an ownership policy, so that only one access object has read-write
permission to some allocated memory at any given time, or only read-only permission for that allocated memory
is granted to possibly multiple access objects. See Memory Ownership Policy.

• All expressions (including function calls) are free of side effects, at the exception of calls to so-called functions
with side effects (see Aspect Side_Effects) which can only appear as the right-hand side of assignments. Allowing
functions with side effects everywhere could lead to non-deterministic evaluation due to conflicting side effects
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in sub-expressions of an enclosing expression. Allowing all functions to have side effects would conflict with
the need to treat functions mathematically in specifications.

• Aliasing of names is not permitted. Aliasing may lead to unexpected interferences, in which the value denoted
locally by a given name changes as the result of an update to another locally named variable. Formal verification
of programs with aliasing is less precise and requires more manual work. See Absence of Interferences.

• The backward goto statement is not permitted. Backward gotos can be used to create loops, which require a
specific treatment in formal verification, and thus should be precisely identified. See Loop Invariants and Loop
Variants.

• The use of controlled types is not permitted. Controlled types lead to the insertion of implicit calls by the
compiler. Formal verification of implicit calls makes it harder for users to interact with formal verification tools,
as there is no source code on which information can be reported.

• Functions should always terminate when called on inputs satisfying the precondition, at the exception of so-called
functions with side effects (see Aspect Side_Effects). While care is taken in GNATprove to detect possibilities of
unsoundness resulting from nonterminating functions, it is possible that axioms generated for infeasible contracts
may lead to unsoundness. See Infeasible Subprogram Contracts.

• Generic code is not analyzed directly. Doing so would require lengthy contracts on generic parameters, and would
restrict the kind of code that can be analyzed, e.g. by forcing the variables read/written by a generic subprogram
parameter. Instead, instantiations of generic code are analyzed in SPARK. See Analysis of Generics.

As formal verification technology advances the list will be revisited and it may be possible to relax some of these
restrictions.

Uses of these features in SPARK code are detected by GNATprove and reported as errors. Formal verification is not
possible on subprograms using these features. But these features can be used in subprograms in Ada not identified as
SPARK code, see Identifying SPARK Code.

5.1.2 Sizes of Objects
GNATprove generally only knows the values of the Size and Object_Size attributes in simple cases such as scalar
objects. For any more complex types such as arrays and records, the value of these attributes is unknown, and e.g.
assertions referring to them remain unproved. The user can indicate the values of these attributes to SPARK via
confirming representation clauses, using for Type'Size use ... or the aspect syntax with Size => .... Only
static values can be used in these representation aspects or clauses, which can only be used on type declarations and
not on subtype declarations.

Note that for an object X of type T, the value of X'Size is not necessarily equal to T'Size, but equal to
T'Object_Size. So it is generally more useful to specify Object_Size on types to be able to know the value the
Size attribute of the type’s objects. However, to compute the size of T'Object_Size for composite types, the value
of C'Size is generally used, C being the type of a component. The value of Object_Size must be 8, 16, 32 or a
multiple of 64, while the Size of a type can be any value.

Attributes Size and Object_Size are specific to a subtype. As such, it is not known if a subtype has the same value
for these attributes as its base type, including when the subtype does not introduce any constraint as in subtype S is
T.

The following code example shows some simple representation clauses using the aspect syntax:

-- SPARK knows the 'Size and 'Object_Size of scalar types
type Short_Short is range -128 .. 127;
type U8 is mod 2 ** 8;

-- The following representation clauses are not needed, but serve to
-- illustrate that in the record type declaration below, U7'Size (and not

(continues on next page)
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-- U7'Object_Size) is used to check the Object_Size of the record type.
type U7 is mod 2 ** 7
with Size => 7,

Object_Size => 8;

-- Without the packing instruction, the compiler would complain that
-- objects of type R do not fit into 8 bits.
type R is record

A : U7;
B : Boolean;

end record
with Pack, Object_Size => 8;

5.1.3 Data Validity
SPARK reinforces the strong typing of Ada with a stricter initialization policy (see Data Initialization Policy), and thus
provides no means of specifying that some input data may be invalid. This has some impact on language features that
process or potentially produce invalid values. SPARK issues checks specific to data validity on two language constructs:

• Calls to instances of Unchecked_Conversion

• Objects with a supported address clause (so-called overlays). An address clause is supported if it is of the form
with Address => Y'Address, where Y is another object, and Y is part of a statically known object.

For occurences of these patterns, SPARK checks that no invalid values can be produced. Given that no invalid values
can be constructed in SPARK, the evaluation of the attribute Valid is assumed to always return True.

These validity checks are illustrated in the following example:

1 package Validity with
2 SPARK_Mode
3 is
4

5 procedure Convert (X : Integer; Y : out Float);
6

7 end Validity;

1 with Ada.Unchecked_Conversion;
2

3 package body Validity with
4 SPARK_Mode
5 is
6

7 function Int_To_Float is new Ada.Unchecked_Conversion (Integer, Float);
8

9 procedure Convert (X : Integer; Y : out Float) is
10 begin
11 pragma Assert (X'Valid);
12 Y := Int_To_Float (X);
13 pragma Assert (Y'Valid);
14 end Convert;
15

16 end Validity;
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GNATprove proves both assertions, but issues warnings about its assumptions that the evaluation of attribute Valid
on both input parameter X and the result of the call to Unchecked_Conversion return True. It also issues a “high”
unproved check that the unchecked conversion to Float may produce invalid values (for example, if an Integer is
converted whose bit representation corresponds to a NaN float, which is not allowed in SPARK).

validity.adb:7:13: info: types in unchecked conversion have the same size
validity.adb:7:59: info: type is suitable as source for unchecked conversion

validity.adb:7:68: high: type is unsuitable as a target for unchecked conversion
7 | function Int_To_Float is new Ada.Unchecked_Conversion (Integer, Float);
| ^~~~~

possible explanation: floating-point types have invalid bit patterns for SPARK

validity.adb:11:22: warning: attribute Valid is assumed to return True [attribute-valid-
↪→always-true]

11 | pragma Assert (X'Valid);
| ^~~~~~~

validity.adb:11:22: info: assertion proved

validity.adb:13:22: warning: attribute Valid is assumed to return True [attribute-valid-
↪→always-true]

13 | pragma Assert (Y'Valid);
| ^~~~~~~

validity.adb:13:22: info: assertion proved
validity.ads:5:36: info: initialization of "Y" proved

When checking an instance of Unchecked_Conversion, GNATprove also checks that both types have the same
Object_Size. For non-scalar types, GNATprove doesn’t know the Object_Size of the types, so representation
clauses that specify Object_Size are required to prove such checks (see also Sizes of Objects). Similarly, for object
declarations with an Address clause or aspect that refers to the 'Address of another object, SPARK checks that both
objects have the same known Object_Size.

SPARK allows conversions from (suitable) integer types or System.Address_Type to general access-to-object types.
When calling such instances of Unchecked_Conversion, GNATprove makes some assumptions about the result of
the call:

• The designated data has no aliases if it is an access-to-variable type and no mutable aliases otherwise.

• The returned object is a valid access and it designates a valid value of its type.

At each call to such Unchecked_Conversion, GNATprove raises warnings to notify the user that these assumptions
need to be ascertained by other means.

Conversions from integer types or System.Address_Type to pool-specific access-to-object types are still forbidden, as
these pointers should not be deallocated nor considered when checking for memory leaks. Conversions from access-to-
object types to integer types or System.Address_Type are still forbidden, because SPARK does not handle addresses.

1 with Ada.Unchecked_Conversion;
2 with Interfaces; use Interfaces;
3 with System; use System;
4

5 package UC_To_Access with SPARK_Mode => On is
6 type Int_Access is access all Integer;
7

8 function Uns_To_Int_Access is new Ada.Unchecked_Conversion (Unsigned_64, Int_Access);
9 -- Accepted with warnings

(continues on next page)
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10 function Uns_From_Int_Access is new Ada.Unchecked_Conversion (Int_Access, Unsigned_
↪→64);

11 -- Rejected
12

13 C1 : constant Int_Access := Uns_To_Int_Access (30);
14

15 function Addr_To_Int_Access is new Ada.Unchecked_Conversion (Address, Int_Access);
16 -- Accepted with warnings
17 function Addr_From_Int_Access is new Ada.Unchecked_Conversion (Int_Access, Address);
18 -- Rejected
19

20 Addr : Address with Import;
21 C2 : constant Int_Access := Addr_To_Int_Access (Addr);
22

23 type PS_Access is access Integer;
24

25 function Uns_To_PS_Access is new Ada.Unchecked_Conversion (Unsigned_64, PS_Access);
26 -- Rejected
27 end UC_To_Access;

uc_to_access.ads:10:13: error: unchecked conversion instance from a type with access␣
↪→subcomponents is not allowed in SPARK
uc_to_access.ads:10:13: error: violation of aspect SPARK_Mode at line 5
uc_to_access.ads:13:32: warning: call to "Uns_To_Int_Access" is assumed to return a␣
↪→valid access designating a valid value [address-to-access-conversion]
uc_to_access.ads:13:32: warning: the value returned by a call to "Uns_To_Int_Access" is␣
↪→assumed to have no aliases
uc_to_access.ads:17:13: error: unchecked conversion instance from a type with access␣
↪→subcomponents is not allowed in SPARK
uc_to_access.ads:17:13: error: violation of aspect SPARK_Mode at line 5
uc_to_access.ads:21:32: warning: call to "Addr_To_Int_Access" is assumed to return a␣
↪→valid access designating a valid value [address-to-access-conversion]
uc_to_access.ads:21:32: warning: the value returned by a call to "Addr_To_Int_Access" is␣
↪→assumed to have no aliases
uc_to_access.ads:25:13: error: unchecked conversion instance to a pool-specific access␣
↪→type is not allowed in SPARK
uc_to_access.ads:25:13: error: violation of aspect SPARK_Mode at line 5
gnatprove: error during flow analysis and proof

5.1.4 Data Initialization Policy
Modes on parameters and data dependency contracts (see Data Dependencies) in SPARK have a stricter meaning than
in Ada:

• Parameter mode in (resp. global mode Input) indicates that the object denoted in the parameter (resp. data
dependencies) should be completely initialized before calling the subprogram. It should not be written in the
subprogram.

• Parameter mode out (resp. global mode Output) indicates that the object denoted in the parameter (resp. data
dependencies) should be completely initialized before returning from the subprogram. It should not be read in
the program prior to initialization.

• Parameter mode in out (resp. global mode In_Out) indicates that the object denoted in the parameter (resp.
data dependencies) should be completely initialized before calling the subprogram. It can be written in the
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subprogram.

• Global mode Proof_In indicates that the object denoted in the data dependencies should be completely initial-
ized before calling the subprogram. It should not be written in the subprogram, and only read in contracts and
assertions.

Hence, all inputs should be completely initialized at subprogram entry, and all outputs should be completely initialized
at subprogram output. Similarly, all objects should be completely initialized when read (e.g. inside subprograms), at
the exception of record subcomponents (but not array subcomponents) provided the subcomponents that are read are
initialized.

A consequence of the rules above is that a parameter (resp. global variable) that is partially written in a subprogram
should be marked as in out (resp. In_Out), because the input value of the parameter (resp. global variable) is read
when returning from the subprogram.

GNATprove will issue check messages if a subprogram does not respect the aforementioned data initialization policy.
For example, consider a procedure Proc which has a parameter and a global item of each mode:

1 package Data_Initialization with
2 SPARK_Mode
3 is
4 type Data is record
5 Val : Float;
6 Num : Natural;
7 end record;
8

9 G1, G2, G3 : Data;
10

11 procedure Proc
12 (P1 : in Data;
13 P2 : out Data;
14 P3 : in out Data)
15 with
16 Global => (Input => G1,
17 Output => G2,
18 In_Out => G3);
19

20 procedure Call_Proc with
21 Global => (Output => (G1, G2, G3));
22

23 end Data_Initialization;

Procedure Proc should completely initialize its outputs P2 and G2, but it only initalizes them partially. Similarly,
procedure Call_Proc which calls Proc should completely initalize all of Proc’s inputs prior to the call, but it only
initalizes G1 completely.

1 package body Data_Initialization with
2 SPARK_Mode
3 is
4

5 procedure Proc
6 (P1 : in Data;
7 P2 : out Data;
8 P3 : in out Data) is
9 begin

10 P2.Val := 0.0;
(continues on next page)
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11 G2.Num := 0;
12 -- fail to completely initialize P2 and G2 before exit
13 end Proc;
14

15 procedure Call_Proc is
16 X1, X2, X3 : Data;
17 begin
18 X1.Val := 0.0;
19 X3.Num := 0;
20 G1.Val := 0.0;
21 G1.Num := 0;
22 -- fail to completely initialize X1, X3 and G3 before call
23 Proc (X1, X2, X3);
24 end Call_Proc;
25

26 end Data_Initialization;

On this program, GNATprove issues 6 high check messages, corresponding to the violations of the data initialization
policy:

data_initialization.adb:23:07: high: "G3" is not an input in the Global contract of␣
↪→subprogram "Call_Proc" at data_initialization.ads:20

23 | Proc (X1, X2, X3);
| ^~~~~~~~~~~~~~~~

either make "G3" an input in the Global contract or initialize it before use

data_initialization.adb:23:13: high: "X1.Num" is not initialized
23 | Proc (X1, X2, X3);

| ^~

data_initialization.adb:23:17: warning: "X2" is set by "Proc" but not used after the call
23 | Proc (X1, X2, X3);

| ^~

data_initialization.adb:23:21: warning: "X3" is set by "Proc" but not used after the call
23 | Proc (X1, X2, X3);

| ^~

data_initialization.adb:23:21: high: "X3.Val" is not initialized
23 | Proc (X1, X2, X3);

| ^~

data_initialization.ads:12:07: warning: unused variable "P1"
12 | (P1 : in Data;

| ^~

data_initialization.ads:13:07: high: "P2.Num" is not initialized in "Proc"
13 | P2 : out Data;

| ^~
reason for check: OUT parameter should be fully initialized on return
possible fix: initialize "P2.Num" on all paths, make "P2" an IN OUT parameter or␣

(continues on next page)
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↪→annotate it with aspect Relaxed_Initialization

data_initialization.ads:14:07: warning: "P3" is not modified, could be IN
14 | P3 : in out Data)

| ^~

data_initialization.ads:14:07: warning: unused variable "P3"
14 | P3 : in out Data)

| ^~

data_initialization.ads:16:27: low: unused global "G1"
16 | Global => (Input => G1,

| ^~

data_initialization.ads:17:27: high: "G2.Val" is not initialized
17 | Output => G2,

| ^~

data_initialization.ads:18:27: warning: "G3" is not modified, could be INPUT
18 | In_Out => G3);

| ^~

data_initialization.ads:18:27: low: unused global "G3"
18 | In_Out => G3);

| ^~

While a user can justify individually such messages with pragma Annotate (see section Justifying Check Messages),
it is under her responsibility to then ensure correct initialization of subcomponents that are read, as GNATprove relies
during proof on the property that data is properly initialized before being read.

Note also the various low check messages and warnings that GNATprove issues on unused parameters, global items
and assignments, also based on the stricter SPARK interpretation of parameter and global modes.

It is possible to opt out of the strong data initialization policy of SPARK on a case by case basis using the aspect
Relaxed_Initialization (see section Aspect Relaxed_Initialization and Ghost Attribute Initialized). Parts of ob-
jects subject to this aspect only need to be initialized when actually read. Using Relaxed_Initialization re-
quires specifying data initialization through contracts that are verified by proof (as opposed to flow analysis). Thus,
Relaxed_Initialization should only be used when needed as it requires more effort to verify data initialization
from both the user and the tool.

5.1.5 Memory Ownership Policy
In SPARK, access values (a.k.a. pointers) are only allowed to alias in known ways, so that formal verification can be
applied as if allocated memory pointed to by access values was a component of the access value seen as a record object.

In particular, assignment between access objects operates a transfer of ownership, where the source object loses its
permission to read or write the underlying allocated memory.

For example, in the following example:

1 procedure Ownership_Transfer with
2 SPARK_Mode
3 is
4 type Int_Ptr is access Integer;

(continues on next page)
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5 X : Int_Ptr;
6 Y : Int_Ptr;
7 Tmp : Integer;
8 begin
9 X := new Integer'(1);

10 X.all := X.all + 1;
11 Y := X;
12 Y.all := Y.all + 1;
13 X.all := X.all + 1; -- illegal
14 X.all := 1; -- illegal
15 Tmp := X.all; -- illegal
16 end Ownership_Transfer;

GNATprove correctly detects that X.all can neither be read nor written after the assignment of X to Y and issues
corresponding messages:

ownership_transfer.adb:13:06: error: dereference from "X" is not writable
13 | X.all := X.all + 1; -- illegal

| ~~^~~
object was moved at line 11 [E0010]
11 | Y := X;

| ^ here
launch "gnatprove --explain=E0010" for more information

ownership_transfer.adb:13:15: error: dereference from "X" is not readable
13 | X.all := X.all + 1; -- illegal

| ~~^~~
object was moved at line 11 [E0010]
11 | Y := X;

| ^ here
launch "gnatprove --explain=E0010" for more information

ownership_transfer.adb:14:06: error: dereference from "X" is not writable
14 | X.all := 1; -- illegal

| ~~^~~
object was moved at line 11 [E0010]
11 | Y := X;

| ^ here
launch "gnatprove --explain=E0010" for more information

ownership_transfer.adb:15:15: error: dereference from "X" is not readable
15 | Tmp := X.all; -- illegal

| ~~^~~
object was moved at line 11 [E0010]
11 | Y := X;

| ^ here
launch "gnatprove --explain=E0010" for more information

gnatprove: error during flow analysis and proof

At call site, ownership is similarly transferred to the callee’s parameters for the duration of the call, and returned to the
actual parameters (a.k.a. arguments) when returning from the call.
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For example, in the following example:

1 procedure Ownership_Transfer_At_Call with
2 SPARK_Mode
3 is
4 type Int_Ptr is access Integer;
5 X : Int_Ptr;
6

7 procedure Proc (Y : in out Int_Ptr)
8 with Global => (In_Out => X)
9 is

10 begin
11 Y.all := Y.all + 1;
12 X.all := X.all + 1;
13 end Proc;
14

15 begin
16 X := new Integer'(1);
17 X.all := X.all + 1;
18 Proc (X); -- illegal
19 end Ownership_Transfer_At_Call;

GNATprove correctly detects that the call to Proc cannot take X in argument as X is already accessed as a global variable
by Proc.

possible fix: subprogram at line 7 should mention X in a precondition
7 | procedure Proc (Y : in out Int_Ptr)
| ^ here

It is also possible to transfer the ownership of an object temporarily, for the duration of the lifetime of a local object.
This can be achieved by declaring a local object of an anonymous access type and initializing it with a part of an existing
object. In the following example, B temporarily borrows the ownership of X:

1 procedure Ownership_Borrowing with
2 SPARK_Mode
3 is
4 type Int_Ptr is access Integer;
5 X : Int_Ptr := new Integer'(1);
6 Tmp : Integer;
7 begin
8 declare
9 B : access Integer := X;

10 begin
11 B.all := B.all + 1;
12 X.all := X.all + 1; -- illegal
13 X.all := 1; -- illegal
14 Tmp := X.all; -- illegal
15 end;
16 X.all := X.all + 1;
17 X.all := 1;
18 Tmp := X.all;
19 end Ownership_Borrowing;

During the lifetime of B, it is incorrect to either read or modify X, but complete ownership is restored to X when B goes
out of scope. GNATprove correctly detects that reading or assigning to X in the scope of B is incorrect.
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ownership_borrowing.adb:12:09: error: object was borrowed at line 9
12 | X.all := X.all + 1; -- illegal

| ~~^~~

ownership_borrowing.adb:12:18: error: object was borrowed at line 9
12 | X.all := X.all + 1; -- illegal

| ~~^~~

ownership_borrowing.adb:13:09: error: object was borrowed at line 9
13 | X.all := 1; -- illegal

| ~~^~~

ownership_borrowing.adb:14:18: error: object was borrowed at line 9
14 | Tmp := X.all; -- illegal

| ~~^~~
gnatprove: error during flow analysis and proof

It is also possible to only transfer read access to a local variable. This happens when the variable has an anonymous
access-to-constant type, as in the following example:

1 procedure Ownership_Observing with
2 SPARK_Mode
3 is
4 type Int_Ptr is access Integer;
5 X : Int_Ptr := new Integer'(1);
6 Tmp : Integer;
7 begin
8 declare
9 B : access constant Integer := X;

10 begin
11 Tmp := B.all;
12 Tmp := X.all;
13 X.all := X.all + 1; -- illegal
14 X.all := 1; -- illegal
15 end;
16 X.all := X.all + 1;
17 X.all := 1;
18 Tmp := X.all;
19 end Ownership_Observing;

In this case, we say that B observes the value of X. During the lifetime of an observer, it is illegal to move or modify
the observed object. GNATprove correctly flags the write inside X in the scope of B as illegal. Note that reading X is
still possible in the scope of B:

ownership_observing.adb:13:09: error: object was observed at line 9
13 | X.all := X.all + 1; -- illegal

| ~~^~~

ownership_observing.adb:14:09: error: object was observed at line 9
14 | X.all := 1; -- illegal

| ~~^~~
(continues on next page)
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gnatprove: error during flow analysis and proof

5.1.6 Absence of Interferences
In SPARK, an assignment to a variable cannot change the value of another variable. This is enforced by restricting the
use of access types (pointers) in SPARK, and by restricting aliasing between parameters and global variables so that
only benign aliasing is accepted (i.e. aliasing that does not cause interference).

The precise rules detailed in SPARK RM 6.4.2 can be summarized as follows:

• Two mutable parameters should never be aliased.

• An immutable and a mutable parameters should not be aliased, unless the immutable parameter is always passed
by copy.

• A mutable parameter should never be aliased with a global variable referenced by the subprogram.

• An immutable parameter should not be aliased with a global variable referenced by the subprogram, unless the
immutable parameter is always passed by copy.

An immutable parameter is either an input parameter that is not of an access type, or an anonymous access-to-constant
parameter. Except for parameters of access types, the immutable/mutable distinction is the same as the input/output
one.

These rules extend the existing rules in Ada RM 6.4.1 for restricting aliasing, which already make it illegal to call a
procedure with problematic (non-benign) aliasing between parameters of scalar type that are known to denote the same
object (a notion formally defined in Ada RM).

For example, in the following example:

1 package Aliasing with
2 SPARK_Mode
3 is
4 Glob : Integer;
5

6 procedure Whatever (In_1, In_2 : Integer; Out_1, Out_2 : out Integer) with
7 Global => Glob;
8

9 end Aliasing;

Procedure Whatever can only be called on arguments that satisfy the following constraints:

1. Arguments for Out_1 and Out_2 should not be aliased.

2. Variable Glob should not be passed in argument for Out_1 and Out_2.

Note that there are no constraints on input parameters In_1 and In_2, as these are always passed by copy (being of a
scalar type). This would not be the case if these input parameters were of a record or array type.

For example, here are examples of correct and illegal (according to Ada and SPARK rules) calls to procedure Whatever:

1 with Aliasing; use Aliasing;
2

3 procedure Check_Param_Aliasing with
4 SPARK_Mode
5 is
6 X, Y, Z : Integer := 0;
7 begin

(continues on next page)
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8 Whatever (In_1 => X, In_2 => X, Out_1 => X, Out_2 => X); -- illegal
9 Whatever (In_1 => X, In_2 => X, Out_1 => X, Out_2 => Y); -- correct

10 Whatever (In_1 => X, In_2 => X, Out_1 => Y, Out_2 => X); -- correct
11 Whatever (In_1 => Y, In_2 => Z, Out_1 => X, Out_2 => X); -- illegal
12 end Check_Param_Aliasing;

GNATprove (like GNAT compiler, since these are also Ada rules) correctly detects the two illegal calls and issues
errors:

check_param_aliasing.adb:8:45: error: writable actual for "Out_1" overlaps with actual␣
↪→for "Out_2"

8 | Whatever (In_1 => X, In_2 => X, Out_1 => X, Out_2 => X); -- illegal
| ^ here

check_param_aliasing.adb:11:45: error: writable actual for "Out_1" overlaps with actual␣
↪→for "Out_2"

11 | Whatever (In_1 => Y, In_2 => Z, Out_1 => X, Out_2 => X); -- illegal
| ^ here

gnatprove: error during generation of Global contracts

Here are other examples of correct and incorrect calls (according to SPARK rules) to procedure Whatever:

1 with Aliasing; use Aliasing;
2

3 procedure Check_Aliasing with
4 SPARK_Mode
5 is
6 X, Y, Z : Integer := 0;
7 begin
8 Whatever (In_1 => X, In_2 => X, Out_1 => X, Out_2 => Glob); -- incorrect
9 Whatever (In_1 => X, In_2 => Y, Out_1 => Z, Out_2 => Glob); -- incorrect

10 Whatever (In_1 => Glob, In_2 => Glob, Out_1 => X, Out_2 => Y); -- correct
11 end Check_Aliasing;

GNATprove correctly detects the two incorrect calls and issues high check messages:

check_aliasing.adb:8:57: high: formal parameter "Out_2" and global "Glob" are aliased␣
↪→(SPARK RM 6.4.2)

8 | Whatever (In_1 => X, In_2 => X, Out_1 => X, Out_2 => Glob); -- incorrect
| ^~~~

check_aliasing.adb:9:57: high: formal parameter "Out_2" and global "Glob" are aliased␣
↪→(SPARK RM 6.4.2)

9 | Whatever (In_1 => X, In_2 => Y, Out_1 => Z, Out_2 => Glob); -- incorrect
| ^~~~

Note that SPARK currently does not detect aliasing between objects that arises due to the use of Address clauses or
aspects.
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5.1.7 Analysis of Generics
GNATprove does not directly analyze the code of generics. The following message is issued if you call GNATprove
on a generic unit:

warning: no bodies have been analyzed by GNATprove
enable analysis of a non-generic body using SPARK_Mode

The advice given is to use SPARK_Mode on non-generic code, for example an instantiation of the generic unit. As
SPARK_Mode aspect cannot be attached to a generic instantiation, it should be specified on the enclosing context, either
through a pragma or aspect.

For example, consider the following generic increment procedure:

1 generic
2 type T is range <>;
3 procedure Generic_Increment (X : in out T) with
4 SPARK_Mode,
5 Pre => X < T'Last,
6 Post => X = X'Old + 1;

1 procedure Generic_Increment (X : in out T) with
2 SPARK_Mode
3 is
4 begin
5 X := X + 1;
6 end Generic_Increment;

Procedure Instance_Increment is a specific instance of Generic_Increment for the type Integer:

1 pragma SPARK_Mode;
2 with Generic_Increment;
3

4 procedure Instance_Increment is new Generic_Increment (Integer);

GNATprove analyzes this instantiation and reports messages on the generic code, always stating to which instantiation
the messages correspond to:

generic_increment.ads:6:11: info: postcondition proved, in instantiation at instance_
↪→increment.ads:4
generic_increment.ads:6:21: info: overflow check proved, in instantiation at instance_
↪→increment.ads:4
generic_increment.adb:5:11: info: overflow check proved, in instantiation at instance_
↪→increment.ads:4

Thus, it is possible that some checks are proved on an instance and not on another one. In that case, the chained
locations in the messages issued by GNATprove allow you to locate the problematic instantiation. In order to prove a
generic library for all possible uses, you should choose extreme values for the generic parameters such that, if these
instantiations are proved, any other choice of parameters will be provable as well.

5.2 Subprogram Contracts
The most important feature to specify the intended behavior of a SPARK program is the ability to attach a contract
to subprograms. In this document, a subprogram can be a procedure, a function or a protected entry. This contract is
made up of various optional parts:
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• The precondition introduced by aspect Pre specifies constraints on callers of the subprogram.

• The postcondition introduced by aspect Post specifies (partly or completely) the functional behavior of the
subprogram.

• The contract cases introduced by aspect Contract_Cases is a way to partition the behavior of a subprogram.
It can replace or complement a postcondition.

• The data dependencies introduced by aspect Global specify the global data read and written by the subprogram.

• The flow dependencies introduced by aspect Depends specify how subprogram outputs depend on subprogram
inputs.

• The exceptional contract introduced by aspect Exceptional_Cases specifies the exceptions that might be prop-
agated by a procedure, along with exceptional postconditions.

• The exit cases introduced by aspect Exit_Cases is a way to specify how a subprogram is allowed to exit by
partioning the input domain. It can replace or complement a postcondition or an exceptional contract.

• The termination contract introduced by aspect Always_Terminates requires procedures and entries to termi-
nate, possibly under a particular condition.

• The subprogram variant introduced by aspect Subprogram_Variant is used to ensure termination of recursive
subprograms.

Which contracts to write for a given verification objective, and how GNATprove generates default contracts, is detailed
in How to Write Subprogram Contracts.

GNATprove formally verifies that each execution of each SPARK subprogram it analyzes will either:

• return normally in a state that respects the subprogram’s postcondition,

• raise an exception in a state that respects the subprogram’s exceptional contract,

• terminate abnormally as a result of a primary stack, secondary stack, or heap memory allocation failure, or

• not terminate at all when it is allowed by its termination contract.

GNATprove also checks that procedures that are marked with aspect or pragma No_Return do not return: they should
either raise an exception, call a non-returning subprogram, or loop forever on any input.

5.2.1 Preconditions
Supported in Ada 2012

The precondition of a subprogram specifies constraints on callers of the subprogram. Typically, preconditions are
written as conjunctions of constraints that fall in one of the following categories:

• exclusion of forbidden values of parameter, for example X /= 0 or Y not in Active_States

• specification of allowed parameter values, for example X in 1 .. 10 or Y in Idle_States

• relations that should hold between parameter values, for example (if Y in Active_State then Z /=
Null_State)

• expected values of global variables denoting the state of the computation, for example Current_State in
Active_States

• invariants about the global state that should hold when calling this subprogram, for example Is_Complete
(State_Mapping)

• relations involving the global state and input parameters that should hold when calling this subprogram, for
example X in Next_States (Global_Map, Y)
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When the program is compiled with assertions (for example with switch -gnata in GNAT), the precondition of a
subprogram is checked at run time every time the subprogram is called. An exception is raised if the precondition fails.
Not all assertions need to be enabled though. For example, a common idiom is to enable only preconditions (and not
other assertions) in the production binary, by setting pragma Assertion_Policy as follows:

pragma Assertion_Policy (Pre => Check);

When a subprogram is analyzed with GNATprove, its precondition is used to restrict the contexts in which it may be
executed, which is required in general to prove that the subprogram’s implementation:

• is free from run-time errors (see Writing Contracts for Program Integrity); and

• ensures that the postcondition of the subprogram always holds (see Writing Contracts for Functional Correct-
ness).

In particular, the default precondition of True used by GNATprove when no explicit one is given may not be precise
enough, unless it can be analyzed in the context of its callers by GNATprove (see Contextual Analysis of Subprograms
Without Contracts). When a caller is analyzed with GNATprove, it checks that the precondition of the called subpro-
gram holds at the point of call. And even when the implementation of the subprogram is not analyzed with GNATprove,
it may be necessary to add a precondition to the subprogram for analyzing its callers (see Writing Contracts on Imported
Subprograms).

For example, consider the procedure Add_To_Total which increments global counter Total by the value given in
parameter Incr. To ensure that there are no integer overflows in the implementation, Incr should not be too large,
which a user can express with the following precondition:

procedure Add_To_Total (Incr : in Integer) with
Pre => Incr >= 0 and then Total <= Integer'Last - Incr;

To ensure that the value of Total remains non-negative, one should also add the condition Total >= 0 to the pre-
condition:

procedure Add_To_Total (Incr : in Integer) with
Pre => Incr >= 0 and then Total in 0 .. Integer'Last - Incr;

Finally, GNATprove also analyzes preconditions to ensure that they are free from run-time errors in all contexts. This
may require writing the precondition in a special way. For example, the precondition of Add_To_Total above uses the
shortcut boolean operator and then instead of and, so that calling the procedure in a context where Incr is negative
does not result in an overflow when evaluating Integer'Last - Incr. Instead, the use of and then ensures that a
precondition failure will occur before the expression Integer'Last - Incr is evaluated.

Note

It is good practice to use the shortcut boolean operator and then instead of and in preconditions. This is required
in some cases by GNATprove to prove absence of run-time errors inside preconditions.

Raise expressions occuring in preconditions are handled in a special way. Indeed, it is a common pattern to use a raise
expression to change the exception raised by a failed precondition. To support this use case, raising an expression in a
precondition is considered in SPARK to be a failure of the precondition, as opposed to a runtime failure, which would
not be allowed in SPARK. As an example, we may want to introduce specific exceptions for the the failure of each
part of the precondition of Add_To_Total, so as to debug them more easily. This can be done by using two raise
expressions as in the following snippet:

Negative_Increment : exception;
Total_Out_Of_Bounds : exception;

(continues on next page)

48 Chapter 5. Overview of SPARK Language



SPARK User’s Guide, Release 15.0

(continued from previous page)

procedure Add_To_Total (Incr : in Integer) with
Pre => (Incr >= 0 or else raise Negative_Increment)
and then (Total in 0 .. Integer'Last - Incr

or else raise Total_Out_Of_Bounds);

The raise expressions are associated to each conjunct using an or else short circuit operator, so that they will be
evaluated when the conjunct evaluates to False and the exception will be raised.

On this code, GNATprove will not attempt to verify that the exceptions can never be raised when evaluating the precon-
dition in any context, like it does for other runtime exceptions. Instead, it will consider them being raised as a failure
of the precondition. So, for GNATprove, the precondition with the raise expressions above is effectively equivalent to
the precondition of the previous example.

5.2.2 Postconditions
Supported in Ada 2012

The postcondition of a subprogram specifies partly or completely the functional behavior of the subprogram. Typically,
postconditions are written as conjunctions of properties that fall in one of the following categories:

• possible values returned by a function, using the special attribute Result (see Attribute Result), for example
Get'Result in Active_States

• possible values of output parameters, for example Y in Active_States

• expected relations between output parameter values, for example if Success then Y /= Null_State

• expected relations between input and output parameter values, possibly using the special attribute Old (see At-
tribute Old), for example if Success then Y /= Y'Old

• expected values of global variables denoting updates to the state of the computation, for example
Current_State in Active_States

• invariants about the global state that should hold when returning from this subprogram, for example
Is_Complete (State_Mapping)

• relations involving the global state and output parameters that should hold when returning from this subprogram,
for example X in Next_States (Global_Map, Y)

When the program is compiled with assertions (for example with switch -gnata in GNAT), the postcondition of a
subprogram is checked at run time every time the subprogram returns. An exception is raised if the postcondition
fails. Usually, postconditions are enabled during tests, as they provide dynamically checkable oracles of the intended
behavior of the program, and disabled in the production binary for efficiency.

When a subprogram is analyzed with GNATprove, it checks that the postcondition of a subprogram cannot fail. This
verification is modular: GNATprove considers all calling contexts in which the precondition of the subprogram holds
for the analysis of a subprogram. GNATprove also analyzes postconditions to ensure that they are free from run-time
errors, like any other assertion.

For example, consider the procedure Add_To_Total which increments global counter Total with the value given in
parameter Incr. This intended behavior can be expressed in its postcondition:

procedure Add_To_Total (Incr : in Integer) with
Post => Total = Total'Old + Incr;

The postcondition of a subprogram is used to analyze calls to the subprograms. In particular, the default postcondition
of True used by GNATprove when no explicit one is given may not be precise enough to prove properties of its callers,
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unless it analyzes the subprogam’s implementation in the context of its callers (see Contextual Analysis of Subprograms
Without Contracts).

Recursive subprograms and mutually recursive subprograms are treated in this respect exactly like non-recursive ones.
Provided the execution of these subprograms always terminates (a property that is not verified by GNATprove), then
GNATprove correctly checks that their postcondition is respected by using this postcondition for recursive calls.

Special care should be exercized for functions that return a boolean, as a common mistake is to write the expected
boolean result as the postcondition:

function Total_Above_Threshold (Threshold : in Integer) return Boolean with
Post => Total > Threshold;

while the correct postcondition uses Attribute Result:

function Total_Above_Threshold (Threshold : in Integer) return Boolean with
Post => Total_Above_Threshold'Result = Total > Threshold;

Both GNAT compiler and GNATprove issue a warning on the semantically correct but likely functionally wrong post-
condition.

5.2.3 Contract Cases
Specific to SPARK

When a subprogram has a fixed set of different functional behaviors, it may be more convenient to specify these behav-
iors as contract cases rather than a postcondition. For example, consider a variant of procedure Add_To_Total which
either increments global counter Total by the given parameter value when possible, or saturates at a given threshold.
Each of these behaviors can be defined in a contract case as follows:

procedure Add_To_Total (Incr : in Integer) with
Contract_Cases => (Total + Incr < Threshold => Total = Total'Old + Incr,

Total + Incr >= Threshold => Total = Threshold);

Each contract case consists in a guard and a consequence separated by the symbol =>. When the guard evaluates to
True on subprogram entry, the corresponding consequence should also evaluate to True on subprogram exit. We say
that this contract case was enabled for the call. Exactly one contract case should be enabled for each call, or said
equivalently, the contract cases should be disjoint and complete.

For example, the contract cases of Add_To_Total express that the subprogram should be called in two distinct cases
only:

• on inputs that can be added to Total to obtain a value strictly less than a given threshold, in which case
Add_To_Total adds the input to Total.

• on inputs whose addition to Total exceeds the given threshold, in which case Add_To_Total sets Total to the
threshold value.

When the program is compiled with assertions (for example with switch -gnata in GNAT), all guards are evaluated on
entry to the subprogram, and there is a run-time check that exactly one of them is True. For this enabled contract case,
there is another run-time check when returning from the subprogram that the corresponding consequence evaluates to
True.

When a subprogram is analyzed with GNATprove, it checks that there is always exactly one contract case enabled, and
that the consequence of the contract case enabled cannot fail. If the subprogram also has a precondition, GNATprove
performs these checks only for inputs that satisfy the precondition, otherwise for all inputs.

In the simple example presented above, there are various ways to express an equivalent postcondition, in particular
using Conditional Expressions:
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procedure Add_To_Total (Incr : in Integer) with
Post => (if Total'Old + Incr < Threshold then

Total = Total'Old + Incr
else
Total = Threshold);

procedure Add_To_Total (Incr : in Integer) with
Post => Total = (if Total'Old + Incr < Threshold then Total'Old + Incr else Threshold);

procedure Add_To_Total (Incr : in Integer) with
Post => Total = Integer'Min (Total'Old + Incr, Threshold);

In general, an equivalent postcondition may be cumbersome to write and less readable. Contract cases also provide a
way to automatically verify that the input space is partitioned in the specified cases, which may not be obvious with a
single expression in a postcondition when there are many cases.

The guard of the last case may be others, to denote all cases not captured by previous contract cases. For example,
the contract of Add_To_Total may be written:

procedure Add_To_Total (Incr : in Integer) with
Contract_Cases => (Total + Incr < Threshold => Total = Total'Old + Incr,

others => Total = Threshold);

When others is used as a guard, there is no need for verification (both at run-time and using GNATprove) that the set
of contract cases covers all possible inputs. Only disjointness of contract cases is checked in that case.

5.2.4 Data Dependencies
Specific to SPARK

The data dependencies of a subprogram specify the global data that a subprogram is allowed to read and write. Together
with the parameters, they completely specify the inputs and outputs of a subprogram. Like parameters, the global
variables mentioned in data dependencies have a mode: Input for inputs, Output for outputs and In_Out for global
variables that are both inputs and outputs. A last mode of Proof_In is defined for inputs that are only read in contracts
and assertions. For example, data dependencies can be specified for procedure Add_To_Totalwhich increments global
counter Total as follows:

procedure Add_To_Total (Incr : in Integer) with
Global => (In_Out => Total);

For protected subprograms, the protected object is considered as an implicit parameter of the subprogram:

• it is an implicit parameter of mode in of a protected function; and

• it is an implicit parameter of mode in out of a protected procedure or a protected entry.

Data dependencies have no impact on compilation and the run-time behavior of a program. When a subprogram is
analyzed with GNATprove, it checks that the implementation of the subprogram:

• only reads global inputs mentioned in its data dependencies,

• only writes global outputs mentioned in its data dependencies, and

• always completely initializes global outputs that are not also inputs.

See Data Initialization Policy for more details on this analysis of GNATprove. During its analysis, GNATprove uses
the specified data dependencies of callees to analyze callers, if present, otherwise a default data dependency contract
is generated (see Generation of Dependency Contracts) for callees.
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There are various benefits when specifying data dependencies on a subprogram, which gives various reasons for users
to add such contracts:

• GNATprove verifies automatically that the subprogram implementation respects the specified accesses to global
data.

• GNATprove uses the specified contract during flow analysis, to analyze the data and flow dependencies of the
subprogram’s callers, which may result in a more precise analysis (less false alarms) than with the generated data
dependencies.

• GNATprove uses the specified contract during proof, to check absence of run-time errors and the functional
contract of the subprogram’s callers, which may also result in a more precise analysis (less false alarms) than
with the generated data dependencies.

When data dependencies are specified on a subprogram, they should mention all global data read and written in the
subprogram. When a subprogram has neither global inputs nor global outputs, it can be specified using the null data
dependencies:

function Get (X : T) return Integer with
Global => null;

When a subprogram has only global inputs but no global outputs, it can be specified either using the Input mode:

function Get_Sum return Integer with
Global => (Input => (X, Y, Z));

or equivalently without any mode:

function Get_Sum return Integer with
Global => (X, Y, Z);

Note the use of parentheses around a list of global inputs or outputs for a given mode.

Global data that is both read and written should be mentioned with the In_Out mode, and not as both input and output.
For example, the following data dependencies on Add_To_Total are illegal and rejected by GNATprove:

procedure Add_To_Total (Incr : in Integer) with
Global => (Input => Total,

Output => Total); -- INCORRECT

Global data that is partially written in the subprogram should also be mentioned with the In_Out mode, and not as an
output. See Data Initialization Policy.

5.2.5 Flow Dependencies
Specific to SPARK

The flow dependencies of a subprogram specify how its outputs (both output parameters and global outputs) depend
on its inputs (both input parameters and global inputs). For example, flow dependencies can be specified for procedure
Add_To_Total which increments global counter Total as follows:

procedure Add_To_Total (Incr : in Integer) with
Depends => (Total => (Total, Incr));

The above flow dependencies can be read as “the output value of global variable Total depends on the input values of
global variable Total and parameter Incr”.

Outputs (both parameters and global variables) may have an implicit input part depending on their type:
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• an unconstrained array A has implicit input bounds A'First and A'Last

• a discriminated record R has implicit input discriminants, for example R.Discr

Thus, an output array A and an output discriminated record R may appear in input position inside a flow-dependency
contract, to denote the input value of the bounds (for the array) or the discriminants (for the record).

For protected subprograms, the protected object is considered as an implicit parameter of the subprogram which may
be mentioned in the flow dependencies, under the name of the protected unit (type or object) being declared:

• as an implicit parameter of mode in of a protected function, it can be mentioned on the right-hand side of flow
dependencies; and

• as an implicit parameter of mode in out of a protected procedure or a protected entry, it can be mentioned on
both sides of flow dependencies.

Flow dependencies have no impact on compilation and the run-time behavior of a program. When a subprogram
is analyzed with GNATprove, it checks that, in the implementation of the subprogram, outputs depend on inputs as
specified in the flow dependencies. During its analysis, GNATprove uses the specified flow dependencies of callees
to analyze callers, if present, otherwise a default flow dependency contract is generated for callees (see Generation of
Dependency Contracts).

When flow dependencies are specified on a subprogram, they should mention all flows from inputs to outputs. In
particular, the output value of a parameter or global variable that is partially written by a subprogram depends on its
input value (see Data Initialization Policy).

When the output value of a parameter or global variable depends on its input value, the corresponding flow dependency
can use the shorthand symbol + to denote that a variable’s output value depends on the variable’s input value plus any
other input listed. For example, the flow dependencies of Add_To_Total above can be specified equivalently:

procedure Add_To_Total (Incr : in Integer) with
Depends => (Total =>+ Incr);

When an output value depends on no input value, meaning that it is completely (re)initialized with constants that do
not depend on variables, the corresponding flow dependency should use the null input list:

procedure Init_Total with
Depends => (Total => null);

5.2.6 Abstraction and Contracts
Just like for programming, abstraction is a key concept for the scalability of formal verification. In Ada, it is usually
provided through packages and privacy. A package is composed of (at most) three parts, the public part of the speci-
fication, its private part, and the package body. Entities defined in the private part of the specification or the package
body cannot be used in the public part of the specification nor in other units.

State Abstraction and Dependencies

Specific to SPARK

The subprogram contracts mentioned so far always used directly global variables. In many cases, this is not possible
because the global variables are defined in another unit and not directly visible (because they are defined in the private
part of a package specification, or in a package implementation). The notion of abstract state in SPARK can be used in
that case (see State Abstraction) to name in contracts global data that is not visible.

Suppose the global variable Total incremented by procedure Add_To_Total is defined in the package implemen-
tation, and a procedure Cash_Tickets in a client package calls Add_To_Total. Package Account which defines
Total can define an abstract state State that represents Total, as seen in State Abstraction, which allows using it in
Cash_Tickets’s data and flow dependencies:
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procedure Cash_Tickets (Tickets : Ticket_Array) with
Global => (Output => Account.State),
Depends => (Account.State => Tickets);

As global variable Total is not visible from clients of unit Account, it is not visible either in the visible part of
Account’s specification. Hence, externally visible subprograms in Account must also use abstract state State in
their data and flow dependencies, for example:

procedure Init_Total with
Global => (Output => State),
Depends => (State => null);

procedure Add_To_Total (Incr : in Integer) with
Global => (In_Out => State),
Depends => (State =>+ Incr);

Then, the implementations of Init_Total and Add_To_Total can define refined data and flow dependencies in-
troduced respectively by Refined_Global and Refined_Depends, which give the precise dependencies for these
subprograms in terms of concrete variables:

procedure Init_Total with
Refined_Global => (Output => Total),
Refined_Depends => (Total => null)

is
begin

Total := 0;
end Init_Total;

procedure Add_To_Total (Incr : in Integer) with
Refined_Global => (In_Out => Total),
Refined_Depends => (Total =>+ Incr)

is
begin

Total := Total + Incr;
end Add_To_Total;

Here, the refined dependencies are the same as the abstract ones where State has been replaced by Total, but that’s not
always the case, in particular when the abstract state is refined into multiple concrete variables (see State Abstraction).
GNATprove checks that:

• each abstract global input has at least one of its constituents mentioned by the concrete global inputs

• each abstract global in_out has at least one of its constituents mentioned with mode input and one with mode
output (or at least one constituent with mode in_out)

• each abstract global output has to have all its constituents mentioned by the concrete global outputs

• the concrete flow dependencies are a subset of the abstract flow dependencies

GNATprove uses the abstract contract (data and flow dependencies) of Init_Total and Add_To_Total when ana-
lyzing calls outside package Account and the more precise refined contract (refined data and flow dependencies) of
Init_Total and Add_To_Total when analyzing calls inside package Account.

Refined dependencies can be specified on both subprograms and tasks for which data and/or flow dependencies that
are specified include abstract states which are refined in the current unit.
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Abstraction and Functional Contracts

Abstraction affects how functional contracts are written. First, if global variables are not visible for data dependencies,
they are not visible either for functional contracts. For example, in the case of procedure Add_To_Total, if global
variable Total is not visible, we cannot express anymore the precondition and postcondition of Add_To_Total as in
Preconditions and Postconditions. In this case, it is necessary to define accessor functions to retrieve properties of the
state that are needed to express contracts. For example here:

function Get_Total return Integer;

procedure Add_To_Total (Incr : in Integer) with
Pre => Incr >= 0 and then Get_Total in 0 .. Integer'Last - Incr,
Post => Get_Total = Get_Total'Old + Incr;

The body of the function Get_Total may be defined either in the private part of package Account or in its implemen-
tation. It may take the form of a regular function or an expression function (see Expression Functions):

Total : Integer;

function Get_Total return Integer is (Total);

Accessor functions can be annotated as Ghost Functions functions to prevent them from being available in the standard
API of the package.

Abstraction also affects the visibility of contracts by the verification tool. By default, the notion of visibility used by
GNATprove is rather liberal: subprogram contracts and bodies of expression functions are visible except if they occur
in the body of another (possibly nested) unit. In particular, contracts of subprograms declared in the private part of other
units are visible. On our example, the precise definition of Get_Global is visible for the verification of Account no
matter whether it is declared in its private part or its implementation. However, it will only be available when verifying
units using the Account package if it is declared in its private part. To demonstrate this, we can introduce two distinct
functions to access the value of Total in the public part of the specification of Account:

function Get_Total_1 return Integer;

function Get_Total_2 return Integer;

They can be defined as expression functions as done previously, either in private part of Account or in its implemen-
tation:

function Get_Total_1 return Integer is (Total);

function Get_Total_2 return Integer is (Total);

In both cases, it will be possible to prove that Get_Total_1 and Get_Total_2 necessarily return the same value when
verifying Account and all subprograms declared within. However, in a Main procedure using the Account package,
this property would no longer be provable if the expression functions are supplied in the body of Account.

Note that abstraction is an important concept for verification as it ensures scalability of complex proofs by enforcing
separation of concerns - i.e. only the information that is necessary for a given verification is available in the verification
tool. The default visibility rules for verification can be tuned in some cases using the annotations Hide_Info and
Unhide_Info, see Annotation for Managing the Proof Context, to achieve a fine-grained abstraction.

The examples presented so far take advantage of the specific handling of expression functions to provide different
contracts for a subprogram. Since the body of expression functions acts as an implicit postcondition, it directly provides
a refined version of the function’s contract possibly with a different visibility. Not all subprograms can be turned into
an expression function. As an alternative, the SPARK language provides the Refined_Post aspect or pragma that can
be used to provide an alternative postcondition on a subprogram body. For example, procedure Add_To_Total may
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also increment the value of a counter Call_Count at each call. If this information is not relevant for the verification
of programs using the Account package, it can be expressed in a refined postcondition:

procedure Add_To_Total (Incr : in Integer) with
Refined_Post => Total = Total'Old + Incr and Call_Count = Call_Count'Old + 1

is
...

end Add_To_Total;

GNATprove uses the abstract contract (precondition and postcondition) of Add_To_Totalwhen analyzing calls outside
package Account and the more precise refined contract (precondition and refined postcondition) of Add_To_Total
when analyzing calls inside package Account. The verification of the subprogram itself ensures that the refined con-
tracts are a refinement of the abstract ones: the postcondition of Add_To_Total should be implied by its refined
postcondition only, without looking at its body. As an example, removing the first conjunct in the refined postcon-
dition of Add_To_Total would cause the verification of its postcondition to fail even though it is still implied by its
implementation:

procedure Add_To_Total (Incr : in Integer) with
Refined_Post => Call_Count = Call_Count'Old + 1 -- NOT PRECISE ENOUGH TO PROVE THE POST

is
...

end Add_To_Total;

5.2.7 Exceptional Contracts
Specific to SPARK

In SPARK, every subprogram with side effects which might propagate an exception should be annotated with an ex-
ceptional contract. This contract, introduced by the Exceptional_Cases aspect, lists all the exceptions which might
be propagated by a procedure, and associates them to an exceptional postcondition. This postcondition describes the
effect of the procedure when the exception is raised. As an example, consider the procedure Incr_All below. It goes
over an array to increment its elements. If an overflow would occur, the exception Overflow is raised and the traversal
is stopped. The global variable Index is used to store the current index at this point. The exceptional contract of
Incr_All states both that it might propagate Overflow, and that it will only do so if it finds an offending index, using
the global variable Index. The fact that Overflow is necessarily raised when such an index exists follows from the
regular postcondition of Incr_All:

1 procedure Exceptions with SPARK_Mode is
2

3 type Nat_Array is array (Positive range <>) of Natural;
4

5 Overflow : exception;
6 Index : Positive;
7

8 procedure Incr_All (A : in out Nat_Array) with
9 Post =>

10 (for all I in A'Range => A'Old (I) /= Natural'Last
11 and then A (I) = A'Old (I) + 1),
12 Exceptional_Cases =>
13 (Overflow => Index in A'Old'Range and then A'Old (Index) = Natural'Last);
14

15 procedure Incr_All (A : in out Nat_Array) is
16 begin
17 for I in A'Range loop

(continues on next page)
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(continued from previous page)

18 if A (I) = Natural'Last then
19 Index := I;
20 raise Overflow;
21 end if;
22

23 A (I) := A (I) + 1;
24 pragma Loop_Invariant
25 (for all J in A'First .. I => A'Loop_Entry (J) < Natural'Last);
26 pragma Loop_Invariant
27 (for all J in A'First .. I => A (J) = A'Loop_Entry (J) + 1);
28 end loop;
29 end Incr_All;
30

31 procedure Incr_All_Cond (A : in out Nat_Array; Success : out Boolean) with
32 Post => Success = (for all I in A'Range => A'Old (I) /= Natural'Last)
33 and then
34 (if Success then (for all I in A'Range => A (I) = A'Old (I) + 1));
35

36 procedure Incr_All_Cond (A : in out Nat_Array; Success : out Boolean) is
37 begin
38 Incr_All (A);
39 Success := True;
40 exception
41 when Overflow =>
42 A := (others => 0);
43 Success := False;
44 end Incr_All_Cond;
45

46 procedure Incr_All_With_Pre (A : in out Nat_Array) with
47 Pre => (for all I in A'Range => A (I) /= Natural'Last),
48 Post =>
49 (for all I in A'Range => A'Old (I) /= Natural'Last
50 and then A (I) = A'Old (I) + 1);
51

52 procedure Incr_All_With_Pre (A : in out Nat_Array) is
53 begin
54 Incr_All (A);
55 end Incr_All_With_Pre;
56

57 begin
58 null;
59 end Exceptions;

GNATprove can successfully verify both Incr_All above and its two callers: the exception is handled inside
Incr_All_Cond and the call to Incr_All never raises Overflow in Incr_All_With_Pre.

exceptions.adb:10:08: info: postcondition proved
exceptions.adb:10:40: info: index check proved
exceptions.adb:11:23: info: index check proved
exceptions.adb:11:35: info: index check proved
exceptions.adb:11:38: info: overflow check proved
exceptions.adb:13:21: info: exceptional case proved

(continues on next page)
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(continued from previous page)

exceptions.adb:13:58: info: index check proved
exceptions.adb:19:22: info: range check proved
exceptions.adb:23:25: info: overflow check proved
exceptions.adb:25:13: info: loop invariant initialization proved
exceptions.adb:25:13: info: loop invariant preservation proved
exceptions.adb:25:56: info: index check proved
exceptions.adb:27:13: info: loop invariant preservation proved
exceptions.adb:27:13: info: loop invariant initialization proved
exceptions.adb:27:45: info: index check proved
exceptions.adb:27:64: info: index check proved
exceptions.adb:27:67: info: overflow check proved
exceptions.adb:31:29: info: initialization of "A" proved
exceptions.adb:31:51: info: initialization of "Success" proved
exceptions.adb:32:14: info: postcondition proved
exceptions.adb:32:56: info: index check proved
exceptions.adb:34:55: info: index check proved
exceptions.adb:34:67: info: index check proved
exceptions.adb:34:70: info: overflow check proved
exceptions.adb:38:07: info: only expected exception raised
exceptions.adb:42:12: info: length check proved
exceptions.adb:47:42: info: index check proved
exceptions.adb:49:08: info: postcondition proved
exceptions.adb:49:40: info: index check proved
exceptions.adb:50:23: info: index check proved
exceptions.adb:50:35: info: index check proved
exceptions.adb:50:38: info: overflow check proved
exceptions.adb:54:07: info: only expected exception raised

The Data Initialization Policy of SPARK is mostly enforced on exceptional exit of subprograms. All global outputs
shall be initialized when an exception is propagated, like Index in the example above. It is the case too for parameters
which are necessarily passed by reference (tagged types, aliased parameters. . . ). Other parameters, either necessarily
passed by copy or for which the parameter passing mode is unspecified by the language, do not need to be initialized.
As a result, after a call which has propagated an exception:

• output parameters necessarily passed by reference are considered to have been initialized or updated by the call
as on a normal return,

• output parameters necessarily passed by copy are preserved, and

• output parameters for which the parameter passing mode is unspecified by the language are considered to not be
initialized anymore; they should not be read after the call.

As an example, the parameter A of Incr_All is a composite type containing only subcomponents of a by-copy type
(a scalar). As per the Ada reference manual, its parameter passing mode is unspecified. It means that its value will be
unspecified if the call to Incr_All raises an exception, as can be seen on Incr_All_Bad_Init:

1 procedure Exceptions_Bad_Init with SPARK_Mode is
2

3 type Nat_Array is array (Positive range <>) of Natural;
4

5 Overflow : exception;
6 Index : Positive;
7

8 procedure Incr_All (A : in out Nat_Array) with
(continues on next page)
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9 Import,
10 Global => (In_Out => Index),
11 Always_Terminates,
12 Post =>
13 (for all I in A'Range => A'Old (I) /= Natural'Last
14 and then A (I) = A'Old (I) + 1),
15 Exceptional_Cases =>
16 (Overflow => Index in A'Old'Range and then A'Old (Index) = Natural'Last);
17

18 procedure Incr_All_Bad_Init
19 (A : in out Nat_Array;
20 Success : out Boolean;
21 N : out Natural)
22 with
23 Post => Success = (for all I in A'Range => A'Old (I) /= Natural'Last)
24 and then
25 (if Success then (for all I in A'Range => A (I) = A'Old (I) + 1));
26

27 procedure Incr_All_Bad_Init
28 (A : in out Nat_Array;
29 Success : out Boolean;
30 N : out Natural)
31 is
32 begin
33 Incr_All (A);
34 Success := True;
35 N := 0;
36 exception
37 when Overflow =>
38 Success := False;
39 N := A (Index);
40 end Incr_All_Bad_Init;
41

42 begin
43 null;
44 end Exceptions_Bad_Init;

exceptions_bad_init.adb:19:07: medium: "A" might not be initialized in "Incr_All_Bad_Init
↪→"

19 | (A : in out Nat_Array;
| ^ here

reason for check: OUT parameter should be fully initialized on return
possible fix: initialize "A" on all paths, make "A" an IN OUT parameter or annotate it␣

↪→with aspect Relaxed_Initialization

exceptions_bad_init.adb:23:49: medium: "A" might not be initialized
23 | Post => Success = (for all I in A'Range => A'Old (I) /= Natural'Last)

| ^ here

exceptions_bad_init.adb:39:15: high: "A" is not initialized
39 | N := A (Index);

(continues on next page)
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| ^ here

Note that, even though access types are passed by copy, in parameters of an access-to-variable part can be safely used
after an exceptional exit as only the designated value can be modified.

To make it easier for the user, it is not allowed to mention parameters which are not necessarily passed by reference in
an exceptional postcondition. An error is emitted if the exceptional postcondition of Incr_All is modified to mention
A:

1 procedure Exceptions_Bad with SPARK_Mode is
2

3 type Nat_Array is array (Positive range <>) of Natural;
4

5 Overflow : exception;
6 Index : Positive;
7

8 procedure Incr_All_Bad (A : in out Nat_Array) with
9 Import,

10 Post =>
11 (for all I in A'Range => A'Old (I) /= Natural'Last
12 and then A (I) = A'Old (I) + 1),
13 Exceptional_Cases =>
14 (Overflow => A'Old (Index) = Natural'Last
15 and then (for all I in A'Range =>
16 A (I) = (if I < Index then A'Old (I) + 1 else A'Old (I))));
17

18 begin
19 null;
20 end Exceptions_Bad;

exceptions_bad.adb:16:25: error: formal parameter of mode "in out" in consequence of␣
↪→Exceptional_Cases

16 | A (I) = (if I < Index then A'Old (I) + 1 else A'Old␣
↪→(I))));

| ^ here
only parameters passed by reference are allowed

gnatprove: error during generation of Global contracts

The exceptional contract is allowed if the parameter A is marked as aliased however, as it is then necessarily passed
by reference:

1 procedure Exceptions_Post with SPARK_Mode is
2

3 type Nat_Array is array (Positive range <>) of Natural;
4

5 Overflow : exception;
6 Index : Positive;
7

8 procedure Incr_All_Post (A : aliased in out Nat_Array) with
9 Post =>

10 (for all I in A'Range => A'Old (I) /= Natural'Last
11 and then A (I) = A'Old (I) + 1),

(continues on next page)
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12 Exceptional_Cases =>
13 (Overflow => A'Old (Index) = Natural'Last
14 and then (for all I in A'Range =>
15 A (I) = (if I < Index then A'Old (I) + 1 else A'Old (I))));
16

17 procedure Incr_All_Post (A : aliased in out Nat_Array) is
18 begin
19 for I in A'Range loop
20 if A (I) = Natural'Last then
21 Index := I;
22 raise Overflow;
23 end if;
24

25 A (I) := A (I) + 1;
26 pragma Loop_Invariant
27 (for all J in A'First .. I => A'Loop_Entry (J) < Natural'Last);
28 pragma Loop_Invariant
29 (for all J in A'First .. I => A (J) = A'Loop_Entry (J) + 1);
30 end loop;
31 end Incr_All_Post;
32

33 begin
34 null;
35 end Exceptions_Post;

exceptions_post.adb:10:08: info: postcondition proved
exceptions_post.adb:10:40: info: index check proved
exceptions_post.adb:11:23: info: index check proved
exceptions_post.adb:11:35: info: index check proved
exceptions_post.adb:11:38: info: overflow check proved
exceptions_post.adb:13:21: info: exceptional case proved
exceptions_post.adb:13:28: info: index check proved
exceptions_post.adb:15:28: info: index check proved
exceptions_post.adb:15:59: info: index check proved
exceptions_post.adb:15:62: info: overflow check proved
exceptions_post.adb:15:78: info: index check proved
exceptions_post.adb:21:22: info: range check proved
exceptions_post.adb:25:25: info: overflow check proved
exceptions_post.adb:27:13: info: loop invariant initialization proved
exceptions_post.adb:27:13: info: loop invariant preservation proved
exceptions_post.adb:27:56: info: index check proved
exceptions_post.adb:29:13: info: loop invariant preservation proved
exceptions_post.adb:29:13: info: loop invariant initialization proved
exceptions_post.adb:29:45: info: index check proved
exceptions_post.adb:29:64: info: index check proved
exceptions_post.adb:29:67: info: overflow check proved

Note that only exceptions which are raised explicitly in the code can be handled or propagated. For example, it would not
be possible to remove the defensive code raising the exception in the loop and instead propagate Constraint_Error
directly as in Incr_All_CE. Indeed, GNATprove always attempts to prove that runtime checks never fail. It complains
on Incr_All_CE that the range check might fail, and flags the exceptional case as unreachable if proof warnings are
enabled:
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1 procedure Exceptions_RTE with SPARK_Mode is
2

3 type Nat_Array is array (Positive range <>) of Natural;
4

5 procedure Incr_All_CE (A : in out Nat_Array) with
6 Post =>
7 (for all I in A'Range => A'Old (I) /= Natural'Last
8 and then A (I) = A'Old (I) + 1),
9 Exceptional_Cases => (Constraint_Error => True);

10

11 procedure Incr_All_CE (A : in out Nat_Array) is
12 begin
13 for I in A'Range loop
14 A (I) := A (I) + 1;
15 pragma Loop_Invariant
16 (for all J in A'First .. I => A'Loop_Entry (J) < Natural'Last);
17 pragma Loop_Invariant
18 (for all J in A'First .. I => A (J) = A'Loop_Entry (J) + 1);
19 end loop;
20 end Incr_All_CE;
21

22 begin
23 null;
24 end Exceptions_RTE;

exceptions_rte.adb:9:48: warning: unreachable branch
9 | Exceptional_Cases => (Constraint_Error => True);
| ^~~~

exceptions_rte.adb:14:25: high: overflow check might fail, cannot prove upper bound for␣
↪→A (I) + 1

14 | A (I) := A (I) + 1;
| ~~~~~~^~~

e.g. when A = (1 => Natural'Last)
and I = 1

reason for check: result of addition must fit in a 32-bits machine integer

If the exception raised by a raise statement or procedure call is neither handled nor allowed by its exceptional contract
(that is, it has no associated exceptional postcondition or this postcondition is statically False), then it is unexpected and
GNATprove will make sure that it never occurs. More precisely, GNATprove treats raising an unexpected exception in
the following way:

• in flow analysis, the program paths that lead to a statement raising an unexpected exception are not considered
when checking the contract of the subprogram; and

• in proof, a check is generated for these statements, to prove that no such program point is reachable.

Occurences of pragma Assert (X) where X is an expression statically equivalent to False are treated in the same
way.

As an example, consider the artificial subprogram Check_OK which raises an exception when parameter OK is False.
The Check_OK procedure does not have an exceptional contract so the exception is unexpected:
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1 package Abnormal_Terminations with
2 SPARK_Mode
3 is
4

5 G1, G2 : Integer := 0;
6

7 procedure Check_OK (OK : Boolean) with
8 Global => (Output => G1),
9 Pre => OK;

10

11 end Abnormal_Terminations;

1 package body Abnormal_Terminations with
2 SPARK_Mode
3 is
4

5 procedure Check_OK (OK : Boolean) is
6 begin
7 if OK then
8 G1 := 1;
9 else

10 G2 := 1;
11 raise Program_Error;
12 end if;
13 end Check_OK;
14

15 end Abnormal_Terminations;

Note that, although G2 is assigned in Check_OK, its assignment is directly followed by a raise_statement, so G2 is
never assigned on an execution of Check_OK that terminates normally. As a result, G2 is not mentioned in the data
dependencies of Check_OK. During flow analysis, GNATprove verifies that the body of Check_OK implements its
declared data dependencies.

During proof, GNATprove generates a check that the raise_statement on line 11 is never reached. Here, it is proved
thanks to the precondition of Check_OK which states that parameter OK should always be True on entry:

abnormal_terminations.adb:10:10: high: "G2" must be listed in the Global aspect of
↪→"Check_OK" (SPARK RM 6.1.4(15))

10 | G2 := 1;
| ^~

abnormal_terminations.adb:11:10: info: only expected exception raised

Note

Raising an exception is a side-effect. As a consequence, the aspect Exceptional_Cases is not allowed on func-
tions which are not annotated with the Side_Effects aspect and exceptions raised by raise_expressions can-
not be handled or propagated. GNATprove makes sure that they never occur.
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5.2.8 Exit Cases
Specific to SPARK

There are several ways for a subprogram to terminate: it can return normally or propagate an exception. If a subprogram
does not always terminate normally, then it is possible to annotate it with an Exit_Cases aspect. This aspect allows
partitioning the input state into cases, specifying for each case what the expected termination kind is. It can be either:

• Normal_Return, if the subprogram shall return normally,

• Exception_Raised, if it shall raise an (unspecified) exception, or

• (Exception_Raised => E), if it shall raise the exception E.

As an example, consider the procedure Might_Return_Abnormally below:

1 package Exit_Cases with SPARK_Mode is
2

3 E1, E2 : exception;
4

5 procedure Might_Return_Abnormally (X : in out Integer) with
6 Exit_Cases =>
7 (X = 1 => Normal_Return,
8 X = 2 => (Exception_Raised => E1),
9 others => Exception_Raised),

10 Exceptional_Cases => (E1 | E2 => True);
11

12 end Exit_Cases;

1 package body Exit_Cases with SPARK_Mode is
2

3 procedure Might_Return_Abnormally (X : in out Integer) is
4 begin
5 case X is
6 when 1 =>
7 X := 3;
8 when 2 =>
9 raise E1;

10 when others =>
11 raise E2;
12 end case;
13 end Might_Return_Abnormally;
14

15 end Exit_Cases;

Its contract states that, if it terminates, it shall return normally if X is 1, raise the exception E1 is X is 2, and raise
either E1 or E2, that is, any exception allowed by its exceptional contract, otherwise. The GNATprove tool generates
verification conditions to make sure that these restrictions hold. As can be seen below, in this example, they are all
proved. Note that there are sometimes several checks for a single exit case. For example here, two verifications are
associated to the second case: one to make sure that the subprogram does not return normally, and one to check that
the expected exception is propagated on exceptional exit:

exit_cases.ads:6:06: info: disjoint contract or exit cases proved
exit_cases.ads:7:19: info: exit case proved
on exceptional exit from Might_Return_Abnormally at exit_cases.ads:5

exit_cases.ads:8:19: info: exit case proved
(continues on next page)
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on normal return from Might_Return_Abnormally at exit_cases.ads:5
exit_cases.ads:8:19: info: exit case proved
on exceptional exit from Might_Return_Abnormally at exit_cases.ads:5

exit_cases.ads:9:19: info: exit case proved
on normal return from Might_Return_Abnormally at exit_cases.ads:5

exit_cases.ads:10:39: info: exceptional case proved

While a check is emitted by GNATprove to make sure that the different cases of an exit cases are disjoint (there shall
be no inputs satisfying the guard of several cases at the same time), it does not ensure that they are complete (there can
be inputs which are not satisfying any guards). In this case, there are no constraints on how the subprogram is allowed
to terminate. As an example, the contract of Might_Return_Abnormally would still be proved if the first and last
cases where removed:

1 package Exit_Cases_Incomplete with SPARK_Mode is
2

3 E1, E2 : exception;
4

5 procedure Might_Return_Abnormally (X : in out Integer) with
6 Exit_Cases =>
7 (X = 2 => (Exception_Raised => E1)),
8 Exceptional_Cases => (E1 | E2 => True);
9

10 end Exit_Cases_Incomplete;

1 package body Exit_Cases_Incomplete with SPARK_Mode is
2

3 procedure Might_Return_Abnormally (X : in out Integer) is
4 begin
5 case X is
6 when 1 =>
7 X := 3;
8 when 2 =>
9 raise E1;

10 when others =>
11 raise E2;
12 end case;
13 end Might_Return_Abnormally;
14

15 end Exit_Cases_Incomplete;

exit_cases_incomplete.ads:7:18: info: exit case proved
on normal return from Might_Return_Abnormally at exit_cases_incomplete.ads:5

exit_cases_incomplete.ads:7:18: info: exit case proved
on exceptional exit from Might_Return_Abnormally at exit_cases_incomplete.ads:5

exit_cases_incomplete.ads:8:39: info: exceptional case proved

In SPARK, as a general rule, postconditions, be they standard or exceptional postconditions, are only enforced if the
subprogram terminates. Exit cases are similar, they do not force the program to terminate but only ensure that it
terminates in the correct way if it does. As an example, the exit cases contract of Might_Return_Abnormally is still
verified if its body is replaced by an infinite loop. To enforce termination, Contracts for Termination should be used in
addition to the exit cases.
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1 package Exit_Cases_Non_Terminating with SPARK_Mode is
2

3 E1, E2 : exception;
4

5 procedure Might_Return_Abnormally (X : in out Integer) with
6 Exit_Cases =>
7 (X = 1 => Normal_Return,
8 X = 2 => (Exception_Raised => E1),
9 others => Exception_Raised),

10 Exceptional_Cases => (E1 | E2 => True);
11

12 end Exit_Cases_Non_Terminating;

1 package body Exit_Cases_Non_Terminating with SPARK_Mode is
2

3 procedure Might_Return_Abnormally (X : in out Integer) is
4 begin
5 loop
6 null;
7 end loop;
8 end Might_Return_Abnormally;
9

10 end Exit_Cases_Non_Terminating;

exit_cases_non_terminating.ads:6:06: info: disjoint contract or exit cases proved
exit_cases_non_terminating.ads:7:19: info: exit case proved
on exceptional exit from Might_Return_Abnormally at exit_cases_non_terminating.ads:5

exit_cases_non_terminating.ads:8:19: info: exit case proved
on normal return from Might_Return_Abnormally at exit_cases_non_terminating.ads:5

exit_cases_non_terminating.ads:8:19: info: exit case proved
on exceptional exit from Might_Return_Abnormally at exit_cases_non_terminating.ads:5

exit_cases_non_terminating.ads:9:19: info: exit case proved
on normal return from Might_Return_Abnormally at exit_cases_non_terminating.ads:5

exit_cases_non_terminating.ads:10:39: info: exceptional case proved

If an exit cases mentioning exceptions is supplied on a subprogram which does not have an exceptional contract, then
by default, GNATprove will assume that it is allowed to propagate the exceptions listed in its exit cases. If some of
these exceptions are unspecified, then it is allowed to propagate any exception. As an example, GNATprove will accept
raise statements inside Might_Return_Abnormally even if we remove its exceptional contract. However, the default
exceptional contract is imprecise in this case, as the propagated exception is not specified in the last exit case. As
a result, when analyzing a caller like Call_Might_Return_Abnormally below, the analysis tool won’t know that
Might_Return_Abnormally only propagates E1 or E2:

1 package Exit_Cases_Default_Contract with SPARK_Mode is
2

3 E1, E2 : exception;
4

5 procedure Might_Return_Abnormally (X : in out Integer) with
6 Exit_Cases =>
7 (X = 1 => Normal_Return,
8 X = 2 => (Exception_Raised => E1),
9 others => Exception_Raised);

(continues on next page)

66 Chapter 5. Overview of SPARK Language



SPARK User’s Guide, Release 15.0

(continued from previous page)

10

11 procedure Call_Might_Return_Abnormally (X : in out Integer) with
12 Exceptional_Cases => (E1 | E2 => True);
13

14 end Exit_Cases_Default_Contract;

1 package body Exit_Cases_Default_Contract with SPARK_Mode is
2

3 procedure Might_Return_Abnormally (X : in out Integer) is
4 begin
5 case X is
6 when 1 =>
7 X := 3;
8 when 2 =>
9 raise E1;

10 when others =>
11 raise E2;
12 end case;
13 end Might_Return_Abnormally;
14

15 procedure Call_Might_Return_Abnormally (X : in out Integer) is
16 begin
17 Might_Return_Abnormally (X);
18 end Call_Might_Return_Abnormally;
19

20 end Exit_Cases_Default_Contract;

exit_cases_default_contract.adb:17:07: medium: unexpected exception might be raised
17 | Might_Return_Abnormally (X);

| ^~~~~~~~~~~~~~~~~~~~~~~~~~

Note

Remark that exit cases are always equivalent to a conjunction of standard and exceptional postconditions, pos-
sibly with a number of duplicates. As an example, the exit cases of Might_Return_Abnormally is ac-
tually equivalent to the combination of normal and exceptional cases below. The postcondition states that
Might_Return_Abnormally might only return normally if X was equal to 1 before the call, while the excep-
tional contract ensures both that neither E1 nor E2 can be propagates if X was 1 before the call, and that only E1
might be propagated if it was 2:

procedure Might_Return_Abnormally (X : in out Integer) with
Post => X'Old = 1,
Exceptional_Cases =>

(E1 => X'Old /= 1,
E2 => X'Old not in 1 | 2);

These alternative contracts are often harder to read though as they involve references to the Old attribute, negations,
and duplications.
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5.2.9 Contracts for Termination
Specific to SPARK

By default, GNATprove verifies termination of all functions and automatically instantiated lemmas (procedures anno-
tated with Automatic_Instantiation). For procedures or entries, GNATprove does not attempt to verify termina-
tion and is only concerned with their partial correctness. This means that GNATprove only verifies that the contract
of each procedure or entry holds whenever it terminates (i.e., returns or raises an exception). It is still possible that the
subprogram does not terminate in some or all cases (it can for example loop forever or exit the whole program using
GNAT.OS_Lib.OS_Exit).

The Always_Terminates GNAT specific aspect allows users to request that GNATprove also verifies that a procedure
or entry terminates. It is the case for example of the procedures Ok_Terminating and Bad_Terminating below. The
aspect can also be used to provide a boolean condition like for the Conditionally_Loop procedure. If this condition
is present, then the proof of termination is only attempted when the condition evaluates to True on subprogram entry.
As an example, the procedure Conditionally_Loop might not terminate if its Cond parameter evaluates to True, and
Loop_Forever never needs to terminate (but it might):

1 package Possibly_Nonterminating with
2 SPARK_Mode
3 is
4

5 procedure Loop_Forever with
6 No_Return,
7 Always_Terminates => False,
8 Exceptional_Cases => (others => False);
9

10 procedure Conditionally_Loop (Cond : Boolean) with
11 Always_Terminates => not Cond;
12

13 procedure OK_Terminating with
14 Always_Terminates;
15

16 procedure Bad_Terminating with
17 Always_Terminates;
18

19 end Possibly_Nonterminating;

1 package body Possibly_Nonterminating with
2 SPARK_Mode
3 is
4 procedure Loop_Forever is
5 begin
6 loop
7 null;
8 end loop;
9 end Loop_Forever;

10

11 procedure Conditionally_Loop (Cond : Boolean) is
12 begin
13 if Cond then
14 Loop_Forever;
15 end if;
16 end Conditionally_Loop;
17

(continues on next page)
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18 procedure Ok_Terminating is
19 begin
20 Conditionally_Loop (False);
21 end Ok_Terminating;
22

23 procedure Bad_Terminating is
24 begin
25 Conditionally_Loop (True);
26 end Bad_Terminating;
27

28 end Possibly_Nonterminating;

GNATprove verifies the termination of OK_Terminating and the conditional termination of Conditionally_Loop
but a failed check is emitted for Bad_Terminating as it does not terminate.

possibly_nonterminating.adb:14:10: info: conditional call termination proved
possibly_nonterminating.adb:20:07: info: conditional call termination proved

possibly_nonterminating.adb:25:07: medium: call might not terminate
25 | Conditionally_Loop (True);

| ^~~~~~~~~~~~~~~~~~~~~~~~
reason for check: procedure "Bad_Terminating" has an Always_Terminates aspect

possibly_nonterminating.ads:13:14: info: aspect Always_Terminates on "OK_Terminating"␣
↪→has been proved, subprogram will terminate
possibly_nonterminating.ads:16:14: info: aspect Always_Terminates on "Bad_Terminating"␣
↪→has been proved, subprogram will terminate

A package can also be annotated with the Always_Terminates aspect. It does not apply to the elaboration of the
package, which should always terminate in SPARK, but serves as a default for all the procedures located inside: un-
less specified otherwise, a procedure declared inside a package annotated with Always_Terminates should always
terminate.

5.2.10 Subprogram Variant
Specific to SPARK

To ensure termination of recursive subprograms, it is possible to annotate them using the aspect Subprogram_Variant.
This aspect provides a value which should progress in some sense between the beginning of the subprogram and each
recursive call. The value is associated to a direction, which can be either Increases or Decreases for numeric
variants, or Structural for structural variants.

Numeric variants can take a discrete value or, in the case of the direction Decreases, a big natural (see Ada.Numerics.
Big_Integers). On every recursive call, a check is generated to ensure that the value progresses (decreases or in-
creases) with respect to its value at the beginning of the subprogram. Since a discrete value is necessarily bounded by
its Ada type, and a big natural is always greater than 0, it is enough to ensure that there will be no infinite chain of
recursive calls.

In the following example, we can verify that the Fibonacci function terminates stating that its parameter N decreases
at each recursive call:

1 with SPARK.Big_Integers; use SPARK.Big_Integers;
2

3 package Recursive_Subprograms with SPARK_Mode is
4

(continues on next page)
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5 function Fibonacci (N : Big_Natural) return Big_Natural is
6 (if N = 0 then 0
7 elsif N = 1 then 1
8 else Fibonacci (N - 1) + Fibonacci (N - 2))
9 with Subprogram_Variant => (Decreases => N);

10 end Recursive_Subprograms;

GNATprove generates one verification condition per recursive call to make sure that the value given for N is smaller
than the value of N on entry of Fibonacci:

recursive_subprograms.ads:5:13: info: implicit aspect Always_Terminates on "Fibonacci"␣
↪→has been proved, subprogram will terminate
recursive_subprograms.ads:6:10: info: predicate check proved
recursive_subprograms.ads:6:14: info: predicate check proved
recursive_subprograms.ads:6:21: info: predicate check proved
recursive_subprograms.ads:7:13: info: predicate check proved
recursive_subprograms.ads:7:17: info: predicate check proved
recursive_subprograms.ads:7:24: info: predicate check proved
recursive_subprograms.ads:8:12: info: subprogram variant proved
recursive_subprograms.ads:8:12: info: predicate check proved
recursive_subprograms.ads:8:23: info: predicate check proved
recursive_subprograms.ads:8:25: info: predicate check proved
recursive_subprograms.ads:8:27: info: predicate check proved
recursive_subprograms.ads:8:30: info: predicate check proved
recursive_subprograms.ads:8:32: info: subprogram variant proved
recursive_subprograms.ads:8:32: info: predicate check proved
recursive_subprograms.ads:8:43: info: predicate check proved
recursive_subprograms.ads:8:45: info: predicate check proved
recursive_subprograms.ads:8:47: info: predicate check proved
recursive_subprograms.ads:9:45: info: range check proved

It is possible to give more than one numeric value in a subprogram variant. In this case, values are checked in the
order in which they appear. If a value progresses (increases or decreases as specified) then it is enough to ensure the
progression of the whole variant and the subsequent values are not considered. In the same way, if a value annotated
with Increases actually decreases strictly (or the other way around) then the evaluation terminates and the verification
of the variant fails. It is only if the values of all the preceding expressions have been found to be preserved that the
subsequent value is considered. The function Max computes the index of the maximal value in a slice of an array. At
each recursive call, it shifts the bound containing the smallest value:

1 package Recursive_Subprograms.Multiple with SPARK_Mode is
2 type Nat_Array is array (Positive range <>) of Natural;
3

4 function Max (A : Nat_Array; F, L : Positive) return Positive is
5 (if F = L then F
6 elsif A (F) > A (L) then Max (A, F, L - 1)
7 else Max (A, F + 1, L))
8 with Pre => L in A'Range and F in A'Range and F <= L,
9 Post => Max'Result in F .. L

10 and then (for all I in F .. L => A (I) <= A (Max'Result)),
11 Subprogram_Variant => (Increases => F, Decreases => L);
12 end Recursive_Subprograms.Multiple;

The variant specifies that, for each recursive call, either F increases, or F stays the same and L decreases. The order is
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not important here, as L and F are never modified at the same time. This variant can be verified by GNATprove.

recursive_subprograms-multiple.ads:4:13: info: implicit aspect Always_Terminates on "Max
↪→" has been proved, subprogram will terminate
recursive_subprograms-multiple.ads:6:16: info: index check proved
recursive_subprograms-multiple.ads:6:24: info: index check proved
recursive_subprograms-multiple.ads:6:32: info: precondition proved
recursive_subprograms-multiple.ads:6:32: info: subprogram variant proved
recursive_subprograms-multiple.ads:6:45: info: range check proved
recursive_subprograms-multiple.ads:7:12: info: precondition proved
recursive_subprograms-multiple.ads:7:12: info: subprogram variant proved
recursive_subprograms-multiple.ads:7:22: info: overflow check proved
recursive_subprograms-multiple.ads:9:17: info: postcondition proved
recursive_subprograms-multiple.ads:10:46: info: index check proved
recursive_subprograms-multiple.ads:10:58: info: index check proved

Structural variants are generally used on recursive data-structures. The value associated to such a variant is necessarily
a formal parameter of the subprogram. On every recursive call, a check is generated to ensure that the actual parameter
denoted by the variant designates a strict subcomponent of the formal parameter denoted the variant at the beggining of
the call. Since, due to the Memory Ownership Policy of SPARK, the data-structures cannot contain cycles, it is enough
to ensure that there will be no infinite chain of recursive calls.

In the following example, we can verify that the Length function on singly-linked lists terminates stating that the
structure designated by its parameter L structurally decreases between two recursive calls:

1 with Ada.Numerics.Big_Numbers.Big_Integers;
2 use Ada.Numerics.Big_Numbers.Big_Integers;
3

4 package Recursive_Subprograms with SPARK_Mode is
5 type Cell;
6 type List is access Cell;
7 type Cell is record
8 Value : Integer;
9 Next : List;

10 end record;
11

12 function Length (L : List) return Big_Natural is
13 (if L = null then Big_Natural'(0) else Length (L.Next) + 1)
14 with Subprogram_Variant => (Structural => L);
15 end Recursive_Subprograms;

The fact that the actual parameter for L on the recursive call designates a strict subcomponent of the structure designated
by formal parameter L can be verified by GNATprove:

recursive_subprograms.ads:12:13: info: implicit aspect Always_Terminates on "Length" has␣
↪→been proved, subprogram will terminate
recursive_subprograms.ads:13:37: info: predicate check proved
recursive_subprograms.ads:13:45: info: subprogram variant proved
recursive_subprograms.ads:13:45: info: predicate check proved
recursive_subprograms.ads:13:54: info: pointer dereference check proved
recursive_subprograms.ads:13:61: info: predicate check proved
recursive_subprograms.ads:13:63: info: predicate check proved

Structural variants are subjects to a number of restrictions. They cannot be combined with other variants, and are
checked according to a mostly syntactic criterion. When these restrictions cannot be followed, structural variants can

5.2. Subprogram Contracts 71



SPARK User’s Guide, Release 15.0

be systematically replaced by a decreasing numeric variant providing the depth (or size) of the data structure, like
function Length above. Strictly speaking, structural variants are only required to define the function returning that
metric.

To verify the termination of mutually recursive subprograms, all subprograms should be annotated with compatible
variants. We say that two variants are compatible if they have the same number of expressions, and matching values
in the list have the same direction and the same base type. For example, the variants of Is_Even and Is_Odd are
compatible, because both are of type Integer and both decrease.

1 package Recursive_Subprograms.Mutually with SPARK_Mode is
2 function Is_Odd (X : Natural) return Boolean with
3 Subprogram_Variant => (Decreases => X);
4 function Is_Even (X : Natural) return Boolean with
5 Subprogram_Variant => (Decreases => X);
6

7 function Is_Odd (X : Natural) return Boolean is
8 (if X = 0 then False else not Is_Even (X - 1));
9 function Is_Even (X : Natural) return Boolean is

10 (if X = 0 then True else not Is_Odd (X - 1));
11 end Recursive_Subprograms.Mutually;

GNATprove introduces a check to make sure that the variant progresses at each mutually recursive call.

recursive_subprograms-mutually.ads:2:13: info: implicit aspect Always_Terminates on "Is_
↪→Odd" has been proved, subprogram will terminate
recursive_subprograms-mutually.ads:4:13: info: implicit aspect Always_Terminates on "Is_
↪→Even" has been proved, subprogram will terminate
recursive_subprograms-mutually.ads:8:36: info: subprogram variant proved
recursive_subprograms-mutually.ads:8:47: info: range check proved
recursive_subprograms-mutually.ads:10:35: info: subprogram variant proved
recursive_subprograms-mutually.ads:10:45: info: range check proved

5.3 Package Contracts
Subprograms are not the only entities to bear contracts in SPARK. Package contracts are made up of various optional
parts:

• The state abstraction specifies how global variables defined in the package are referred to abstractly where they
are not visible. Aspect Abstract_State introduces abstract names and aspect Refined_State specifies the
mapping between these names and global variables.

• The package initialization introduced by aspect Initializes specifies which global data (global variables and
abstract state) defined in the package is initialized at package startup.

• The package initial condition introduced by aspect Initial_Condition specifies the properties holding after
package startup.

Package startup (a.k.a. package elaboration in Ada RM) consists in the evaluation of all declarations in the package
specification and implementation, in particular the evaluation of constant declarations and those variable declarations
which contain an initialization expression, as well as the statements sometimes given at the end of a package body that
are precisely executed at package startup.
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5.3.1 State Abstraction
Specific to SPARK

The state abstraction of a package specifies a mapping between abstract names and concrete global variables defined
in the package. State abstraction allows to define Subprogram Contracts at an abstract level that does not depend on a
particular choice of implementation (see Abstraction and Contracts), which is better both for maintenance (no need to
change contracts) and scalability of analysis (contracts can be much smaller).

Basic State Abstraction

One abstract name may be mapped to more than one concrete variable, but no two abstract names can be mapped to
the same concrete variable. When state abstraction is specified on a package, all non-visible global variables defined
in the private part of the package specification and in its implementation should be mapped to abstract names. Thus,
abstract names correspond to a partitioning of the non-visible global variables defined in the package.

The simplest use of state abstraction is to define a single abstract name (conventionally called State) to denote all
non-visible global variables defined in the package. For example, consider package Account defining a global variable
Total in its implementation, which is abstracted as State:

package Account with
Abstract_State => State

is
...

end Account;

package body Account with
Refined_State => (State => Total)

is
Total : Integer;
...

end Account;

The aspect Refined_State maps each abstract name to a list of concrete global variables defined in the package. The
list can be simply null to serve as placeholder for future definitions of global variables. Instead of concrete global
variables, one can also use abstract names for the state of nested packages and private child packages, whose state is
considered to be also defined in the parent package.

If global variable Total is defined in the private part of Account’s package specification, then the declaration of
Total must use the special aspect Part_Of to declare its membership in abstract state State:

package Account with
Abstract_State => State

is
...

private
Total : Integer with Part_Of => State;
...

end Account;

This ensures that Account’s package specification can be checked by GNATprove even if its implementation is not in
SPARK, or not available for analysis, or not yet developed.

A package with state abstraction must have a package body that states how abstract states are refined in aspect
Refined_State, unless the package body is not in SPARK. If there is no other reason for the package to have a
body, then one should use pragma Elaborate_Body in the package spec to make it legal for the package to have a
body on which to express state refinement.
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In general, an abstract name corresponds to multiple global variables defined in the package. For example, we can
imagine adding global variables to log values passed in argument to procedure Add_To_Total, that are also mapped
to abstract name State:

package Account with
Abstract_State => State

is
...

end Account;

package body Account with
Refined_State => (State => (Total, Log, Log_Size))

is
Total : Integer;
Log : Integer_Array;
Log_Size : Natural;
...

end Account;

We can also imagine defining different abstract names for the total and the log:

package Account with
Abstract_State => (State, Internal_State)

is
...

end Account;

package body Account with
Refined_State => (State => Total,

Internal_State => (Log, Log_Size))
is

Total : Integer;
Log : Integer_Array;
Log_Size : Natural;
...

end Account;

The abstract names defined in a package are visible everywhere the package name itself is visible:

• in the scope where the package is declared, for a locally defined package

• in units that have a clause with <package>;

• in units that have a clause limited with <package>;

The last case allows subprograms in two packages to mutually reference the abstract state of the other package in their
data and flow dependencies.

Special Cases of State Abstraction

Global constants with a statically known value are not part of a package’s state. On the contrary, constant with variable
inputs are constants whose value depends on the value of either a variable or a subprogram parameter. Since they
participate in the flow of information between variables, constants with variable inputs are treated like variables: they
are part of a package’s state, and they must be listed in its state refinement whenever they are not visible. For example,
constant Total_Min is not part of the state refinement of package Account below, while constant with variable inputs
Total_Max is part of it:
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package body Account with
Refined_State => (State => (Total, Total_Max))

is
Total : Integer;
Total_Min : constant Integer := 0;
Total_Max : constant Integer := Compute_Total_Max(...);
...

end Account;

Global variables are not always the only constituents of a package’s state. For example, if a package P contains a nested
package N, then N’s state is part of P’s state. As a consequence, if N is hidden, then its state must be listed in P’s
refinement. For example, we can nest Account in the body of the Account_Manager package as follows:

package Account_Manager with
Abstract_State => State

is
...

end Account_Manager;

package body Account_Manager with
Refined_State => (State => Account.State)

is
package Account with
Abstract_State => State

is
...

end Account;
...

end Account_Manager;

State In The Private Part

Global variables and nested packages which themselves contain state may be declared in the private part of a package.
For each such global variable and nested package state, it is mandatory to identify, using aspect Part_Of, the abstract
state of the enclosing package of which it is a constituent:

package Account_Manager with
Abstract_State => (Totals, Details)

is
...

private
Total_Accounts : Integer with Part_Of => Totals;

package Account with
Abstract_State => (State with Part_Of => Details)

is
Total : Integer with Part_Of => Totals;
...

end Account;
...

end Account_Manager;

The purpose of using Part_Of is to enforce that each constituent of an abstract state is known at the declaration of
the constituent (not having to look at the package body), which is useful for both code understanding and tool analysis
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(including compilation).

As the state of a private child package is logically part of its parent package, aspect Part_Of must also be specified in
that case:

private package Account_Manager.Account with
Abstract_State => (State with Part_Of => Details)

is
Total : Integer with Part_Of => Totals;
...

end Account_Manager.Account;

Aspect Part_Of can also be specified on a generic package instantiation inside a private part, to specify that all the
state (visible global variables and abstract states) of the package instantiation is a constituent of an abstract state of the
enclosing package:

package Account_Manager with
Abstract_State => (Totals, Details)

is
...

private
package Account is new Generic_Account (Max_Total) with Part_Of => Details;
...

end Account_Manager;

5.3.2 Package Initialization
Specific to SPARK

The package initialization specifies which global data (global variables, constant with variable inputs, and abstract state)
defined in the package is initialized at package startup. The corresponding global variables may either be initialized at
declaration, or by the package body statements. Thus, package initialization can be seen as the output data dependencies
of the package elaboration procedure generated by the compiler.

For example, we can specify that the state of package Account is initialized at package startup as follows:

package Account with
Abstract_State => State,
Initializes => State

is
...

end Account;

Then, unless Account’s implementation is not in SPARK, it should initialize the corresponding global variable Total
either at declaration:

package body Account with
Refined_State => (State => Total)

is
Total : Integer := 0;
...

end Account;

or in the package body statements:
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package body Account with
Refined_State => (State => Total)

is
Total : Integer;
...

begin
Total := 0;

end Account;

These initializations need not correspond to direct assignments, but may be performed in a call, for example here to
procedure Init_Total as seen in State Abstraction and Dependencies. A mix of initializations at declaration and in
package body statements is also possible.

Package initializations also serve as dependency contracts for global variables’ initial values. That is, if the initial value
of a global variable, state abstraction, or constant with variable inputs listed in a package initialization depends on the
value of a variable defined outside the package, then this dependency must be listed in the package’s initialization. For
example, we can initialize Total by reading the value of an external variable:

package Account with
Abstract_State => State,
Initializes => (State => External_Variable)

is
...

end Account;

package body Account with
Refined_State => (State => Total)

is
Total : Integer := External_Variable;
...

end Account;

5.3.3 Package Initial Condition
Specific to SPARK

The package initial condition specifies the properties holding after package startup. Thus, package initial condition
can be seen as the postcondition of the package elaboration procedure generated by the compiler. For example, we can
specify that the value of Total defined in package Account’s implementation is initially zero:

package Account with
Abstract_State => State,
Initial_Condition => Get_Total = 0

is
function Get_Total return Integer;
...

end Account;

This is ensured either by initializing Total with value zero at declaration, or by assigning the value zero to Total in
the package body statements, as seen in Package Initialization.

When the program is compiled with assertions (for example with switch -gnata in GNAT), the initial condition of a
package is checked at run time after package startup. An exception is raised if the initial condition fails.

When a package is analyzed with GNATprove, it checks that the initial condition of a package cannot fail. GNATprove
also analyzes the initial condition expression to ensure that it is free from run-time errors, like any other assertion.
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5.3.4 Interfaces to the Physical World
Specific to SPARK

Volatile Variables

Most embedded programs interact with the physical world or other programs through so-called volatile variables, which
are identified as volatile to protect them from the usual compiler optimizations. In SPARK, volatile variables are
also analyzed specially, so that possible changes to their value from outside the program are taken into account, and
so that changes to their value from inside the program are also interpreted correctly (in particular for checking flow
dependencies).

For example, consider package Volatile_Or_Not which defines a volatile variable V and a non-volatile variable N,
and procedure Swap_Then_Zero which starts by swapping the values of V and N before zeroing them out:

1 package Volatile_Or_Not with
2 SPARK_Mode,
3 Initializes => V
4 is
5 V : Integer with Volatile;
6 N : Integer;
7

8 procedure Swap_Then_Zero with
9 Global => (In_Out => (N, V)),

10 Depends => (V => N, N => null, null => V);
11

12 end Volatile_Or_Not;

1 package body Volatile_Or_Not with
2 SPARK_Mode
3 is
4 procedure Swap_Then_Zero is
5 Tmp : constant Integer := V;
6 begin
7 -- Swap values of V and N
8 V := N;
9 N := Tmp;

10 -- Zero out values of V and N
11 V := 0;
12 N := 0;
13 end Swap_Then_Zero;
14

15 end Volatile_Or_Not;

Compare the difference in contracts between volatile variable V and non-volatile variable N:

• The Package Initialization of package Volatile_Or_Not mentions V although this variable is not initialized at
declaration or in the package body statements. This is because a volatile variable is assumed to be initialized.

• The Flow Dependencies of procedure Swap_Then_Zero are very different for V and N. If both variables were
not volatile, the correct contract would state that both input values are not used with null => (V, N) and that
both output values depend on no inputs with (V, N) => null. The difference lies with the special treatment
of volatile variable V: as its value may be read at any time, the intermediate value N assigned to V on line 8 of
volatile_or_not.adb needs to be mentioned in the flow dependencies for output V.

GNATprove checks that Volatile_Or_Not and Swap_Then_Zero implement their contract, and it issues a warning
on the first assignment to N:
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volatile_or_not.adb:9:09: warning: unused assignment
9 | N := Tmp;
| ~~^~~~~~

This warning points to a real issue, as the intermediate value of N is not used before N is zeroed out on line 12. But note
that no warning is issued on the similar first assignment to V, because the intermediate value of V may be read outside
the program before V is zeroed out on line 11.

Note that in real code, the memory address of the volatile variable is set through aspect Address or the corresponding
representation clause, so that it can be read or written outside the program.

Properties of Volatile Variables

Not all volatile variables are read and written outside the program, sometimes they are only read or only written outside
the program. For example, the log introduced in State Abstraction could be implemented as an output port for the
program logging the information, and as an input port for the program performing the logging. Two aspects are defined
in SPARK to distinguish these different properties of volatile variables:

• Aspect Async_Writers indicates that the value of the variable may be changed at any time (asynchronously)
by hardware or software outside the program.

• Aspect Async_Readers indicates that the value of the variable may be read at any time (asynchronously) by
hardware or software outside the program.

Aspect Async_Writers has an effect on GNATprove’s proof: two successive reads of such a variable may return
different results. Aspect Async_Readers has an effect on GNATprove’s flow analysis: an assignment to such a variable
always has a potential effect, even if the value is never read in the program, since an external reader might actually read
the value assigned.

These aspects are well suited to model respectively a sensor and a display, but not an input stream or an actuator, for
which the act of reading or writing has an effect that should be reflected in the flow dependencies. Two more aspects
are defined in SPARK to further refine the previous properties of volatile variables:

• Aspect Effective_Reads indicates that reading the value of the variable has an effect (for example, removing
a value from an input stream). It can only be specified on a variable that also has Async_Writers set.

• Aspect Effective_Writes indicates that writing the value of the variable has an effect (for example, sending
a command to an actuator). It can only be specified on a variable that also has Async_Readers set.

Both aspects Effective_Reads and Effective_Writes have an effect on GNATprove’s flow analysis: reading the
former or writing the latter is modelled as having an effect on the value of the variable, which needs to be reflected in
flow dependencies. Because reading a variable with Effective_Reads set has an effect on its value, such a variable
cannot be only a subprogram input, it must be also an output.

For example, the program writing in a log each value passed as argument to procedure Add_To_Total may model the
output port Log_Out as a volatile variable with Async_Readers and Effective_Writes set:

1 package Logging_Out with
2 SPARK_Mode
3 is
4 Total : Integer;
5 Log_Out : Integer with Volatile, Async_Readers, Effective_Writes;
6

7 procedure Add_To_Total (Incr : in Integer) with
8 Global => (In_Out => Total, Output => Log_Out),
9 Depends => (Total =>+ Incr, Log_Out => Incr);

(continues on next page)
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(continued from previous page)

10

11 end Logging_Out;

1 package body Logging_Out with
2 SPARK_Mode
3 is
4 procedure Add_To_Total (Incr : in Integer) is
5 begin
6 Total := Total + Incr;
7 Log_Out := Incr;
8 end Add_To_Total;
9

10 end Logging_Out;

while the logging program may model the input port Log_In as a volatile variable with Async_Writers and
Effective_Reads set:

1 package Logging_In with
2 SPARK_Mode
3 is
4 Log_In : Integer with Volatile, Async_Writers, Effective_Reads;
5

6 type Integer_Array is array (Positive range 1 .. 100) of Integer;
7 Log : Integer_Array;
8 Log_Size : Natural;
9

10 procedure Get with
11 Global => (In_Out => (Log, Log_Size, Log_In)),
12 Depends => ((Log_Size, Log_In) =>+ null, Log =>+ (Log_Size, Log_In));
13

14 end Logging_In;

1 package body Logging_In with
2 SPARK_Mode
3 is
4 procedure Get is
5 begin
6 Log_Size := Log_Size + 1;
7 Log (Log_Size) := Log_In;
8 end Get;
9

10 end Logging_In;

GNATprove checks the specified data and flow dependencies on both programs.

A volatile variable on which none of the four aspects Async_Writers, Async_Readers, Effective_Reads or
Effective_Writes is set is assumed to have all four aspects set to True. A volatile variable on which some of
the four aspects are set to True is assumed to have the remaining ones set to False. See SPARK RM 7.1.3 for details.
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Properties of Volatile Types

The four aspects Async_Writers, Async_Readers, Effective_Reads and Effective_Writes can be specified
for a volatile type as well as a volatile variable. The rules stated for variables apply also to types for deciding on the
value of the four aspects, when none, one or more values are specified explicitly. These aspects can only be specified
on a type declaration, not on a subtype declaration.

Thus the declaration:

type T is new Integer;
Log_In : T with Volatile, Async_Writers, Effective_Reads;

can be written equivalently:

type T is new Integer with Volatile, Async_Writers, Effective_Reads;
Log_In : T;

Initialization of Volatile Variables and Variables with Address Clauses

For volatile variables and imported variables with address clauses, GNATprove assumes that the object is initialized.
The following code does not raise errors about access to uninitialized data, and is proved. It does, however, raise several
warnings on the object Y with an address clause, as it is not a precisely supported address clause.

X : Natural with Volatile;

subtype Even is Natural with Predicate => Even mod 2 = 0;

procedure Volatile_Init is
Y : Even with Address => System'To_Address (16#DEADBEAF#), Import;
Tmp : Integer := X;

begin
pragma Assert (Y mod 2 = 0);

end P;

External State Abstraction

Volatile variables may be part of State Abstraction, in which case the volatility of the abstract name must be specified
by using aspect External on the abstract name, as follows:

package Account with
Abstract_State => (State with External)

is
...

end Account;

An external state may represent both volatile variables and non-volatile ones, for example:

package body Account with
Refined_State => (State => (Total, Log, Log_Size))

is
Total : Integer;
Log : Integer_Array with Volatile;
Log_Size : Natural with Volatile;
...

end Account;
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The different Properties of Volatile Variables may also be specified in the state abstraction, which is then used by
GNATprove to refine the analysis. For example, the program writing in a log seen in the previous section can be
rewritten to abstract global variables as follows:

1 package Logging_Out_Abstract with
2 SPARK_Mode,
3 Abstract_State => (State with External => (Async_Readers, Effective_Writes)),
4 Initializes => State
5 is
6 procedure Add_To_Total (Incr : in Integer) with
7 Global => (In_Out => State),
8 Depends => (State =>+ Incr);
9

10 end Logging_Out_Abstract;

1 package body Logging_Out_Abstract with
2 SPARK_Mode,
3 Refined_State => (State => (Log_Out, Total))
4 is
5 Total : Integer := 0;
6 Log_Out : Integer := 0 with Volatile, Async_Readers, Effective_Writes;
7

8 procedure Add_To_Total (Incr : in Integer) with
9 Refined_Global => (In_Out => Total, Output => Log_Out),

10 Refined_Depends => (Total =>+ Incr, Log_Out => Incr)
11 is
12 begin
13 Total := Total + Incr;
14 Log_Out := Incr;
15 end Add_To_Total;
16

17 end Logging_Out_Abstract;

while the logging program seen in the previous section may be rewritten to abstract global variables as follows:

1 package Logging_In_Abstract with
2 SPARK_Mode,
3 Abstract_State => (State with External => (Async_Writers, Effective_Reads))
4 is
5 procedure Get with
6 Global => (In_Out => State),
7 Depends => (State =>+ null);
8

9 end Logging_In_Abstract;

1 package body Logging_In_Abstract with
2 SPARK_Mode,
3 Refined_State => (State => (Log_In, Log, Log_Size))
4 is
5 Log_In : Integer with Volatile, Async_Writers, Effective_Reads;
6

7 type Integer_Array is array (Positive range 1 .. 100) of Integer;
8 Log : Integer_Array := (others => 0);

(continues on next page)
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(continued from previous page)

9 Log_Size : Natural := 0;
10

11 procedure Get with
12 Refined_Global => (In_Out => (Log, Log_Size, Log_In)),
13 Refined_Depends => ((Log_Size, Log_In) =>+ null, Log =>+ (Log_Size, Log_In))
14 is
15 begin
16 Log_Size := Log_Size + 1;
17 Log (Log_Size) := Log_In;
18 end Get;
19

20 end Logging_In_Abstract;

GNATprove checks the specified data and flow dependencies on both programs.

An external abstract state on which none of the four aspects Async_Writers, Async_Readers, Effective_Reads or
Effective_Writes is set is assumed to have all four aspects set to True. An external abstract state on which some of
the four aspects are set to True is assumed to have the remaining ones set to False. See SPARK RM 7.1.2 for details.

5.4 Type Contracts
SPARK contains various features to constrain the values of a given type:

• A scalar range may be specified on a scalar type or subtype to bound its values.

• A record discriminant may be specified on a record type to distinguish between variants of the same record.

• A predicate introduced by aspect Static_Predicate, Dynamic_Predicate, Ghost_Predicate or
Predicate may be specified on a type or subtype to express a property verified by objects of the (sub)type.

• A type invariant introduced by aspect Type_Invariant or Invariant may be specified on the completion of
a private type to express a property that is only guaranteed outside of the type scope.

• A default initial condition introduced by aspect Default_Initial_Condition on a private type specifies the
initialization status and possibly properties of the default initialization for a type.

5.4.1 Scalar Ranges
Supported in Ada 83

Scalar types (signed integer types, modulo types, fixed-point types, floating-point types) can be given a low bound
and a high bound to specify that values of the type must remain within these bounds. For example, the global counter
Total can never be negative, which can be expressed in its type:

Total : Integer range 0 .. Integer'Last;

Any attempt to assign a negative value to variable Total results in raising an exception at run time. During analysis,
GNATprove checks that all values assigned to Total are positive or null. The anonymous subtype above can also be
given an explicit name:

subtype Nat is Integer range 0 .. Integer'Last;
Total : Nat;

or we can use the equivalent standard subtype Natural:
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Total : Natural;

or Nat can be defined as a derived type instead of a subtype:

type Nat is new Integer range 0 .. Integer'Last;
Total : Nat;

or as a new signed integer type:

type Nat is range 0 .. Integer'Last;
Total : Nat;

All the variants above result in the same range checks both at run-time and in GNATprove. GNATprove also uses the
range information for proving properties about the program (for example, the absence of overflows in computations).

5.4.2 Record Discriminants
Supported in Ada 83

Record types can use discriminants to:

• define multiple variants and associate each component with a specific variant

• bound the size of array components

For example, the log introduced in State Abstraction could be implemented as a discriminated record with a discriminant
Kind selecting between two variants of the record for logging either only the minimum and maximum entries or the
last entries, and a discriminant Capacity specifying the maximum number of entries logged:

1 package Logging_Discr with
2 SPARK_Mode
3 is
4 type Log_Kind is (Min_Max_Values, Last_Values);
5 type Integer_Array is array (Positive range <>) of Integer;
6

7 type Log_Type (Kind : Log_Kind; Capacity : Natural) is record
8 case Kind is
9 when Min_Max_Values =>

10 Min_Entry : Integer;
11 Max_Entry : Integer;
12 when Last_Values =>
13 Log_Data : Integer_Array (1 .. Capacity);
14 Log_Size : Natural;
15 end case;
16 end record;
17

18 subtype Min_Max_Log is Log_Type (Min_Max_Values, 0);
19 subtype Ten_Values_Log is Log_Type (Last_Values, 10);
20

21 function Log_Size (Log : Log_Type) return Natural;
22

23 function Last_Entry (Log : Log_Type) return Integer with
24 Pre => Log.Kind = Last_Values and then Log.Log_Size in 1 .. Log.Capacity;
25

26 end Logging_Discr;
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Subtypes of Log_Type can specify fixed values for Kind and Capacity, like in Min_Max_Log and Ten_Values_Log.
The discriminants Kind and Capacity are accessed like regular components, for example:

1 package body Logging_Discr with
2 SPARK_Mode
3 is
4 function Log_Size (Log : Log_Type) return Natural is
5 begin
6 case Log.Kind is
7 when Min_Max_Values =>
8 return 2;
9 when Last_Values =>

10 return Log.Log_Size;
11 end case;
12 end Log_Size;
13

14 function Last_Entry (Log : Log_Type) return Integer is
15 begin
16 return Log.Log_Data (Log.Log_Size);
17 end Last_Entry;
18

19 end Logging_Discr;

Any attempt to access a component not present in a variable (because it is of a different variant), or to access an array
component outside its bounds, results in raising an exception at run time. During analysis, GNATprove checks that
components accessed are present, and that array components are accessed within bounds:

logging_discr.adb:10:23: info: discriminant check proved
logging_discr.adb:16:17: info: discriminant check proved
logging_discr.adb:16:31: info: discriminant check proved
logging_discr.adb:16:31: info: index check proved
logging_discr.ads:13:13: info: range check proved
logging_discr.ads:18:37: info: range check proved
logging_discr.ads:18:53: info: range check proved
logging_discr.ads:19:40: info: range check proved
logging_discr.ads:19:53: info: range check proved
logging_discr.ads:21:13: info: implicit aspect Always_Terminates on "Log_Size" has been␣
↪→proved, subprogram will terminate
logging_discr.ads:23:13: info: implicit aspect Always_Terminates on "Last_Entry" has␣
↪→been proved, subprogram will terminate
logging_discr.ads:24:48: info: discriminant check proved

5.4.3 Predicates
Supported in Ada 2012

Predicates can be used on any subtype to express a property verified by objects of the subtype at all times. Aspects
Static_Predicate and Dynamic_Predicate are defined in Ada to associate a predicate with a subtype. Aspect
Dynamic_Predicate allows to express more general predicates than aspect Static_Predicate, at the cost of re-
stricting the use of variables of the subtype. The following table summarizes the main similarities and differences
between both aspects:
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Feature Static_Predicate Dynamic_Predicate

Applicable to scalar subtype Yes Yes
Applicable to array/record subtype No Yes
Allows simple comparisons with static values Yes Yes
Allows conjunctions/disjunctions Yes Yes
Allows function calls No Yes
Allows general Boolean properties No Yes
Can be used in membership test Yes Yes
Can be used as range in for-loop Yes No
Can be used as choice in case-statement Yes No
Can be used as prefix with attributes First, Last or Range No No
Can be used as index subtype in array No No

Aspect Predicate is specific to GNAT and can be used instead of Static_Predicate or Dynamic_Predicate.
GNAT treats it as a Static_Predicate whenever possible and as a Dynamic_Predicate in the remaining cases,
thus not restricting uses of variables of the subtype more than necessary.

Aspect Ghost_Predicate is also specific to GNAT and can be used instead of Dynamic_Predicate when the predi-
cate expression needs to reference ghost entities or ghost attributes like Initialized. In that case, the subtype cannot
be used as subtype_mark in a membership test.

Predicates are inherited by subtypes and derived types. If a subtype or a derived type inherits a predicate and defines its
own predicate, both predicates are checked on values of the new (sub)type. Predicates are restricted in SPARK so that
they cannot depend on variable input. In particular, a predicate cannot mention a global variable in SPARK, although
it can mention a global constant.

GNATprove checks that all values assigned to a subtype with a predicate are allowed by its predicate (for all forms of
predicate: Predicate, Static_Predicate, Dynamic_Predicate and Ghost_Predicate). GNATprove generates
a predicate check even in cases where there is no corresponding run-time check, for example when assigning to a
component of a record with a predicate. GNATprove also uses the predicate information for proving properties about
the program.

Static Predicates

A static predicate allows specifying which values are allowed or forbidden in a scalar subtype, when this specification
cannot be expressed with Scalar Ranges (because it has holes). For example, we can express that the global counter
Total cannot be equal to 10 or 100 with the following static predicate:

subtype Count is Integer with
Static_Predicate => Count /= 10 and Count /= 100;

Total : Count;

or equivalently:

subtype Count is Integer with
Static_Predicate => Count in Integer'First .. 9 | 11 .. 99 | 101 .. Integer'Last;

Total : Count;

Uses of the name of the subtype Count in the predicate refer to variables of this subtype. Scalar ranges and static
predicates can also be combined, and static predicates can be specified on subtypes, derived types and new signed
integer types. For example, we may define Count as follows:

type Count is new Natural with
Static_Predicate => Count /= 10 and Count /= 100;
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Any attempt to assign a forbidden value to variable Total results in raising an exception at run time. During analysis,
GNATprove checks that all values assigned to Total are allowed.

Similarly, we can express that values of subtype Normal_Float are the normal 32-bits floating-point values (thus
excluding subnormal values), assuming here that Float is the 32-bits floating-point type on the target:

subtype Normal_Float is Float with
Static_Predicate => Normal_Float <= -2.0**(-126) or Normal_Float = 0.0 or Normal_Float␣

↪→>= 2.0**(-126);

Any attempt to assign a subnormal value to a variable of subtype Normal_Float results in raising an exception at run
time. During analysis, GNATprove checks that only normal values are assigned to such variables.

Dynamic Predicates

A dynamic predicate allows specifying properties of scalar subtypes that cannot be expressed as static predicates. For
example, we can express that values of subtype Odd and Even are distributed according to their name as follows:

subtype Odd is Natural with
Dynamic_Predicate => Odd mod 2 = 1;

subtype Even is Natural with
Dynamic_Predicate => Even mod 2 = 0;

or that values of type Prime are prime numbers as follows:

type Prime is new Positive with
Dynamic_Predicate => (for all Divisor in 2 .. Prime / 2 => Prime mod Divisor /= 0);

A dynamic predicate also allows specifying relations between components of a record. For example, we can express
that the values paired together in a record are always distinct as follows:

type Distinct_Pair is record
Val1, Val2 : Integer;

end record
with Dynamic_Predicate => Distinct_Pair.Val1 /= Distinct_Pair.Val2;

or that a record stores pairs of values with their greatest common divisor as follows:

type Bundle_Values is record
X, Y : Integer;
GCD : Natural;

end record
with Dynamic_Predicate => Bundle_Values.GCD = Get_GCD (Bundle_Values.X, Bundle_Values.

↪→Y);

or that the number of elements Count in a resizable table is always less than or equal to its maximal number of elements
Max as follows:

type Resizable_Table (Max : Natural) is record
Count : Natural;
Data : Data_Array(1 .. Max);

end record
with Dynamic_Predicate => Resizable_Table.Count <= Resizable_Table.Max;
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A dynamic predicate also allows specifying global properties over the content of an array. For example, we can express
that elements of an array are stored in increasing order as follows:

type Ordered_Array is array (Index) of Integer
with Dynamic_Predicate =>
(for all I in Index => (if I < Index'Last then Ordered_Array(I) < Ordered_

↪→Array(I+1)));

or that a special end marker is always present in the array as follows:

type Ended_Array is array (Index) of Integer
with Dynamic_Predicate =>
(for some I in Index => Ended_Array(I) = End_Marker);

Dynamic predicates are checked only at specific places at run time, as mandated by the Ada Reference Manual:

• when converting a value to the subtype with the predicate

• when returning from a call, for each in-out and out parameter passed by reference

• when declaring an object, except when there is no initialization expression and no subcomponent has a default
expression

Thus, not all violations of the dynamic predicate are caught at run time. On the contrary, during analysis, GNATprove
checks that initialized variables whose subtype has a predicate always contain a value allowed by the predicate.

5.4.4 Type Invariants
Supported in Ada 2012

In SPARK, type invariants can only be specified on completions of private types (and not directly on private type
declarations). They express a property that is only guaranteed outside of the immediate scope of the type bearing the
invariant. Aspect Type_Invariant is defined in Ada to associate an invariant with a type. Aspect Invariant is
specific to GNAT and can be used instead of Type_Invariant.

GNATprove checks that, outside of the immediate scope of a type with an invariant, all values of this type are allowed
by its invariant. In order to provide such a strong guarantee, GNATprove generates an invariant check even in cases
where there is no corresponding run-time check, for example on global variables that are modified by a subprogram.
GNATprove also uses the invariant information for proving properties about the program.

As an example, let us consider a stack, which can be queried for the maximum of the elements stored in it:

package P is

type Stack is private;

function Max (S : Stack) return Element;

private

In the implementation, an additional component is allocated for the maximum, which is kept up to date by the imple-
mentation of the stack. This information is a type invariant, which can be specified using a Type_Invariant aspect:

private

type Stack is record
Content : Element_Array := (others => 0);
Size : My_Length := 0;

(continues on next page)
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Max : Element := 0;
end record with
Type_Invariant => Is_Valid (Stack);

function Is_Valid (S : Stack) return Boolean is
((for all I in 1 .. S.Size => S.Content (I) <= S.Max)
and (if S.Max > 0 then

(for some I in 1 .. S.Size => S.Content (I) = S.Max)));

function Max (S : Stack) return Element is (S.Max);

end P;

Like for subtype predicates, the name of the type can be used inside the invariant expression to refer to the current
instance of the type. Here the subtype predicate of Stack expresses that the Max field of a valid stack is the maximum
of the elements stored in the stack.

To make sure that the invariant holds for every value of type Stack outside of the package P, GNATprove introduces
invariant checks in several places. First, at the type declaration, it will make sure that the invariant holds every time
an object of type Stack is default initialized. Here, as the stack is empty by default and the default value of Max is 0,
the check will succeed. It is also possible to forbid default initialization of objects of type Stack altogether by using a
Default Initial Condition of False:

type Stack is private with Default_Initial_Condition => False;

type Stack is record
Content : Element_Array;
Size : My_Length;
Max : Element;

end record with Type_Invariant => Is_Valid (Stack);

A check is also introduced to make sure the invariant holds for every global object declared in the scope of Stack after
it has been initialized:

package body P is
The_Stack : Stack := (Content => (others => 1),

Size => 5,
Max => 0);

begin
The_Stack.Max := 1;

end P;

Here the global variable The_Stack is allowed to break its invariant during the elaboration of P. The invariant check
will only be done at the end of the elaboration of P, and will succeed.

In the same way, variables and parameters of a subprogram are allowed to break their invariants in the subprogram
body. Verification conditions are generated to ensure that no invariant breaking value can leak outside of P. More
precisely, invariant checks on subprogram parameters are performed:

• when calling a subprogram visible outside of P from inside of P. Such a subprogram can be either declared in
the visible part of P or in another unit,

• when returning from a subprogram declared in the visible part of P.

For example, let us consider the implementation of a procedure Push that pushes an element of top of a stack. It is
declared in the visible part of the specification of P:
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function Size (S : Stack) return My_Length;

procedure Push (S : in out Stack; E : Element) with
Pre => Size (S) < My_Length'Last;

procedure Push_Zero (S : in out Stack) with
Pre => Size (S) < My_Length'Last;

It is then implemented using an internal procedure Push_Internal declared in the body of P:

procedure Push_Internal (S : in out Stack; E : Element) with
Pre => S.Size < My_Length'Last,
Post => S.Size = S.Size'Old + 1 and S.Content (S.Size) = E
and S.Content (1 .. S.Size)'Old = S.Content (1 .. S.Size - 1)
and S.Max = S.Max'Old

is
begin

S.Size := S.Size + 1;
S.Content (S.Size) := E;

end Push_Internal;

procedure Push (S : in out Stack; E : Element) is
begin

Push_Internal (S, E);
if S.Max < E then

S.Max := E;
end if;

end Push;

procedure Push_Zero (S : in out Stack) is
begin

Push (S, 0);
end Push_Zero;

On exit of Push_Internal, the invariant of Stack is broken. It is OK since Push_Internal is not visible from
outside of P. Invariant checks are performed when exiting Push and when calling it from inside Push_Zero. They
both succeed. Note that, because of invariant checks on parameters, it is not allowed in SPARK to call a function that
is visible from outside P in the invariant of Stack otherwise this would lead to a recursive proof. In particular, it is
not allowed to make Is_Valid visible in the public declarations of P. In the same way, the function Size cannot be
used in the invariant of Stack. We also avoid using Size in the contract of Push_Internal as it would have enforced
additional invariant checks on its parameter.

Checks are also performed for global variables accessed by subprograms inside P. Even if it is allowed to break the
invariant of a global variable when inside the body of a subprogram declared in P, invariant checks are performed
when calling and returning from every subprogram inside P. For example, if Push and Push_Internal are accessing
directly the global stack The_Stack instead of taking it as a parameter, there will be a failed invariant check on exit of
Push_Internal:

procedure Push_Internal (E : Element) with
Pre => The_Stack.Size < My_Length'Last

is
begin

The_Stack.Size := The_Stack.Size + 1;
The_Stack.Content (The_Stack.Size) := E;

(continues on next page)
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end Push_Internal;

procedure Push (E : Element) is
begin

Push_Internal (E);
if The_Stack.Max < E then

The_Stack.Max := E;
end if;

end Push;

In this way, users will never have to use contracts to ensure that the invariant holds on global variable The_Stack
through local subprogram calls.

5.4.5 Default Initial Condition
Specific to SPARK

Private types in a package define an encapsulation mechanism that prevents client units from accessing the implemen-
tation of the type. That boundary may also be used to specify properties that hold for default initialized values of that
type in client units. For example, the log introduced in State Abstraction could be implemented as a private type with
a default initial condition specifying that the size of the log is initially zero, where uses of the name of the private type
Log_Type in the argument refer to variables of this type:

1 package Logging_Priv with
2 SPARK_Mode
3 is
4 Max_Count : constant := 100;
5

6 type Log_Type is private with
7 Default_Initial_Condition => Log_Size (Log_Type) = 0;
8

9 function Log_Size (Log : Log_Type) return Natural;
10

11 procedure Append_To_Log (Log : in out Log_Type; Incr : in Integer) with
12 Pre => Log_Size (Log) < Max_Count;
13

14 private
15

16 type Integer_Array is array (1 .. Max_Count) of Integer;
17

18 type Log_Type is record
19 Log_Data : Integer_Array;
20 Log_Size : Natural := 0;
21 end record;
22

23 function Log_Size (Log : Log_Type) return Natural is (Log.Log_Size);
24

25 end Logging_Priv;

This may be useful to analyze with GNATprove client code that defines a variable of type Log_Type with default
initialization, and then proceeds to append values to this log, as procedure Append_To_Log’s precondition requires
that the log size is not maximal:
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The_Log : Log_Type;
...
Append_To_Log (The_Log, X);

GNATprove’s flow analysis also uses the presence of a default initial condition as an indication that default initialized
variables of that type are considered as fully initialized. So the code snippet above would pass flow analysis without
messages being issued on the read of The_Log. If the full definition of the private type is in SPARK, GNATprove also
checks that the type is indeed fully default initialized, and if not issues a message like here:

logging_priv.ads:18:04: medium: type "Log_Type" is not fully initialized
18>| type Log_Type is record
... | ...
21 | end record;

If partial default initialization of the type is intended, in general for efficiency like here, then the corresponding message
can be justified with pragma Annotate, see section Justifying Check Messages.

Aspect Default_Initial_Condition can also be specified without argument to only indicate that default initialized
variables of that type are considered as fully initialized. This is equivalent to Default_Initial_Condition =>
True:

type Log_Type is private with
Default_Initial_Condition;

The argument can also be null to specify that default initialized variables of that type are not considered as fully
initialized:

type Log_Type is private with
Default_Initial_Condition => null;

This is different from an argument of False which can be used to indicate that variables of that type should always be
explicitly initialized (otherwise GNATprove will not be able to prove the condition False on the default initialization
and will issue a message during proof).

In general, GNATprove generates checks for the default value of a type when a variable of this type is default initialized.
This is not the case for private types, as the default value of a private type declared in a library unit is really the
responsibility of the implementer of the library, not the user. If the private type has a known discriminant part, then
default checks are done for any values of the discriminants.

If a private type has a Default_Initial_Condition, then this condition can act either as a precondition or as a
postcondition of the default value computation. If the Default_Initial_Condition does not refer to the current
type instance, or if it only refers to its discriminants, then it is considered to be a precondition: it is the user of the
private type who is responsible for ensuring its validity. As such, the condition is assumed when checking the default
value of the private type, and it is checked each time a variable of the type is default initialized. For example, in the
following example, we must have First < Last to be allowed to safely default initialize our stack type:

type Stack (First, Last : Positive) is private with
Default_Initial_Condition => First < Last;

GNATprove will take advantage of this information when checking the default value of Stack for run-time exceptions.
For example, it will be able to ensure that the predicate will hold if Stack is defined as follows:

type Stack (First, Last : Positive) is record
Content : Nat_Arr (First .. Last) := 0;

(continues on next page)
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Top : Positive := First;
end record with
Predicate => Top in Content'Range;

Otherwise, the Default_Initial_Condition is handled as a postcondition of the default value computation. It is
checked once and for all when the definition of the type is analyzed.

5.5 Specification Features
SPARK contains many features for specifying the intended behavior of programs. Some of these features come from
Ada 2012 (Attribute Old and Expression Functions for example). Other features are specific to SPARK (Attribute
Loop_Entry and Ghost Code for example). In this section, we describe these features and their impact on execution
and formal verification.

5.5.1 Aspect Constant_After_Elaboration
Specific to SPARK

Aspect Constant_After_Elaboration can be specified on a library level variable that has an initialization expres-
sion. When specified, the corresponding variable can only be changed during the elaboration of its enclosing package.
SPARK ensures that users of the package do not change the variable. This feature can be particularly useful in tasking
code since variables that are Constant_After_Elaboration are guaranteed to prevent unsynchronized modifications (see
Tasks and Data Races).

package CAE is
Var : Integer := 0 with
Constant_After_Elaboration;

-- The following is illegal because users of CAE could call Illegal
-- and that would cause an update of Var after CAE has been
-- elaborated.
procedure Illegal with

Global => (Output => Var);
end CAE;

package body CAE is
procedure Illegal is
begin

Var := 10;
end Illegal;

-- The following subprogram is legal because it is declared inside
-- the body of CAE and therefore it cannot be directly called
-- from a user of CAE.
procedure Legal is
begin

Var := Var + 2;
end Legal;

begin
-- The following statements are legal since they take place during
-- the elaboration of CAE.

(continues on next page)
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Var := Var + 1;
Legal;

end CAE;

5.5.2 Aspect No_Caching
Specific to SPARK

Aspect No_Caching can be specified for a volatile type or a volatile variable to indicate that this type or variable can
be analyzed as non-volatile by GNATprove. This is typically used to hold the value of local variables guarding the
access to some critical section of the code. To defend against fault injection attacks, a common practice is to duplicate
the test guarding the critical section, and the variable is marked as volatile to prevent the compiler from optimizing out
the duplicate tests. For example:

Cond : Boolean with Volatile, No_Caching := Some_Computation;

if not Cond then
return;

end if;

if not Cond then
return;

end if;

if Cond then
-- here do some critical work

end if;

Without No_Caching, the volatile variable is assumed to be used for Interfaces to the Physical World, GNATprove
analyses it specially and one cannot declare it inside a subprogram.

5.5.3 Aspect Relaxed_Initialization and Ghost Attribute Initialized
Specific to SPARK

Modes on parameters and data dependency contracts in SPARK have a stricter meaning than in Ada (see Data Initial-
ization Policy). In general, this allows GNATprove to ensure correct initialization of data in a quick and scalable way
through flow analysis, without the need for user-supplied annotations. However, in some cases, the initialization policy
may be considered too constraining. In particular, it does not permit initializing composite objects by part through
different subprograms, or leaving data uninitialized on return if an error occurred.

Aspect Relaxed_Initialization

To handle these cases, it is possible to relax the standard data initialization policy of SPARK using the
Relaxed_Initialization aspect. This aspect can be used:

• on objects, to state that the object should not be subject to the initialization policy of SPARK,

• on types, so that it applies to every object or component of the type, or

• on subprograms, to annotate the parameters or result.

Here are some examples:
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type My_Rec is record
F, G : Positive;

end record;

G : My_Rec with Relaxed_Initialization;
procedure Init_G_If_No_Errors (Error : out Boolean) with

Global => (Output => G);
-- G is only initialized if the Error flag is False

In the snippet above, the aspect Relaxed_Initialization is used to annotate the object G so that SPARK will allow
returning from Init_G_If_No_Errors with an uninitialized value in G in case of errors in the initialization routine.

On a subprogram, the Relaxed_Initialization aspect expects some parameters to specify to which objects it
applies. For example, the parameter X of the procedures below is concerned by the aspect:

procedure Init_Only_F (X : out My_Rec) with
Relaxed_Initialization => X;

-- Initialize the F component of X,
-- X.G should not be read after the call.

procedure Init_Only_G (X : in out My_Rec) with
Relaxed_Initialization => X;

-- Initialize the G component of X,
-- X.F can be read after the call if it was already initialized.

The procedures Init_Only_F and Init_Only_G above differ only by the mode of parameter X. Just like for
Init_G_If_No_Errors, the mode out in Init_Only_F does not mean that X should be entirely initialized by the call.
Its purpose is mostly for data dependencies (see Data Dependencies). It states that the value on entry of the procedure
call should not leak into the parts of the output value which are read after the call. To ensure that, GNATprove considers
that out parameters may not be copied when entering a procedure call, and so, even for parameters which are in fact
passed by reference.

To exempt the value returned by a function from the data initialization policy of SPARK, the result attribute can be
specified as a parameter of the Relaxed_Initialization aspect, as in Read_G below. It is also possible to give
several objects to the aspect using an aggregate notation:

procedure Copy (Source : My_Rec; Target : out My_Rec) with
Relaxed_Initialization => (Source, Target);

-- Can copy a partially initialized record

function Read_G return My_Rec with
Relaxed_Initialization => Read_G'Result;

-- The result of Read_G might not be initialized

Note

The Relaxed_Initialization aspect has no effect on subprogram parameters or function results of a scalar
type with relaxed initialization. Indeed, the Ada semantics mandates a copy of scalars on entry and return of
subprograms, which is considered to be an error if the object was not initialized.

Finally, if we want to exempt all objects of a type from the data initialization policy of SPARK, it is possible to specify
the Relaxed_Initialization aspect on a type. This also allows to exempt a single component of a record, like in
the following example:
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type Content_Type is array (Positive range 1 .. 100) of Integer with
Relaxed_Initialization;

type Stack is record
Top : Natural := 0;
Content : Content_Type;

end record
with Predicate => Top in 0 .. 100;

-- Elements located after Top in Content do not need to be initialized

A stack is made of two components: an array Content storing the actual content of the stack, and the index Top of
the topmost element currently allocated on the stack. If the stack is initialized, the Top component necessarily holds
a meaningful value. However, because of the API of the stack, it is not possible to read a value stored above the Top
index in Content without writing it first. For this reason, it is not necessary to initialize all elements of the stack at
creation. To express that, we use in the type Stack, which itself is subject to the standard initialization policy, an array
with the Relaxed_Initialization aspect for the Content field.

Note

The Relaxed_Initialization aspect is not allowed on subtypes, so a derived type is necessary to add the aspect
to an existing type.

Ghost Attribute Initialized

As explained above, the standard data initialization policy does not apply to objects annotated with the
Relaxed_Initialization aspect. As a result, it becomes necessary to annotate which parts of accessed objects
are initialized on entry and exit of subprograms in contracts. This can be done using the Initialized ghost at-
tribute. This attribute can be applied to (parts of) objects annotated with the Relaxed_Initialization aspect. If
the object is completely initialized, except possibly for subcomponents of the object whose type is annotated with the
Relaxed_Initialization aspect, this attribute evaluates to True.

Note

It is not true that the Initialized aspect necessarily evaluates to False on uninitialized data. This is to comply
with execution, where some values may happen to be valid even if they have not been initialized. However, it is not
possible to prove that the Initialized aspect evaluates to True if the object has not been entirely initialized.

As an example, let’s add some contracts to the subprograms presented in the previous example to replace the comments.
The case of Init_G_If_No_Errors is straightforward:

procedure Init_G_If_No_Errors (Error : out Boolean) with
Post => (if not Error then G'Initialized);

It states that if no errors have occurred (Error is False on exit), G has been initialized by the call.

The postcondition of Read_G is a bit more complicated. We want to state that the function returns the value stored in
G. However, we cannot use equality, as it would evaluate the components of both operands and fail if G is not entirely
initialized. What we really want to say is that each component of the result of Read_G will be initialized if and only
if the corresponding component in G is initialized, and then that the values of the components necessarily match in
this case. To express that, we introduce safe accessors for the record components, which check whether the field is
initialized before returning it. If the component is not initialized, they return 0 which is an invalid value since both
components of My_Rec are of type Positive. This allows to encode both the initialization status and the value of the
field in one go:
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function Get_F (X : My_Rec) return Integer is
(if X.F'Initialized then X.F else 0)

with Ghost,
Relaxed_Initialization => X;

function Get_G (X : My_Rec) return Integer is
(if X.G'Initialized then X.G else 0)

with Ghost,
Relaxed_Initialization => X;

Using these accessors, we can define an equality which can safely be called on uninitialized data, and use it in the
postcondition of Read_G:

function Safe_Eq (X, Y : My_Rec) return Boolean is
(Get_F (X) = Get_F (Y) and Get_G (X) = Get_G (Y))

with Ghost,
Relaxed_Initialization => (X, Y);

function Read_G return My_Rec with
Relaxed_Initialization => Read_G'Result,
Post => Safe_Eq (Read_G'Result, G);

The same safe equality function can be used for the postcondition of Copy:

procedure Copy (Source : My_Rec; Target : out My_Rec) with
Relaxed_Initialization => (Source, Target),
Post => Safe_Eq (Source, Target);

Remain the procedures Init_Only_F and Init_Only_G. We reflect the asymmetry of their parameter modes in their
postconditions:

procedure Init_Only_F (X : out My_Rec) with
Relaxed_Initialization => X,
Post => X.F'Initialized;

procedure Init_Only_G (X : in out My_Rec) with
Relaxed_Initialization => X,
Post => X.G'Initialized and Get_F (X) = Get_F (X)'Old;

The procedure Init_Only_G preserves the value of X.F whereas Init_Only_F does not preserve X.G. Note that a
postcondition similar to the one of Init_Only_G would be proved on Init_Only_F, but it will be of no use as out
parameters are considered to be havocked at the beginning of procedure calls, so Get_G (X)'Old wouldn’t actually
refer to the value of G before the call.

Finally, let’s consider the type Stack defined above. We have annotated the array type used for its content with the
Relaxed_Initialization aspect, so that we do not need to initialize all of its components at declaration. However,
we still need to know that elements up to Top have been initialized to ensure that poping an element returns an initialized
value. This can be stated by extending the subtype predicate of Stack in the following way:

type Stack is record
Top : Natural := 0;
Content : Content_Type;

end record
(continues on next page)
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with Ghost_Predicate => Top in 0 .. 100
and then (for all I in 1 .. Top => Content (I)'Initialized);

Since Content_Type is annotated with the Relaxed_Initialization aspect, references to the attribute
Initialized on an object of type Stackwill not consider the elements of Content, so S'Initialized can evaluate
to True even if the stack S contains uninitialized elements.

Note

The predicate of type Stack is now introduced by aspect Ghost_Predicate to allow the use of ghost attribute
Initialized.

Note

When the Relaxed_Initialization aspect is used, correct initialization is verified by proof (--mode=all or
--mode=silver), and not flow analysis (--mode=flow or --mode=bronze).

It is possible to annotate an object with the Relaxed_Initialization aspect to use proof to verify its initial-
ization. For example, it allows to workaround limitations in flow analysis with respect to initialization of arrays.
However, if this initialization goes through a loop, using the Initialized attribute in a loop invariant might be
required for proof to verify the program.

5.5.4 Aspect Side_Effects
Specific to SPARK

Unless stated otherwise, functions in SPARK cannot have side effects:

• A function must not have an out or in out parameter.

• A function must not write a global variable.

• A function must not raise exceptions.

• A function must always terminate.

The aspect Side_Effects can be used to indicate that a function may in fact have side effects, among the four possible
side effects listed above. A function with side effects can be called only as the right-hand side of an assignment, as part
of a list of statements where a procedure could be called:

function Increment_And_Return (X : in out Integer) return Integer
with Side_Effects;

procedure Call is
X : Integer := 5;
Y : Integer;

begin
Y := Increment_And_Return (X);
-- The value of X is 6 here

end Call;

Note that a function with side effects could in general be converted into a procedure with an additional out parameter
for the function’s result. However, it can be more convenient to use a function with side effects when binding SPARK
code with C code where functions have very often side effects.
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5.5.5 Attribute Loop_Entry
Specific to SPARK

It is sometimes convenient to refer to the value of variables at loop entry. In many cases, the variable has not been
modified between the subprogram entry and the start of the loop, so this value is the same as the value at subprogram
entry. But Attribute Old cannot be used in that case. Instead, we can use attribute Loop_Entry. For example, we can
express that after J iterations of the loop, the value of parameter array X at index J is equal to its value at loop entry
plus one:

procedure Increment_Array (X : in out Integer_Array) is
begin
for J in X'Range loop

X(J) := X(J) + 1;
pragma Assert (X(J) = X'Loop_Entry(J) + 1);

end loop
end Increment_Array;

At run time, a copy of the variable X is made when entering the loop. This copy is then read when evaluating the
expression X'Loop_Entry. No copy is made if the loop is never entered. Because it requires copying the value of X,
the type of X cannot be limited.

Attribute Loop_Entry can only be used in top-level Assertion Pragmas inside a loop. It is mostly useful for expressing
complex Loop Invariants which relate the value of a variable at a given iteration of the loop and its value at loop entry.
For example, we can express that after J iterations of the loop, the value of parameter array X at all indexes already seen
is equal to its value at loop entry plus one, and that its value at all indexes not yet seen is unchanged, using Quantified
Expressions:

procedure Increment_Array (X : in out Integer_Array) is
begin
for J in X'Range loop

X(J) := X(J) + 1;
pragma Loop_Invariant (for all K in X'First .. J => X(K) = X'Loop_Entry(K) + 1);
pragma Loop_Invariant (for all K in J + 1 .. X'Last => X(K) = X'Loop_Entry(K));

end loop;
end Increment_Array;

Attribute Loop_Entry may be indexed by the name of the loop to which it applies, which is useful to refer to the value
of a variable on entry to an outter loop. When used without loop name, the attribute applies to the closest enclosing
loop. For examples, X'Loop_Entry is the same as X'Loop_Entry(Inner) in the loop below, which is not the same
as X'Loop_Entry(Outter) (although all three assertions are true):

procedure Increment_Matrix (X : in out Integer_Matrix) is
begin

Outter: for J in X'Range(1) loop
Inner: for K in X'Range(2) loop

X(J,K) := X(J,K) + 1;
pragma Assert (X(J,K) = X'Loop_Entry(J,K) + 1);
pragma Assert (X(J,K) = X'Loop_Entry(Inner)(J,K) + 1);
pragma Assert (X(J,K) = X'Loop_Entry(Outter)(J,K) + 1);

end loop Inner;
end loop Outter;

end Increment_Matrix;

By default, similar restrictions exist for the use of attribute Loop_Entry and the use of attribute Old In a
Potentially Unevaluated Expression. The same solutions apply here, in particular the use of GNAT pragma
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Unevaluated_Use_Of_Old.

5.5.6 Attribute Old
Supported in Ada 2012

In a Postcondition

Inside Postconditions, attribute Old refers to the values that expressions had at subprogram entry. For example, the
postcondition of procedure Increment might specify that the value of parameter X upon returning from the procedure
has been incremented:

procedure Increment (X : in out Integer) with
Post => X = X'Old + 1;

At run time, a copy of the variable X is made when entering the subprogram. This copy is then read when evaluating
the expression X'Old in the postcondition. Because it requires copying the value of X, the type of X cannot be limited.

Strictly speaking, attribute Old must apply to a name in Ada syntax, for example a variable, a component selection, a
call, but not an addition like X + Y. For expressions that are not names, attribute Old can be applied to their qualified
version, for example:

procedure Increment_One_Of (X, Y : in out Integer) with
Post => X + Y = Integer'(X + Y)'Old + 1;

Because the compiler unconditionally creates a copy of the expression to which attribute Old is applied at subprogram
entry, there is a risk that this feature might confuse users in more complex postconditions. Take the example of a
procedure Extract, which copies the value of array A at index J into parameter V, and zeroes out this value in the
array, but only if J is in the bounds of A:

procedure Extract (A : in out My_Array; J : Integer; V : out Value) with
Post => (if J in A'Range then V = A(J)'Old); -- INCORRECT

Clearly, the value of A(J) at subprogram entry is only meaningful if J is in the bounds of A. If the code above was
allowed, then a copy of A(J) would be made on entry to subprogram Extract, even when J is out of bounds, which
would raise a run-time error. To avoid this common pitfall, use of attribute Old in expressions that are potentially
unevaluated (like the then-part in an if-expression, or the right argument of a shortcut boolean expression - See Ada
RM 6.1.1) is restricted to plain variables: A is allowed, but not A(J). The GNAT compiler issues the following error
on the code above:

prefix of attribute "Old" that is potentially unevaluated must denote an entity

The correct way to specify the postcondition in the case above is to apply attribute Old to the entity prefix A:

procedure Extract (A : in out My_Array; J : Integer; V : out Value) with
Post => (if J in A'Range then V = A'Old(J));

In Contract Cases

The rule for attribute Old inside Contract Cases is more permissive. Take for example the same contract as above for
procedure Extract, expressed with contract cases:

procedure Extract (A : in out My_Array; J : Integer; V : out Value) with
Contract_Cases => ((J in A'Range) => V = A(J)'Old,

others => True);
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Only the expressions used as prefixes of attribute Old in the currently enabled case are copied on entry to the subpro-
gram. So if Extract is called with J out of the range of A, then the second case is enabled, so A(J) is not copied when
entering procedure Extract. Hence, the above code is allowed.

It may still be the case that some contracts refer to the value of objects at subprogram entry inside potentially unevaluated
expressions. For example, an incorrect variation of the above contract would be:

procedure Extract (A : in out My_Array; J : Integer; V : out Value) with
Contract_Cases => (J >= A'First => (if J <= A'Last then V = A(J)'Old), -- INCORRECT

others => True);

For the same reason that such uses are forbidden by Ada RM inside postconditions, the SPARK RM forbids these uses
inside contract cases (see SPARK RM 6.1.3(2)). The GNAT compiler issues the following error on the code above:

prefix of attribute "Old" that is potentially unevaluated must denote an entity

The correct way to specify the consequence expression in the case above is to apply attribute Old to the entity prefix A:

procedure Extract (A : in out My_Array; J : Integer; V : out Value) with
Contract_Cases => (J >= A'First => (if J <= A'Last then V = A'Old(J)),

others => True);

In a Potentially Unevaluated Expression

In some cases, the compiler issues the error discussed above (on attribute Old applied to a non-entity in a potentially
unevaluated context) on an expression that can safely be evaluated on subprogram entry, for example:

procedure Extract (A : in out My_Array; J : Integer; V : out Value) with
Post => (if J in A'Range then V = Get_If_In_Range(A,J)'Old); -- ERROR

where function Get_If_In_Range returns the value A(J) when J is in the bounds of A, and a default value otherwise.

In that case, the solution is either to rewrite the postcondition using non-shortcut boolean operators, so that the expres-
sion is not potentially evaluated anymore, for example:

procedure Extract (A : in out My_Array; J : Integer; V : out Value) with
Post => J not in A'Range or V = Get_If_In_Range(A,J)'Old;

or to rewrite the postcondition using an intermediate expression function, so that the expression is not potentially
evaluated anymore, for example:

function Extract_Post (A : My_Array; J : Integer; V, Get_V : Value) return Boolean is
(if J in A'Range then V = Get_V);

procedure Extract (A : in out My_Array; J : Integer; V : out Value) with
Post => Extract_Post (A, J, V, Get_If_In_Range(A,J)'Old);

or to use the GNAT pragma Unevaluated_Use_Of_Old to allow such uses of attribute Old in potentially unevaluated
expressions:

pragma Unevaluated_Use_Of_Old (Allow);

procedure Extract (A : in out My_Array; J : Integer; V : out Value) with
Post => (if J in A'Range then V = Get_If_In_Range(A,J)'Old);
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GNAT does not issue an error on the code above, and always evaluates the call to Get_If_In_Range on entry to pro-
cedure Extract, even if this value may not be used when executing the postcondition. Note that the formal verification
tool GNATprove correctly generates all required checks to prove that this evaluation on subprogram entry does not fail
a run-time check or a contract (like the precondition of Get_If_In_Range if any).

Pragma Unevaluated_Use_Of_Old applies to uses of attribute Old both inside postconditions and inside contract
cases. See GNAT RM for a detailed description of this pragma.

5.5.7 Attribute Result
Supported in Ada 2012

Inside Postconditions of functions, attribute Result refers to the value returned by the function. For example, the
postcondition of function Increment might specify that it returns the value of parameter X plus one:

function Increment (X : Integer) return Integer with
Post => Increment'Result = X + 1;

Contrary to Attribute Old, attribute Result does not require copying the value, hence it can be applied to functions
that return a limited type. Attribute Result can also be used inside consequence expressions in Contract Cases.

5.5.8 Aggregates
Aggregates are expressions, and as such can appear in assertions and contracts to specify the value of a composite type
(record or array), without having to specify the value of each component of the object separately.

Record Aggregates

Supported in Ada 83

Since the first version, Ada has a compact syntax for expressing the value of a record type, optionally allowing to name
the components. Given the following declaration of type Point:

type Point is record
X, Y, Z : Float;

end record;

the value of the origin can be expressed with a named notation:

Origin : constant Point := (X => 0.0, Y => 0.0, Z => 0.0);

or with a positional notation, where the values for components are taken in the order in which they are declared in type
Point, so the following is equivalent to the above named notation:

Origin : constant Point := (0.0, 0.0, 0.0);

With named notation, components can be given in any order:

Origin : constant Point := (Z => 0.0, Y => 0.0, X => 0.0);

Positional notation and named notation can be mixed, but, in that case, named associations should always follow posi-
tional associations, so positional notation will refer to the first components of the record, and named notation will refer
to the last components of the record:

Origin : constant Point := (0.0, Y => 0.0, Z => 0.0);
Origin : constant Point := (0.0, 0.0, Z => 0.0);
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Choices can be grouped with the bar symbol | to denote sets:

Origin : constant Point := (X | Y | Z => 0.0);

The choice others can be used with a value to refer to all other components, provided these components have the same
type, and the others choice should come last:

Origin : constant Point := (X => 0.0, others => 0.0);
Origin : constant Point := (Z => 0.0, others => 0.0);
Origin : constant Point := (0.0, others => 0.0); -- positional for X
Origin : constant Point := (others => 0.0);

The box notation <> can be used instead of an explicit value to denote the default value of the corresponding type:

Origin : constant Point := (X => <>, Y => 0.0, Z => <>);

In SPARK, this is only allowed if the types of the corresponding components have a default value, for example here:

type Zero_Init_Float is new Float with Default_Value => 0.0;

type Point is record
X : Float := 0.0;
Y : Float;
Z : Zero_Init_Float;

end record;

Note that, when using box notation <> with an others choice, it is not required that these components have the same
type.

Array Aggregates

Supported in Ada 83

Since the first version, Ada has the same compact syntax for expressing the value of an array type as for record types,
optionally allowing to name the indexes. Given the following declaration of type Point:

type Dimension is (X, Y, Z);

type Point is array (Dimension) of Float;

the value of the origin can be expressed with a named notation:

Origin : constant Point := (X => 0.0, Y => 0.0, Z => 0.0);

or with a positional notation, where the values for components are taken in the order in which they are declared in type
Point, so the following is equivalent to the above named notation:

Origin : constant Point := (0.0, 0.0, 0.0);

With the difference that named notation and positional notation cannot be mixed in an array aggregate, all other expla-
nations presented for aggregates of record type Point in Record Aggregates are applicable to array aggregates here, so
all the following declarations are valid:

Origin : constant Point := (Z => 0.0, Y => 0.0, X => 0.0);
Origin : constant Point := (X | Y | Z => 0.0);
Origin : constant Point := (X => 0.0, others => 0.0);

(continues on next page)
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Origin : constant Point := (Z => 0.0, others => 0.0);
Origin : constant Point := (0.0, others => 0.0); -- positional for X
Origin : constant Point := (others => 0.0);

while the use of box notation <> is only allowed in SPARK if array components have a default value, either through
their type, or through aspect Default_Component_Value on the array type:

type Point is array (Dimension) of Float
with Default_Component_Value => 0.0;

Note that in many cases, indexes take an integer value rather than an enumeration value:

type Dimension is range 1 .. 3;

type Point is array (Dimension) of Float;

In that case, choices will take an integer value too:

Origin : constant Point := (3 => 0.0, 2 => 0.0, 1 => 0.0);
Origin : constant Point := (1 | 2 | 3 => 0.0);
Origin : constant Point := (1 => 0.0, others => 0.0);
Origin : constant Point := (3 => 0.0, others => 0.0);
Origin : constant Point := (0.0, others => 0.0); -- positional for 1
Origin : constant Point := (others => 0.0);

Note that one can also use X, Y and Z in place of literals 1, 2 and 3 with the prior definition of suitable named numbers:

X : constant := 1;
Y : constant := 2;
Z : constant := 3;

Note that allocators are allowed inside expressions, and that values in aggregates are evaluated for each corresponding
choice, so it is possible to write the following without violating the Memory Ownership Policy of SPARK:

type Ptr is access Integer;
type Data is array (1 .. 10) of Ptr;

Database : Data := (others => new Integer'(0));

This would be also possible in a record aggregate, but it is more common in array aggregates.

Iterated Component Associations

Supported in Ada 2022

It is possible to have the value of an association depending on the choice, with the feature called iterated component
associations. Here is how we can express that Ident is the identity mapping from values in Index to themselves:

type Index is range 1 .. 100;
type Mapping is array (Index) of Index;

Ident : constant Mapping := (for J in Index => J);
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Such an iterated component association can appear next to other associations in an array aggregate using named nota-
tion. Here is how we can express that Saturation is the identity mapping between 10 and 90, and saturates outside
of this range:

Saturation : constant Mapping :=
(1 .. 10 => 10, for J in 11 .. 89 => J, 90 .. 100 => 90);

Initialization Using Array Aggregates

Supported in Ada 83

Both flow analysis and proof can be used in GNATprove to verify that data is correctly initialized before being read,
following the Data Initialization Policy of SPARK. The decision to use one or the other is based on the presence or
not of aspect Relaxed_Initialization (see Aspect Relaxed_Initialization and Ghost Attribute Initialized) on types
and variables.

When using flow analysis to analyze the initialization of an array object (variable or component), false alarms may be
emitted by GNATprove on code that initializes the array cell by cell, or groups of cells by groups of cells, even if the
array ends up completely initialized. This is because flow analysis is not value dependent, so it cannot track the value
of assigned array indexes. As a result, it cannot separate array cells in its analysis, hence it cannot deduce that such
a sequence of partial initializations result in the array being completely initialized. For example, GNATprove issues
false alarms on the code:

type Arr is array (1 .. 5) of Integer;
A : Arr;
...
A(1) := 1;
A(2) := 2;
A(3) := 3;
A(4) := 4;
A(5) := 5;

A better way to initialize an array is to use an aggregate (possibly with iterated component associations, if the value of
the initialization element for a cell depends on the index of the cell). This makes it clear for both the human reviewer
and for GNATprove that the array is completely initialized. For example, the code above can be rewritten as follows
using an aggregate:

type Arr is array (1 .. 5) of Integer;
A : Arr;
...
A := (1, 2, 3, 4, 5);

or using an aggregate with an iterated component association:

type Arr is array (1 .. 5) of Integer;
A : Arr;
...
A := (for I in 1..5 => I);

In cases where initializing the array with an aggregate is not possible, the alternative is to mark the array object or
its type as having relaxed initialization using aspect Relaxed_Initialization and to use proof to verify its correct
initialization (see Aspect Relaxed_Initialization and Ghost Attribute Initialized). This should be reserved for cases
where using an aggregate is not possible, as it requires more work for the user to express which parts of variables are
initialized (in contracts and loop invariants typically), and it may be more difficult to prove.

5.5. Specification Features 105



SPARK User’s Guide, Release 15.0

Delta Aggregates

Supported in Ada 2022

It is quite common in Postconditions to relate the input and output values of parameters. While this can be as easy as
X = X'Old + 1 in the case of scalar parameters, it is more complex to express for array and record parameters. Delta
aggregates are useful in that case, to denote the updated value of a composite variable. For example, we can express
more clearly that procedure Zero_Range zeroes out the elements of its array parameter X between From and To by
using a delta aggregate:

procedure Zero_Range (X : in out Integer_Array; From, To : Positive) with
Post => X = (X'Old with delta From .. To => 0);

than with an equivalent postcondition using Quantified Expressions and Conditional Expressions:

procedure Zero_Range (X : in out Integer_Array; From, To : Positive) with
Post => (for all J in X'Range =>

(if J in From .. To then X(J) = 0 else X(J) = X'Old(J)));

Delta aggregates allow to specify a list of associations between indexes (for arrays) or components (for records) and
values. Components can only be mentioned once, with the semantics that all values are evaluated before any update.
Array indexes may be mentioned more than once, with the semantics that updates are applied in left-to-right order.
For example, the postcondition of procedure Swap expresses that the values at indexes J and K in array X have been
swapped:

procedure Swap (X : in out Integer_Array; J, K : Positive) with
Post => X = (X'Old with delta J => X'Old(K), K => X'Old(J));

and the postcondition of procedure Rotate_Clockwize_Z expresses that the point P given in parameter has been
rotated 90 degrees clockwise around the Z axis (thus component Z is preserved while components X and Y are modified):

procedure Rotate_Clockwize_Z (P : in out Point_3D) with
Post => P = (P'Old with delta X => P.Y'Old, Y => - P.X'Old);

Similarly to their use in combination with attribute Old in postconditions, delta aggregates are useful in combination
with Attribute Loop_Entry inside Loop Invariants. For example, we can express the property that, after iteration J in
the main loop in procedure Zero_Range, the value of parameter array X at all indexes already seen is equal to zero:

procedure Zero_Range (X : in out Integer_Array; From, To : Positive) is
begin
for J in From .. To loop

X(J) := 0;
pragma Loop_Invariant (X = (X'Loop_Entry with delta From .. J => 0));

end loop;
end Zero_Range;

Delta aggregates can also be used outside of assertions. They are particularly useful in expression functions. For exam-
ple, the functionality in procedure Rotate_Clockwize_Z could be expressed equivalently as an expression function:

function Rotate_Clockwize_Z (P : Point_3D) return Point_3D is
(P with delta X => P.Y, Y => - P.X);

Because it requires copying the value of P, the type of P cannot be limited.
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Note

In SPARK versions up to SPARK 21, delta aggregates are not supported and an equivalent attribute named Update
can be used instead.

Specific to SPARK

As a GNAT-specific extension for SPARK (which requires the use of switch -gnatX0 or pragma
Extensions_Allowed(All)), it is also possible to use subcomponents as choices in a delta aggregate. In the
following example, the postcondition of procedure Zero_Left_Of_Pair_At_Index uses a delta aggregate to specify
that parameter P is updated by setting the Left component of its element at index I to zero:

type Pair is record
Left, Right : Integer;

end record;

type Index is range 1 .. 10;
type Pairs is array (Index) of Pair;

procedure Zero_Left_Of_Pair_At_Index (P : in out Pairs; I : Index) with
Post => P = (P'Old with delta (I).Left => 0);

The subcomponent should be designated by a chain of indexes in parentheses (for indexing into arrays) and component
names (for accessing into records, with a dot preceding the component name if this not the first subcomponent). Such
choices can be used together with the usual choices that designate a top-level component.

Aspect Aggregate

Supported in Ada 2022

The Aggregate aspect has been introduced in Ada 2022. It allows providing subprograms that can be used to create
aggregates of a particular container type. The required subprograms differ depending on the kind of aggregate being
defined - positional, named, or indexed. Only positional and named container aggregates are allowed in SPARK. They
require supplying an Empty function, to create the container, and an Add procedure to insert a new element (possibly
associated to a key) in the container:

-- We can use positional aggregates for sets
type Set_Type is private
with Aggregate => (Empty => Empty_Set,

Add_Unnamed => Include);
function Empty_Set return Set_Type;
procedure Include (S : in out Set_Type; E : Element_Type);

-- and named aggregates for maps
type Map_Type is private
with Aggregate => (Empty => Empty_Map,

Add_Named => Add_To_Map);
function Empty_Map return Map_Type;
procedure Add_To_Map (M : in out Map_Type;

Key : Key_Type;
Value : Element_Type);

For execution, container aggregates are expanded into a call to the Empty function, followed by a sequence of calls to
the Add procedure. However, for proof, this is not appropriate. Due to how VC generation works, instructions cannot be
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used to expand expressions occurring in annotations in particular. In addition, such an expansion would be inefficient
in terms of provability, as it would introduce multiple intermediate values on which the provers need to reason.

To be able to use container aggregates in proof, additional annotations are necessary. They describe how the information
supplied by the aggregate - the elements, the keys, their order, the number of elements. . . - affects the value of the
container after the insertions. It works by supplying additional functions that should be used to describe the container.
These functions and their intended usage are recognized using an Annotation for Container Aggregates.

Container aggregates follow the Ada 2022 syntax for homogeous aggregates. The values, or associations for named ag-
gregates, are enclosed in square brackets. As an example, here are a few aggregates for functional and formal containers
from the SPARK Libraries.

package Integer_Sets is new SPARK.Containers.Formal.Ordered_Sets (Integer);
S : Integer_Sets.Set := [1, 2, 3, 4, 12, 42];

package String_Lists is new
SPARK.Containers.Formal.Unbounded_Doubly_Linked_Lists (String);

L : String_Lists.List := ["foo", "bar", "foobar"];

package Int_To_String_Maps is new
SPARK.Containers.Functional.Maps (Integer, String);

M : Int_To_String_Maps.Map := [1 => "one", 2 => "two", 3 => "three"];

Note

So the handling is as precisely as possible, SPARK only supports aggregates with distinct values or keys for sets
and maps.

5.5.9 Conditional Expressions
Supported in Ada 2012

A conditional expression is a way to express alternative possibilities in an expression. It is like the ternary condi-
tional expression cond ? expr1 : expr2 in C or Java, except more powerful. There are two kinds of conditional
expressions in Ada:

• if-expressions are the counterpart of if-statements in expressions

• case-expressions are the counterpart of case-statements in expressions

For example, consider the variant of procedure Add_To_Total seen in Contract Cases, which saturates at a given
threshold. Its postcondition can be expressed with an if-expression as follows:

procedure Add_To_Total (Incr : in Integer) with
Post => (if Total'Old + Incr < Threshold then

Total = Total'Old + Incr
else
Total = Threshold);

Each branch of an if-expression (there may be one, two or more branches when elsif is used) can be seen as a logical
implication, which explains why the above postcondition can also be written:

procedure Add_To_Total (Incr : in Integer) with
Post => (if Total'Old + Incr < Threshold then Total = Total'Old + Incr) and

(if Total'Old + Incr >= Threshold then Total = Threshold);
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or equivalently (as the absence of else branch above is implicitly the same as else True):

procedure Add_To_Total (Incr : in Integer) with
Post => (if Total'Old + Incr < Threshold then Total = Total'Old + Incr else True) and

(if Total'Old + Incr >= Threshold then Total = Threshold else True);

If-expressions are not necessarily of boolean type, in which case they must have an else branch that gives the value
of the expression for cases not covered in previous conditions (as there is no implicit else True in such a case). For
example, here is a postcondition equivalent to the above, that uses an if-expression of Integer type:

procedure Add_To_Total (Incr : in Integer) with
Post => Total = (if Total'Old + Incr < Threshold then Total'Old + Incr else Threshold);

Although case-expressions can be used to cover cases of any scalar type, they are mostly used with enumerations, and
the compiler checks that all cases are disjoint and that together they cover all possible cases. For example, consider
a variant of procedure Add_To_Total which takes an additional Mode global input of enumeration value Single,
Double, Negate or Ignore, with the intuitive corresponding leverage effect on the addition. The postcondition of this
variant can be expressed using a case-expression as follows:

procedure Add_To_Total (Incr : in Integer) with
Post => (case Mode is

when Single => Total = Total'Old + Incr,
when Double => Total = Total'Old + 2 * Incr,
when Ignore => Total = Total'Old,
when Negate => Total = Total'Old - Incr);

Like if-expressions, case-expressions are not necessarily of boolean type. For example, here is a postcondition equiv-
alent to the above, that uses a case-expression of Integer type:

procedure Add_To_Total (Incr : in Integer) with
Post => Total = Total'Old + (case Mode is

when Single => Incr,
when Double => 2 * Incr,
when Ignore => 0,
when Negate => - Incr);

A last case of others can be used to denote all cases not covered by previous conditions. If-expressions and case-
expressions should always be parenthesized.

5.5.10 Declare Expressions
Supported in Ada 2022

Declare expressions are used to factorize parts of an expression. They allow to declare constants and renamings which
are local to the expression. A declare expression is made of two parts:

• A list of declarations of local constants and renamings

• An expression using the names introduced in these declarations.

To match the syntax of declare blocks, the first part is introduced by declare and the second by begin. The scope is
delimited by enclosing parentheses, without end to close the scope.

As an example, we introduce a Find_First_Zero function which finds the index of the first occurrence of 0 in an
array of integers and a procedure Set_Range_To_Zero which zeros out all elements located between the first and
second occurrence of 0 in the array:
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function Has_Zero (A : My_Array) return Boolean is
(for some E of A => E = 0);

function Has_Two_Zeros (A : My_Array) return Boolean is
(for some I in A'Range => A (I) = 0 and

(for some J in A'Range => A (J) = 0 and I /= J));

function Find_First_Zero (A : My_Array) return Natural with
Pre => Has_Zero (A),
Post => Find_First_Zero'Result in A'Range
and A (Find_First_Zero'Result) = 0
and not Has_Zero (A (A'First .. Find_First_Zero'Result - 1));

procedure Set_Range_To_Zero (A : in out My_Array) with
Pre => Has_Two_Zeros (A),
Post =>

A = (A'Old with delta
Find_First_Zero (A'Old) ..
Find_First_Zero
(A'Old (Find_First_Zero (A'Old) + 1 .. A'Last)) => 0);

In the contract of Set_Range_To_Zero, we use Delta Aggregates to state that elements of A located in the range
between the first and the second occurrence of 0 in A have been set to 0 by the procedure. The second occurrence is
found by calling Find_First_Zero on the slice of A starting just after the first occurrence of 0.

To make the contract of Set_Range_To_Zero more readable, we can use a declare expression to introduce constants
for the first and second occurrence of 0 in the array. The explicit names make it easier to understand what the bounds
of the updated slice are supposed to be. It also avoids repeating the call to Find_First_Zero on A in the computation
of the second bound:

procedure Set_Range_To_Zero (A : in out My_Array) with
Pre => Has_Two_Zeros (A),
Post =>
(declare

Fst_Zero : constant Positive := Find_First_Zero (A'Old);
Snd_Zero : constant Positive := Find_First_Zero

(A'Old (Fst_Zero + 1 .. A'Last));
begin
A = (A'Old with delta Fst_Zero .. Snd_Zero => 0));

5.5.11 Expression Functions
Supported in Ada 2012

An expression function is a function whose implementation is given by a single expression. For example, the function
Increment can be defined as an expression function as follows:

function Increment (X : Integer) return Integer is (X + 1);

For compilation and execution, this definition is equivalent to:

function Increment (X : Integer) return Integer is
begin

(continues on next page)
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return X + 1;
end Increment;

For GNATprove, this definition as expression function is equivalent to the same function body as above, plus a post-
condition:

function Increment (X : Integer) return Integer with
Post => Increment'Result = X + 1

is
begin
return X + 1;

end Increment;

Thus, a user does not need in general to add a postcondition to an expression function, as the implicit postcondition
generated by GNATprove is the most precise one. If a user adds a postcondition to an expression function, GNATprove
uses this postcondition to analyze the function’s callers as well as the most precise implicit postcondition.

On the contrary, it may be useful in general to add a precondition to an expression function, to constrain the contexts in
which it can be called. For example, parameter X passed to function Increment should be less than the maximal integer
value, otherwise an overflow would occur. We can specify this property in Increment’s precondition as follows:

function Increment (X : Integer) return Integer is (X + 1) with
Pre => X < Integer'Last;

Note that the contract of an expression function follows its expression.

Expression functions can be defined in package declarations, hence they are well suited for factoring out common
properties that are referred to in contracts. For example, consider the procedure Increment_Array that increments
each element of its array parameter X by one. Its precondition can be expressed using expression functions as follows:

package Increment_Utils is

function Not_Max (X : Integer) return Boolean is (X < Integer'Last);

function None_Max (X : Integer_Array) return Boolean is
(for all J in X'Range => Not_Max (X(J)));

procedure Increment_Array (X : in out Integer_Array) with
Pre => None_Max (X);

end Increment_Utils;

Expression functions can be defined over private types, and still be used in the contracts of publicly visible subprograms
of the package, by declaring the function publicly and defining it in the private part. For example:

package Increment_Utils is

type Integer_Array is private;

function None_Max (X : Integer_Array) return Boolean;

procedure Increment_Array (X : in out Integer_Array) with
Pre => None_Max (X);

(continues on next page)
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private

type Integer_Array is array (Positive range <>) of Integer;

function Not_Max (X : Integer) return Boolean is (X < Integer'Last);

function None_Max (X : Integer_Array) return Boolean is
(for all J in X'Range => Not_Max (X(J)));

end Increment_Utils;

If an expression function is defined in a unit spec, GNATprove can use its implicit postcondition at every call. If an
expression function is defined in a unit body, GNATprove can use its implicit postcondition at every call in the same
unit, but not at calls inside other units. This is true even if the expression function is declared in the unit spec and
defined in the unit body.

5.5.12 Ghost Code
Specific to SPARK

Sometimes, the variables and functions that are present in a program are not sufficient to specify intended properties and
to verify these properties with GNATprove. In such a case, it is possible in SPARK to insert in the program additional
code useful for specification and verification, specially identified with the aspect Ghost so that it can be discarded
during compilation. So-called ghost code in SPARK are these parts of the code that are only meant for specification
and verification, and have no effect on the functional behavior of the program.

Note that assertions (including contracts) are not necessarily ghost code. A contract on a ghost entity is considered as
ghost code, while a contract on a non-ghost entity is not. Depending on the corresponding value of Assertion_Policy
(of kind Ghost for ghost code, of kind Assertions for all assertions, or of more specific assertion kinds like Pre and
Post), ghost code and assertions are executed or ignored at runtime.

Various kinds of ghost code are useful in different situations:

• Ghost functions are typically used to express properties used in contracts.

• Global ghost variables are typically used to keep track of the current state of a program, or to maintain a log of
past events of some type. This information can then be referred to in contracts.

• Local ghost variables are typically used to hold intermediate values during computation, which can then be
referred to in assertion pragmas like loop invariants.

• Ghost types are those types only useful for defining ghost variables.

• Ghost procedures can be used to factor out common treatments on ghost variables. Ghost procedures should not
have non-ghost outputs, either output parameters or global outputs.

• Ghost packages provide a means to encapsulate all types and operations for a specific kind of ghost code.

• Imported ghost subprograms are used to provide placeholders for properties that are defined in a logical language,
when using manual proof.

• Ghost generic formal parameters are used to pass on ghost entities (types, objects, subprograms, packages) as
parameters in a generic instantiation.

When the program is compiled with assertions (for example with switch -gnata in GNAT), ghost code is executed
like normal code. Ghost code can also be selectively enabled by setting pragma Assertion_Policy as follows:

pragma Assertion_Policy (Ghost => Check);
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GNATprove checks that ghost code cannot have an effect on the behavior of the program. GNAT compiler also performs
some of these checks, although not all of them. Apart from these checks, GNATprove treats ghost code like normal
code during its analyses.

Ghost Functions

Ghost functions are useful to express properties only used in contracts, and to factor out common expressions used in
contracts. For example, function Get_Total introduced in Abstraction and Functional Contracts to retrieve the value
of variable Total in the contract of Add_To_Total could be marked as a ghost function as follows:

function Get_Total return Integer with Ghost;

and still be used exactly as seen in Abstraction and Functional Contracts:

procedure Add_To_Total (Incr : in Integer) with
Pre => Incr >= 0 and then Get_Total in 0 .. Integer'Last - Incr,
Post => Get_Total = Get_Total'Old + Incr;

The definition of Get_Total would be also the same:

Total : Integer;

function Get_Total return Integer is (Total);

Although it is more common to define ghost functions as Expression Functions, a regular function might be used too:

function Get_Total return Integer is
begin
return Total;

end Get_Total;

In that case, GNATprove uses only the contract of Get_Total (either user-specified or the default one) when analyzing
its callers, like for a non-ghost regular function. (The same exception applies as for regular functions, when GNATprove
can analyze a subprogram in the context of its callers, as described in Contextual Analysis of Subprograms Without
Contracts.)

All functions which are only used in specification can be marked as ghost, but most don’t need to. However, there
are cases where marking a specification-only function as ghost really brings something. First, as ghost entities are
not allowed to interfere with normal code, marking a function as ghost avoids having to break state abstraction for the
purpose of specification. For example, marking Get_Total as ghost will prevent users of the package Account from
accessing the value of Total from non-ghost code.

Then, in the usual context where ghost code is not kept in the final executable, the user is given more freedom to use
in ghost code constructs that are less efficient than in normal code, which may be useful to express rich properties. For
example, the ghost functions defined in the Formal Containers Library in the SPARK library typically copy the entire
content of the argument container, which would not be acceptable for non-ghost functions.

Ghost Variables

Ghost variables are useful to keep track of local or global information during the computation, which can then be
referred to in contracts or assertion pragmas.
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Case 1: Keeping Intermediate Values

Local ghost variables are commonly used to keep intermediate values. For example, we can define a local ghost
variable Init_Total to hold the initial value of variable Total in procedure Add_To_Total, which allows checking
the relation between the initial and final values of Total in an assertion:

procedure Add_To_Total (Incr : in Integer) is
Init_Total : Integer := Total with Ghost;

begin
Total := Total + Incr;
pragma Assert (Total = Init_Total + Incr);

end Add_To_Total;

Case 2: Keeping Memory of Previous State

Global ghost variables are commonly used to memorize the value of a previous state. For example, we can de-
fine a global ghost variable Last_Incr to hold the previous value passed in argument when calling procedure
Add_To_Total, which allows checking in its precondition that the sequence of values passed in argument is non-
decreasing:

Last_Incr : Integer := Integer'First with Ghost;

procedure Add_To_Total (Incr : in Integer) with
Pre => Incr >= Last_Incr;

procedure Add_To_Total (Incr : in Integer) is
begin

Total := Total + Incr;
Last_Incr := Incr;

end Add_To_Total;

Case 3: Logging Previous Events

Going beyond the previous case, global ghost variables can be used to store a complete log of events. For example, we
can define global ghost variables Log and Log_Size to hold the sequence of values passed in argument to procedure
Add_To_Total, as in State Abstraction:

Log : Integer_Array with Ghost;
Log_Size : Natural with Ghost;

procedure Add_To_Total (Incr : in Integer) with
Post => Log_Size = Log_Size'Old + 1 and Log = (Log'Old with delta Log_Size => Incr);

procedure Add_To_Total (Incr : in Integer) is
begin

Total := Total + Incr;
Log_Size := Log_Size + 1;
Log (Log_Size) := Incr;

end Add_To_Total;

The postcondition of Add_To_Total above expresses that Log_Size is incremented by one at each call, and that the
current value of parameter Incr is appended to Log at each call (using Attribute Old and Delta Aggregates).
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Case 4: Expressing Existentially Quantified Properties

In SPARK, universal quantification is only allowed in restricted cases (over integer ranges and over the content of a
container). To express the existence of a particular object, it is sometimes easier to simply provide it. This can be
done using a global ghost variable. This can be used in particular to split the specification of a complex procedure into
smaller parts:

X_Interm : T with Ghost;

procedure Do_Two_Thing (X : in out T) with
Post => First_Thing_Done (X'Old, X_Interm) and then

Second_Thing_Done (X_Interm, X)
is
X_Init : constant T := X with Ghost;

begin
Do_Something (X);
pragma Assert (First_Thing_Done (X_Init, X));
X_Interm := X;

Do_Something_Else (X);
pragma Assert (Second_Thing_Done (X_Interm, X));

end Do_Two_Things;

More complicated uses can also be envisioned, up to constructing ghost data structures reflecting complex properties.
For example, we can express that two arrays are a permutation of each other by constructing a permutation from one
to the other:

Perm : Permutation with Ghost;

procedure Permutation_Sort (A : Nat_Array) with
Post => A = Apply_Perm (Perm, A'Old)

is
begin
-- Initalize Perm with the identity
Perm := Identity_Perm;

for Current in A'First .. A'Last - 1 loop
Smallest := Index_Of_Minimum_Value (A, Current, A'Last);
if Smallest /= Current then

Swap (A, Current, Smallest);

-- Update Perm each time we permute two elements in A
Permute (Perm, Current, Smallest);

end if;
end loop;

end Permutation_Sort;

Ghost Types

Ghost types can only be used to define ghost variables. For example, we can define ghost types Log_Type and
Log_Size_Type that specialize the types Integer_Array and Natural for ghost variables:

subtype Log_Type is Integer_Array with Ghost;
subtype Log_Size_Type is Natural with Ghost;

(continues on next page)
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Log : Log_Type with Ghost;
Log_Size : Log_Size_Type with Ghost;

Ghost Procedures

Ghost procedures are useful to factor out common treatments on ghost variables. For example, we can define a ghost
procedure Append_To_Log to append a value to the log as seen previously.

Log : Integer_Array with Ghost;
Log_Size : Natural with Ghost;

procedure Append_To_Log (Incr : in Integer) with
Ghost,
Post => Log_Size = Log_Size'Old + 1 and Log = (Log'Old with delta Log_Size => Incr);

procedure Append_To_Log (Incr : in Integer) is
begin

Log_Size := Log_Size + 1;
Log (Log_Size) := Incr;

end Append_To_Log;

Then, this procedure can be called in Add_To_Total as follows:

procedure Add_To_Total (Incr : in Integer) is
begin

Total := Total + Incr;
Append_To_Log (Incr);

end Add_To_Total;

Ghost Packages

Ghost packages are useful to encapsulate all types and operations for a specific kind of ghost code. For example, we
can define a ghost package Logging to deal with all logging operations on package Account:

package Logging with
Ghost

is
Log : Integer_Array;
Log_Size : Natural;

procedure Append_To_Log (Incr : in Integer) with
Post => Log_Size = Log_Size'Old + 1 and Log = (Log'Old with delta Log_Size => Incr);

...

end Logging;

The implementation of package Logging is the same as if it was not a ghost package. In particular, a Ghost aspect is
implicitly added to all declarations in Logging, so it is not necessary to specify it explicitly. Logging can be defined
either as a local ghost package or as a separate unit. In the latter case, unit Account needs to reference unit Logging
in a with-clause like for a non-ghost unit:
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with Logging;

package Account is
...

end Account;

Imported Ghost Subprograms

When using manual proof (see GNATprove and Manual Proof ), it may be more convenient to define some properties in
the logical language of the prover rather than in SPARK. In that case, ghost functions might be marked as imported, so
that no implementation is needed. For example, the ghost procedure Append_To_Log seen previously may be defined
equivalently as a ghost imported function as follows:

function Append_To_Log (Log : Log_type; Incr : in Integer) return Log_Type with
Ghost,
Import;

where Log_Type is an Ada type used also as placeholder for a type in the logical language of the prover. To avoid any
inconsistency between the interpretations of Log_Type in GNATprove and in the manual prover, it is preferable in such
a case to mark the definition of Log_Type as not in SPARK, so that GNATprove does not make any assumptions on
its content. This can be achieved by defining Log_Type as a private type and marking the private part of the enclosing
package as not in SPARK:

package Logging with
SPARK_Mode,
Ghost

is
type Log_Type is private;

function Append_To_Log (Log : Log_type; Incr : in Integer) return Log_Type with
Import;

...

private
pragma SPARK_Mode (Off);

type Log_Type is new Integer; -- Any definition is fine here
end Logging;

A ghost imported subprogram cannot be executed, so calls to Append_To_Log above should not be enabled during
compilation, otherwise a compilation error is issued. Note also that GNATprove will not attempt proving the contract
of a ghost imported subprogram, as it does not have its body.

Ghost Generic Formal Parameters

Non-ghost generic units may depend on ghost entities for the specification and proof of their instantiations. In such a
case, the ghost entities can be passed on as ghost generic formal parameters:

generic
type T is private with Ghost;
Var_Input : T with Ghost;
Var_Output : in out T with Ghost;

(continues on next page)
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with function F return T with Ghost;
with procedure P (X : in out T) with Ghost;
with package Pack is new Gen with Ghost;

package My_Generic with
SPARK_Mode

is
...

At the point of instantiation of My_Generic, actual parameters for ghost generic formal parameters may be ghost, and
in three cases, they must actually be ghost: the actual for a mutable ghost generic formal object, a ghost generic formal
procedure, or a ghost generic formal package, must be ghost. Otherwise, writing to a ghost variable or calling a ghost
procedure could have an effect on non-ghost variables.

package My_Instantiation is
new My_Generic (T => ... -- ghost or not

Var_Input => ... -- ghost or not
Var_Output => ... -- must be ghost
F => ... -- ghost or not
P => ... -- must be ghost
Pack => ... -- must be ghost

Ghost Models

When specifying a program, it is common to use a model, that is, an alternative, simpler view of a part of the program.
As they are only used in annotations, models can be computed using ghost code.

Models of Control Flow

Global variables can be used to enforce properties over call cahains in the program. For example, we may want
to express that Total cannot be incremented twice in a row without registering the transaction in between. This
can be done by introducing a ghost global variable Last_Transaction_Registered, used to encode whether
Register_Transaction was called since the last call to Add_To_Total:

Last_Transaction_Registered : Boolean := True with Ghost;

procedure Add_To_Total (Incr : Integer) with
Pre => Last_Transaction_Registered,
Post => not Last_Transaction_Registered;

procedure Register_Transaction with
Post => Last_Transaction_Registered;

The value of Last_Transaction_Registered should also be updated in the body of Add_To_Total and
Register_Transaction to reflect their contracts:

procedure Add_To_Total (Incr : in Integer) is
begin

Total := Total + Incr;
Last_Transaction_Registered := False;

end Add_To_Total;

More generally, the expected control flow of a program can be modeled using an automaton. We can take as an example
a mailbox containing only one message. The expected way Receive and Send should be interleaved can be expressed
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as a two state automaton. The mailbox can either be full, in which case Receive can be called but not Send, or it can
be empty, in which case it is Send that can be called and not Receive. To express this property, we can define a ghost
global variable of a ghost enumeration type to hold the state of the automaton:

type Mailbox_Status_Kind is (Empty, Full) with Ghost;
Mailbox_Status : Mailbox_Status_Kind := Empty with Ghost;

procedure Receive (X : out Message) with
Pre => Mailbox_Status = Full,
Post => Mailbox_Status = Empty;

procedure Send (X : Message) with
Pre => Mailbox_Status = Empty,
Post => Mailbox_Status = Full;

Like before, Receive and Send should update Mailbox_Status in their bodies. Note that all the transitions of the
automaton need not be specified, only the part which are relevant to the properties we want to express.

If the program also has some regular state, an invariant can be used to link the value of this state to the value of
the ghost state of the automaton. For example, in our mailbox, we may have a regular variable Message_Content
holding the content of the current message, which is only known to be valid after a call to Send. We can introduce a
ghost function linking the value of Message_Content to the value of Mailbox_Status, so that we can ensure that
Message_Content is always valid when accessed from Receive:

function Invariant return Boolean is
(if Mailbox_Status = Full then Valid (Message_Content))

with Ghost;

procedure Receive (X : out Message) with
Pre => Invariant and then Mailbox_Status = Full,
Post => Invariant and then Mailbox_Status = Empty

and then Valid (X)
is
X := Message_Content;

end Receive;

Models of Data Structures

For specifying programs that use complex data structures (doubly-linked lists, maps. . . ), it can be useful to supply
a model for the data structure. A model is an alternative, simpler view of the data-structure which allows to write
properties more easily. For example, a ring buffer, or a doubly-linked list, can be modeled using an array containing
the elements from the buffer or the list in the right order. Typically, though simpler to reason with, the model is less
efficient than the regular data structure. For example, inserting an element at the beginning of a doubly-linked list or at
the beginning of a ring buffer can be done in constant time whereas inserting an element at the beginning of an array
requires to slide all the elements to the right. As a result, models of data structures are usually supplied using ghost
code. As an example, the package Ring_Buffer offers an implementation of a single instance ring buffer. A ghost
variable Buffer_Model is used to write the specification of the Enqueue procedure:

package Ring_Buffer is
function Get_Model return Nat_Array with Ghost;

procedure Enqueue (E : Natural) with
Post => Get_Model = E & Get_Model'Old (1 .. Max – 1);

private
(continues on next page)
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Buffer_Content : Nat_Array;
Buffer_Top : Natural;
Buffer_Model : Nat_Array with Ghost;

function Get_Model return Nat_Array is (Buffer_Model);
end Ring_Buffer;

Then, just like for models of control flow, an invariant should be supplied to link the regular data structure to its model:

package Ring_Buffer is
function Get_Model return Nat_Array with Ghost;
function Invariant return Boolean with Ghost;

procedure Enqueue (E : Natural) with
Pre => Invariant,
Post => Invariant and then Get_Model = E & Get_Model'Old (1 .. Max – 1);

private
Buffer_Content : Nat_Array;
Buffer_Top : Natural;
Buffer_Model : Nat_Array with Ghost;

function Get_Model return Nat_Array is (Buffer_Model);
function Invariant return Boolean is
(Buffer_Model = Buffer_Content (Buffer_Top .. Max)

& Buffer_Content (1 .. Buffer_Top - 1));
end Ring_Buffer;

If a data structure type is defined, a ghost function can be provided to compute a model for objects of the data structure
type, and the invariant can be stated as a postcondition of this function:

package Ring_Buffer is
type Buffer_Type is private;
subtype Model_Type is Nat_Array with Ghost;

function Invariant (X : Buffer_Type; M : Model_Type) return Boolean with
Ghost;

function Get_Model (X : Buffer_Type) return Model_Type with
Ghost,
Post => Invariant (X, Get_Model'Result);

procedure Enqueue (X : in out Buffer_Type; E : Natural) with
Post => Get_Model (X) = E & Get_Model (X)'Old (1 .. Max – 1);

private
type Buffer_Type is record
Content : Nat_Array;
Top : Natural;

end record;
end Ring_Buffer;

More complex examples of models of data structure can be found in the Formal Containers Library.
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Removal of Ghost Code

By default, GNAT completely discards ghost code during compilation, so that no ghost code is present in the object
code or the executable. This ensures that, even if parts of the ghost could have side effects when executed (writing
to variables, performing system calls, raising exceptions, etc.), by default the compiler ensures that it cannot have any
effect on the behavior of the program.

This is also essential in domains submitted to certification where all instructions in the object code should be traceable
to source code and requirements, and where testing should ensure coverage of the object code. As ghost code is not
present in the object code, there is no additional cost for maintaining its traceability and ensuring its coverage by tests.

GNAT provides an easy means to check that no ignored ghost code is present in a given object code or executable,
which relies on the property that, by definition, each ghost declaration or ghost statement mentions at least one ghost
entity. GNAT prefixes all names of such ignored ghost entities in the object code with the string ___ghost_ (except
for names of ghost compilation units). The initial triple underscore ensures that this substring cannot appear anywhere
in the name of non-ghost entities or ghost entities that are not ignored. Thus, one only needs to check that the substring
___ghost_ does not appear in the list of names from the object code or executable.

On Unix-like platforms, this can done by checking that the following command does not output anything:

nm <object files or executable> | grep ___ghost_

The same can be done to check that a ghost compilation unit called my_unit (whatever the capitalization) is not
included at all (entities in that unit would have been detected by the previous check) in the object code or executable.
For example on Unix-like platforms:

nm <object files or executable> | grep my_unit

5.5.13 Quantified Expressions
Supported in Ada 2012

A quantified expression is a way to express a property over a collection, either an array or a container (see Formal
Containers Library):

• a universally quantified expression using for all expresses a property that holds for all elements of a collection

• an existentially quantified expression using for some expresses a property that holds for at least one element of
a collection

Quantified expressions should always be parenthesized.

Iteration Over Content vs. Over Positions

Iteration can be expressed either directly over the content of the collection, or over the range of positions of elements
in the collection. The former is preferred when the property involved does not refer to the position of elements in
the collection or to the previous value of the element at the same position in the collection (e.g. in a postcondition).
Otherwise, the latter is needed. For example, consider the procedure Nullify_Array that sets each element of its
array parameter X to zero. Its postcondition can be expressed using a universally quantified expression iterating over
the content of the array as follows:

procedure Nullify_Array (X : out Integer_Array) with
Post => (for all E in X => E = 0);

or using a universally quantified expression iterating over the range of the array as follows:

procedure Nullify_Array (X : out Integer_Array) with
Post => (for all J in X'Range => X(J) = 0);

5.5. Specification Features 121



SPARK User’s Guide, Release 15.0

Quantification over formal containers can similarly iterate over their content, using the syntax for .. of, or their
positions, using the syntax for .. in, see examples in Loop Examples.

Iteration over positions is needed when the property refers to the position of elements in the collection. For exam-
ple, consider the procedure Initialize_Array that sets each element of its array parameter X to its position. Its
postcondition can be expressed using a universally quantified expression as follows:

procedure Initialize_Array (X : out Integer_Array) with
Post => (for all J in X'Range => X(J) = J);

Iteration over positions is also needed when the property refers to the previous value of the element at the same position
in the collection. For example, consider the procedure Increment_Array that increments each element of its array
parameter X by one. Its postcondition can be expressed using a universally quantified expression as follows:

procedure Increment_Array (X : in out Integer_Array) with
Post => (for all J in X'Range => X(J) = X'Old(J) + 1);

The negation of a universal property being an existential property (the opposite is true too), the postcondition above
can be expressed also using an existentially quantified expression as follows:

procedure Increment_Array (X : in out Integer_Array) with
Post => not (for some J in X'Range => X(J) /= X'Old(J) + 1);

Execution vs. Proof

At run time, a quantified expression is executed like a loop, which exits as soon as the value of the expression is
known: if the property does not hold (resp. holds) for a given element of a universally (resp. existentially) quantified
expression, execution of the loop does not proceed with remaining elements and returns the value False (resp. True)
for the expression.

When a quantified expression is analyzed with GNATprove, it uses the logical counterpart of the quantified expression.
GNATprove also checks that the expression is free from run-time errors. For this checking, GNATprove checks that
the enclosed expression is free from run-time errors over the entire range of the quantification, not only at points that
would actually be reached at run time. As an example, consider the following expression:

(for all I in 1 .. 10 => 1 / (I - 3) > 0)

This quantified expression cannot raise a run-time error, because the enclosed expression 1 / (I - 3) > 0 is false
for the first value of the range I = 1, so the execution of the loop exits immediately with the value False for the
quantified expression. GNATprove is stricter and requires the enclosed expression 1 / (I - 3) > 0 to be free from
run-time errors over the entire range I in 1 .. 10 (including I = 3) so it issues a check message for a possible
division by zero in this case.

Iterator Filters

The set of values or positions over which iteration is performed can be filtered with an iterator filter introduced by the
keyword when. For example, we can express a property for all prime numbers in a given range as follows:

(for all N in 1 .. 1000 when Is_Prime (N) => ...)

5.6 Assertion Pragmas
SPARK contains features for directing formal verification with GNATprove. These features may also be used by other
tools, in particular the GNAT compiler. Assertion pragmas are refinements of pragma Assert defined in Ada. For
all assertion pragmas, an exception Assertion_Error is raised at run time when the property asserted does not hold,
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if the program was compiled with assertions. The real difference between assertion pragmas is how they are used by
GNATprove during proof.

5.6.1 Pragma Assert
Supported in Ada 2005

Pragma Assert is the simplest assertion pragma. GNATprove checks that the property asserted holds, and uses the
information that it holds for analyzing code that follows. For example, consider two assertions of the same property X
> 0 in procedure Assert_Twice:

1 procedure Assert_Twice (X : Integer) with
2 SPARK_Mode
3 is
4 begin
5 pragma Assert (X > 0);
6 pragma Assert (X > 0);
7 end Assert_Twice;

As expected, the first assertion on line 5 is not provable in absence of a suitable precondition for Assert_Twice, but
GNATprove proves that it holds the second time the property is asserted on line 6:

assert_twice.adb:5:19: high: assertion might fail
5 | pragma Assert (X > 0);
| ^~~~~

e.g. when X = 0
possible fix: subprogram at line 1 should mention X in a precondition
1 |procedure Assert_Twice (X : Integer) with
|^ here

assert_twice.adb:6:19: info: assertion proved

GNATprove considers that an execution of Assert_Twice with X <= 0 stops at the first assertion that fails. Thus X >
0 when execution reaches the second assertion. This is true if assertions are executed at run time, but not if assertions
are discarded during compilation. In the latter case, unproved assertions should be inspected carefully to ensure that
the property asserted will indeed hold at run time. This is true of all assertion pragmas, which GNATprove analyzes
like pragma Assert in that respect.

5.6.2 Pragma Assertion_Policy
Supported in Ada 2005/Ada 2012

Assertions can be enabled either globally or locally. Here, assertions denote either Assertion Pragmas of all kinds
(among which Pragma Assert) or functional contracts of all kinds (among which Preconditions and Postconditions).

By default, assertions are ignored in compilation, and can be enabled globally by using the compilation switch -gnata.
They can be enabled locally by using pragma Assertion_Policy in the program, or globally if the pragma is put in a
configuration file. They can be enabled for all kinds of assertions or specific ones only by using the version of pragma
Assertion_Policy that takes named associations which was introduced in Ada 2012.

When used with the standard policies Check (for enabling assertions) or Ignore (for ignoring assertions), pragma
Assertion_Policy has no effect on GNATprove. GNATprove takes all assertions into account, whatever the assertion
policy in effect at the point of the assertion. For example, consider a code with some assertions enabled and some
ignored:
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1 pragma Assertion_Policy (Pre => Check, Post => Ignore);
2

3 procedure Assert_Enabled (X : in out Integer) with
4 SPARK_Mode,
5 Pre => X > 0, -- executed at run time
6 Post => X > 2 -- ignored at run time
7 is
8 pragma Assertion_Policy (Assert => Check);
9 pragma Assert (X >= 0); -- executed at run time

10

11 pragma Assertion_Policy (Assert => Ignore);
12 pragma Assert (X >= 0); -- ignored at run time
13 begin
14 X := X - 1;
15 end Assert_Enabled;

Although the postcondition and the second assertion are not executed at run time, GNATprove analyzes them and issues
corresponding messages:

assert_enabled.adb:6:11: high: postcondition might fail
6 | Post => X > 2 -- ignored at run time
| ^~~~~

e.g. when X = 0
assert_enabled.adb:9:19: info: assertion proved
assert_enabled.adb:12:19: info: assertion proved
assert_enabled.adb:14:11: info: overflow check proved

On the contrary, when used with the GNAT-specific policy Disable, pragma Assertion_Policy causes the corre-
sponding assertions to be skipped both during execution and analysis with GNATprove. For example, consider the
same code as above where policy Ignore is replaced with policy Disable:

1 pragma Assertion_Policy (Pre => Check, Post => Disable);
2

3 procedure Assert_Disabled (X : in out Integer) with
4 SPARK_Mode,
5 Pre => X > 0, -- executed at run time
6 Post => X > 2 -- ignored at compile time and in analysis
7 is
8 pragma Assertion_Policy (Assert => Check);
9 pragma Assert (X >= 0); -- executed at run time

10

11 pragma Assertion_Policy (Assert => Disable);
12 pragma Assert (X >= 0); -- ignored at compile time and in analysis
13 begin
14 X := X - 1;
15 end Assert_Disabled;

On this program, GNATprove does not analyze the postcondition and the second assertion, and it does not issue corre-
sponding messages:

assert_disabled.adb:9:19: info: assertion proved
assert_disabled.adb:14:11: info: overflow check proved
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The policy of Disable should thus be reserved for assertions that are not compilable, typically because a given build
environment does not define the necessary entities.

5.6.3 Loop Invariants
Specific to SPARK

Pragma Loop_Invariant is a special kind of assertion used in loops. GNATprove performs two checks that ensure
that the property asserted holds at each iteration of the loop:

1. loop invariant initialization: GNATprove checks that the property asserted holds during the first iteration of the
loop.

2. loop invariant preservation: GNATprove checks that the property asserted holds during an arbitrary iteration of
the loop, assuming that it held in the previous iteration.

Each of these properties can be independently true or false. For example, in the following loop, the loop invariant is
false during the first iteration and true in all remaining iterations:

6 Prop := False;
7 for J in 1 .. 10 loop
8 pragma Loop_Invariant (Prop);
9 Prop := True;

10 end loop;

Thus, GNATprove checks that property 2 holds but not property 1:

simple_loops.adb:8:30: high: loop invariant might fail in first iteration
8 | pragma Loop_Invariant (Prop);
| ^~~~

e.g. when Prop = False
simple_loops.adb:8:30: info: loop invariant preservation proved

Conversely, in the following loop, the loop invariant is true during the first iteration and false in all remaining iterations:

12 Prop := True;
13 for J in 1 .. 10 loop
14 pragma Loop_Invariant (Prop);
15 Prop := False;
16 end loop;

Thus, GNATprove checks that property 1 holds but not property 2:

simple_loops.adb:14:30: info: loop invariant initialization proved

simple_loops.adb:14:30: medium: loop invariant might not be preserved by an arbitrary␣
↪→iteration

14 | pragma Loop_Invariant (Prop);
| ^~~~

The following loop shows a case where the loop invariant holds both during the first iteration and all remaining itera-
tions:

18 Prop := True;
19 for J in 1 .. 10 loop
20 pragma Loop_Invariant (Prop);

(continues on next page)
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21 Prop := Prop;
22 end loop;

GNATprove checks here that both properties 1 and 2 hold:

simple_loops.adb:20:30: info: loop invariant preservation proved
simple_loops.adb:20:30: info: loop invariant initialization proved

In general, it is not sufficient that a loop invariant is true for GNATprove to prove it. The loop invariant should also be
inductive: it should be precise enough that GNATprove can check loop invariant preservation by assuming only that
the loop invariant held during the last iteration. For example, the following loop is the same as the previous one, except
the loop invariant is true but not inductive:

24 Prop := True;
25 for J in 1 .. 10 loop
26 pragma Loop_Invariant (if J > 1 then Prop);
27 Prop := Prop;
28 end loop;

GNATprove cannot check property 2 on that loop:

simple_loops.adb:26:30: info: loop invariant initialization proved

simple_loops.adb:26:44: medium: loop invariant might not be preserved by an arbitrary␣
↪→iteration, cannot prove Prop

26 | pragma Loop_Invariant (if J > 1 then Prop);
| ^~~~

Note also that not using an assertion (Pragma Assert) instead of a loop invariant also allows here to fully prove the
corresponding property, by relying on Automatic Unrolling of Simple For-Loops:

simple_loops_unroll.adb:26:22: info: assertion proved

Returning to the case where automatic loop unrolling is not used, the reasoning of GNATprove for checking property
2 in that case can be summarized as follows:

• Let’s take iteration K of the loop, where K > 1 (not the first iteration).

• Let’s assume that the loop invariant held during iteration K-1, so we know that if K-1 > 1 then Prop holds.

• The previous assumption can be rewritten: if K > 2 then Prop.

• But all we know is that K > 1, so we cannot deduce Prop.

See How to Write Loop Invariants for further guidelines.

Pragma Loop_Invariant may appear anywhere at the top level of a loop: it is usually added at the start of the loop,
but it may be more convenient in some cases to add it at the end of the loop, or in the middle of the loop, in cases where
this simplifies the asserted property. In all cases, GNATprove checks loop invariant preservation by reasoning on the
virtual loop that starts and ends at the loop invariant.

It is possible to use multiple loop invariants, which should be grouped together without intervening statements, decla-
rations or pragmas, at the exception of pragma Loop_Variant and pragma Annotate (to justify check messages). The
resulting complete loop invariant is the conjunction of individual ones. The benefits of writing multiple loop invariants
instead of a conjunction can be improved readability and better provability (because GNATprove checks each pragma
Loop_Invariant separately).

Finally, Attribute Loop_Entry and Delta Aggregates can be very useful to express complex loop invariants.
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Note

Users that are already familiar with the notion of loop invariant in other proof systems should be aware that loop
invariants in SPARK are slightly different from the usual ones. In SPARK, a loop invariant must hold when execu-
tion reaches the corresponding pragma inside the loop. Hence, it needs not hold when the loop is never entered, or
when exiting the loop.

5.6.4 Loop Variants
Specific to SPARK

Pragma Loop_Variant is a special kind of assertion used in loops. GNATprove checks that the given value progresses
in some sense at each iteration of the loop. The value is associated to a direction, which can be either Increases or
Decreases for numeric variants, or Structural for structural variants.

Numeric variants can take a discrete value or, in the case of the direction Decreases, a big natural (see SPARK.
Big_Integers). At each iteration, a check is generated to ensure that the value progresses (decreases or increases)
with respect to its value at the beginning of the loop. Because a discrete value is always bounded by its type in Ada,
and a big natural is never negative, it cannot decrease (or increase) at each iteration an infinite number of times, thus
one of two outcomes is possible:

1. the loop exits, or

2. a run-time error occurs.

Therefore, it is possible to prove the termination of loops in SPARK programs by proving both a loop variant for each
plain-loop or while-loop (for-loops always terminate in Ada) and the absence of run-time errors.

For example, the while-loops in procedure Terminating_Loops compute the value of X - X mod 3 (or equivalently
X / 3 * 3) in variable Y:

1 procedure Terminating_Loops (X : Natural) with
2 SPARK_Mode
3 is
4 Y : Natural;
5 begin
6 Y := 0;
7 while X - Y >= 3 loop
8 Y := Y + 3;
9 pragma Loop_Variant (Increases => Y);

10 end loop;
11

12 Y := 0;
13 while X - Y >= 3 loop
14 Y := Y + 3;
15 pragma Loop_Variant (Decreases => X - Y);
16 end loop;
17 end Terminating_Loops;

GNATprove is able to prove both loop variants, as well as absence of run-time errors in the subprogram, hence that
loops terminate:

terminating_loops.adb:4:04: info: initialization of "Y" proved
terminating_loops.adb:7:12: info: overflow check proved
terminating_loops.adb:8:14: info: overflow check proved

(continues on next page)
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terminating_loops.adb:9:28: info: loop variant proved
terminating_loops.adb:13:12: info: overflow check proved
terminating_loops.adb:14:14: info: overflow check proved
terminating_loops.adb:15:28: info: loop variant proved
terminating_loops.adb:15:43: info: overflow check proved

A numeric loop variant may be more complex than a single decreasing (or increasing) value, and be given instead by
a list of either decreasing or increasing values (possibly a mix of both). In that case, the order of the list defines the
lexicographic order of progress. See SPARK RM 5.5.3 for details.

The expression of a structural loop variant can be either a local borrower or a local observer (see Observing and
Borrowing). A check is generated to ensure that, during each iteration of the loop, the object denoted by the variant is
updated to designate a strict subcomponent of the structure it used to designate. Since, due to the Memory Ownership
Policy of SPARK, the structure cannot contain cycles, it is enough to ensure that the loop cannot be executed an infinite
number of times.

In the following example, we can verify that the while loop in the Set_All_To_Zero procedure terminates by stating
that the local borrower X used to traverse the linked list structurally decreases at each iteration:

1 package Terminating_Loops with
2 SPARK_Mode
3 is
4 type Cell;
5 type List is access Cell;
6 type Cell is record
7 Value : Integer;
8 Next : List;
9 end record;

10

11 procedure Set_All_To_Zero (L : List);
12

13 end Terminating_Loops;

1 package body Terminating_Loops with
2 SPARK_Mode
3 is
4

5 procedure Set_All_To_Zero (L : List) is
6 X : access Cell := L;
7 begin
8 while X /= null loop
9 pragma Loop_Variant (Structural => X);

10 X.Value := 0;
11 X := X.Next;
12 end loop;
13 end Set_All_To_Zero;
14

15 end Terminating_Loops;

Structural variants are subjects to a number of restrictions. They cannot be combined with other variants, and are
checked according to a mostly syntactic criterion. When these restrictions cannot be followed, structural variants can
be systematically replaced by a decreasing numeric variant providing the depth (or size) of the data structure, like
function Length in Subprogram Variant. Strictly speaking, structural variants are only required to define the function
returning that metric.
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The fact that, at each iteration, the variable X is updated to designate a strict subcomponent of the structure it used to
designate can be verified by GNATprove:

terminating_loops.adb:9:10: info: loop variant proved
terminating_loops.adb:10:11: info: pointer dereference check proved
terminating_loops.adb:11:16: info: pointer dereference check proved

Pragma Loop_Variantmay appear anywhere a loop invariant appears. It is also possible to use multiple loop variants,
which should be grouped together with loop invariants.

5.6.5 Pragma Assume
Specific to SPARK

Pragma Assume is a variant of Pragma Assert that does not require GNATprove to check that the property holds. This is
used to convey trustable information to GNATprove, in particular properties about external objects that GNATprove has
no control upon. GNATprove uses the information that the assumed property holds for analyzing code that follows. For
example, consider an assumption of the property X > 0 in procedure Assume_Then_Assert, followed by an assertion
of the same property:

1 procedure Assume_Then_Assert (X : Integer) with
2 SPARK_Mode
3 is
4 begin
5 pragma Assume (X > 0);
6 pragma Assert (X > 0);
7 end Assume_Then_Assert;

As expected, GNATprove does not check the property on line 5, but used it to prove that the assertion holds on line 6:

assume_then_assert.adb:6:19: info: assertion proved

GNATprove considers that an execution of Assume_Then_Assert with X <= 0 stops at the assumption on line 5, and
it does not issue a message in that case because the user explicitly indicated that this case is not possible. Thus X > 0
when execution reaches the assertion on line 6. This is true if assertions (of which assumptions are a special kind) are
executed at run time, but not if assertions are discarded during compilation. In the latter case, assumptions should be
inspected carefully to ensure that the property assumed will indeed hold at run time. This inspection may be facilitated
by passing a justification string as the second argument to pragma Assume.

5.6.6 Pragma Assert_And_Cut
Specific to SPARK

Pragma Assert_And_Cut is a variant of Pragma Assert that allows hiding some information to GNATprove. GNAT-
prove checks that the property asserted holds, and uses only the information that it holds for analyzing code that follows.
For example, consider two assertions of the same property X = 1 in procedure Forgetful_Assert, separated by a
pragma Assert_And_Cut:

1 procedure Forgetful_Assert (X : out Integer) with
2 SPARK_Mode
3 is
4 begin
5 X := 1;
6

7 pragma Assert (X = 1);
(continues on next page)
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8

9 pragma Assert_And_Cut (X > 0);
10

11 pragma Assert (X > 0);
12 pragma Assert (X = 1);
13 end Forgetful_Assert;

GNATprove proves that the assertion on line 7 holds, but it cannot prove that the same assertion on line 12 holds:

forgetful_assert.adb:1:29: info: initialization of "X" proved
forgetful_assert.adb:7:19: info: assertion proved
forgetful_assert.adb:9:27: info: assertion proved
forgetful_assert.adb:11:19: info: assertion proved

forgetful_assert.adb:12:19: medium: assertion might fail
12 | pragma Assert (X = 1);

| ^~~~~

GNATprove forgets the exact value of X after line 9. All it knows is the information given in pragma Assert_And_Cut,
here that X > 0. And indeed GNATprove proves that such an assertion holds on line 11. But it cannot prove the
assertion on line 12, showing indeed that GNATprove forgot its value of 1.

Pragma Assert_And_Cut may be useful in two cases:

1. When the automatic provers are overwhelmed with information from the context, pragma Assert_And_Cutmay
be used to simplify this context, thus leading to more automatic proofs.

2. When GNATprove is proving checks for each path through the subprogram (see switch --proof in Running
GNATprove from the Command Line), and the number of paths is very large, pragma Assert_And_Cut may be
used to reduce the number of paths, thus leading to faster automatic proofs.

For example, consider procedure P below, where all that is needed to prove that the code using X is free from run-
time errors is that X is positive. Let’s assume that we are running GNATprove with switch --proof=per_path
so that a formula is generated for each execution path. Without the pragma, GNATprove considers all execution
paths through P, which may be many. With the pragma, GNATprove only considers the paths from the start of
the procedure to the pragma, and the paths from the pragma to the end of the procedure, hence many fewer paths.

1 procedure P is
2 X : Integer;
3 begin
4 -- complex computation that sets X
5 pragma Assert_And_Cut (X > 0);
6 -- complex computation that uses X
7 end P;

GNATprove only forgets information from inside the enclosing sequence of statements, meaning information about

1. variables modified since the start of the enclosing sequence of statements

2. Boolean tests (including checks) that must have evaluated to true for control to reach the pragma from the start
of the enclosing sequence of statements.

Procedure Partial_Knowledge below shows examples of informations that are remembered and forgotten.

1 procedure Partial_Knowledge (X : Integer) is
2 Y : Integer;

(continues on next page)
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3 Z : Integer;
4 begin
5 Y := 0;
6 if (X <= 0) then
7 return;
8 end if;
9 begin

10 Z := 1;
11 begin
12 if (X >= 2) then
13 return;
14 end if;
15 end;
16 pragma Assert_And_Cut (Y < Z);
17 pragma Assert (Y = 0); -- Remembered
18 pragma Assert (X > 0); -- Remembered
19 pragma Assert (Y < Z); -- From cut
20 pragma Assert (Z = 1); -- Forgotten
21 pragma Assert (X < 2); -- Forgotten
22 end;
23 end;

Since variable Y is not modified in the inner block, the information that Y was zero is not forgotten, and the assertion at
line 17 is proved. Similarly, GNATprove does not forget that X must have been positive to reach the inner block in the
first place, and proves the assertion at line 18. However, it does not prove the following assertions at lines 20/21, and
displays counter-examples with values of 2 for X,Z, showing indeed that GNATprove forgot the value of Z, as well as
the fact that the program should have exited already when X is 2.

partial_knowledge.adb:2:04: info: initialization of "Y" proved
partial_knowledge.adb:3:04: info: initialization of "Z" proved
partial_knowledge.adb:16:30: info: assertion proved
partial_knowledge.adb:17:22: info: assertion proved
partial_knowledge.adb:18:22: info: assertion proved
partial_knowledge.adb:19:22: info: assertion proved

partial_knowledge.adb:20:22: medium: assertion might fail
20 | pragma Assert (Z = 1); -- Forgotten

| ^~~~~
e.g. when Z = 2
possible fix: add or complete related loop invariants or postconditions

partial_knowledge.adb:21:22: medium: assertion might fail
21 | pragma Assert (X < 2); -- Forgotten

| ^~~~~
e.g. when X = 2
possible fix: subprogram at line 1 should mention X in a precondition
1 |procedure Partial_Knowledge (X : Integer) is
|^ here

Note

Due to pragmas Assert_And_Cut and Loop_Invariant both acting as cut points for verification, but in
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slightly different ways, GNATprove does not support the full breadth of their potential interactions. Pragma
Assert_And_Cut is only supported within loops when the immediately surrounding statement sequence does
not contain the loop invariants, including any occurring within nested blocks. GNATprove also supports as
a convenience the special case when the loop invariants occurs at top level in the sequence prefix preceding
pragma Assert_And_Cut, by implicitly assuming that a new block starts immediately after the last pragma
Loop_Invariant.

5.7 Overflow Modes
Annotations such as preconditions, postconditions, assertions, loop invariants, are analyzed by GNATprove with the
exact same meaning that they have during execution. In particular, evaluating the expressions in an annotation may
raise a run-time error, in which case GNATprove will attempt to prove that this error cannot occur, and report a warning
otherwise.

Integer overflows are a kind of run-time error that occurs when the result of an arithmetic computation does not fit
in the bounds of the machine type used to hold the result. In some cases, it is convenient to express properties in
annotations as they would be expressed in mathematics, where quantities are unbounded. This is best achieved using
the Big Numbers Library, which defines types for unbounded integers and rational numbers, operations on these and
conversions from/to machine integers and reals.

Alternatively, GNATprove supports different overflow modes, so that the usual signed arithmetic operations are inter-
preted differently from their standard interpretation. For example:

1 function Add (X, Y : Integer) return Integer with
2 Pre => X + Y in Integer,
3 Post => Add'Result = X + Y;

The precondition of Add states that the result of adding its two parameters should fit in type Integer. In the default
mode, evaluating this expression will fail an overflow check, because the result of X + Y is stored in a temporary of
type Integer. If the compilation switch -gnato13 is used, then annotations are compiled specially, so that arithmetic
operations use unbounded intermediate results. In this mode, GNATprove does not generate a check for the addition
of X and Y in the precondition of Add, as there is no possible overflow here.

There are three overflow modes:

• Use base type for intermediate operations (STRICT): in this mode, all intermediate results for predefined arith-
metic operators are computed using the base type, and the result must be in range of the base type.

• Most intermediate overflows avoided (MINIMIZED): in this mode, the compiler attempts to avoid intermedi-
ate overflows by using a larger integer type, typically Long_Long_Integer, as the type in which arithmetic is
performed for predefined arithmetic operators.

• All intermediate overflows avoided (ELIMINATED): in this mode, the compiler avoids all intermediate overflows
by using arbitrary precision arithmetic as required.

The desired mode for handling intermediate overflow can be specified using either the Overflow_Mode pragma or an
equivalent compiler switch. The pragma has the form:

pragma Overflow_Mode ([General =>] MODE [, [Assertions =>] MODE]);

where MODE is one of

• STRICT: intermediate overflows checked (using base type)

• MINIMIZED: minimize intermediate overflows

• ELIMINATED: eliminate intermediate overflows
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For example:

pragma Overflow_Mode (General => Strict, Assertions => Eliminated);

specifies that general expressions outside assertions be evaluated in the usual strict mode, and expressions within
assertions be evaluated in “eliminate intermediate overflows” mode. Currently, GNATprove only supports pragma
Overflow_Mode being specified as a configuration pragma, either in a configuration pragma file or directly in a unit.

Additionally, a compiler switch -gnato?? can be used to control the checking mode default. Here ? is one of the digits
1 through 3:

1. use base type for intermediate operations (STRICT)

2. minimize intermediate overflows (MINIMIZED)

3. eliminate intermediate overflows (ELIMINATED)

The switch -gnato13, like the Overflow_Mode pragma above, specifies that general expressions outside assertions be
evaluated in the usual strict mode, and expressions within assertions be evaluated in “eliminate intermediate overflows”
mode.

Note that these modes apply only to the evaluation of predefined arithmetic, membership, and comparison operators
for signed integer arithmetic.

For further details of the meaning of these modes, and for further information about the treatment of overflows for fixed-
point and floating-point arithmetic please refer to the “Overflow Check Handling in GNAT” appendix in the GNAT
User’s Guide.

5.8 Object Oriented Programming and Liskov Substitution Principle
SPARK supports safe Object Oriented Programming by checking behavioral subtyping between parent types and de-
rived types, a.k.a. Liskov Substitution Principle: every overriding operation of the derived type should behave so that
it can be substituted for the corresponding overridden operation of the parent type anywhere.

5.8.1 Class-Wide Subprogram Contracts
Supported in Ada 2012

Specific Subprogram Contracts are required on operations of tagged types, so that GNATprove can check Liskov Sub-
stitution Principle on every overriding operation:

• The class-wide precondition introduced by aspect Pre'Class is similar to the normal precondition.

• The class-wide postcondition introduced by aspect Post'Class is similar to the normal postcondition.

Although these contracts are defined in Ada, they have a stricter meaning in SPARK for checking Liskov Substitution
Principle:

• The class-wide precondition of an overriding operation should be weaker (more permissive) than the class-wide
precondition of the corresponding overridden operation.

• The class-wide postcondition of an overriding operation should be stronger (more restrictive) than the class-wide
postcondition of the corresponding overridden operation.

For example, suppose that the Logging unit introduced in Ghost Packages defines a tagged type Log_Type for logs,
with corresponding operations:

1 package Logging with
2 SPARK_Mode
3 is

(continues on next page)
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4 Max_Count : constant := 10_000;
5

6 type Log_Count is range 0 .. Max_Count;
7

8 type Log_Type is tagged private;
9

10 function Log_Size (Log : Log_Type) return Log_Count;
11

12 procedure Init_Log (Log : out Log_Type) with
13 Post'Class => Log.Log_Size = 0;
14

15 procedure Append_To_Log (Log : in out Log_Type; Incr : in Integer) with
16 Pre'Class => Log.Log_Size < Max_Count,
17 Post'Class => Log.Log_Size = Log.Log_Size'Old + 1;
18

19 private
20

21 subtype Log_Index is Log_Count range 1 .. Max_Count;
22 type Integer_Array is array (Log_Index) of Integer;
23

24 type Log_Type is tagged record
25 Log_Data : Integer_Array;
26 Log_Size : Log_Count;
27 end record;
28

29 function Log_Size (Log : Log_Type) return Log_Count is (Log.Log_Size);
30

31 end Logging;

and that this type is derived in Range_Logging.Log_Type which additionally keeps track of the minimum and max-
imum values in the log, so that they can be accessed in constant time:

1 with Logging; use type Logging.Log_Count;
2

3 package Range_Logging with
4 SPARK_Mode
5 is
6 type Log_Type is new Logging.Log_Type with private;
7

8 not overriding
9 function Log_Min (Log : Log_Type) return Integer;

10

11 not overriding
12 function Log_Max (Log : Log_Type) return Integer;
13

14 overriding
15 procedure Init_Log (Log : out Log_Type) with
16 Post'Class => Log.Log_Size = 0 and
17 Log.Log_Min = Integer'Last and
18 Log.Log_Max = Integer'First;
19

20 overriding
(continues on next page)
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21 procedure Append_To_Log (Log : in out Log_Type; Incr : in Integer) with
22 Pre'Class => Log.Log_Size < Logging.Max_Count,
23 Post'Class => Log.Log_Size = Log.Log_Size'Old + 1 and
24 Log.Log_Min = Integer'Min (Log.Log_Min'Old, Incr) and
25 Log.Log_Max = Integer'Max (Log.Log_Max'Old, Incr);
26

27 private
28

29 type Log_Type is new Logging.Log_Type with record
30 Min_Entry : Integer;
31 Max_Entry : Integer;
32 end record;
33

34 function Log_Min (Log : Log_Type) return Integer is (Log.Min_Entry);
35 function Log_Max (Log : Log_Type) return Integer is (Log.Max_Entry);
36

37 end Range_Logging;

GNATprove proves that the contracts on Logging.Append_To_Log and its overriding Range_Logging.
Append_To_Log respect the Liskov Substitution Principle:

range_logging.ads:9:13: info: implicit aspect Always_Terminates on "Log_Min" has been␣
↪→proved, subprogram will terminate
range_logging.ads:12:13: info: implicit aspect Always_Terminates on "Log_Max" has been␣
↪→proved, subprogram will terminate
range_logging.ads:16:20: info: class-wide postcondition is stronger than overridden one
range_logging.ads:22:20: info: class-wide precondition is weaker than overridden one
range_logging.ads:23:20: info: class-wide postcondition is stronger than overridden one
logging.ads:10:13: info: implicit aspect Always_Terminates on "Log_Size" has been proved,
↪→ subprogram will terminate

Units Logging and Range_Logging need not be implemented, or available, or in SPARK. It is sufficient that the specifi-
cation of Logging and Range_Logging are in SPARK for this checking. Here, the postcondition of Range_Logging.
Append_To_Log is strictly stronger than the postcondition of Logging.Append_To_Log, as it also specifies the new
expected value of the minimum and maximum values. The preconditions of both procedures are exactly the same, which
is the most common case, but in other cases it might be useful to be more permissive in the overriding operation’s pre-
condition. For example, Range_Logging.Append_To_Log could allocate dynamically additional memory for storing
an unbounded number of events, instead of being limited to Max_Count events like Logging.Append_To_Log, in
which case its precondition would be simply True (the default precondition).

A derived type may inherit both from a parent type and from one or more interfaces, which only provide abstract
operations and no components. GNATprove checks Liskov Substitution Principle on every overriding operation, both
when the overridden operation is inherited from the parent type and when it is inherited from an interface.

GNATprove separately checks that a subprogram implements its class-wide contract, like for a specific contract.

5.8.2 Mixing Class-Wide and Specific Subprogram Contracts
Supported in Ada 2012

It is possible to specify both a specific contract and a class-wide contract on a subprogram, in order to use a more precise
contract (the specific one) for non-dispatching calls and a contract compatible with the Liskov Substitution Principle
(the class-wide contract) for dispatching calls. In that case, GNATprove checks that:

• The specific precondition is weaker (more permissive) than the class-wide precondition.
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• The specific postcondition is stronger (more restrictive) than the class-wide postcondition.

For example, Logging.Append_To_Log could set a boolean flag Special_Value_Logged when some
Special_Value is appended to the log, and express this property in its specific postcondition so that it is available for
analyzing non-dispatching calls to the procedure:

procedure Append_To_Log (Log : in out Log_Type; Incr : in Integer) with
Pre'Class => Log.Log_Size < Max_Count,
Post'Class => Log.Log_Size = Log.Log_Size'Old + 1,
Post => Log.Log_Size = Log.Log_Size'Old + 1 and

(if Incr = Special_Value then Special_Value_Logged = True);

This additional postcondition would play no role in dispatching calls, thus it is not involved in checking the Liskov
Substitution Principle. Note that the absence of specific precondition on procedure Append_To_Log does not mean
that the default precondition of True is used: as a class-wide precondition is specified on procedure Append_To_Log,
it is also used as specific precondition. Similarly, if a procedure has a class-wide contract and a specific precondition,
but no specific postcondition, then the class-wide postcondition is also used as specific postcondition.

When both a specific contract and a class-wide contract are specified on a subprogram, GNATprove only checks that
the subprogram implements its specific (more precise) contract.

5.8.3 Dispatching Calls and Controlling Operands
Supported in Ada 2012

In a dispatching call, the controlling operand is the parameter of class-wide type whose dynamic type determinates the
actual subprogram called. The dynamic type of this controlling operand may be any type derived from the specific type
corresponding to the class-wide type of the parameter (the specific type is T when the class-wide type is T'Class).
Thus, in general it is not possible to know in advance which subprograms may be called in a dispatching call, when
separately analyzing a unit.

In SPARK, there is no need to know all possible subprograms called in order to analyze a dispatching call, which
makes it possible for GNATprove to perform this analysis without knowledge of the whole program. As SPARK
enforces Liskov Substitution Principle, the class-wide contract of an overriding operation is always less restrictive than
the class-wide contract of the corresponding overridden operation. Thus, GNATprove uses the class-wide contract of
the operation for the specific type of controlling operand to analyze a dispatching call.

For example, suppose a global variable The_Log of class-wide type defines the log that should be used in the program:

The_Log : Logging.Log_Type'Class := ...

The call to Append_To_Log in procedure Add_To_Total may dynamically call either Logging.Append_To_Log or
Range_Logging.Append_To_Log:

procedure Add_To_Total (Incr : in Integer) is
begin

Total := Total + Incr;
The_Log.Append_To_Log (Incr);

end Add_To_Total;

Because GNATprove separately checks Liskov Substitution Principle for procedure Append_To_Log, it can use the
class-wide contract of Logging.Append_To_Log for analyzing procedure Add_To_Total.
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5.8.4 Dynamic Types and Invisible Components
Specific to SPARK

The Data Initialization Policy in SPARK applies specially to objects of tagged type. In general, the dynamic type of
an object of tagged type may be different from its static type, hence the object may have invisible components, that are
only revealed when the object is converted to a class-wide type.

For objects of tagged type, modes on parameters and data dependency contracts have a different meaning depending
on the object’s static type:

• For objects of a specific (not class-wide) tagged type, the constraints described in Data Initialization Policy apply
to the visible components of the object only.

• For objects of a class-wide type, the constraints described in Data Initialization Policy apply to all components
of the object, including invisible ones.

GNATprove checks during flow analysis that no uninitialized data is read in the program, and that the specified data
dependencies and flow dependencies are respected in the implementation, based on the semantics above for objects
of tagged type. For example, it detects no issues during flow analysis on procedure Use_Logging which initializes
parameter Log and then updates it:

1 with Logging; use Logging;
2

3 procedure Use_Logging (Log : out Log_Type) with
4 SPARK_Mode
5 is
6 begin
7 Log.Init_Log;
8 Log.Append_To_Log (1);
9 end Use_Logging;

If parameter Log is of dynamic type Logging.Log_Type, then the call to Init_Log initializes all components
of Log as expected, and the call to Append_To_Log can safely read those. If parameter Log is of dynamic type
Range_Logging.Log_Type, then the call to Init_Log only initializes those components of Log that come from the
parent type Logging.Log_Type, but since the call to Append_To_Log only read those, then there is no read of unini-
tialized data. This is in contrast with what occurs in procedure Use_Logging_Classwide:

1 with Logging; use Logging;
2

3 procedure Use_Logging_Classwide (Log : out Log_Type'Class) with
4 SPARK_Mode
5 is
6 begin
7 Log_Type (Log).Init_Log;
8 Log.Append_To_Log (2);
9 end Use_Logging_Classwide;

on which GNATprove issues a check message during flow analysis:

use_logging_classwide.adb:8:04: high: extension of "Log" is not initialized
8 | Log.Append_To_Log (2);

Indeed, the call to Init_Log (a non-dispatching call to Logging.Init_Log due to the conversion on its parame-
ter) only initializes those components of Log that come from the parent type Logging.Log_Type, but the call to
Append_To_Log may read other components from Range_Logging.Log_Type which may not be initialized.
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A consequence of these rules for data initialization policy is that a parameter of a specific tagged type cannot be
converted to a class-wide type, for example for a dispatching call. A special aspect Extensions_Visible is defined
in SPARK to allow this case. When Extensions_Visible is specified on a subprogram, the data initialization policy
for the subprogram parameters of a specific tagged type requires that the constraints described in Data Initialization
Policy apply to all components of the object, as if the parameter was of a class-wide type. This allows converting this
object to a class-wide type.

5.9 Pointer Support and Dynamic Memory Management
Access types are supported in SPARK but with major restrictions. Here is an overview of the kind of access types
supported in SPARK, their restrictions, and what they can be used for.

• Named pool-specific access-to-variable types can only designate data allocated on the heap (this is an Ada rule).
SPARK enforces a Memory Ownership Policy to retain absence of aliasing, see Access to Objects and Ownership.
Values of such an access type can be deallocated safely. GNATprove generates verification conditions to ensure
that no memory can be leaked.

type PS_Int_Acc is access Integer;
X1 : PS_Int_Acc := new Integer'(15);

• Named access-to-constant types (using the keyword constant) can be used to designate data regardless of where
it is allocated (the stack, the heap. . . ), but they cannot be deallocated. Objects of this type are not subject to any
ownership checking but the value they designate should be constant all the way down (ie. if such a value has a
subcomponent of an access-to-variable type, the value designated by this subcomponent should be constant too).

type Cst_Int_Acc is access constant Integer;
C : aliased constant Integer := 15;
X2 : Cst_Int_Acc := C'Access;

• Named general access-to-variable types (using the keyword all) can designate data regardless of where it is
allocated. Like access-to-constant types, they cannot be deallocated, so GNATprove will flag memory leaks as
soon as a value of such a type is allocated on the heap. They are subject to the Memory Ownership Policy of
SPARK.

type Gen_Int_Acc is access all Integer;
V : aliased Integer := 15;
X3 : Gen_Int_Acc := V'Access;

• Anonymous access-to-object types can only be used as the type of stand-alone objects for Observing and Bor-
rowing and as the return type of Traversal Functions. In particular they cannot be stored inside composite types.
They are used to grant temporary access to parts of other data-structures (recursive data-structures, composite
types, formal containers. . . ).

type List;
type List_Acc is access List;
type List is record
Value : aliased Integer;
Next : List_Acc;

end record;

L : List_Acc := new List'(14, new List'(15, new List'(16, null)));
B : access Integer := L.Next.Value'Access;

• Access-to-subprogram types can designate functions and procedures. Named access-to-subprogram types can
be annotated with a contract, see Contracts for Subprogram Pointers, but the designated subprograms cannot
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currently have global inputs or outputs.

type Func_Acc is not null access function (X : Natural) return Natural;
function Id (X : Natural) return Natural is (X);
F : Func_Acc := Id'Access;

5.9.1 Access to Objects and Ownership
In SPARK, values of an access-to-variable type are subject to a Memory Ownership Policy. The idea is that an object
designated by a pointer always has a single owner, which retains the right to either modify it, or (exclusive or) share
it with others in a read-only way. Said otherwise, we always have either several copies of the pointer that allow only
reading, or only a single copy of the pointer that allows modification.

The main idea used to enforce single ownership for pointers is the move semantics of assignments. When a pointer
is copied through an assignment statement, the ownership of the pointer is transferred to the left hand side of the
assignment. As a result, the right hand side loses the ownership of the object, and therefore loses the right to access
it, both for writing and reading. In the example below, the assignment from X to Y causes X to lose ownership on the
value it references:

1 procedure Test is
2 type Int_Ptr is access Integer;
3 X : Int_Ptr := new Integer'(10);
4 Y : Int_Ptr; -- Y is null by default
5 begin
6 Y := X; -- ownership of X is transferred to Y
7 pragma Assert (Y.all = 10); -- Y can be accessed
8 Y.all := 11; -- both for reading and writing
9 pragma Assert (X.all = 11); -- but X cannot, or we would have an alias

10 end Test;

As a result, the last assertion, which reads the value of X, is illegal in SPARK, leading to an error message from
GNATprove:

1

2 test.adb:9:21: error: dereference from "X" is not readable
3 9 | pragma Assert (X.all = 11); -- but X cannot, or we would have an alias
4 | ~~^~~
5 object was moved at line 6 [E0010]
6 6 | Y := X; -- ownership of X is transferred to Y
7 | ^ here
8 launch "gnatprove --explain=E0010" for more information
9 gnatprove: error during flow analysis and proof

In this example, we can see the point of these ownership rules. To correctly reason about the semantics of a program,
SPARK needs to know, when a change is made, what are the objects that are potentially impacted. Because it assumes
that there can be no aliasing (at least no aliasing of mutable data, see Absence of Interferences), the tool can easily de-
termine what are the parts of the environment that are updated by a statement, be it a simple assignment, or for example
a procedure call. If we were to break this assumption, we would need to either assume the worst (that all references
can be aliases of each other) or require the user to explicitly annotate subprograms to describe which references can be
aliased and which cannot. In our example, SPARK can deduce that an assignment to Y cannot impact X. This is only
correct because of ownership rules that prevent us from accessing the value of X after the update of Y.

Note that a variable which has been moved is not necessarily lost for the rest of the program. Indeed, it is possible to
assign it again, restoring ownership. For example, here is a piece of code that swaps the pointers X and Y:
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1 procedure Test is
2 type Int_Ptr is access Integer;
3 X : Int_Ptr := new Integer'(10);
4 Y : Int_Ptr; -- Y is null by default
5 Tmp : Int_Ptr := X; -- ownership of X is moved to Tmp
6 -- X cannot be accessed.
7 begin
8 X := Y; -- ownership of Y is moved to X
9 -- Y cannot be accessed

10 -- X has full ownership.
11 Y := Tmp; -- ownership of Tmp is moved to Y
12 -- Tmp cannot be accessed
13 -- Y has fullownership.
14 end Test;

This code is accepted by GNATprove. Intuitively, we can see that writing at top-level into X after it has been moved is
OK, since it will not modify the actual owner of the moved value (here Tmp). However, writing in X.all is forbidden,
as it would affect Tmp:

1 procedure Test is
2 type Int_Ptr is access Integer;
3 X : Int_Ptr := new Integer'(10);
4 Tmp : Int_Ptr := X; -- ownership of X is moved to Tmp
5 -- X cannot be accessed.
6 begin
7 X.all := 0;
8 end Test;

The above variant is rejected by GNATprove:

1

2 test.adb:7:06: error: dereference from "X" is not writable
3 7 | X.all := 0;
4 | ~~^~~
5 object was moved at line 4 [E0010]
6 4 | Tmp : Int_Ptr := X; -- ownership of X is moved to Tmp
7 | ^ here
8 launch "gnatprove --explain=E0010" for more information
9 gnatprove: error during flow analysis and proof

5.9.2 Attribute Access
Let’s consider objects Variable and Const, respectively a variable and constant of type T, marked as aliased so that
it is possible to use attribute Access on them:

Variable : aliased T;
Const : aliased constant T := ...;

Depending on the type of the attribute reference expression, taking an access value to an object is interpreted differently
in SPARK.

• attribute 'Access of an anonymous access type:
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Variable_Handle : access T := Variable'Access;
Const_Handle : access constant T := Const'Access;

The 'Access attribute of an anonymous access-to-variable type, like for Variable_Handle above, allows Bor-
rowing a part of an object temporarily, like Variable here. The 'Access attribute of an anonymous access-
to-constant type, like for Const_Handle above, allows Observing a part of an object temporarily, like Const
here.

• attribute 'Access of a general access-to-variable type:

type General_Ptr is access all T;
General_Handle : General_Ptr := Variable'Access;

The 'Access attribute of a general access-to-variable type, like for General_Handle above, allows moving
the ownership of a local object, like Variable here, into a pointer. Ownership cannot be reclaimed back by
Variable which should not be read or written directly afterwards. This is only allowed in SPARK if Variable
is a local object, i.e. it is declared inside a subprogram.

• attribute 'Access of a named access-to-constant type:

type Const_Ptr is access constant T;
Const_Handle : Const_Ptr := Const'Access;

The 'Access attribute of a named access-to-constant type, like for Const_Handle above, allows sharing a read-
only access to a constant part of an object, like Const here.

5.9.3 Deallocation
At the end of its lifetime, unless the memory it points to is transferred to another owner, an owning
pointer should be deallocated. This is typically achieved by instantiating the standard generic procedure Ada.
Unchecked_Deallocation with the type of the underlying Object and the type Name of the access type:

1 with Ada.Unchecked_Deallocation;
2

3 procedure Test is
4 type Int_Ptr is access Integer;
5

6 procedure Free is new Ada.Unchecked_Deallocation (Object => Integer, Name => Int_Ptr);
7

8 X : Int_Ptr := new Integer'(10);
9 Y : Int_Ptr;

10 begin
11 Y := X;
12 Free (Y);
13 end Test;

GNATprove guarantees the absence of memory leak in the above code:

1 test.adb:8:04: info: absence of resource or memory leak at end of scope proved
2 test.adb:9:04: info: initialization of "Y" proved
3 test.adb:9:04: info: absence of resource or memory leak at end of scope proved
4 test.adb:11:06: info: absence of resource or memory leak proved

Notice that there are three kinds of checks for memory leaks:
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1. On each assignment, GNATprove checks that the left-hand side is not leaking memory. That’s the case on the
assignment to Y above on line 11.

2. On each declaration, GNATprove checks that the object is not leaking memory at the end of its lifetime. That’s
the case for the declarations of X and Y above on lines 8 and 9.

3. On each call to an instance of Ada.Unchecked_Deallocation, GNATprove checks that the underlying memory
is not itself owning memory. Above, the object pointed to is an integer, so this holds trivially.

Here is an example of code with all three cases of memory leaks:

1 with Ada.Unchecked_Deallocation;
2

3 procedure Test is
4 type Int_Ptr is access Integer;
5 type Int_Ptr_Ptr is access Int_Ptr;
6

7 procedure Free is new Ada.Unchecked_Deallocation (Object => Int_Ptr, Name => Int_Ptr_
↪→Ptr);

8

9 X : Int_Ptr := new Integer'(10); -- memory leak at end of scope
10 Y : Int_Ptr := new Integer'(11);
11 Z : Int_Ptr_Ptr := new Int_Ptr'(Y);
12 begin
13 Z.all := X; -- memory leak on assignment
14 X := new Integer'(12);
15 Free (Z); -- memory leak on deallocation
16 end Test;

GNATprove detects all three memory leaks in the above code:

1

2 test.adb:9:04: medium: resource or memory leak might occur at end of scope
3 9 | X : Int_Ptr := new Integer'(10); -- memory leak at end of scope
4 | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5

6 test.adb:13:10: medium: resource or memory leak might occur
7 13 | Z.all := X; -- memory leak on assignment
8 | ~~~~~~^~~~
9

10 test.adb:15:04: medium: resource or memory leak might occur
11 15 | Free (Z); -- memory leak on deallocation
12 | ^~~~~~~

Finally, in a case like above where a data structure manipulated through pointers also contains pointers, it is customary
to define deallocation procedures to take care of deallocating the complete subtree of allocated memory. This is done
in the following code by defining a higher-level Free procedure applying to arguments of type Int_Ptr_Ptr, which
is based on instances of Ada.Unchecked_Deallocation for deallocating individual memory chunks:

1 with Ada.Unchecked_Deallocation;
2

3 procedure Test is
4 type Int_Ptr is access Integer;
5 type Int_Ptr_Ptr is access Int_Ptr;
6

(continues on next page)
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7 procedure Free is new Ada.Unchecked_Deallocation (Object => Integer, Name => Int_Ptr);
8

9 procedure Free (X : in out Int_Ptr_Ptr) with
10 Depends => (X => null,
11 null => X),
12 Post => X = null
13 is
14 procedure Internal_Free is new Ada.Unchecked_Deallocation
15 (Object => Int_Ptr, Name => Int_Ptr_Ptr);
16 begin
17 if X /= null and then X.all /= null then
18 Free (X.all);
19 end if;
20 Internal_Free (X);
21 end Free;
22

23 Y : Int_Ptr := new Integer'(11);
24 Z : Int_Ptr_Ptr := new Int_Ptr'(Y);
25 begin
26 Free (Z);
27 end Test;

Note the contract of the higher-level Free procedure, with a postcondition stating that X is null on exit, and correct
dependences similar to what is defined for the standard Ada.Unchecked_Deallocation. GNATprove guarantees that
the above code is correctly deallocating memory:

1 test.adb:10:06: info: flow dependencies proved
2 test.adb:12:14: info: postcondition proved
3 test.adb:17:31: info: pointer dereference check proved
4 test.adb:18:18: info: pointer dereference check proved
5 test.adb:20:07: info: absence of resource or memory leak proved
6 test.adb:23:04: info: absence of resource or memory leak at end of scope proved
7 test.adb:24:04: info: absence of resource or memory leak at end of scope proved

5.9.4 Observing
The ownership policy of SPARK allows sharing a single reference between several readers. This mechanism is called
observing. When a variable is observed, both the observed object and the observer retain the right to read the object, but
none can modify it. When the observer disappears, the observed object regains the permissions it had before (read-write
or read-only).

To declare an observer, it is necessary to use an anonymous access-to-constant type. It is what allows the tool to tell the
difference between moving and observing a value. Here is an example. We have a list L, defined as a recursive pointer-
based data structure in the usual way. We then observe its tail by introducing a local observer N using an anonymous
access to constant type. We then do it again to observe the tail of N:

type List;
type List_Acc is access List;
type List is record

Value : Element;
Next : List_Acc;

end record;

(continues on next page)
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L : List := ...;

declare
N : access constant List := L.Next; -- observe part of L

begin
declare

M : access constant List := N.Next; -- observe again part of N
begin
pragma Assert (M.Value = 3); -- M can be read
pragma Assert (N.Value = 2); -- but we can still read N
pragma Assert (L.Value = 1); -- and even L

end;
end;
L.Next := null; -- all observers are out of scope, we can modify L

We can see that the three variables retain the right to read their content. But it is OK as none of them is allowed to
update it. When no more observers exist, it is again possible to modify L.

It is not possible to update a data structure through an observer, but it does not mean that the observer itself is necessarily
a constant. It is possible to update it so that it designates another part of a data structure. This is especially useful to
traverse recursive data structures using loops. As an example, here is a function which searches for the an element E in
a list L:

function Contains (L : access constant List; E : Element) return Boolean is
C : access constant List := L; -- C observes L

begin
while C /= null loop
if C.Value = E then
return True;

end if;
C := C.Next; -- C now designates the tail of the list

end loop;
return False;

end Contains;

A local observer C is used to traverse the list L. At each iteration of the loop, C is shifted so that it designates one element
further in the list.

5.9.5 Borrowing
Moving is not the only way to transfer ownership. It is also possible to borrow the ownership of (a part of) an object
for a period of time. During this period, the part of the object which was borrowed can only be accessed through
the borrower. When the borrower disappears (goes out of scope), the borrowed object regains the ownership, and is
accessible again. It is what happens for example for mutable parameters of a subprogram when the subprogram is
called. The ownership of the actual parameter is transferred to the formal parameter for the duration of the call, and
should be returned when the subprogram terminates. In particular, this disallows procedures that move some of their
parameters away, as in the following example:

1 type Int_Ptr_Holder is record
2 Content : Int_Ptr;
3 end record;
4

5 procedure Move (X : in out Int_Ptr_Holder; Y : in out Int_Ptr_Holder) is
(continues on next page)
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6 begin
7 X := Y; -- ownership of Y.Content is moved to X.Content
8 end Move;

insufficient permission for "Y" when returning from "Move"
object was moved at line 7

Note that borrowing does not occur on subprogram calls for in out parameters of a named access type. Indeed, SPARK
RM has a special wording for these parameters, stating that they are not borrowed but moved on entry and on exit of
the subprogram. This allows us to move these parameters inside the call, so they can designate something else (or be
set to null), which otherwise would be forbidden, as borrowed top-level access objects cannot be moved (but parts of
such objects can be moved).

The ownership policy of SPARK also allows declaring local borrowers in a nested scope by using an anonymous
access-to-variable type (without the constant keyword used above for an observer):

declare
Y : access Integer := X; -- Y borrows the ownership of X

-- for the duration of the declare block
begin
pragma Assert (Y.all = 10); -- Y can be accessed
Y.all := 11; -- both for reading and writing

end;
pragma Assert (X.all = 11); -- The ownership of X is restored,

-- it can be accessed again

Just like local observers, local borrowers are especially useful to modify a recursive data structure through a loop. In
the example below, the procedure Replace_Element uses a loop to assign a new value E to the element at position N
in a list L.

procedure Replace_Element (L : access List; N : Positive; E : Element) is
X : access List := L; -- X borrows the ownership of L
P : Positive := N;

begin
while X /= null loop
if P = 1 then

X.Value := E; -- We use X to modify L arbitrarily deeply
return;

end if;
X := X.Next; -- X now designates the tail of the list
P := P - 1;

end loop;
end Replace_Element;

A local borrower X is used to traverse the list and modify it in place. The two assignments to X in the loop are different
in essence. The first one assigns a part of the structure designated by X. It is a modification of the borrowed list L.
The second one assigns X at top-level. It does not modify L, but changes X so that it designates another the part of L.
It is called a reborrow. In SPARK, reborrows are only allowed to borrow a part of the borrower. Said otherwise, a
borrower can only go deeper in the data structure, it is not allowed to jump to a distinct object or distinct part of the
same standalone object.

Borrowers essentially are statically known aliases of their borrowed objects. As a consequence, verifying programs
involving borrowers sometimes requires describing the relation between the borrowed object and the borrower. This
can be done by using an Annotation for Referring to a Value at the End of a Local Borrow.
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5.9.6 Traversal Functions
It is possible to write a function which computes and returns an observer or a borrower of an input data structure,
provided the traversed data structure is itself an access type. This is called a traversal function.

An observing traversal function takes an access type as its first parameter and returns an anonymous access-to-constant
object which should be a part of this first parameter. As an example, we can write a function which returns a value
stored in a list as an anonymous access-to-constant type. To be able to do this, we need to store an access to the value
instead of the value itself in the list:

type List;
type List_Acc is access List;
type Element_Acc is not null access Element;
type List is record

Value : Element_Acc;
Next : List_Acc;

end record;

function Constant_Access (L : access constant List; N : Positive) return access constant␣
↪→Element
is

C : access constant List := L;
P : Positive := N;

begin
while C /= null loop
if P = 1 then
return C.Value;

end if;
C := C.Next;
P := P - 1;

end loop;
return null;

end Constant_Access;

The function Constant_Access returns an access designating a value which is already contained in the list L. As
per the ownership policy of SPARK, if Constant_Access was returning a named access type, it would be rejected.
However, since it returns an anonymous access-to-constant type, the return statement is considered to create an observer
of L. Note that an observing traversal function should necessarily observe its first parameter.

declare
C : access constant Element := Constant_Access (L, 3);
-- C is an observer of L

begin
pragma Assert (C.all = L.Next.Next.Value.all);
-- It is OK to read both C and L, but L cannot be modified

end;
L := null; -- L can be modified again

It is also possible to return a mutable access inside a data structure using a borrowing traversal function. Just like
observing traversal functions, their borrowing counterparts take as a first parameter an access type, but they have as a
return type an anonymous access-to-variable type. The function Reference below is similar to Constant_Access
except that both its parameter and its return type are mutable:

function Reference (L : access List; N : Positive) return access Element
is

(continues on next page)
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C : access List := L;
P : Positive := N;

begin
while C /= null loop
if P = 1 then
return C.Value;

end if;
C := C.Next;
P := P - 1;

end loop;
return null;

end Reference;

A borrowing traversal function returns a borrower of its first parameter. The result of a call to Reference can be
used to modify its actual parameter arbitrarily deeply. Like for any borrowers, it is illegal to either read or modify the
parameter while the object storing the result of the call is still in scope.

Note that it is possible to use pledges to describe the relation between the result of a borrowing traversal function and
its parameter in a postcondition, see Annotation for Referring to a Value at the End of a Local Borrow.

5.9.7 Subprogram Pointers
Unlike access to objects, access to subprograms are not subject to the ownership policy of SPARK. Both anonymous
and named access-to-subprogram types are supported. As an example, the procedure Update_All below calls its
parameter Update_One on all the elements of its array parameter A:

procedure Update_All
(A : in out Nat_Array;
Update_One : not null access procedure (X : in out Natural))

is
begin
for E of A loop

Update_One (E);
end loop;

end Update_All;

It can be called on any procedure with the correct profile:

procedure Update_One (X : in out Natural);

procedure Test (A : in out Nat_Array) is
begin

Update_All (A, Update_One'Access);
end Test;

As GNATprove verifies subprograms modularly, no precondition checks are generated during the analysis of
Update_All. As a consequence, a check needs to be performed in Test to make sure that the parameter supplied
for Update_One does not have a precondition. For example, if we modify Update_One to have a precondition:

function In_Range (X : Natural) return Boolean;

procedure Update_One (X : in out Natural) with
Pre => In_Range (X);
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Then GNATprove will complain on the call to Update_All that the precondition of Update_Onemight not be satisfied:

medium: precondition of target might not be strong enough to imply precondition of␣
↪→source, cannot prove In_Range (X)

For postconditions, it is the opposite. No postconditions will be assumed when verifying Update_All, so it is perfectly
OK if Update_One has any postconditions. However, it will not be possible to use this postcondition to prove anything
on the effect of Update_All.

5.9.8 Contracts for Subprogram Pointers
Supported in Ada 2022

The upcoming standard of Ada allows adding contracts to access-to-subprogram types. As an example, here is a named
access type Update_Proc with a contract:

type Update_Proc is not null access procedure (X : in out Natural) with
Pre => In_Range (X),
Post => Relation (X'Old, X);

The Ada standard mandates that, when a subprogram designated by an access type with a contract is called, the con-
tract is verified. Thus, it is possible for GNATprove to use this contract on indirect calls. For example, we can use
Update_Proc as the type of the Update_One parameter of Update_All. As the call to Update_One now has a pre-
condition, we should ensure before a call to Update_All that In_Range holds for all elements of A. We can also prove
that Relation holds at every index of the array after the call:

procedure Update_All
(A : in out Nat_Array;
Update_One : Update_Proc)

with Pre => (for all E of A => In_Range (E)),
Post => (for all I in A'Range => Relation (A'Old (I), A (I)))

is
begin
for K in A'Range loop

Update_One (A (K));
pragma Loop_Invariant
(for all I in A'First .. K => Relation (A'Loop_Entry (I), A (I)));

end loop;
end Update_All;

As the contract of an access type is the only one which is known by GNATprove when checking indirect callers, SPARK
requires that this contract is a valid approximation of the contract of every subprogram designated by an access objects
of this type. More precisely, each time a value of a given access-to-subprogram type is created, GNATprove makes sur
that:

• the precondition of the access-to-subprogram type if any (or the default precondition of True otherwise) is strong
enough to imply the precondition of the designated subprogram, and

• the postcondition of the designated subprogram if any (or the default postcondition of True otherwise) is strong
enough to imply the postcondition of the subprogram type.

Consider the four procedures below:

procedure Update_One_1 (X : in out Natural) with
Pre => In_Range (X),
Post => Relation (X'Old, X);

(continues on next page)
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-- Update_One_1 has exactly the same contract as Update_Proc

procedure Update_One_2 (X : in out Natural) with
Post => Relation (X'Old, X) and Relation_2 (X'Old, X);

-- Update_Proc safely approximates Update_One_2:
-- * the precondition of Update_Proc is enough to ensure that Update_One_2 can␣
↪→execute safely
-- * the postcondition of Update_One_2 implies the postcondition of Update_Proc

procedure Update_One_3 (X : in out Natural) with
Pre => In_Range (X);

-- Does Relation hold after a call to Update_One_3?

procedure Update_One_4 (X : in out Natural) with
Pre => In_Range (X) and In_Range_2 (X),
Post => Relation (X'Old, X);

-- Is it safe to call Update_One_4 when we do not check In_Range_2?

The procedures Update_One_1 and Update_One_2 can be designated by objects of type Update_Proc, as their con-
tract can be safely approximated by the contract of Update_Proc. The procedures Update_One_3 and Update_One_4
on the other hand cannot. For example, if we try to use Update_One_3 as a parameter of Update_All, GNATprove
emits a check message stating that the postcondition of Update_Procmight not be valid after a call to Update_One_3:

procedure Test (A : in out Nat_Array) with
Pre => (for all E of A => In_Range (E))

is
begin

Update_All (A, Update_One_3'Access);
end Test;

medium: postcondition of source might not be strong enough to imply postcondition of␣
↪→target, cannot prove Relation (X'Old, X)

Theoretically, a similar notion of approximation should be used for Data Dependencies and Flow Dependencies con-
tracts. However, as these contracts are not currently allowed on access-to-subprogram types, SPARK simply disallows
taking the Access attribute on a subprogram which has global inputs or outputs.

Note

Annotations specifying whether or not a subprogram returns are not available currently on access-to-subprogram
types. As a result, all calls through dereferences are considered to possibly not terminate.

5.10 Concurrency and Ravenscar Profile
Concurrency in SPARK requires enabling the Ravenscar profile (see Guide for the use of the Ada Ravenscar Profile in
high integrity systems by Alan Burns, Brian Dobbing, and Tullio Vardanega). This profile defines a subset of the Ada
concurrency features suitable for hard real-time/embedded systems requiring stringent analysis, such as certification
and safety analyses. In particular, it is concerned with determinism, analyzability, and memory-boundedness.

In addition to the subset defined by the Ravenscar profile, concurrency in SPARK also requires that tasks do
not start executing before the program has been completely elaborated, which is expressed by setting pragma
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Partition_Elaboration_Policy to the value Sequential. Together with the requirement to apply the Raven-
scar profile, this means that a concurrent SPARK program should define the following configuration pragmas, either in
a configuration pragma file (see Setting the Default SPARK_Mode for an example of defining a configuration pragma
file in your project file) or at the start of files:

pragma Profile (Ravenscar);
pragma Partition_Elaboration_Policy (Sequential);

GNATprove also supports the Jorvik profile, as defined in Ada 2022 RM, D.13. To use this profile simply replace
Ravenscar with Jorvik in the pragma Profile in the above code. The extended profile is intended for hard real-
time/embedded systems that may require schedulability analysis but not the most stringent analyses required for other
domains.

In particular, to increase expressive power the Jorvik profile relaxes certain restrictions defined by the standard Raven-
scar profile. Notably, these relaxed constraints allow multiple protected entries per protected object, multiple queued
callers per entry, and more expressive protected entry barrier expressions. The profile also allows the use of relative de-
lay statements in addition to the absolute delay statements allowed by Ravenscar. The two forms of delay statement are
processed by GNATprove based on the type of their expression, as follows (absolute and relative delays, respectively):

• If the expression is of the type Ada.Real_Time.Time then for the purposes of determining global inputs and
outputs the absolute delay statement is considered just like the relative delay statement, i.e., to reference the state
abstraction Ada.Real_Time.Clock_Time as an input (see SPARK RM 9(17) for details).

• If the expression is of the type Ada.Calendar.Time then it is considered to reference the state abstraction
Ada.Calendar.Clock_Time, which is defined similarly to Ada.Real_Time.Clock_Time but represents a different
time base.

5.10.1 Tasks and Data Races
Requires Ravenscar/Jorvik profile

Concurrent Ada programs are made of several tasks, that is, separate threads of control which share the same address
space. In Ravenscar, only library-level, nonterminating tasks are allowed.

Task Types and Task Objects

Like ordinary objects, tasks have a type in Ada and can be stored in composite objects such as arrays and records. The
definition of a task type looks like the definition of a subprogram. It is made of two parts: a declaration, usually empty
as Ravenscar does not allow tasks to have entries (for task rendezvous), and a body containing the list of statements
to be executed by objects of the task type. The body of nonterminating tasks (the only ones allowed in Ravenscar)
usually takes the form of an infinite loop. For task objects of a given type to be parameterized, task types can have
discriminants. As an example, a task type Account_Management can be declared as follows:

package Account is
Num_Accounts : Natural := 0;

task type Account_Management;
end Account;

package body Account is

task body Account_Management is
begin
loop

Get_Next_Account_Created;
Num_Accounts := Num_Accounts + 1;

(continues on next page)
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end loop;
end Account_Management;

end Account;

Then, tasks of type Account_Management can be created at library level, either as complete objects or as components
of other objects:

package Bank is
Special_Accounts : Account_Management;

type Account_Type is (Regular, Premium, Selective);
type Account_Array is array (Account_Type) of Account_Management;
All_Accounts : Account_Array;

end Bank;

If only one object of a given task type is needed, then the task object can be declared directly giving a declaration and
a body. An anonymous task type is then defined implicitly for the declared type object. For example, if we only need
one task Account_Management then we can write:

package Account is
Num_Accounts : Natural := 0;

task Account_Management;
end Account;

package body Account is

task body Account_Management is
begin
loop

Get_Next_Account_Created;
Num_Accounts := Num_Accounts + 1;

end loop;
end Account_Management;

end Account;

Preventing Data Races

In Ravenscar, communication between tasks can only be done through shared objects (tasks cannot communicate
through rendezvous as task entries are not allowed in Ravenscar). In SPARK, the language is further restricted to
avoid the possibility of erroneous concurrent access to shared data (a.k.a. data races). More precisely, tasks can only
share synchronized objects, that is, objects that are protected against concurrent accesses. These include atomic ob-
jects, protected objects (see Protected Objects and Deadlocks), and suspension objects (see Suspension Objects). As an
example, our previous definition of the Account_Management task type was not in SPARK. Indeed, data races could
occur when accessing the global variable Num_Accounts, as detected by GNATprove:

account1.adb:15:39: medium: overflow check might fail, cannot prove upper bound for Num_
↪→Accounts + 1

15 | Num_Accounts := Num_Accounts + 1;
(continues on next page)
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| ~~~~~~~~~~~~~^~~
reason for check: result of addition must fit in a 32-bits machine integer
possible fix: loop at line 13 should mention Num_Accounts in a loop invariant
13 | loop

| ^ here

bank1.ads:5:04: high: possible data race when accessing variable "account1.num_accounts"
5 | Special_Accounts : Account_Management;
| ^~~~~~~~~~~~~~~~

task "bank1.special_accounts" accesses "account1.num_accounts"
task "bank1.all_accounts" accesses "account1.num_accounts"

To avoid this problem, shared variable Num_Account can be declared atomic:

package Account is
Num_Accounts : Natural := 0 with Atomic;

task type Account_Management;
end Account;

With this modification, GNATprove now alerts us that the increment of Num_Account is not legal, as a volatile variable
(which is the case of atomic variables) cannot be read as a subexpression of a larger expression in SPARK:

account2.adb:15:26: error: volatile object in interfering context is not allowed in␣
↪→SPARK (SPARK RM 7.1.3(9)) [E0004]

15 | Num_Accounts := Num_Accounts + 1;
| ^~~~~~~~~~~~

launch "gnatprove --explain=E0004" for more information
violation of aspect SPARK_Mode at line 2
2 | SPARK_Mode
| ^ here

gnatprove: error during flow analysis and proof

This can be fixed by copying the current value of Num_Account in a temporary before the increment:

declare
Tmp : constant Natural := Num_Accounts;

begin
Num_Accounts := Tmp + 1;

end;

But note that even with that fix, there is no guarantee that Num_Accounts is incremented by one each time an account is
created. Indeed, two tasks may read the same value of Num_Accounts and store this value in Tmp before both updating
it to Tmp + 1. In such a case, two accounts have been created but Num_Accounts has been increased by 1 only. There
is no data race in this program, which is confirmed by running GNATprove with no error, but there is by design a
race condition on shared data that causes the program to malfunction. The correct way to fix this in SPARK is to use
Protected Types and Protected Objects.

As they cannot cause data races, constants and variables that are constant after elaboration (see Aspect Con-
stant_After_Elaboration) are considered as synchronized and can be accessed by multiple tasks. For example, we
can declare a global constant Max_Accounts and use it inside Account_Management without risking data races:
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package Account is
Num_Accounts : Natural := 0 with Atomic;
Max_Accounts : constant Natural := 100;

task type Account_Management;
end Account;

package body Account is

task body Account_Management is
begin
loop

Get_Next_Account_Created;
declare

Tmp : constant Natural := Num_Accounts;
begin
if Tmp < Max_Accounts then

Num_Accounts := Tmp + 1;
end if;

end;
end loop;

end Account_Management;

end Account;

It is possible for a task to access an unsynchronized global variable only if this variable is declared in the same package
as the task and if there is a single task accessing this variable. To allow this property to be statically verified, only
tasks of an anonymous task type are allowed to access unsynchronized variables and the variables accessed should be
declared to belong to the task using aspect Part_Of. Global variables declared to belong to a task are handled just like
local variables of the task, that is, they can only be referenced from inside the task body. As an example, we can state
that Num_Accounts is only accessed by the task object Account_Management in the following way:

package Account is
task Account_Management;

Num_Accounts : Natural := 0 with Part_Of => Account_Management;
end Account;

5.10.2 Task Contracts
Specific to SPARK

Dependency contracts can be specified on tasks. As tasks should not terminate in SPARK, such contracts specify the
dependencies between outputs and inputs of the task updated while the task runs:

• The data dependencies introduced by aspect Global specify the global data read and written by the task.

• The flow dependencies introduced by aspect Depends specify how task outputs depend on task inputs.

This is a difference between tasks and subprograms, for which such contracts describe the dependencies between outputs
and inputs when the subprogram returns.
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Data Dependencies on Tasks

Data dependencies on tasks follow the same syntax as the ones on subprograms (see Data Dependencies). For example,
data dependencies can be specified for task (type or object) Account_Management as follows:

package Account is
Num_Accounts : Natural := 0 with Atomic;

task type Account_Management with
Global => (In_Out => Num_Accounts);

end Account;

Flow Dependencies on Tasks

Flow dependencies on tasks follow the same syntax as the ones on subprograms (see Flow Dependencies). For example,
flow dependencies can be specified for task (type or object) Account_Management as follows:

package Account is
Num_Accounts : Natural := 0 with Atomic;

task type Account_Management with
Depends => (Account_Management => Account_Management,

Num_Accounts => Num_Accounts);
end Account;

Notice that the task unit itself is both an input and an output of the task:

• It is an input because task discriminants (if any) and task attributes may be read in the task body.

• It is an output so that the task unit may be passed as in out parameter in a subprogram call. But note that the task
object cannot be modified once created.

The dependency of the task on itself can be left implicit as well, as follows:

package Account is
Num_Accounts : Natural := 0 with Atomic;

task type Account_Management with
Depends => (Num_Accounts => Num_Accounts);

end Account;

5.10.3 Protected Objects and Deadlocks
Requires Ravenscar/Jorvik profile

In Ada, protected objects are used to encapsulate shared data and protect it against data races (low-level unprotected
concurrent access to data) and race conditions (lack of proper synchronization between reads and writes of shared data).
They coordinate access to the protected data guaranteeing that read-write accesses are always exclusive while allowing
concurrent read-only accesses. In Ravenscar, only library-level protected objects are allowed.

Protected Types and Protected Objects

Definitions of protected types resemble package definitions. They are made of two parts, a declaration (divided into a
public part and a private part) and a body. The public part of a protected type’s declaration contains the declarations
of the subprograms that can be used to access the data declared in its private part. The body of these subprograms
are located in the protected type’s body. In Ravenscar, protected objects should be declared at library level, either
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as complete objects or as components of other objects. As an example, here is how a protected type can be used to
coordinate concurrent accesses to the global variable Num_Accounts:

package Account is

protected type Protected_Natural is
procedure Incr;
function Get return Natural;

private
The_Data : Natural := 0;

end Protected_Natural;

Num_Accounts : Protected_Natural;
Max_Accounts : constant Natural := 100;

task type Account_Management;
end Account;

package body Account is

protected body Protected_Natural is
procedure Incr is
begin

The_Data := The_Data + 1;
end Incr;

function Get return Natural is (The_Data);
end Protected_Natural;

task body Account_Management is
begin
loop

Get_Next_Account_Created;
if Num_Accounts.Get < Max_Accounts then

Num_Accounts.Incr;
end if;

end loop;
end Account_Management;

end Account;

Contrary to the previous version using an atomic global variable (see Preventing Data Races), this version prevents also
any race condition when incrementing the value of Num_Accounts. But note that there is still a possible race condition
between the time the value of Num_Accounts is read and checked to be less than Max_Accounts and the time it is
incremented. So this version does not guarantee that Num_Accounts stays below Max_Accounts. The correct way to
fix this in SPARK is to use protected entries (see Protected Subprograms).

Note that, in SPARK, to avoid initialization issues on protected objects, both private variables and variables belonging
to a protected object must be initialized at declaration (either explicitly or through default initialization).

Just like for tasks, it is possible to directly declare a protected object if it is the only one of its type. In this case, an
anonymous protected type is implicitly declared for it. For example, if Num_Account is the only Protected_Natural
we need, we can directly declare:
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package Account is

protected Num_Accounts is
procedure Incr;
function Get return Natural;

private
The_Data : Natural := 0;

end Num_Accounts;

end Account;

package body Account is

protected body Num_Accounts is
procedure Incr is
begin

The_Data := The_Data + 1;
end Incr;

function Get return Natural is (The_Data);
end Num_Accounts;

end Account;

Protected Subprograms

The access mode granted by protected subprograms depends on their kind:

• Protected procedures provide exclusive read-write access to the private data of a protected object.

• Protected functions offer concurrent read-only access to the private data of a protected object.

• Protected entries are conceptually procedures with a barrier. When an entry is called, the caller waits until the
condition of the barrier is true to be able to access the protected object.

So that scheduling is deterministic, Ravenscar requires that at most one entry is specified in a protected unit and at most
one task is waiting on a given entry at every time. To ensure this, GNATprove checks that no two tasks can call the
same protected object’s entry. As an example, we could replace the procedure Incr of Protected_Natural to wait
until The_Data is smaller than Max_Accounts before incrementing it. As only simple Boolean variables are allowed
as entry barriers in Ravenscar, we add such a Boolean flag Not_Full as a component of the protected object:

package Account is

protected type Protected_Natural is
entry Incr;
function Get return Natural;

private
The_Data : Natural := 0;
Not_Full : Boolean := True;

end Protected_Natural;

Num_Accounts : Protected_Natural;
Max_Accounts : constant Natural := 100;

task type Account_Management;
(continues on next page)
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end Account;

package body Account is

protected body Protected_Natural is
entry Incr when Not_Full is
begin

The_Data := The_Data + 1;
if The_Data = Max_Accounts then

Not_Full := False;
end if;

end Incr;

function Get return Natural is (The_Data);
end Protected_Natural;

task body Account_Management is
begin
loop

Get_Next_Account_Created;
Num_Accounts.Incr;

end loop;
end Account_Management;

end Account;

This version fixes the remaining race condition on this example, thus ensuring that every new account created bumps
the value of Num_Accounts by 1, and that Num_Accounts stays below Max_Accounts.

To avoid data races, protected subprograms should not access unsynchronized objects (see Tasks and Data Races).
Like for tasks, it is still possible for subprograms of a protected object of an anonymous protected type to access an
unsynchronized object declared in the same package as long as it is not accessed by any task or subprogram from other
protected objects. In this case, the unsynchronized object should have a Part_Of aspect referring to the protected
object. It is then handled as if it was a private variable of the protected object. This is typically done so that the address
in memory of the variable can be specified, using either aspect Address or a corresponding representation clause.
Here is how this could be done with Num_Account:

package Account is
protected Protected_Num_Accounts is
procedure Incr;
function Get return Natural;

end Protected_Num_Accounts;

Num_Accounts : Natural := 0 with
Part_Of => Protected_Num_Accounts,
Address => ...

end Account;

As it can prevent access to a protected object for an unbounded amount of time, a task should not be blocked or delayed
while inside a protected subprogram. Actions that can block a task are said to be potentially blocking. For example,
calling a protected entry, explicitly waiting using a delay_until statement (note that delay statements are forbidden
in Ravenscar), or suspending on a suspension object (see Suspension Objects) are potentially blocking actions. In Ada,
it is an error to do a potentially blocking action while inside a protected subprogram. Note that a call to a function or
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a procedure on another protected object is not considered to be potentially blocking. Indeed, such a call cannot block
a task in the absence of deadlocks (which is enforced in Ravenscar using the priority ceiling protocol, see Avoiding
Deadlocks and Priority Ceiling Protocol).

GNATprove verifies that no potentially blocking action is performed from inside a protected subprogram in a modular
way on a per subprogram basis. Thus, if a subprogram can perform a potentially blocking operation, every call to this
subprogram from inside a protected subprogram will be flagged as a potential error. As an example, the procedure
Incr_Num_Accounts is potentially blocking and thus should not be called, directly or indirectly, from a protected
subprogram:

package Account is

protected type Protected_Natural is
entry Incr;

private
The_Data : Natural := 0;

end Protected_Natural;

Num_Accounts : Protected_Natural;

procedure Incr_Num_Accounts;

end Account;

package body Account is

procedure Incr_Num_Accounts is
begin

Num_Accounts.Incr;
end Incr_Num_Accounts;

end Account;

Avoiding Deadlocks and Priority Ceiling Protocol

To ensure exclusivity of read-write accesses, when a procedure or an entry of a protected object is called, the protected
object is locked so that no other task can access it, be it in a read-write or a read-only mode. In the same way, when
a protected function is called, no other task can access the protected object in read-write mode. A deadlock happens
when two or more tasks are unable to run because each of them is trying to access a protected object that is currently
locked by another task.

To ensure absence of deadlocks on a single core, Ravenscar requires the use of the Priority Ceiling Protocol. This
protocol ensures that no task can be blocked trying to access a protected object locked by another task. It relies on
task’s priorities. The priority of a task is a number encoding its urgency. On a single core, scheduling ensures that the
current running task can only be preempted by another task if it has a higher priority. Using this property, the Priority
Ceiling Protocol works by increasing the priorities of tasks accessing a protected object to a priority that is at least as
high as the priorities of other tasks accessing this object. This ensures that, while holding a lock, the currently running
task cannot be preempted by a task which could later be blocked by this lock.

To enforce this protocol, every task is associated with a base priority, either given at declaration using the Priority
aspect or defaulted. This base priority is static and cannot be modified after the task’s declaration. A task also has an
active priority which is initially the task’s base priority but will be increased when the task enters a protected action.
For example, we can set the base priority of Account_Management to 5 at declaration:
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package Account is
task type Account_Management with Priority => 5;

end Account;

Likewise, each protected object is associated at declaration with a ceiling priority which should be equal or higher than
the active priority of any task accessing it. The ceiling priority of a protected object does not need to be static, it can be
set using a discriminant for example. Still, like for tasks, Ravenscar requires that it is set once and for all at the object’s
declaration and cannot be changed afterwards. As an example, let us attach a ceiling priority to the protected object
Num_Accounts. As Num_Accounts will be used by Account_Management, its ceiling priority should be no lower
than 5:

package Account is

protected Num_Accounts with Priority => 7 is
procedure Incr;
function Get return Natural;

private
The_Data : Natural := 0;

end Num_Accounts;

task type Account_Management with Priority => 5;

end Account;

5.10.4 Suspension Objects
Requires Ravenscar/Jorvik profile

The language-defined package Ada.Synchronous_Task_Control provides a type for semaphores called suspension
objects. They allow lighter synchronization mechanisms than protected objects (see Protected Objects and Deadlocks).
More precisely, a suspension object has a Boolean state which can be set atomically to True using the Set_True
procedure. When a task suspends on a suspension object calling the Suspend_Until_True procedure, it is blocked
until the state of the suspension object is True. At that point, the state of the suspension object is set back to False
and the task is unblocked. Note that Suspend_Until_True is potentially blocking and therefore should not be called
directly or indirectly from within Protected Subprograms. In the following example, the suspension object Semaphore
is used to make sure T1 has initialized the shared data by the time T2 begins processing it:

Semaphore : Suspension_Object;
task T1;
task T2;

task body T1 is
begin
Initialize_Shared_Data;
Set_True (Semaphore);
loop
...

end loop;
end T1;

task body T2 is
begin
Suspend_Until_True (Semaphore);

(continues on next page)
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loop
...

end loop;
end T2;

In Ada, an exception is raised if a task tries to suspend on a suspension object on which another task is already waiting
on that same suspension object. Like for verifying that no two tasks can be queued on a protected entry, this veri-
fication is done by GNATprove by checking that no two tasks ever suspend on the same suspension object. In the
following example, the suspension objects Semaphore1 and Semaphore2 are used to ensure that T1 and T2 never call
Enter_Protected_Region at the same time. GNATprove will successfully verify that only one task can suspend on
each suspension object:

Semaphore1, Semaphore2 : Suspension_Object;
task T1;
task T2;

task body T1 is
begin
loop
Suspend_Until_True (Semaphore1);
Enter_Protected_Region;
Set_True (Semaphore2);

end loop;
end T1;

task body T2 is
begin
loop
Suspend_Until_True (Semaphore2);
Enter_Protected_Region;
Set_True (Semaphore1);

end loop;
end T2;

5.10.5 State Abstraction and Concurrency
Specific to SPARK

Protected objects, as well as suspension objects, are effectively volatile which means that their value as seen from a given
task may change at any time due to some other task accessing the protected object or suspension object. If they are part of
a state abstraction, the volatility of the abstract state must be specified by using the External aspect (see External State
Abstraction). Note that task objects, though they can be part of a package’s hidden state, are not effectively volatile and
can therefore be components of normal state abstractions. For example, the package Synchronous_Abstractions
defines two abstract states, one for external objects, containing the atomic variable V, the suspension object S, and the
protected object P, and one for normal objects, containing the task T:

package Synchronous_Abstractions with
Abstract_State => (Normal_State, (Synchronous_State with External))

is
end Synchronous_Abstractions;

package body Synchronous_Abstractions with
Refined_State => (Synchronous_State => (P,V,S), Normal_State => T)

(continues on next page)
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is
task T;

S : Suspension_Object;

V : Natural := 0 with Atomic, Async_Readers, Async_Writers;

protected P is
function Read return Natural;

private
V : Natural := 0;

end P;

protected body P is
function Read return Natural is (V);

end P;

task body T is ...
end Synchronous_Abstractions;

To avoid data races, task bodies, as well as protected subprograms, should only access synchronized objects (see Pre-
venting Data Races). State abstractions containing only synchronized objects can be specified to be synchronized using
the Synchronous aspect. Only synchronized state abstractions can be accessed from task bodies and protected subpro-
grams. For example, if we want the procedure Do_Something to be callable from the task Use_Synchronized_State,
then the state abstraction Synchronous_State must be annotated using the Synchronous aspect:

package Synchronous_Abstractions with
Abstract_State => (Normal_State,

(Synchronous_State with Synchronous, External))
is
procedure Do_Something with Global => (In_Out => Synchronous_State);

end Synchronous_Abstractions;

task body Use_Synchronized_State is
begin
loop
Synchronous_Abstractions.Do_Something;

end loop;
end Use_Synchronized_State;

5.10.6 Project-wide Tasking Analysis
Tasking-related analysis, as currently implemented in GNATprove, is subject to two limitations:

First, the analysis is always done when processing a source file with task objects or with a subprogram that can be used
as a main subprogram of a partition (i.e. is at library level, has no parameters, and is either a procedure or a function
returning an integer type).

In effect, you might get spurious checks when:

• a subprogram satisfies conditions for being used as a main subprogram of a partition but is not really used that
way, i.e. it is not specified in the Main attribute of the GNAT project file you use to build executables, and

• it “withs” or is “withed” (directly or indirectly) from a library-level package that declares some task object, and
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• both the fake “main” subprogram and the task object access the same resource in a way that violates tasking-
related rules (e.g. suspends on the same suspension object).

As a workaround, either wrap the fake “main” subprogram in a library-level package or give it a dummy parameter.

Second, the analysis is only done in the context of all the units “withed” (directly and indirectly) by the currently
analyzed source file.

In effect, you might miss checks when:

• building a library that declares tasks objects in unrelated source files, i.e. files that are never “withed” (directly
or indirectly) from the same file, and those tasks objects access the same resource in a way that violates tasking-
related rules, or

• using a library that internally declares some tasks objects, they access some tasking-sensitive resource, and your
main subprogram also accesses this resource.

As a workaround, when building library projects add a dummy main subprogram that “withs” all the library-level
packages of your project.

5.10.7 Interrupt Handlers
SPARK puts no restrictions on the Ada interrupt handling and GNATprove merely checks that interrupt handlers will
be safely executed. In Ada interrupts handlers are defined by annotating protected procedures, for example:

with Ada.Interrupts.Names; use Ada.Interrupts.Names;

protected P is
procedure Signal with Attach_Handler => SIGINT;

end P;

Currently GNATprove emits a check for each handler declaration saying that the corresponding interrupt might be
already reserved. In particular, it might be reserved by either the system or the Ada runtime; see GNAT pragmas
Interrupt_State and Unreserve_All_Interrupts for details. Once examined, those checks can be suppressed with pragma
Annotate.

If pragma Priority or Interrupt_Priority is explicitly specified for a protected type, then GNATprove will check that its
value is in the range of the System.Any_Priority or System.Interrupt_Priority, respectively; see Ada RM D.3(6.1/3).

For interrupt handlers whose bodies are annotated with SPARK_Mode => On, GNATprove will additionally check
that:

• the interrupt handler does not call (directly or indirectly) the Ada.Task_Identification.Current_Task routine,
which might cause a Program_Error runtime exception; see Ada RM C.7.1(17/3);

• all global objects read (either as an Input or a Proof_In) by the interrupt handler are initialized at elaboration;

• there are no unsynchronized objects accessed both by the interrupt handler and by some task (or by some other
interrupt handler);

• there are no protected objects locked both by the interrupt handler and by some task (or by some other interrupt
handler).

5.11 SPARK Libraries
The units described here have their spec in SPARK (with SPARK_Mode => On specified on the spec), more rarely their
body in SPARK as well.

Subprograms in these units fall into one of the following categories:

• Subprograms which should always return without error or exception if their precondition is respected.
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• Procedures marked with the annotation Exceptional_Cases. This corresponds to the possibility of exception
in the procedure, even when its precondition is respected.

• Functions marked with SPARK_Mode => Off which cannot be called from SPARK code.

5.11.1 SPARK Library
As part of the SPARK product, several libraries are available through the project file templates <spark-install>/
lib/gnat/sparklib.gpr.templ (or through <spark-install>/lib/gnat/sparklib_light.gpr.templ in
an environment without units Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.
Big_Reals). Header files of the SPARK library are available through Help → SPARK → SPARKlib menu item in
GNAT Studio. To use this library in a program, you need to copy the project template that corresponds to your runtime,
remove the .templ suffix in name and adapt the project file by providing appropriate values for the object directory
(attribute Object_Dir in the project file) and the list of excluded source files (attribute Excluded_Source_Files in
the project file). The simplest is just to provide a value for Object_Dir and inherit Excluded_Source_Files from
the parent project:

project SPARKlib extends "sparklib_internal" is
for Object_Dir use "sparklib_obj";
for Excluded_Source_Files use SPARKlib_Internal'Excluded_Source_Files;

end SPARKlib;

Then, add a corresponding dependency in your project file, for example:

with "sparklib";
project My_Project is

...
end My_Project;

You may need to update the environment variable GPR_PROJECT_PATH for the lemma library project to be found by
GNAT compiler, as described in Installation of GNATprove.

Finally, if you instantiate in your code a generic from the SPARK library, you may also need to pass
-gnateDSPARK_BODY_MODE=Off as a compilation switch for the units with these instantiations.

5.11.2 Big Numbers Library
Annotations such as preconditions, postconditions, assertions, loop invariants, are analyzed by GNATprove with the
exact same meaning that they have during execution. In particular, evaluating the expressions in an annotation may
raise a run-time error, in which case GNATprove will attempt to prove that this error cannot occur, and report a warning
otherwise.

In SPARK, scalar types such as integer and floating point types are bounded machine types, so arithmetic computations
over them can lead to overflows when the result does not fit in the bounds of the type used to hold it. In some cases,
it is convenient to express properties in annotations as they would be expressed in mathematics, where quantities are
unbounded, for example:

function Add (X, Y : Integer) return Integer with
Pre => X + Y in Integer,
Post => Add'Result = X + Y;

The precondition of Add states that the result of adding its two parameters should fit in type Integer. Unfortunately,
evaluating this expression will fail an overflow check, because the result of X + Y is stored in a temporary of type
Integer.

To alleviate this issue, it is possible to use the standard library for big numbers. It contains support for:
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• Unbounded integers in SPARK.Big_Integers.

• Unbounded rational numbers in SPARK.Big_Reals.

Theses libraries define representations for big numbers and basic arithmetic operations over them, as well as conversions
from bounded scalar types such as floating point numbers or integer types. Conversion from an integer to a big integer
is provided by:

• function To_Big_Integer in SPARK.Big_Integers for type Integer

• function To_Big_Integer in generic package Signed_Conversions in SPARK.Big_Integers for all other
signed integer types

• function To_Big_Integer in generic package Unsigned_Conversions in SPARK.Big_Integers for modular
integer types

Similarly, the same packages define a function From_Big_Integer to convert from a big integer to an integer. A
function To_Real in SPARK.Big_Reals converts from type Integer to a big real and function To_Big_Real in the
same package converts from a big integer to a big real.

Though these operations do not have postconditions, they are interpreted by GNATprove as the equivalent operations
on mathematical integers and real numbers. This allows to benefit from precise support on code using them. Note that
the corresponding Ada libraries Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.
Big_Reals will be handled in the same way, but might be not available under specific runtimes. It is preferable to use
the units from the SPARK library instead, or use Ada.Numerics.Big_Numbers.Big_Integer_Ghost.

Note

Some functionality of the library are not precisely supported. This includes in particular conversions to and from
strings, conversions of Big_Real to fixed-point or floating-point types, and Numerator and Denominator func-
tions.

The big number library can be used both in annotations and in actual code, as it is executable, though of course, using
it in production code means incurring its runtime costs. It can be considered a good trade-off to only use it in contracts,
if they are disabled in production builds. For example, we can rewrite the precondition of our Add function with big
integers to avoid overflows:

function Add (X, Y : Integer) return Integer with
Pre => In_Range (To_Big_Integer (X) + To_Big_Integer (Y),

Low => To_Big_Integer (Integer'First),
High => To_Big_Integer (Integer'Last)),

Post => Add'Result = X + Y;

As a more advanced example, it is also possible to introduce a ghost model for numerical computations on floating point
numbers as a mathematical real number so as to be able to express properties about rounding errors. In the following
snippet, we use the ghost variable M as a model of the floating point variable Y, so we can assert that the result of our
floating point calculations are not too far from the result of the same computations on real numbers.

declare
package Float_Convs is new Float_Conversions (Num => Float);
-- Introduce conversions to and from values of type Float

subtype Small_Float is Float range -100.0 .. 100.0;

function Init return Small_Float with Import;
-- Unknown initial value of the computation

(continues on next page)
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X : constant Small_Float := Init;
Y : Float := X;
M : Big_Real := Float_Convs.To_Big_Real (X) with Ghost;
-- M is used to mimic the computations done on Y on real numbers

begin
Y := Y * 100.0;
M := M * Float_Convs.To_Big_Real (100.0);
Y := Y + 100.0;
M := M + Float_Convs.To_Big_Real (100.0);

pragma Assert
(In_Range (Float_Convs.To_Big_Real (Y) - M,

Low => Float_Convs.To_Big_Real (- 0.001),
High => Float_Convs.To_Big_Real (0.001)));

-- The rounding errors introduced by the floating-point computations
-- are not too big.

end;

5.11.3 Functional Containers Library
To model complex data structures, one often needs simpler, mathematical like containers. The mathematical containers
provided in the SPARK library (see the SPARK Library) are unbounded and may contain indefinite elements. However,
they are controlled and thus not usable in every context. So that these containers can be used safely, we have made
them functional, that is, no primitives are provided which would allow modifying an existing container. Instead, their
API features functions creating new containers from existing ones. As an example, functional containers provide no
Insert procedure but rather a function Add which creates a new container with one more element than its parameter:

function Add (C : Container; E : Element_Type) return Container;

As a consequence, these containers are highly inefficient. Thus, they should in general be used in ghost code and
annotations so that they can be removed from the final executable.

There are 5 functional containers, which are part of the SPARK library:

• SPARK.Containers.Functional.Infinite_Sequences

• SPARK.Containers.Functional.Maps

• SPARK.Containers.Functional.Multisets

• SPARK.Containers.Functional.Sets

• SPARK.Containers.Functional.Vectors

Sequences defined in Functional.Vectors are no more than ordered collections of elements. In an Ada like manner,
the user can choose the range used to index the elements:

function Length (S : Sequence) return Count_Type;
function Get (S : Sequence; N : Index_Type) return Element_Type;

The sequences defined in Functional.Infinite_Sequences behave as the one of Functional.Vectors. The
difference between them lies in the fact that the inifinte one are indexed by mathematical integers.

5.11. SPARK Libraries 165



SPARK User’s Guide, Release 15.0

function Length (Container : Sequence) return Big_Natural;
function Get (Container : Sequence; Position : Big_Integer) return Element_Type;

Functional sets offer standard mathematical set functionalities such as inclusion, union, and intersection. They are
neither ordered nor hashed:

function Contains (S : Set; E : Element_Type) return Boolean;
function "<=" (Left : Set; Right : Set) return Boolean;

Functional maps offer a dictionary between any two types of elements:

function Has_Key (M : Map; K : Key_Type) return Boolean;
function Get (M : Map; K : Key_Type) return Element_Type;

Multisets are mathematical sets associated with a number of occurrences:

function Nb_Occurence (S : Multiset; E : Element_Type) return Big_Natural;
function Cardinality (S : Multiset) return Big_Natural;

Each functional container type supports quantification over its elements (or keys for functional maps).

These containers can easily be used to model user defined data structures. They were used to this end to annotate and
verify a package of allocators (see the allocators example provided with a SPARK installation). In this example, an
allocator featuring a free list implemented in an array is modeled by a record containing a set of allocated resources
and a sequence of available resources:

type Status is (Available, Allocated);
type Cell is record

Stat : Status;
Next : Resource;

end record;
type Allocator is array (Valid_Resource) of Cell;
type Model is record

Available : Sequence;
Allocated : Set;

end record;

Note

Instances of container packages, both functional and formal, are subject to particular constraints which are necessary
for the contracts on the instance to be correct. For example, container primitives don’t comply with the ownership
policy of SPARK if element or key types are ownership types. These constraints are verified specifically each
time a container package is instantiated. For some of these checks, it is possible for the user to help the proof tool
by providing some lemmas at instantiation. It is the case in particular for the constraints coming from the Ada
reference manual on the container packages (that “=” is an equivalence relation, or that “<” is a strict weak order
in particular). These lemmas appear in the library as additional ghost generic formal parameters.

Note

Functional sets, maps and multisets operate with a user-provided equivalence relation, which might be different from
the logical equality. In this case, all elements or keys of an equivalence class are removed or included together in the
container. This can sometimes have surprising results. For example, Contains can return True if an equivalent
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(but not equal) element has been added to a set. Similarly, the quantified expression for Some E of S => Cond
(E) might be proved if Cond is False for all elements that were explicitely added to the set, but True for an object
equivalent to such an element.

The functional sets, maps, sequences, and vectors have child packages providing higher order functions:

• SPARK.Containers.Functional.Infinite_Sequences.Higher_Order

• SPARK.Containers.Functional.Maps.Higher_Order

• SPARK.Containers.Functional.Sets.Higher_Order

• SPARK.Containers.Functional.Vectors.Higher_Order

These functions take as parameters access-to-functions that compute some information about an element of the con-
tainer and apply it to all elements in a generic way. As an example, here is the function Count for functional sets. It
counts the number of elements in the set with a given property. The property is provided by its input access-to-function
parameter Test:

function Count
(S : Set;
Test : not null access function (E : Element_Type) return Boolean)
return Big_Natural

-- Count the number of elements on which the input Test function returns
-- True. Count can only be used with Test functions which return the same
-- value on equivalent elements.

with
Global => null,
Annotate => (GNATprove, Higher_Order_Specialization),
Pre => Eq_Compatible (S, Test),
Post => Count'Result <= Length (S);

All the higher order functions are annotated with Higher_Order_Specialization (see Annotation for Handling
Specially Higher Order Functions) so they can be used even with functions which read global data as parameters.

5.11.4 Formal Containers Library
Containers are generic data structures offering a high-level view of collections of objects, while guaranteeing fast access
to their content to retrieve or modify it. The most common containers are lists, vectors, sets and maps, which are defined
as generic units in the Ada Standard Library. In critical software where verification objectives severely restrict the use
of pointers, containers offer an attractive alternative to pointer-intensive data structures.

The Ada Standard Library defines two kinds of containers:

• The controlled containers using dynamic allocation, for example Ada.Containers.Vectors. They define con-
tainers as controlled tagged types, so that memory for the container is automatic reallocated during assignment
and automatically freed when the container object’s scope ends.

• The bounded containers not using dynamic allocation, for example Ada.Containers.Bounded_Vectors.
They define containers as discriminated tagged types, so that the memory for the container can be reserved
at initialization.

Although bounded containers are better suited to critical software development, neither controlled containers nor
bounded containers can be used in SPARK, because their API does not lend itself to adding suitable contracts en-
suring correct usage in client code as per the restrictions of SPARK (in particular Absence of Interferences).
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The formal containers are a variation of the standard containers with API changes that allow adding suitable contracts,
so that GNATprove can prove that client code manipulates containers correctly. There are 12 formal containers, which
are part of the SPARK library.

Among them, 6 are bounded and definite:

• SPARK.Containers.Formal.Vectors

• SPARK.Containers.Formal.Doubly_Linked_Lists

• SPARK.Containers.Formal.Hashed_Sets

• SPARK.Containers.Formal.Ordered_Sets

• SPARK.Containers.Formal.Hashed_Maps

• SPARK.Containers.Formal.Ordered_Maps

The 6 others are unbounded and indefinite but are controlled:

• SPARK.Containers.Formal.Unbounded_Vectors

• SPARK.Containers.Formal.Unbounded_Doubly_Linked_Lists

• SPARK.Containers.Formal.Unbounded_Hashed_Sets

• SPARK.Containers.Formal.Unbounded_Ordered_Sets

• SPARK.Containers.Formal.Unbounded_Hashed_Maps

• SPARK.Containers.Formal.Unbounded_Ordered_Maps

Bounded definite formal containers can only contain definite objects (objects for which the compiler can compute the
size in memory, hence not String nor T'Class). They do not use dynamic allocation. In particular, they cannot grow
beyond the bound defined at object creation.

Unbounded indefinite formal containers can contain indefinite objects. They use dynamic allocation both to allocate
memory for their elements, and to expand their internal block of memory when it is full.

Note

The capacity of unbounded containers is not set using a discriminant. Instead, it is implicitly set to it maximum
value. All the required memory is not reserved at declaration. As all the formal containers are internally indexed
by Count_Type, their maximum size is Count_Type'Last.

Modified API of Formal Containers

The visible specification of formal containers is in SPARK, with suitable contracts on subprograms to ensure correct
usage, while their private part and implementation is not in SPARK. Hence, GNATprove can be used to prove correct
usage of formal containers in client code, but not to prove that formal containers implement their specification.

Cursors of formal containers do not hold a reference to a specific container, as this would otherwise introduce aliasing
between container and cursor variables, which is not supported in SPARK, see Absence of Interferences. As a result,
the same cursor can be applied to multiple container objects. The Ada rules which define when a cursor becomes
invalid, so that using it leads to erroneous execution, are no longer relevant. Instead, which cursors remain valid in a
container after an operation is specified on a case-by-case basis on each operation.

As a consequence of this difference, only procedures and functions that take the container as parameter to query its
content are vailable on formal containers. For example, the two-parameters Has_Element function is available on
formal containers while the single-parameter one is not:
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function Has_Element (Container : T; Position : Cursor) return Boolean;
-- This function is part of the SPARK library

function Has_Element (Position : Cursor) return Boolean;
-- This function is not as the Cursor does not contain a reference to the container

Procedures like Update_Element or Query_Element that iterate over a container are not defined on formal containers,
nor are functions returning iterator objects like Iterate. Instead, formal containers use the Iterable aspect to allow
iteration and quantification over containers, see Quantification over Formal Containers. As a result, the notion of
tampering checks as defined for standard Ada containers is not relevant on formal containers.

Functions used to gain read or write access to an individual component of a container such as Reference or
Constant_Reference have been adapted to use the notions of borrowing and observing of the Memory Ownership
Policy of SPARK. They are defined as traversal functions which return values of an anonymous access type. The fact
that the container is not updated while such a reference exists is ensured by ownership:

function Constant_Reference (Container : aliased T;
Position : Cursor)

return not null access constant Element_Type
with Pre => Has_Element (Container, Position);

function Reference (Container : not null access T;
Position : Cursor)

return not null access Element_Type
with Pre => Has_Element (Container.all, Position);

For each container type, the library provides model functions that are used to annotate subprograms from the API.
The different models supply different levels of abstraction of the container’s functionalities. These model functions are
grouped in Ghost Packages named Formal_Model.

The higher level view of a container is usually the mathematical structure of element it represents. We use a sequence
for ordered containers such as lists and vectors and a mathematical map for imperative maps. This allows us to specify
the effects of a subprogram in a very high level way, not having to consider cursors nor order of elements in a map:

procedure Increment_All (L : in out List) with
Post =>
(for all N in 1 .. Length (L) =>

Element (Model (L), N) = Element (Model (L)'Old, N) + 1);

procedure Increment_All (S : in out Map) with
Post =>
(for all K of Model (S)'Old => Has_Key (Model (S), K))
and

(for all K of Model (S) =>
Has_Key (Model (S)'Old, K)
and Get (Model (S), K) = Get (Model (S)'Old, K) + 1);

For sets and maps, there is a lower level model representing the underlying order used for iteration in the container, as
well as the actual values of elements/keys. It is a sequence of elements/keys. We can use it if we want to specify in
Increment_All on maps that the order and actual values of keys are preserved:

procedure Increment_All (S : in out Map) with
Post =>
Keys (S) = Keys (S)'Old

(continues on next page)
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and
(for all K of Model (S) =>

Get (Model (S), K) = Get (Model (S)'Old, K) + 1);

Finally, cursors are modeled using a functional map linking them to their position in the container. For example, we
can state that the positions of cursors in a list are not modified by a call to Increment_All:

procedure Increment_All (L : in out List) with
Post =>
Positions (L) = Positions (L)'Old
and

(for all N in 1 .. Length (L) =>
Element (Model (L), N) = Element (Model (L)'Old, N) + 1);

Switching between the different levels of model functions allows to express precise considerations when needed without
polluting upper level specifications. For example, consider a variant of the List.Find function defined in the API of
formal containers, which returns a cursor holding the value searched if there is one, and the special cursor No_Element
otherwise:

1 with Element_Lists; use Element_Lists; use Element_Lists.Lists;
2 with Ada.Containers; use Ada.Containers; use Element_Lists.Lists.Formal_Model;
3

4 function My_Find (L : List; E : Element_Type) return Cursor with
5 SPARK_Mode,
6 Contract_Cases =>
7 (Contains (L, E) => Has_Element (L, My_Find'Result) and then
8 Element (L, My_Find'Result) = E,
9 not Contains (L, E) => My_Find'Result = No_Element);

The ghost functions mentioned above are specially useful in Loop Invariants to refer to cursors, and positions of ele-
ments in the containers. For example, here, ghost function Positions is used in the loop invariant to query the position
of the current cursor in the list, and Model is used to specify that the value searched is not contained in the part of the
container already traversed (otherwise the loop would have exited):

1 function My_Find (L : List; E : Element_Type) return Cursor with
2 SPARK_Mode
3 is
4 Cu : Cursor := First (L);
5

6 begin
7 while Has_Element (L, Cu) loop
8 pragma Loop_Variant (Increases => P.Get (Positions (L), Cu));
9 pragma Loop_Invariant (for all I in 1 .. P.Get (Positions (L), Cu) - 1 =>

10 Element (Model (L), I) /= E);
11

12 if Element (L, Cu) = E then
13 return Cu;
14 end if;
15

16 Next (L, Cu);
17 end loop;
18

19 return No_Element;
(continues on next page)
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20 end My_Find;

GNATprove proves that function My_Find implements its specification:

my_find.adb:8:28: info: loop variant proved
my_find.adb:8:42: info: precondition proved
my_find.adb:9:30: info: loop invariant preservation proved
my_find.adb:9:30: info: loop invariant initialization proved
my_find.adb:9:49: info: precondition proved
my_find.adb:10:33: info: precondition proved
my_find.adb:12:10: info: precondition proved
my_find.adb:16:07: info: precondition proved
my_find.ads:4:10: info: implicit aspect Always_Terminates on "My_Find" has been proved,␣
↪→subprogram will terminate
my_find.ads:6:03: info: disjoint contract or exit cases proved
my_find.ads:6:03: info: complete contract cases proved
my_find.ads:7:06: info: contract case proved
my_find.ads:8:29: info: precondition proved
my_find.ads:9:06: info: contract case proved

Note

Just like functional containers, the formal containers do not comply with the ownership policy of SPARK if element
or key types are ownership types. These constraints are verified specifically each time a container package is
instantiated.

Quantification over Formal Containers

Quantified Expressions can be used over the content of a formal container to express that a property holds for all
elements of a container (using for all) or that a property holds for at least one element of a container (using for
some).

For example, we can express that all elements of a formal list of integers are prime as follows:

(for all Cu in My_List => Is_Prime (Element (My_List, Cu)))

On this expression, the GNAT compiler generates code that iterates over My_List using the functions First,
Has_Element and Next given in the Iterable aspect applying to the type of formal lists, so the quantified expression
above is equivalent to:

declare
Cu : Cursor_Type := First (My_List);
Result : Boolean := True;

begin
while Result and then Has_Element (My_List, Cu) loop

Result := Is_Prime (Element (My_List, Cu));
Cu := Next (My_List, Cu);

end loop;
end;

where Result is the value of the quantified expression. See GNAT Reference Manual for details on aspect Iterable.
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5.11.5 Containers and Executablity
Some features of the container library (both functional and formal) might not have executable semantics. To ensure that
user code never attempts to execute them, these subprograms call the Check_Or_Fail procedure declared in SPARK.
Containers. This procedure is marked as Import, so an error will occur at link time if these features are used in
normal code (or in enabled ghost code or assertions).

These non-executable features include quantified expressions over functional maps, sets, and multisets and logical
equality in nearly all functional and formal containers.

Note

When instantiating containers from SPARKlib in your code, and compiling with assertions enabled (e.g. because
you passed the switch -gnata), you may get the following error, even if you don’t use the non-executable features
mentioned above:
undefined reference to `check_or_fail'

This spurious error comes from your executable including unused functions calling in the undefined procedure
Check_Or_Fail. To get rid of this error, you should compile your code with the switch -ffunction-sections
and link it with the switch -Wl,--gc-sections, so that unused functions are not included in the executable.

Quantified Expressions over Functional Maps, Sets, and Multisets

Functional maps, sets, and multisets take as parameters an equivalence relation. Inclusion in the container works
modulo equivalence: when Add or Remove is called, the whole equivalence class is included or excluded at once. As
equivalence classes might be infinite, quantified expressions over elements of a set or multiset or keys of a map could
fail to terminate.

To replace quantified expressions over a functional map, set, or multisets occurring in the code, it is possible to use a
loop over the Iterable_Map, Iterable_Set, or Iterable_Multiset types instead. They use the Choose function
to get an unspecified element of the container from a different equivalence class at each iteration of the loop. As an
example:

B := (for some E of S => P (E));

can be replaced by:

B := False;
for C in Iterate (S) loop
pragma Loop_Invariant (for all E of S => (if not Contains (C, E) then not P (E)));
if P (Choose (C)) then

B := True;
exit;

end if;
end loop;

Logical Equality

The specifications of most formal and functional containers use logical equality to specify that all properties of elements
placed in the container are preserved (see Annotation for Accessing the Logical Equality for a Type). Using logical
equality to express such properties increases provability of user code, as it is optimally precise and natively handled
by the automated solvers at the background of SPARK. However, logical equality does not always correspond to Ada
equality, and there are even types for which it is not possible to write a valid logical equality in Ada, due to how things
are encoded in the backend of the tool. As a result, logical equality functions used in the specification of formal and
functional containers are not executable.
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For formal containers, as the logical equality is given as a parameter to the functional containers used as models, the
model themselves are not executable. As a result, it is not possible to execute ghost code or assertions that mention
these model functions.

5.11.6 SPARK Lemma Library
As part of the SPARK library (see SPARK Library), packages declaring a set of ghost null procedures with contracts
(called lemmas) are distributed. Here is an example of such a lemma:

procedure Lemma_Div_Is_Monotonic
(Val1 : Int;
Val2 : Int;
Denom : Pos)

with
Global => null,
Pre => Val1 <= Val2,
Post => Val1 / Denom <= Val2 / Denom;

whose body is simply a null procedure:

procedure Lemma_Div_Is_Monotonic
(Val1 : Int;
Val2 : Int;
Denom : Pos)

is null;

This procedure is ghost (as part of a ghost package), which means that the procedure body and all calls to the pro-
cedure are compiled away when producing the final executable without assertions (when switch -gnata is not set).
On the contrary, when compiling with assertions for testing (when switch -gnata is set) the precondition of the pro-
cedure is executed, possibly detecting invalid uses of the lemma. However, the main purpose of such a lemma is to
facilitate automatic proof, by providing the prover specific properties expressed in the postcondition. In the case of
Lemma_Div_Is_Monotonic, the postcondition expresses an inequality between two expressions. You may use this
lemma in your program by calling it on specific expressions, for example:

R1 := X1 / Y;
R2 := X2 / Y;
Lemma_Div_Is_Monotonic (X1, X2, Y);
-- at this program point, the prover knows that R1 <= R2
-- the following assertion is proved automatically:
pragma Assert (R1 <= R2);

Note that the lemma may have a precondition, stating in which contexts the lemma holds, which you will need to prove
when calling it. For example, a precondition check is generated in the code above to show that X1 <= X2. Similarly,
the types of parameters in the lemma may restrict the contexts in which the lemma holds. For example, the type Pos
for parameter Denom of Lemma_Div_Is_Monotonic is the type of positive integers. Hence, a range check may be
generated in the code above to show that Y is positive.

All the lemmas provided in the SPARK lemma library have been proved either automatically or using Coq interac-
tive prover. The Why3 session file recording all proofs, as well as the individual Coq proof scripts, are available as
part of the SPARK product under directory <spark-install>/lib/gnat/proof. For example, the proof of lemma
Lemma_Div_Is_Monotonic is a Coq proof of the mathematical property (in Coq syntax):
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Currenly, the SPARK lemma library provides the following lemmas:

• Lemmas on signed integer arithmetic in file spark-lemmas-arithmetic.ads, that are instantiated for 32 bits
signed integers (Integer) in file spark-lemmas-integer_arithmetic.ads and for 64 bits signed integers
(Long_Integer) in file spark-lemmas-long_integer_arithmetic.ads.

• Lemmas on modular integer arithmetic in file spark-lemmas-mod_arithmetic.ads, that are instantiated for
32 bits modular integers (Interfaces.Unsigned_32) in file spark-lemmas-mod32_arithmetic.ads and
for 64 bits modular integers (Interfaces.Unsigned_64) in file spark-lemmas-mod64_arithmetic.ads.

• GNAT-specific lemmas on fixed-point arithmetic in file spark-lemmas-fixed_point_arithmetic.ads, that
need to be instantiated by the user for her specific fixed-point type.

• Lemmas on floating point arithmetic in file spark-lemmas-floating_point_arithmetic.ads, that are in-
stantiated for single-precision floats (Float) in file spark-lemmas-float_arithmetic.ads and for double-
precision floats (Long_Float) in file spark-lemmas-long_float_arithmetic.ads.

• Lemmas on unconstrained arrays in file spark-lemmas-unconstrained_array.ads, that need to be instan-
tiated by the user for her specific type of index and element, and specific ordering function between elements.

To apply lemmas to signed or modular integers of different types than the ones used in the instances provided in the
library, just convert the expressions passed in arguments, as follows:

R1 := X1 / Y;
R2 := X2 / Y;
Lemma_Div_Is_Monotonic (Integer(X1), Integer(X2), Integer(Y));
-- at this program point, the prover knows that R1 <= R2
-- the following assertion is proved automatically:
pragma Assert (R1 <= R2);

5.11.7 Higher Order Function Library
The SPARK product also includes a library of higher order functions for unconstrained arrays. It is available using the
SPARK library (see SPARK Library).

This library consists in a set of generic entities defining usual operations on arrays. As an example, here is a generic
function for the map higher-level function on arrays. It applies a given function F to each element of an array, returning
an array of results in the same order.

generic
type Index_Type is range <>;
type Element_In is private;
type Array_In is array (Index_Type range <>) of Element_In;

type Element_Out is private;
type Array_Out is array (Index_Type range <>) of Element_Out;

with function Init_Prop (A : Element_In) return Boolean;
-- Potential additional constraint on values of the array to allow Map

(continues on next page)
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with function F (X : Element_In) return Element_Out;
-- Function that should be applied to elements of Array_In

function Map (A : Array_In) return Array_Out with
Pre => (for all I in A'Range => Init_Prop (A (I))),
Post => Map'Result'First = A'First
and then Map'Result'Last = A'Last
and then (for all I in A'Range =>

Map'Result (I) = F (A (I)));

This function can be instantiated by providing two unconstrained array types ranging over the same index type and
a function F mapping a component of the first array type to a component of the second array type. Additionally,
a constraint Init_Prop can be supplied for the components of the first array to be allowed to apply F. If no such
constraint is needed, Init_Prop can be instantiated with an always True function.

type Nat_Array is array (Positive range <>) of Natural;

function Small_Enough (X : Natural) return Boolean is
(X < Integer'Last);

function Increment_One (X : Integer) return Integer is (X + 1) with
Pre => X < Integer'Last;

function Increment_All is new SPARK.Higher_Order.Map
(Index_Type => Positive,
Element_In => Natural,
Array_In => Nat_Array,
Element_Out => Natural,
Array_Out => Nat_Array,
Init_Prop => Small_Enough,
F => Increment_One);

The Increment_All function above will take as an argument an array of natural numbers small enough to be incre-
mented and will return an array containing the result of incrementing each number by one:

function Increment_All (A : Nat_Array) return Nat_Array with
Pre => (for all I in A'Range => Small_Enough (A (I))),
Post => Increment_All'Result'First = A'First
and then Increment_All'Result'Last = A'Last
and then (for all I in A'Range =>

Increment_All'Result (I) = Increment_One (A (I)));

Currently, the higher-order function library provides the following functions:

• Map functions over unconstrained one-dimensional arrays in file spark-higher_order.ads. These include
both in place and functional map subprograms, with and without an additional position parameter.

• Fold functions over unconstrained one-dimensional and two-dimensional arrays in file
spark-higher_order-fold.ads. Both left to right and right to left fold functions are available for
one-dimensional arrays. For two-dimensional arrays, fold functions go on a line by line, left to right, top-to-
bottom way. For ease of use, these functions have been instantiated for the most common cases. Sum and Sum_2
respectively compute the sum of all the elements of a one-dimensional or two-dimensional array, and Count
and Count_2 the number of elements with a given Choose property.
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Note

Unlike the SPARK Lemma Library, these generic functions are not verified once and for all as their correction
depends on the functions provided at each instance. As a result, each instance should be verified by running the
SPARK tools.

5.11.8 Input-Output Libraries
The following text is about Ada.Text_IO and its child packages, Ada.Text_IO.Integer_IO, Ada.Text_IO.
Modular_IO, Ada.Text_IO.Float_IO, Ada.Text_IO.Fixed_IO, Ada.Text_IO.Decimal_IO and Ada.
Text_IO.Enumeration_IO.

The effect of functions and procedures of input-output units is partially modelled. This means in particular:

• that SPARK functions cannot directly call procedures that do input-output. The solution is either to transform
them into procedures, or to hide the effect from GNATprove (if not relevant for analysis) by wrapping the standard
input-output procedures in procedures with an explicit Global => null and body with SPARK_Mode => Off.

with Ada.Text_IO;

function Foo return Integer is

procedure Put_Line (Item : String) with
Global => null;

procedure Put_Line (Item : String) with
SPARK_Mode => Off

is
begin

Ada.Text_IO.Put_Line (Item);
end Put_Line;

begin
Put_Line ("Hello, world!");
return 0;

end Foo;

• SPARK procedures that call input-output subprograms need to reflect these effects in their Global/Depends con-
tract if they have one.

with Ada.Text_IO;

procedure Foo with
Global => (Input => Var,

In_Out => Ada.Text_IO.File_System)
is
begin

Ada.Text_IO.Put_Line (Var);
end Foo;

procedure Bar is
begin

Ada.Text_IO.Put_Line (Var);
end Bar;
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In the examples above, procedure Foo and Bar have the same body, but their declarations are different. Global contracts
have to be complete or not present at all. In the case of Foo, it has an Input contract on Var and an In_Out contract
on File_System, an abstract state from Ada.Text_IO. Without the latter contract, a high message would be raised
when running GNATprove. Global contracts will be automatically generated for Bar by flow analysis if this is user
code. Both declarations are accepted by SPARK.

State Abstraction and Global Contracts

The abstract state File_System is used to model the memory on the system and the file handles (Line_Length, Col,
etc.). This is explained by the fact that almost every procedure in Text_IO that actually modifies attributes of the
File_Type parameter has in File_Type as a parameter and not in out. This would be inconsistent with SPARK
rules without the abstract state.

All functions and procedures are annoted with Global, and Pre, Post if necessary. The Global contracts are most of the
time In_Out for File_System, even in Put or Get procedures that update the current column and/or line. Functions
have an Input global contract. The only functions with Global => null are the functions Get and Put in the generic
packages that have a similar behaviour as sprintf and sscanf.

Functions and Procedures Removed in SPARK

Some functions and procedures are removed from SPARK usage because they are not consistent with SPARK rules:

1. Aliasing

The functions Current_Input, Current_Output, Current_Error, Standard_Input, Standard_Output
and Standard_Error are turned off in SPARK_Mode because they create aliasing, by returning the corresponding
file.

Set_Input, Set_Output and Set_Error are turned off because they also create aliasing, by assigning a
File_Type variable to Current_Input or the other two.

It is still possible to use Set_Input and the 3 others to make the code clearer. This is doable by calling
Set_Input in a different subprogram whose body has SPARK_Mode => Off. However, it is necessary to check
that the file is open and the mode is correct, because there are no checks made on procedures that do not take a
file as a parameter (i.e. implicit, so it will write to/read from the current output/input).

2. Get_Line function

The function Get_Line is disabled in SPARK because it is a function with side effects. Even with the
Volatile_Function attribute, it is not possible to model its action on the files and global variables in SPARK.
The function is very convenient because it returns an unconstrained string, but a workaround is possible by
constructing the string with a buffer:

with Ada.Text_IO;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;

procedure Echo is
Unb_Str : Unbounded_String := Null_Unbounded_String;
Buffer : String (1 .. 1024);
Last : Natural := 1024;

begin

while Last = 1024 loop
Ada.Text_IO.Get_Line (Buffer, Last);
exit when Last > Natural'Last - Length (Unb_Str);
Unb_Str := Unb_Str & Buffer (1 .. Last);

end loop;
(continues on next page)
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declare
Str : String := To_String (Unb_Str);

begin
Ada.Text_IO.Put_Line (Str);

end;
end Echo;

Errors Handling

Status_Error (due to a file already open/not open) and Mode_Error are fully handled.

Except for Layout_Error, which is a special case of a partially handled error and explained in a few lines below, all
other errors are not handled:

• Use_Error is related to the external environment.

• Name_Error would require to check availability on disk beforehand.

• End_Error is raised when a file terminator is read while running the procedure.

For an Out_File, it is possible to set a Line_Length and Page_Length. When writing in this file, the procedures will
add Line markers and Page markers each Line_Length characters or Page_Length lines respectively. Layout_Error
occurs when trying to set the current column or line to a value that is greater than Line_Length or Page_Length
respectively. This error is handled when using Set_Col or Set_Line procedures.

However, this error is not handled when no Line_Length or Page_Length has been specified, e.g, if the lines are
unbounded, it is possible to have a Col greater than Count'Last and therefore have a Layout_Error raised when
calling Col.

Not only the handling is partial, but it is also impossible to prove preconditions when working with two files or more.
Since Line_Length etc. attributes are stored in the File_System, it is not posible to prove that the Line_Length of
File_2 has not been modified when running any procedure that do input-output on File_1.

Finally, Layout_Error may be raised when calling Put to display the value of a real number (floating-point or fixed-
point) in a string output parameter, which is not reflected currently in the precondition of Put as no simple precondition
can describe the required length in such a case.

5.11.9 Strings Libraries
The following text is about Ada.Strings.Maps, Ada.Strings.Fixed, Ada.Strings.Bounded and Ada.Strings.
Unbounded.

Global contracts were added to non-pure packages, and pre/postconditions were added to all SPARK subprograms to
partially model their effects. In particular:

• Effects of subprograms from Ada.Strings.Maps, as specified in the Ada RM (A.4.2), are fully modeled through
pre- and postconditions.

• Effects of most subprograms from Ada.Strings.Fixed are fully modeled through pre- and postconditions.
Preconditions protect from exceptions specified in the Ada RM (A.4.3). Some procedures are not annotated
with sufficient preconditions and may raise Length_Error when called with inconsistent parameters. They are
annotated with an exceptional contract.

Under their respective preconditions, the implementation of subprograms from Ada.Strings.Fixed is proven
with GNATprove to be free from run-time errors and to comply with their postcondition, except for procedure
Move and those procedures based on Move: Delete, Head, Insert, Overwrite, Replace_Slice, Tail and
Trim (but the corresponding functions are proved).
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• Effects of subprograms from Ada.Strings.Bounded are fully modeled through pre- and postconditions. Pre-
conditions protect from exceptions specified in the Ada RM (A.4.4).

Under their respective preconditions, the implementation of subprograms from Ada.Strings.Bounded is
proven with GNATprove to be free from run-time errors, and except for subprograms Insert, Overwrite and
Replace_Slice, to comply with their postcondition.

• Effects of subprograms from Ada.Strings.Unbounded are partially modeled. Postconditions state properties
on the Length of the strings only and not on their content. Preconditions protect from exceptions specified in the
Ada RM (A.4.5).

• The procedure Free in Ada.Strings.Unbounded is not in SPARK as it could be wrongly called by the user on
a pointer to the stack.

Inside these packages, Translation_Error (in Ada.Strings.Maps), Index_Error and Pattern_Error are fully
handled.

Length_Error is fully handled in Ada.Strings.Bounded and Ada.Strings.Unbounded and in functions from
Ada.Strings.Fixed.

However, in the procedure Move and the procedures based on it except for Delete and Trim (Head, Insert,
Overwrite, Replace_Slice and Tail) from Ada.Strings.Fixed, Length_Error may be raised under certain
conditions. This is related to the call to Move. Each call of these subprograms can be preceded with a pragma Assert
to check that the actual parameters are consistent, when parameter Drop is set to Error and the Source is longer than
Target.

-- From the Ada RM for Move: "The Move procedure copies characters from
-- Source to Target.
--
-- ...
--
-- If Source is longer than Target, then the effect is based on Drop.
--
-- ...
--
-- * If Drop=Error, then the effect depends on the value of the Justify
-- parameter and also on whether any characters in Source other than Pad
-- would fail to be copied:
--
-- * If Justify=Left, and if each of the rightmost
-- Source'Length-Target'Length characters in Source is Pad, then the
-- leftmost Target'Length characters of Source are copied to Target.
--
-- * If Justify=Right, and if each of the leftmost
-- Source'Length-Target'Length characters in Source is Pad, then the
-- rightmost Target'Length characters of Source are copied to Target.
--
-- * Otherwise, Length_Error is propagated.".
--
-- Here, Move will be called with Drop = Error, Justify = Left and
-- Pad = Space, so we add the following assertion before the call to Move.

pragma Assert
(if Source'Length > Target'Length then

(for all J in 1 .. Source'Length - Target'Length =>
(Source (Source'Last - J + 1) = Space)));

(continues on next page)
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Move (Source => Source,
Target => Target,
Drop => Error,
Justify => Left,
Pad => Space);

5.11.10 C Strings Interface
The Ada Standard Library

Interfaces.C.Strings is a library that provides an Ada interface to allocate, reference, update and free C strings.

The provided preconditions protect users from getting Dereference_Error and Update_Error. However, those
preconditions do not protect against Storage_Error and in general against leaking memory allocated by New_String
and New_Char_Array.

All subprograms are annotated with Global contracts. To model the effects of the subprograms on the allocated memory,
an abstract state C_Memory is defined. Since chars_ptr is an access type that is hidden from SPARK (it is a private
type and the private part of Interfaces.C.Strings has SPARK_Mode => Off), the user could create aliases that
SPARK would not be able to see. Hence, we consider that calling Update on any chars_ptr modifies the allocated
memory, C_Memory, so that the effects of potential aliases are modelled correctly.

Additionally, some subprograms are annotated with SPARK_Mode => Off:

• To_Chars_Ptr: This function creates an alias, thus it is not compatible with SPARK.

• Free: There is no way for SPARK to know whether or not it is safe to deallocate these pointers. They might not
be allocated on the heap or there might be some aliases, which could lead to dangling pointers.

Finally, the two functions used to allocate memory to create chars_ptr objects are annotated with the
Volatile_Function attribute. Indeed, calling those functions twice in a row with the same parameters would re-
turn different objects.

Precise C Strings Interface

The annotations on Interfaces.C.Strings do not allow for a precise handling of the content of strings as it can-
not reason about potential aliases between strings. As an alternative, when precision is required, two wrappers over
Interfaces.C.Strings are provided in the SPARK library (see SPARK Library).

In the package SPARK.C.Strings, C strings are handled as SPARK pointers. Absence of aliasing and memory safety
is ensured through ownership (see Memory Ownership Policy). This handling allows for safe allocation and reclamation
of memory as well as precise contracts on the content of strings. However, like for regular pointers, Storage_Error
might occur due to memory shortage.

Like for Interfaces.C.Strings, the To_Chars_Ptr function is disallowed but Free is retained. It is left as an as-
sumption for the user to make sure that it is only called on a pointer allocated through New_String or New_Char_Array
and not on a value created in C code. Two additional conversion functions are provided to convert to and from C strings
coming from Interfaces.C.Strings but they cannot be used safely in SPARK and are annotated with SPARK_Mode
=> Off.

As opposed to Interfaces.C.Strings, the content of each string is modeled separately instead of collapsed together
in a single abstract state and all subprograms are annotated with postconditions modeling the content of the string. This
allows for a precise handling of C strings in SPARK.

The package SPARK.C.Constant_Strings offers an alternative to SPARK.C.Strings which does not enforce own-
ership at the cost of immutability. Aliasing between C strings is allowed but the designated values cannot be modified.
The New_String and New_Char_Array are annotated with SPARK_Mode => Off as they can cause memory leaks.
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Instead, a version of To_Chars_Ptr taking as input an access to a constant char_array is provided. The Update
procedures are removed. It is left as an assumption for the user to make sure that values of this type are never mutated
by the C code.

Here again, the content of each string is modeled separately and all functions are annotated with postconditions mod-
eling the content of the string to allow for a precise handling of C strings in SPARK.

5.11.11 Addresses to Access Conversions
The run-time library System.Address_To_Access_Conversions enables the user to convert System.
Address_Type values to general access-to-object types. The conversions are subject to the same rules as
Unchecked_Conversion between such types (see Data Validity), that is:

• To_Pointer is allowed in SPARK and annotated with Global => null. On a call to this function, GNATprove
will emit warnings to ensure that the designated data has no aliases and is initialized.

• To_Address is forbidden in SPARK because it does not handle addresses.

5.11.12 Cut Operations
The SPARK product also includes boolean cut operations that can be used to manually help the proof of complicated
assertions. These operations are provided as functions in a library but are handled in a specific way by GNATprove.
They can be found in the SPARK.Cut_Operations package which is available using the same project file as the SPARK
Lemma Library.

This library provides two functions named By and So which are handled in the following way:

• If A and B are two boolean expressions, proving By (A, B) requires proving B, the premise, and then A assum-
ing B, the side-condition. When By (A, B) is assumed on the other hand, GNATprove only assumes A. The
proposition B is used for the proof of A, but is not visible afterward.

• If A and B are two boolean expressions, proving So (A, B) requires proving A, the premise, and then B assuming
A, the side-condition. When So (A, B) is assumed both A and B are assumed to be true.

This allows to introduce intermediate assertions to help the proof of some part of an assertion by still controlling in a
precise way what is added to the enclosing context. This is interesting when doing complex proofs when the size of
the proof context (the amount of information known at a given program point) is an issue.

In the example below, By is used to add the intermediate property B (I) in the proof of C (I) from A (I):

with SPARK.Cut_Operations; use SPARK.Cut_Operations;

procedure Main with SPARK_Mode is
function A (I : Integer) return Boolean with Import;
function B (I : Integer) return Boolean with Import,
Post => B'Result and then (if A (I) then C (I));

function C (I : Integer) return Boolean with Import;
begin
pragma Assume (for all I in 1 .. 100 => A (I));
pragma Assert (for all I in 1 .. 100 => By (C (I), B (I)));

end;

To prove the assertion, GNATprove will attempt to verify both that B (I) is true for all I and that C (I) can be
deduced from B (I). After the assertion, the call to B does not occur in the context anymore, it is as if the assertion
(for all I in 1 .. 100 => C (I)) had been written directly. Remark that here, B is really a lemma. Its result
does not matter in itself (it always returns True) but its postcondition gives additional information for the proof (see the
SPARK Lemma Library for more information about lemmas).
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As can be seen in the example above, By and So may not necessarily occur at top-level in an assertion. However,
because of their specific treatment, they are only allowed in specific contexts. We define these supported contexts in a
recursive way:

• As the expression of a pragma Assert or Assert_And_Cut;

• As an operand of a AND, OR, AND THEN, or OR ELSE operation which itself occurs in a supported context;

• As the THEN or ELSE branch of a IF expression which itself occurs in a supported context;

• As an alternative of a CASE expression which itself occurs in a supported context;

• As the condition of a quantified expression which itself occurs in a supported context;

• As a parameter to a call to either By or So which itself occurs in a supported context;

• As the body expression of a DECLARE expression which itself occurs in a supported context.
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CHAPTER

SIX

SPARK TUTORIAL

This chapter describes a simple use of the SPARK toolset on a program written completely in SPARK, within the GNAT
Studio integrated development environment. All the tools may also be run from the command-line, see Command Line
Invocation.

Note

If you’re using SPARK Discovery instead of SPARK Pro, some of the proofs in this tutorial may not be obtained
automatically. See the section on Alternative Provers to install additional provers that are not present in SPARK
Discovery.

6.1 Writing SPARK Programs
As a running example, we consider a naive searching algorithm for an unordered collection of elements. The algorithm
returns whether the collection contains the desired value, and if so, at which index. The collection is implemented
here as an array. We deliberately start with an incorrect program for the Search function, in order to explain how the
SPARK toolset can help correct these errors. The final version of the linear_search example is part of the examples
in the distribution via the Help → SPARK → Examples menu item.

We start with creating a GNAT project file:

1 project linear_search_ada is
2 for Source_Dirs use (".");
3

4 package Compiler is
5 for Switches ("Ada") use ("-gnatwa");
6 end Compiler;
7 end linear_search_ada;

It specifies that the source code to inspect is in the current directory, and that the code should be compiled at maximum
warning level (switch -gnatwa). GNAT projects are used by most tools in the GNAT toolsuite; for in-depth documen-
tation of this technology, consult the GNAT User’s Guide. Documentation and examples for the SPARK language and
tools are also available via the Help → SPARK menu in GNAT Studio.

The obvious specification of Linear_Search is given in file linear_search.ads that follows, where we specify
that the spec is in SPARK by using aspect SPARK_Mode.

1 package Linear_Search
2 with SPARK_Mode
3 is
4

(continues on next page)
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5 type Index is range 1 .. 10;
6 type Element is new Integer;
7

8 type Arr is array (Index) of Element;
9

10 function Search
11 (A : Arr;
12 Val : Element;
13 At_Index : out Index) return Boolean;
14 -- Returns True if A contains value Val, in which case it also returns
15 -- in At_Index the first index with value Val. Returns False otherwise.
16 end Linear_Search;

The implementation of Linear_Search is given in file linear_search.adb, where we specify that the body is in
SPARK by using aspect SPARK_Mode. It is as obvious as its specification, using a loop to go through the array parameter
A and looking for the first index at which Val is found, if there is such an index.

1 package body Linear_Search
2 with SPARK_Mode
3 is
4

5 function Search
6 (A : Arr;
7 Val : Element;
8 At_Index : out Index) return Boolean
9 is

10 Pos : Index := A'First;
11 begin
12 while Pos < A'Last loop
13 if A(Pos) = Val then
14 At_Index := Pos;
15 return True;
16 end if;
17

18 Pos := Pos + 1;
19 end loop;
20

21 return False;
22 end Search;
23

24 end Linear_Search;

We can check that the above code is valid Ada by using the Build > Check Semantic menu, which completes
without any errors or warnings:
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6.1.1 Checking SPARK Legality Rules
Now, let us run GNATprove on this unit, using the SPARK → Examine File menu, so that it issues errors on SPARK
code that violates SPARK rules:
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It detects here that function Search is not in SPARK, because it has an out parameter:

The permission in Ada 2012 to have out parameters to functions is not allowed in SPARK, because it causes calls to
have side-effects (assigning to their out parameters), which means that various calls in the same expression may be
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conflicting, yielding different results depending on the order of evaluation of the expression.

We correct this problem by defining a record type Search_Result in linear_search.ads holding both the Boolean
result and the index for cases when the value is found, and making Search return this type:

1 package Linear_Search
2 with SPARK_Mode
3 is
4

5 type Index is range 1 .. 10;
6 type Element is new Integer;
7

8 type Arr is array (Index) of Element;
9

10 type Search_Result is record
11 Found : Boolean;
12 At_Index : Index;
13 end record;
14

15 function Search
16 (A : Arr;
17 Val : Element) return Search_Result;
18

19 end Linear_Search;

The implementation of Search in linear_search.adb is modified to use this type:

1 package body Linear_Search
2 with SPARK_Mode
3 is
4

5 function Search
6 (A : Arr;
7 Val : Element) return Search_Result
8 is
9 Pos : Index := A'First;

10 Res : Search_Result;
11 begin
12 while Pos < A'Last loop
13 pragma Loop_Variant (Increases => Pos);
14

15 if A(Pos) = Val then
16 Res.At_Index := Pos;
17 Res.Found := True;
18 return Res;
19 end if;
20

21 Pos := Pos + 1;
22 end loop;
23

24 Res.Found := False;
25 return Res;
26 end Search;
27

(continues on next page)
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28 end Linear_Search;

6.1.2 Checking SPARK Initialization Policy
Re-running GNATprove on this unit, still using the SPARK → Examine File menu, now reports a different kind of
error. This time it is the static analysis pass of GNATprove called flow analysis that detects an attempt of the program
to return variable Res while it is not fully initialized, thus violating the initialization policy of SPARK:

Inside the GNAT Studio editor, we can click on the icon, either on the left of the message, or on line 23 in file
linear_search.adb, to show the path on which Res.At_Index is not initialized:
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Another click on the icon makes the path disappear.

This shows that, when the value is not found, the component At_Index of the value returned is indeed not initialized.
Although that is allowed in Ada, SPARK requires that all inputs and outputs of subprograms are completely initialized
(and the value returned by a function is such an output). As a solution, we could give a dummy value to component
At_Index when the search fails, but we choose here to turn the type Search_Result in linear_search.ads into a
discriminant record, so that the component At_Index is only usable when the search succeeds:

1 type Search_Result (Found : Boolean := False) is record
2 case Found is
3 when True =>
4 At_Index : Index;
5 when False =>
6 null;
7 end case;
8 end record;

Then, in the implementation of Search in linear_search.adb, we change the value of the discriminant depending
on the success of the search:

1 function Search
2 (A : Arr;
3 Val : Element) return Search_Result
4 is
5 Pos : Index := A'First;
6 Res : Search_Result;
7 begin
8 while Pos < A'Last loop
9 pragma Loop_Variant (Increases => Pos);

(continues on next page)
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10

11 if A(Pos) = Val then
12 Res := (Found => True,
13 At_Index => Pos);
14 return Res;
15 end if;
16

17 Pos := Pos + 1;
18 end loop;
19

20 Res := (Found => False);

Now re-running GNATprove on this unit, using the SPARK → Examine File menu, shows that there are no reads of
uninitialized data.

6.1.3 Writing Functional Contracts
We now have a valid SPARK program. It is not yet very interesting SPARK code though, as it does not contain any
contracts, which are necessary to be able to apply formal verification modularly on each subprogram, independently
of the implementation of other subprograms. The precondition constrains the value of input parameters, while the
postcondition states desired properties of the result of the function. See Preconditions and Postconditions for more
details. Here, we can require in the precondition of Search in linear_search.ads that callers of Search always
pass a non-negative value for parameter Val, and we can state that, when the search succeeds, the index returned points
to the desired value in the array:

1 function Search
2 (A : Arr;
3 Val : Element) return Search_Result
4 with
5 Pre => Val >= 0,
6 Post => (if Search'Result.Found then
7 A (Search'Result.At_Index) = Val),

Notice the use of an if-expression in the postcondition to express an implication: if the search succeeds it implies that
the value at the returned index is the value that was being searched for. Note also the use of Search'Result to denote
the value returned by the function.

This contract is still not very strong. Many faulty implementations of the search would pass this contract, for example
one that always fails (thus returning with Search'Result.Found = False). We could reinforce the postcondition,
but we choose here to do it through a contract by cases, which adds further constraints to the usual contract by precon-
dition and postcondition. We want to consider here three cases:

• the desired value is found at the first index (1)

• the desired value is found at other indexes (2 to 10)

• the desired value is not found in the range 1 to 10

In the first case, we want to state that the index returned is 1. In the second case, we want to state that the search
succeeds. In the third case, we want to state that the search fails. We use a helper function Value_Found_In_Range
in linear_search.ads to express that a value Val is found in an array A within given bounds Low and Up:

1 function Value_Found_In_Range
2 (A : Arr;
3 Val : Element;

(continues on next page)
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4 Low, Up : Index) return Boolean
5 is (for some J in Low .. Up => A(J) = Val);
6

7 function Search
8 (A : Arr;
9 Val : Element) return Search_Result

10 with
11 Pre => Val >= 0,
12 Post => (if Search'Result.Found then
13 A (Search'Result.At_Index) = Val),
14 Contract_Cases =>
15 (A(1) = Val =>
16 Search'Result.At_Index = 1,
17 Value_Found_In_Range (A, Val, 2, 10) =>
18 Search'Result.Found,
19 (for all J in Arr'Range => A(J) /= Val) =>
20 not Search'Result.Found);

Note that we express Value_Found_In_Range as an expression function, a function whose body consists of a single
expression, which can be given in a specification file.

Note also the use of quantified expressions to express properties over collections: for some in
Value_Found_In_Range expresses an existential property (there exists an index in this range such that . . . ),
for all in the third contract case expresses a universal property (all indexes in this range are such that . . . ).

Each contract case consists of a guard (on the left of the arrow symbol) evaluated on subprogram entry, and a conse-
quence (on the right of the arrow symbol) evaluated on subprogram exit. The special expression Search'Result may
be used in consequence expressions. The three guards here should cover all possible cases, and be disjoint. When a
contract case is activated (meaning its guard holds on entry), its consequence should hold on exit.

The program obtained so far is a valid SPARK program, which GNAT analyzes semantically without errors or warnings.

6.2 Testing SPARK Programs
We can compile the above program, and test it on a set of selected inputs. The following test program in file
test_search.adb exercises the case where the searched value is present in the array and the case where it is not:

1 with Linear_Search; use Linear_Search;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 procedure Test_Search is
5 A : constant Arr := (1, 5, 3, 8, 8, 2, 0, 1, 0, 4);
6 Res : Search_Result;
7

8 begin
9 Res := Search (A, 1);

10 if Res.Found then
11 if Res.At_Index = 1 then
12 Put_Line ("OK: Found existing value at first index");
13 else
14 Put_Line ("not OK: Found existing value at other index");
15 end if;
16 else

(continues on next page)
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17 Put_Line ("not OK: Did not find existing value");
18 end if;
19

20 Res := Search (A, 6);
21 if not Res.Found then
22 Put_Line ("OK: Did not find non-existing value");
23 else
24 Put_Line ("not OK: Found non-existing value");
25 end if;
26 end Test_Search;

We can check that the implementation of Linear_Search passes this test by compiling and running the test program:

$ gprbuild test_search.adb
$ test_search
> OK: Found existing value at first index
> OK: Did not find non-existing value

Note

We use above the command-line interface to compile and run the test program test_search.adb. You can do the
same inside GNAT Studio by selecting the menu Project → Properties and inside the panel Main of folder Sources,
add test_search.adb as a main file. Then, click OK. To generate the test_search executable, you can now
select the menu Build → Project → test_search.adb and to run the test_search executable, you can select the
menu Build → Run → test_search.

But only part of the program was really tested, as the contract was not checked during execution. To check the contract
at run time, we recompile with the switch -gnata (a for assertions, plus switch -f to force recompilation of sources
that have not changed):

• a check is inserted that the precondition holds on subprogram entry

• a check is inserted that the postcondition holds on subprogram exit

• a check is inserted that the guards of contract cases are disjoint on subprogram entry (no two cases are activated
at the same time)

• a check is inserted that the guards of contract cases are complete on subprogram entry (one case must be activated)

• a check is inserted that the consequence of the activated contract case holds on subprogram exit

Note that the evaluation of the above assertions may also trigger other run-time check failures, like an index out of
bounds. With these additional run-time checks, an error is reported when running the test program:

$ gprbuild -gnata -f test_search.adb
$ test_search
> raised ADA.ASSERTIONS.ASSERTION_ERROR : contract cases overlap for subprogram search

Note

We use above the command-line interface to add compilation switch -gnata and force recompilation with switch
-f. You can do the same inside GNAT Studio by selecting the menu Project → Properties and inside the panel
Ada of the subfolder Switches of folder Build, select the checkbox Enable assertions. Then, click OK. To force
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recompilation with the new switch, you can now select the menu Build → Clean → Clean All followed by recom-
pilation with Build → Project → test_search.adb. Then run the test_search executable with Build → Run →
test_search.

It appears that two contract cases for Search are activated at the same time! More information can be generated at run
time if the code is compiled with the switch -gnateE:

$ gprbuild -gnata -gnateE -f test_search.adb
$ test_search
> raised ADA.ASSERTIONS.ASSERTION_ERROR : contract cases overlap for subprogram search
> case guard at linear_search.ads:33 evaluates to True
> case guard at linear_search.ads:35 evaluates to True

It shows here that the guards of the first and second contract cases hold at the same time. This failure in annotations
can be debugged with gdb like a failure in the code (provided the program was compiled with appropriate switches,
like -g -O0). The stack trace inside GNAT Studio shows that the error occurs on the first call to Search in the test
program:

Indeed, the value 1 is present twice in the array, at indexes 1 and 8, which makes the two guards A(1) =
Val and Value_Found_In_Range (A, Val, 2, 10) evaluate to True. We correct the contract of Search in
linear_search.ads by strengthening the guard of the second contract case, so that it only applies when the value is
not found at index 1:

1 Contract_Cases =>
2 (A(1) = Val =>
3 Search'Result.At_Index = 1,
4 A(1) /= Val and then Value_Found_In_Range (A, Val, 2, 10) =>
5 Search'Result.Found,

(continues on next page)
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6 (for all J in Arr'Range => A(J) /= Val) =>
7 not Search'Result.Found);

With this updated contract, the test passes again, but this time with assertions checked at run time:

$ gnatmake -gnata test_search.adb
$ test_search
> OK: Found existing value at first index
> OK: Did not find non-existing value

The program obtained so far passes successfully a test campaign (of one test!) that achieves 100% coverage for all
the common coverage criteria, once impossible paths have been ruled out: statement coverage, condition coverage, the
MC/DC coverage used in avionics, and even the full static path coverage.

6.3 Proving SPARK Programs
Formal verification of SPARK programs is a two-step process:

1. the first step checks that flows through the program correctly implement the specified flows (if any), and that all
values read are initialized.

2. the second step checks that the program correctly implement its specified contracts (if any), and that no run-time
error can be raised.

Step 1 is implemented as a static analysis pass in the tool GNATprove, in flow mode. We have seen this flow analysis
at work earlier (see Checking SPARK Initialization Policy). Step 2 is implemented as a deductive verification (a.k.a.
proof ) pass in the tool GNATprove, in the default all mode.

The difference between these two steps should be emphasized. Flow analysis in step 1 is a terminating algorithm,
which typically takes 2 to 10 times as long as compilation to complete. Proof in step 2 is based on the generation of
logical formulas for each check to prove, which are then passed on to automatic provers to decide whether the logical
formula holds or not. The generation of logical formulas is a translation phase, which typically takes 10 times as long
as compilation to complete. The automatic proof of logical formulas may take a very long time, or never terminate,
hence the use of a timeout (1s at proof level 0) for each call to the automatic provers. It is this last step which takes
the most time when calling GNATprove on a program, but it is also a step which can be completely parallelized (using
switch -j to specify the number of parallel processes): each logical formula can be proved independently, so the more
cores are available the faster it completes.

Note

The proof results presented in this tutorial may slightly vary from the results you obtain on your machine, as
automatic provers may take more or less time to complete a proof depending on the platform and machine used.

Let us continue with our running example. This time we will see how step 2 works to prove contracts and absence of
run-time errors, using the main mode all of GNATprove reached through the SPARK → Prove File menu.
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Note

The proof panels presented in this tutorial correspond to an advanced user profile. A simpler proof panel is displayed
when the basic user profile is selected (the default). You can switch to the advanced user profile in menu Edit →
Preferences → SPARK, by changing the value of User profile from Basic to Advanced. See Running GNATprove
from GNAT Studio for details.

We use the default settings and click on Execute. It completes in a few seconds, with a message stating that some checks
could not be proved:
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Note that there is no such message on the postcondition of Search, which means that it was proved. Likewise, there
are no such messages on the body of Search, which means that no run-time errors can be raised when executing the
function.

These messages correspond to checks done when exiting from Search. It is expected that not much can be proved at
this point, given that the body of Search has a loop but no loop invariant, so the formulas generated for these checks
assume the worst about locations modified in the loop. A loop invariant is a special pragma Loop_Invariant stating
an assertion in a loop, which can be both executed at run-time like a regular pragma Assert, and used by GNATprove
to summarize the effect of successive iterations of the loop. We need to add a loop invariant in linear_search.adb
stating enough properties about the cumulative effect of loop iterations, so that the contract cases of Search become
provable. Here, it should state that the value searched was not previously found:

pragma Loop_Invariant
(not Value_Found_In_Range (A, Val, A'First, Pos));

As stated above, this invariant holds exactly between the two statements in the loop in linear_search.adb (after the
if-statement, before the increment of the index). Thus, it should be inserted at this place. With this loop invariant, two
checks previously not proved are now proved, and a check previously proved becomes unproved:
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The new unproved checks may seem odd, since all we did was add information in the form of a loop invariant. The
reason is that we also removed information at the same time. By adding a loop invariant, we require GNATprove to
prove iterations around the (virtual) loop formed by the following steps:

1. Take any context satisfying the loop invariant, which summarizes all previous iterations of the loop.

2. Execute the end of a source loop iteration (just the increment here).

3. Test whether the loop exits, and continue with values which do not exit.

4. Execute the start of a source loop iteration (just the if-statement here).

5. Check that the loop invariant still holds.

Around this virtual loop, nothing guarantees that the index Pos is below the maximal index at step 2 (the increment),
so the range check cannot be proved. It was previously proved because, in the absence of a loop invariant, GNATprove
proves iterations around the source loop, and then we get the information that, since the loop did not exit, its test Pos
< A'Last is false, so the range check can be proved.

We solve this issue by setting the type of Pos in linear_search.adb to the base type of Index, which ranges past
the last value of Index. (This may not be the simplest solution, but we use it here for the dynamics of this tutorial.)

Pos : Index'Base := A'First;

And we add the range information for Pos to the loop invariant in linear_search.adb:

pragma Loop_Invariant
(Pos in A'Range
and then

not Value_Found_In_Range (A, Val, A'First, Pos));

This allows GNATprove to prove the range check, but not the contract:

6.3. Proving SPARK Programs 197



SPARK User’s Guide, Release 15.0

This is actually progress! Indeed, the loop invariant should be strong enough to:

1. prove the absence of run-time errors in the loop and after the loop

2. prove that it is preserved from iteration to iteration

3. prove the postcondition and contract cases of the subprogram

So we have just achieved goal 1 above!

As we have modified the code and annotations, it is a good time to compile and run our test program, before doing any
more formal verification work. This helps catch bugs early, and it’s easy to do! In particular, the loop invariant will be
dynamically checked at each iteration through the loop. Here, testing does not show any problems:

$ gnatmake -gnata test_search.adb
$ test_search
> OK: Found existing value at first index
> OK: Did not find non-existing value

The next easy thing to do is to increase the proof level. Its default of 0 is deliberately low, to facilitate interaction with
GNATprove during the development of annotations, but it is not sufficient to prove the more complex checks. Let’s
increase it to level 2 (passing switch --level=2 or equivalently setting the Proof level to 2 in the proof panel), and
rerun GNATprove:
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The unproved check remains in the contract cases of Linear_Search. The next step is to use the SPARK → Prove
Line contextual menu available on line 35:

We further increase the Proof level to 3 to maximize proof precision, and click on Execute:
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This runs GNATprove only on the checks that originate from line 35. The check is still not proved. This corresponds
to a case where the implementation of Search does not find the searched value, but the guard of the second contract
case holds, meaning that the value is present in the range 2 to 10. Looking more closely at the code, we can see that
the loop exits when Pos = A'Last, so the value 10 is never considered! We correct this bug by changing the loop test
in linear_search.adb from a strict to a non-strict comparison operation:

while Pos <= A'Last loop

On this modified code, we rerun GNATprove on line 35, selecting value all checks with provers used for the
value of Report in the proof panel to get information even when a check is proved. The reassuring green or blue color
(and the accompanying info message) show that the check was proved this time:
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As usual after code changes, we rerun the test program, which shows no errors. Rerunning GNATprove on the complete
file shows no more unproved checks. The Linear_Search unit has been fully proved. To see all the checks that were
proved, we can rerun the tool with value all checks with provers used for the value of Report in the proof
panel, which displays the results previously computed:
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Note that one thing that was not proved is that Search terminates. As it contains a while-loop, it could loop forever.
To prove that it is not the case, we add a loop variant, which specifies a quantity varying monotonically with each
iteration. Since this quantity is bounded by its type, and we have proved absence of run-time errors in Search, proving
this monotonicity property also shows that there cannot be an infinite number of iterations of the loop. The natural
loop variant for Search is the index Pos, which increases at each loop iteration:

pragma Loop_Variant (Increases => Pos);

With this line inserted after the loop invariant in linear_search.adb, the test program still runs without errors (it
checks dynamically that the loop variant is respected), and the program is still fully proved. Here is the final version of
Linear_Search, with the complete annotations:

1 package Linear_Search
2 with SPARK_Mode
3 is
4

5 type Index is range 1 .. 10;
6 type Element is new Integer;
7

8 type Arr is array (Index) of Element;
9

10 type Search_Result (Found : Boolean := False) is record
11 case Found is
12 when True =>
13 At_Index : Index;
14 when False =>
15 null;

(continues on next page)
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(continued from previous page)

16 end case;
17 end record;
18

19 function Value_Found_In_Range
20 (A : Arr;
21 Val : Element;
22 Low, Up : Index) return Boolean
23 is (for some J in Low .. Up => A(J) = Val);
24

25 function Search
26 (A : Arr;
27 Val : Element) return Search_Result
28 with
29 Pre => Val >= 0,
30 Post => (if Search'Result.Found then
31 A (Search'Result.At_Index) = Val),
32 Contract_Cases =>
33 (A(1) = Val =>
34 Search'Result.At_Index = 1,
35 A(1) /= Val and then Value_Found_In_Range (A, Val, 2, 10) =>
36 Search'Result.Found,
37 (for all J in Arr'Range => A(J) /= Val) =>
38 not Search'Result.Found);
39

40 end Linear_Search;

1 package body Linear_Search
2 with SPARK_Mode
3 is
4

5 function Search
6 (A : Arr;
7 Val : Element) return Search_Result
8 is
9 Pos : Index'Base := A'First;

10 Res : Search_Result;
11 begin
12 while Pos <= A'Last loop
13 if A(Pos) = Val then
14 Res := (Found => True,
15 At_Index => Pos);
16 return Res;
17 end if;
18

19 pragma Loop_Invariant
20 (Pos in A'Range
21 and then
22 not Value_Found_In_Range (A, Val, A'First, Pos));
23 pragma Loop_Variant (Increases => Pos);
24

25 Pos := Pos + 1;
26 end loop;

(continues on next page)
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(continued from previous page)

27

28 Res := (Found => False);
29 return Res;
30 end Search;
31

32 end Linear_Search;

This concludes our tutorial on the SPARK toolset.
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CHAPTER

SEVEN

FORMAL VERIFICATION WITH GNATPROVE

The GNATprove tool is packaged as an executable called gnatprove. Like other tools in GNAT toolsuite, GNATprove
is based on the structure of GNAT projects, defined in .gpr files.

A crucial feature of GNATprove is that it interprets annotations exactly like they are interpreted at run time during tests.
In particular, their executable semantics includes the verification of run-time checks, which can be verified statically
with GNATprove. GNATprove also performs additional verifications on the specification of the expected behavior
itself, and its correspondence to the code.

7.1 How to Run GNATprove

7.1.1 Setting Up a Project File
Basic Project Set Up

If not already done, create a GNAT project file (.gpr), as documented in the GNAT User’s Guide, section GNAT Project
Manager. See also Project Attributes for optional project attributes to specify the proof directory and other GNATprove
switches in the project file directly.

Note that you can use the project wizard from GNAT Studio to create a project file interactively, via the menu File →
New Project. . . . In the dialog, see in particular the default option (Single Project).

If you want to get started quickly, and assuming a standard naming scheme using .ads/.adb lower case files and a
single source directory, then your project file will look like:

project My_Project is
for Source_Dirs use (".");

end My_Project;

saved in a file called my_project.gpr.

Having Different Switches for Compilation and Verification

In some cases, you may want to pass different compilation-level switches to GNAT and GNATprove, for example use
warning switches only for compilation, in the same project file. In that case, you can use a scenario variable to specify
different switches for compilation and verification. We recommend to use the predefined GPR_TOOL variable for this
purpose:

project My_Project is

Mode := External ("GPR_TOOL", "");

package Compiler is
(continues on next page)
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case Mode is
when "gnatprove" =>
for Switches ("Ada") use ...

when others =>
for Switches ("Ada") use ...

end case;
end Compiler;

end My_Project;

With the above project, compilation will be automatically done in the “normal” mode (the “others” branch above):

gprbuild -P my_project.gpr

while GNATprove automatically sets the GPR_TOOL variable to the gnatprove value:

gnatprove -P my_project.gpr

Other tools set the value of this variable to other values. See the documentation of other AdaCore tools to know more
about this.

Note that before SPARK Pro 20, the GPR_TOOL was not set automatically by the tool. You can set it manually in this
case:

gnatprove -P my_project.gpr -XGPR_TOOL=gnatprove

7.1.2 Running GNATprove from the Command Line
We recommend running GNATprove from the command line using a project file, as follows:

gnatprove -P <project-file.gpr>

In the appendix, section Command Line Invocation, you can find an exhaustive list of switches; here we only give an
overview over the most common uses.

There are essentially three common ways you can select the files which will be analyzed by GNATprove:

• Analyze everything:

gnatprove -P <project-file.gpr> -U

With switch -U, all units of all projects in the project tree are analyzed. This includes units that are not used yet.

This is usually what you want to use for an overnight analysis of a complex project.

• Analyze this project:

gnatprove -P <project-file.gpr>

All main units in the specified project and all units they (recursively) depend on are analyzed. If there are no
main units specified, analyze all files in the project. Note that main units of projects that the specified project
depends on are not taken into account.

This is what you want to use for the analysis of a particular executable only, or if you want to analyze different
executables within a complex project with different options.

• Analyze files:
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gnatprove -P <project-file.gpr> [-u] FILES...

If -u is specified, we only analyze the units that contain the given files. If -u is not specified, we also analyze
all units these units (recursively) depend on.

This usage is intended for the day-to-day command-line or IDE use of GNATprove when implementing a project.

Note that GNATprove always analyzes units as a whole, and cannot analyze a specification (.ads) file indepen-
dently from a body (.adb) file. So if you specify a specification file that has a corresponding body, both are
analyzed. The same is true for subunits such as separate subprograms: if you specify such a file name, the entire
unit is analyzed.

GNATprove consists of two distinct analyses: flow analysis and proof. Flow analysis checks the correctness of aspects
related to data flow (Global, Depends, Abstract_State, Initializes, and refinement versions of these), and
verifies the initialization of variables. Proof verifies the absence of run-time errors and the correctness of assertions
such as Pre and Post aspects. Using the switch --mode=<mode>, whose possible values are check, check_all,
flow, prove all, stone, bronze, silver and gold, you can choose which analysis is performed:

• In mode check, GNATprove partially checks that the program does not violate SPARK restrictions. The benefit
of using this mode prior to mode check_all is that it is much faster, as it does not require the results of flow
analysis.

• In mode check_all (stone is a synonym for this mode), GNATprove fully checks that the program does not
violate SPARK restrictions, including checks not performed in mode check like the absence of side effects in
regular functions. Mode check_all includes mode check.

• In mode flow (bronze is a synonym for this mode), GNATprove checks that no uninitialized data are read in the
program, and that the specified data dependencies and flow dependencies are respected in the implementation.
Mode flow includes mode check_all. This phase is called flow analysis.

• In mode prove , GNATprove checks that the program is free from run-time errors, and that the specified func-
tional contracts are respected in the implementation. Mode prove includes mode check_all, as well as the part
of mode flow that checks that no uninitialized data are read, to guarantee soundness of the proof results. This
phase is called proof.

• In the default mode all, GNATprove does both flow analysis and proof. The silver and gold modes are
synonyms for this mode.

Using the option --limit-line one can limit proofs to a particular file and line of an Ada file. For example, if you
want to prove only line 12 of file example.adb, you can add the option --limit-line=example.adb:12 to the
call to GNATprove. Using the option --limit-lines=file, one can provide a file to GNATprove where each line
indicates a line to analyze. For example, such a file could look like this:

example.adb:12
example.adb:15

Using --limit-region one can limit proofs to a range of lines in a particular file. For example,
--limit-region=example.adb:12:14 will limit analysis to lines 12 to 14 in example.adb.

Using the --limit-name option, users can limit the analysis to subprograms that have a specific name. Note that this
option doesn’t change the set of units on which the analysis is run. For example, if a subprogram is outside of the
closure of the main program, it will not be analyzed even if the --limit-name option with the corresponding name is
provided.

The --limit-name option cannot distinguish between multiple subprograms that have the same name. Users can use
the --limit-subp option, which expects a location. As an example, the option --limit-subp=example.ads:12
limits the analysis to the subprogram declared at line 12 in example.ads. Note that --limit-subp implies analysis
of the unit (example.ads in the example). If example.ads is a generic unit, SPARK skips analysis of such units by
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default, as only instances of generics are analyzed. You can specify the switch -U in this case to analyze all instances
of the generic subprogram.

One can specify a specific instance to analyze by specifying the place of instantiation: the option
--limit-subp=inst.adb:10:example.ads:12 analyzes the same subprogram, but only the instance that was cre-
ated via the instantiation at line 10 of inst.adb. One can specify a longer chain if inst.adb is also part of a generic
subprogram or package. In all cases, the -U switch is only needed if the first unit is a generic unit.

A number of options exist to influence the behavior for proof. Internally, the prover(s) specified with option --prover
is/are called repeatedly for each check or assertion. Using the options --timeout and --memlimit, one can change
the maximal time and memory that is allocated to each prover to prove each check or assertion. Using the option
--steps, one can set the maximum number of reasoning steps that the prover is allowed to perform before giving
up. The --steps option should be used when repeatable results are required, because the results with a timeout and
memory limit may differ depending on the computing power, current load or platform of the machine. A default value
of 100 for --steps is used if none of --steps or --timeout is used, either directly or indirectly through --level.
The option -j activates parallel compilation and parallel proofs. With -jnnn, at most nnn cores can be used in parallel.
With the special value -j0, at most N cores can be used in parallel, when N is the number of cores on the machine.

Note

When the project has a main file, or a file is passed as starting point to gnatprove, and the dependencies in the
project are very linear (unit A depends only on unit B, which depends only on unit C, etc), then even when the -j
switch is used, gnatprove may only consider one file at a time. This problem can be avoided by additionally using
the -U switch.

Note

The –memlimit switch is currently ineffective on the Mac OS X operating system, due to limitations of the under-
lying system call on that system.

The way checks are passed to the prover can also be influenced using the option --proof. By default, the prover is
invoked a single time for each check or assertion (mode per_check). This can be changed using mode per_path to
invoke the prover for each path that leads to the check. This option usually takes much longer, because the prover is
invoked much more often, but may give better proof results. Finally, in mode progressive, invoking the prover a
single time on the entire check is tried, and only if the check is not proved, then other techniques that progressively
consider each path in isolation are tried.

The proof mode set with --proof can be extended with a qualifier all or lazy, so that the entire switch may for
example look like this: --proof=progressive:all. With this qualifier, one can select if proof should stop at the
first unproved formula (to save time) for a check or should continue attempting to prove the other formulas related to
the same check (typically to identify more precisely which formulas are left unproved, which can be then be handled
with manual proof). The former is most suited for fully automatic proof, it is the default value, and can be explicitly
selected with lazy. The latter is most suited for combination of automatic and manual proof and can be selected with
all.

Instead of setting individually switches that influence the speed and power of proof, one may use the switch --level,
which corresponds to predefined proof levels, from the faster level 0 to the more powerful level 4. More precisely, each
value of --level is equivalent to directly setting a collection of other switches discussed above:

• --level=0 is equivalent to --prover=cvc5 --timeout=1 --memlimit=1000 --steps=0
--counterexamples=off

• --level=1 is equivalent to --prover=cvc5,z3,altergo --timeout=1 --memlimit=1000 --steps=0
--counterexamples=off
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• --level=2 is equivalent to --prover=cvc5,z3,altergo --timeout=5 --memlimit=1000 --steps=0
--counterexamples=on

• --level=3 is equivalent to --prover=cvc5,z3,altergo --timeout=20 --memlimit=2000 --steps=0
--counterexamples=on

• --level=4 is equivalent to --prover=cvc5,z3,altergo --timeout=60 --memlimit=2000 --steps=0
--counterexamples=on

If both --level is set and an underlying switch is set (--prover, --timeout, --proof, or --counterexamples),
the value of the latter takes precedence over the value set through --level.

Note that using --level does not provide results that are reproducible accross different machines. For nightly builds
or shared repositories, consider using the --steps or --replay switches instead. The number of steps required to
proved an example can be accessed by running GNATprove with the option --report=statistics.

By default, GNATprove avoids reanalyzing unchanged files, on a per-unit basis. This mechanism can be disabled with
the option -f.

When GNATprove proves a check, it stores this result in a session file, along with the required time and steps for this
check to be proved. This information can be used to replay the proofs, to check that they are indeed correct. If such
session files are present, and when GNATprove is invoked using the --replay option, it will attempt such a replay,
using the same prover that was able to prove the check last time, with some slightly higher time and step limit. In
this mode, the user-provided steps and time limits are ignored. If the --prover option is not provided, GNATprove
will attempt to replay all checks, otherwise it will replay only the proofs proved by one of the specified provers. If
all replays succeeded, GNATprove output will be exactly the same as a normal run of GNATprove. If a replay failed,
the corresponding check will be reported as not proved. If a replay has not been attempted because the corresponding
prover is not available (a third-party prover that is not configured, or the user has selected other provers using the
--prover option), a warning will be issued that the proof could not be replayed, but the check will still be marked as
proved.

By default, GNATprove stops at the first unit where it detect errors (violations of Ada or SPARK legality rules). The
option -k can be used to get GNATprove to issue errors of the same kind for multiple units. If there are any violations
of Ada legality rules, GNATprove does not attempt any analysis. If there are violations of SPARK legality rules,
GNATprove stops after the checking phase and does not attempt flow analysis or proof.

GNATprove returns with a non-zero exit status when an error is detected. This includes cases where GNATprove
issues unproved check messages when switch --checks-as-errors=on is used, as well as cases where GNATprove
issues warnings when switch --warnings=error is used. In such cases, GNATprove also issues a message about
termination in error. Otherwise, GNATprove returns with an exit status of zero, even when unproved check messages
and warnings are issued.

7.1.3 Using the GNAT Target Runtime Directory
If you are using GNAT as your target compiler and explicitly specify a runtime and target to use in your project, for
instance:

for Target use "arm-eabi";
for Runtime ("Ada") use "ravenscar-sfp-stm32f4";

GNATprove will take such setting into account and will use the GNAT runtime directory, as long as your target compiler
is found in your PATH environment variable. Note that you will need to use a matching version of GNAT and SPARK
(e.g. GNAT 18.2 and SPARK 18.2).

The handling of runtimes of GNATprove is in fact unified with that of the GNAT compiler. For details, see “GNAT
User’s Guide Supplement for Cross Platforms”, Section 3. If you specify a target, note that GNATprove requires
additional configuration, see the section Specifying the Target Architecture and Implementation-Defined Behavior.
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If you’re using GNAT Common Code Generator to generate C code from SPARK, you can specify the target and
runtime as follows:

for Target use "c";
for Runtime ("Ada") use "ccg";

As an alternative to these project file settings, you can also use the command-line switches --RTS and --target to
specify the target and runtime.

7.1.4 Specifying the Target Architecture and Implementation-Defined Behavior
A SPARK program is guaranteed to be unambiguous, so that formal verification of properties is possible. However,
some behaviors (for example some representation attribute values like the Size attribute) may depend on the com-
piler used. By default, GNATprove adopts the same choices as the GNAT compiler. GNATprove also supports other
compilers by providing special switches:

• -gnateT for specifying the target configuration

• --pedantic for warnings about possible implementation-defined behavior

Note that, even with switch --pedantic, GNATprove only detects some implementation-defined behaviors. For more
details, see the dedicated section on how to Ensure Portability of Programs.

Note that GNATprove will always choose the smallest multiple of 8 bits for the base type, which is a safe and conser-
vative choice for any Ada compiler.

Target Parameterization

If you specify the Target and Runtime attributes in your project file or via the --target and --RTS switches, GNAT-
prove attempts to configure automatically the target dependent values such as endianness or sizes and alignments of
standard types. If this automatic configuration fails, GNATprove outputs a warning and assumes that the compilation
target is the same as the host on which it is run.

You can however configure the target dependent values manually. In addition to specifying the target and runtime via
the project file or the commandline, you need to add the following to your project file, under a scenario variable as seen
in Having Different Switches for Compilation and Verification:

project My_Project is
[...]
package Builder is
case Mode is
when "Compile" =>

...
when "Analyze" =>
for Global_Compilation_Switches ("Ada") use ("-gnateT=" & My_Project'Project_

↪→Dir & "/target.atp");
end case;

end Builder;
end My_Project;

where target.atp is a file stored here in the same directory as the project file my_project.gpr, which contains the
target parametrization. The format of this file is described in the GNAT User’s Guide as part of the -gnateT switch
description.

Target parameterization can be used:

• to specify a target different than the host on which GNATprove is run, when cross-compilation is used. If GNAT
is the cross compiler and the automatic configuration fails, the configuration file can be generated by calling the
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compiler for your target with the switch -gnatet=target.atp. Otherwise, the target file should be generated
manually.

• to specify the parameters for a different compiler than GNAT, even when the host and target are the same. In that
case, the target file should be generated manually.

Here is an example of a configuration file for a bare board PowerPC 750 processor configured as big-endian:

Bits_BE 1
Bits_Per_Unit 8
Bits_Per_Word 32
Bytes_BE 1
Char_Size 8
Double_Float_Alignment 0
Double_Scalar_Alignment 0
Double_Size 64
Float_Size 32
Float_Words_BE 1
Int_Size 32
Long_Double_Size 64
Long_Long_Size 64
Long_Size 32
Maximum_Alignment 16
Max_Unaligned_Field 64
Pointer_Size 32
Short_Enums 0
Short_Size 16
Strict_Alignment 1
System_Allocator_Alignment 8
Wchar_T_Size 32
Words_BE 1

float 6 I 32 32
double 15 I 64 64
long double 15 I 64 64

7.1.5 Running GNATprove from GNAT Studio
GNATprove can be run from GNAT Studio. When GNATprove is installed and found on your PATH, a SPARK menu
is available with the following entries:

Submenu Action
Examine All This runs GNATprove in flow analysis mode on all mains and the units they depend on in

the project.
Examine All
Sources

This runs GNATprove in flow analysis mode on all files in the project.

Examine File This runs GNATprove in flow analysis mode on the current unit, its body and any subunits.
Prove All This runs GNATprove on all mains and the units they depend on in the project.
Prove All Sources This runs GNATprove on all files in the project.
Prove File This runs GNATprove on the current unit, its body and any subunits.
Show Report This displays the report file generated by GNATprove.
Clean Proofs This removes all files generated by GNATprove.
Show Previous Runs This displays previous runs of GNATprove.
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The three “Prove. . . ” entries run GNATprove in the mode given by the project file, or in the default mode “all” if no
mode is specified.

The menus SPARK → Examine/Prove All run GNATprove on all main files in the project, and all files they depend on
(recursively). Both main files in the root project and in projects that are included in the root project are considered. The
menus SPARK → Examine/Prove All Sources run GNATprove on all files in all projects. On a project that has neither
main files nor includes other projects, menus SPARK → Examine/Prove All and SPARK → Examine/Prove All Sources
are equivalent.

The menu SPARK → Show Previous Runs gives access to the results of previous runs of GNATprove on the project,
up to a bound which can be set using the Edit → Preferences dialog in GNAT Studio, and opening the Plugins →
Gnatprove Runs section. Note that the higher this bound, the more disk space will be used to store the results of
previous runs of GNATprove.

Keyboard shortcuts for these menu items can be set using the Edit → Preferences dialog in GNAT Studio, and opening
the General → Key Shortcuts section.

Note

The changes made by users in the panels raised by these submenus are persistent from one session to the other. Be
sure to check that the selected checkboxes and additional switches that were previously added are still appropriate.

When editing an Ada file, GNATprove can also be run from a SPARK contextual menu, which can be obtained by a
right click:

Submenu Action
Examine File This runs GNATprove in flow analysis mode on the current unit, its body and any subunits.
Examine Subpro-
gram

This runs GNATprove in flow analysis mode on the current subprogram.

Prove File This runs GNATprove on the current unit, its body and any subunits.
Prove Subprogram This runs GNATprove on the current subprogram.
Prove Line This runs GNATprove on the current line.
Prove Selected Re-
gion

This runs GNATprove on the currently selected region.

Prove Check This runs GNATprove on the current failing condition. GNATprove must have been run at
least once for this option to be available in order to know which conditions are failing.

Globals This generates Global contracts for the current file.

Except from Examine File, Prove File, and Globals, all other submenus are also applicable to code inside generic units,
in which case the corresponding action is applied to all instances of the generic unit in the project. For example, if a
generic unit is instantiated twice, selecting Prove Subprogram on a subprogram inside the generic unit will apply proof
to the two corresponding subprograms in instances of the generic unit.

The menus SPARK → Examine . . . open a panel which allows setting various switches for GNATprove’s analysis. The
main choice offered in this panel is to select the mode of analysis, among modes check, check_all (which corresponds
to the stone analysis mode) and flow (the default, which corresponds to the bronze analysis mode).

The menus SPARK → Prove . . . open a panel which allows setting various switches for GNATprove’s analysis, cor-
responding to the silver and gold analysis modes. By default, this panel offers a few simple choices, like the proof
level (see description of switch --level in Running GNATprove from the Command Line). If the user changes its
User profile for SPARK (in the SPARK section of the Preferences dialog - menu Edit → Preferences) from Basic
to Advanced, then a more complex panel is displayed for proof, with more detailed switches.

GNATprove project switches can be edited from the panel GNATprove (menu Edit → Project Properties, in the Build
→ Switches section of the dialog).
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When proving a check fails on a specific path through a subprogram (for both checks verified in flow analysis and in
proof), GNATprove may generate path information for the user to see. The user can display this path in GNAT Studio
by clicking on the icon to the left of the failed proof message, or to the left of the corresponding line in the editor. The
path is hidden again when re-clicking on the same icon.

The contextual menu SPARK → Globals → . . . allows the user to show and hide the Global contracts that are internally
generated by GNATprove for the current unit. This can be useful when learning how to write Data Dependencies,
because the tool provides the contracts where they are missing. Note that this does not modify the unit source code -
the Global contracts are inserted into a special buffer; the buffer contents can be copy-pasted into the editor if desired.

For checks verified in proof, GNATprove may also generate counterexample information for the user to see (see Un-
derstanding Counterexamples). The user can display this counterexample in GNAT Studio by clicking on the icon to
the left of the failed proof message, or to the left of the corresponding line in the editor. The counterexample is hidden
again when re-clicking on the same icon.

A monospace font with ligature like Fira Code (https://github.com/tonsky/FiraCode) or Hasklig (https://github.com/
i-tu/Hasklig) can be separately installed and selected to make contracts more readable inside GNAT Studio or GNAT-
bench. See the following screenshot which shows how symbols like => (arrow) or >= (greater than or equal) are
displayed in such a font:

7.1.6 Running GNATprove from Visual Studio Code
GNATprove can be run from Visual Studio Code, using the Ada/SPARK extension for Visual Studio Code. It provides
the following “auto-detected” tasks (under menu Terminal → Run Task. . . ):

Submenu Action
Examine project This runs GNATprove in flow analysis mode on all mains and the units they depend on in

the project.
Examine file This runs GNATprove in flow analysis mode on the current unit, its body and any subunits.
Examine subpro-
gram

This runs GNATprove in flow analysis mode on the current subprogram.

Prove project This runs GNATprove on all mains and the units they depend on in the project.
Prove file This runs GNATprove on the current unit, its body and any subunits.
Prove subprogram This runs GNATprove on the current subprogram.
Prove selected re-
gion

This runs GNATprove on the currently selected region.

Prove line This runs GNATprove on the current line.

7.1. How to Run GNATprove 213

https://github.com/tonsky/FiraCode
https://github.com/i-tu/Hasklig
https://github.com/i-tu/Hasklig
https://marketplace.visualstudio.com/items?itemName=AdaCore.ada


SPARK User’s Guide, Release 15.0

7.1.7 Running GNATprove from GNATbench
GNATprove can be run from GNATbench. When GNATprove is installed and found on your PATH, a SPARK menu
is available with the following entries:

Submenu Action
Examine All This runs GNATprove in flow analysis mode on all mains and the units they depend on in

the project.
Examine All
Sources

This runs GNATprove in flow analysis mode on all files in the project.

Examine File This runs GNATprove in flow analysis mode on the current unit, its body and any subunits.
Prove All This runs GNATprove on all mains and the units they depend on in the project.
Prove All Sources This runs GNATprove on all files in the project.
Prove File This runs GNATprove on the current unit, its body and any subunits.
Show Report This displays the report file generated by GNATprove.
Clean Proofs This removes all files generated by GNATprove.

The three “Prove. . . ” entries run GNATprove in the mode given by the project file, or in the default mode “all” if no
mode is specified.

The menus SPARK → Examine/Prove All run GNATprove on all main files in the project, and all files they depend on
(recursively). Both main files in the root project and in projects that are included in the root project are considered. The
menus SPARK → Examine/Prove All Sources run GNATprove on all files in all projects. On a project that has neither
main files nor includes other projects, menus SPARK → Examine/Prove All and SPARK → Examine/Prove All Sources
are equivalent.

Note

The changes made by users in the panels raised by these submenus are persistent from one session to the other. Be
sure to check that the selected checkboxes and additional switches that were previously added are still appropriate.

When editing an Ada file, GNATprove can also be run from a SPARK contextual menu, which can be obtained by a
right click:

Submenu Action
Examine File This runs GNATprove in flow analysis mode on the current unit, its body and any subunits.
Examine Subpro-
gram

This runs GNATprove in flow analysis mode on the current subprogram.

Prove File This runs GNATprove on the current unit, its body and any subunits.
Prove Subprogram This runs GNATprove on the current subprogram.
Prove Line This runs GNATprove on the current line.
Globals This generates Global contracts for the current file.

7.1.8 Running GNATprove Without a Project File
GNATprove accepts the invocation without a project file (-P switch on the command line). In that case, if the current
directory contains exactly one project file, GNATprove uses this project file. If no project file exists, GNATprove
creates a trivial project file with the name default.gpr and uses that.
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7.1.9 GNATprove and Manual Proof
When automated provers fail to prove some condition that is valid, the validity may be proved using manual proof
inside GNAT Studio or an external interactive prover.

In the appendix, section Alternative Provers, is explained how to use different provers than the one GNATprove uses
as default.

Calling an Interactive Prover From the Command Line

When the prover used by GNATprove is configured as interactive, for each analysed condition, either:

• It is the first time the prover is used on the condition then a file (containing the condition as input to the specified
prover) is created in the project’s proof directory (see Project Attributes). GNATprove outputs a message con-
cerning this condition indicating the file that was created. The created file should be edited by the user in order
to prove the condition.

• The prover has already been used on this condition and the editable file exists. The prover is run on the file and
the success or failure of the proof is reported in the same way it is done with the default prover.

Note

Once a manual proof file is created and has been edited by the user, in order to run the prover on the file, the same
prover must be once again specified to GNATprove. Once the condition is proved, the result will be saved in the
why3 session so GNATprove won’t need to be specified the prover again to know that the condition is valid.

Analysis with GNATprove can be limited to a single condition with the --limit-line option:

gnatprove -P <project-file.gpr> --prover=<prover> --limit-line=<file>:<line>:<column>:
↪→<check-kind>

Please use the output of gnatprove --list-categories to determine the check-kind to be provided in this com-
mand.

Calling an Interactive Prover From GNAT Studio

After running GNATprove with proof mode, the menu SPARK → Prove Check is available by right-clicking on a check
message in the location tab or by right-clicking on a line that fails because of a single condition (i.e. there is only one
check in the output of GNATprove concerning this line).

In the dialog box, the field “Alternate prover” can be filled to use another prover than Alt-Ergo. If the alternative prover
is configured as “interactive”, after the execution of SPARK → Prove Check, GNAT Studio opens the manual proof file
with the editor corresponding to the prover under the condition that an editor is specified in the configuration of the
alternative prover.

Once the editor is closed, GNAT Studio re-executes SPARK→Prove Check. The user should verify the same alternative
prover as before is still specified. After execution, GNAT Studio will offer to re-edit the file if the proof fails.

7.1.10 How to Speed Up a Run of GNATprove
GNATprove can take some time on large programs with difficult checks to prove. This section describes how one can
improve the running time of the GNATprove tool. Note that some of the suggested settings will decrease the number
of proved checks or decrease usability of the tool, because spending more time often results in more successful proofs.
You may still want to try some of the suggestions here to see if the time spent by GNATprove is really useful in your
context.

These settings will speed up GNATprove:
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• Use the -j switch to use more than one core on your machine. GNATprove can make efficient usage of multi-
processing. If your machine has more than one processor or core, we strongly suggest to enable multi-processing,
using the -j switch. This switch should not have an impact on proof results, only on running time.

• Use --no-loop-unrolling to deactivate loop unrolling. Loop unrolling can often avoid the use of a loop
invariant, but it almost always will be more costly to analyze than a loop with a loop invariant. See also Automatic
Unrolling of Simple For-Loops.

• Use --no-inlining to deactivate contextual analysis of local subprograms without contracts. This feature can
often avoid the use of subprogram contracts, but it will be more costly to analyze such subprograms in their
calling context than analyzing them separately. See also Contextual Analysis of Subprograms Without Contracts.

• Use --counterexamples=off to deactive counterexamples. Counter-examples are very useful to understand
the reason for a failed proof attempt. You can disable this feature if you are not working on a failed proof attempt.

• Use the --level switch to use a lower level and faster preset. Generally, a lower level is faster than higher levels.
See also Running GNATprove from the Command Line.

• More fine-grained than the --level switch, you can directly set the --prover, --timeout and --steps op-
tions. Using only one prover with a small timeout or a small steps limit will result in much faster execution.

• If you have access to up-to-date session files, (see Running GNATprove from the Command Line) and you only
want to check the proof results of the stored session, you can use --replay. Replay only runs previously suc-
cessful provers and is therefore much faster than a run of GNATprove without this option.

• Use --function-sandboxing=off. By default, GNATprove sandboxes functions to limit the impact of In-
feasible Subprogram Contracts. These guards have a non-negligible impact on prover performance. If in your
project, all subprograms are in the SPARK subset, or you have confidence in the contracts you wrote for the
subprograms which are not in SPARK, you can disable these guards using the --function-sandboxing=off
option.

• Use --memcached-server switch for Sharing Proof Results Via a Cache.

7.1.11 GNATprove and Network File Systems or Shared Folders
On Linux and Mac-OS, GNATprove needs to create a Unix domain socket file. This might be a problem if GNATprove
attempts to create such a file in a directory that is a shared folder or on a network file system like NFS, which does not
support such folders. To minimize chances for this to occur, GNATprove determines the folder to create that special
file as follows:

• if the environment variable TMPDIR is set, and the corresponding directory exists and is writeable, use that;
otherwise,

• if /tmp exists and is writable, use that; otherwise,

• use the gnatprove subfolder of the object directory of the root project.

On Linux, GNATprove uses POSIX semaphores to coordinate parallel processes. If your system does not provide
POSIX semaphores (this may be the case in some virtualized environments), GNATprove fails with a message similar
to the following:

failed to create semaphore: Permission denied

In this case, you can use the switch –debug-no-semaphore to avoid the use of semaphores. This switch might reduce
the performance of the tool in some cases, but otherwise should not affect its behavior.
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7.2 How to View GNATprove Output
GNATprove produces two kinds of outputs: the one which is echoed to standard output or displayed in your IDE (GNAT
Studio or GNATbench), and a textual summary of the analysis results.

7.2.1 The Analysis Report Panel
GNAT Studio can display an interactive view reporting the results of the analysis, with a count of issues per file,
subprogram and severity, as well as filters to selectively view a subset of the issues only. This interactive view is dis-
played using the menu SPARK → Show Report. This menu becomes available after the checkbox Display analysis
report is checked in the SPARK section of the Preferences dialog - menu Edit → Preferences, and only if GNATprove
was run so that there are results to display.

Here is an example of this view:

7.2.2 The Analysis Results Summary File
GNATprove generates global project statistics in file gnatprove.out, which can be displayed in GNAT Studio using
the menu SPARK → Show Log. The file gnatprove.out is generated in the gnatprove subdirectory of the object
directory of the project.

When switch --output-header is used, this file starts with a header containing extra information about the run
including:

• The date and time of GNATprove run

• The GNATprove version that has generated this report

• The host for which GNATprove is configured (e.g. Windows 32 bits)

• The full command-line of the GNATprove invocation, including project file

• The GNATprove switches specified in the project file
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A summary table at the start of file gnatprove.out provides an overview of the verification results for all checks in
the project. The table may look like this:

-----------------------------------------------------------------------------------------
↪→--------------------------
SPARK Analysis results Total Flow Interval ␣
↪→Provers Justified Unproved
-----------------------------------------------------------------------------------------
↪→--------------------------
Data Dependencies 281 281 . ␣
↪→ . . .
Flow Dependencies 228 228 . ␣
↪→ . . .
Initialization 693 692 . ␣
↪→ . 1 .
Non-Aliasing . . . ␣
↪→ . . .
Run-time Checks 474 . . 458 (CVC5 95%, Trivial␣
↪→5%) 16 .
Assertions 45 . . 45 (CVC5 82%, Trivial␣
↪→18%) . .
Functional Contracts 304 . . 302 (CVC5 82%, Trivial␣
↪→18%) 2 .
LSP Verification . . . ␣
↪→ . . .
Termination . . . ␣
↪→ . . .
Concurrency . . . ␣
↪→ . . .
-----------------------------------------------------------------------------------------
↪→--------------------------
Total 2025 1201 (59%) . 805␣
↪→(40%) 19 (1%) .

The following table explains the lines of the summary table:

Line Description Explanation
Data Dependencies Verification of Data Dependencies and parameter modes
Flow Dependencies Verification of Flow Dependencies
Initialization Verification of Data Initialization Policy
Non-Aliasing Verification of Absence of Interferences
Run-time Checks Verification of absence of run-time errors (AoRTE) (except those raising Storage_Error)
Assertions Verification of Assertion Pragmas
Functional Contracts Verification of functional contracts (includes Subprogram Contracts, Package Contracts

and Type Contracts)
LSP Verification Verification related to Object Oriented Programming and Liskov Substitution Principle
Termination Verification related to Loop Variants and Subprogram Termination
Concurrency Verification related to Concurrency and Ravenscar Profile

We now explain the columns of the table.

• The Total column describes the total number of checks in this category.

• The Flow column describes the number of checks proved by flow analysis.
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• The Interval column describes the number of checks (overflow and range checks) proved by a simple static
analysis of bounds for floating-point expressions based on type bounds of sub-expressions.

• The Provers column describes the number of checks proved by automatic or manual provers. The column
also gives information on the provers used, and the percentage of checks proved by each prover. Note that
sometimes a check is proved by a combination of provers, hence the use of percentage instead of an absolute
count. Also note that generally the prover which is run first (as determined by the --prover command line
switch) proves the most checks, because each prover is called only on those checks that were not previously
proved. The prover percentages are provided in alphabetical order. The special name Trivial is used to refer
to an internal simplication that discards checks that are trivially true.

• The Justified column contains the number of checks for which the user has provided a Direct Justification
with Pragma Annotate.

• Finally, the column Unproved counts the checks which have neither been proved nor justified.

After the summary table, a line states the maximal steps that were consumed by automated provers. The line may look
like this:

max steps used for successful proof: 1234

The use of this line is to help with reproducability of a run of GNATprove that proved all checks and properties. If
the user provides the given number via the --steps option to GNATprove, and disables the time and memory limits,
(if enabled directly or indirectly such as via the --level switch), then GNATprove will again prove all checks and
properties. For example, if a user has proved all checks in a project using an invocation of GNATprove as follows:

gnatprove -P <projectfile> --level=2

then the following command will also prove all checks:

gnatprove -P <projectfile> --level=2 --timeout=0 --memlimit=0 --steps=1234

The next contents in the file are statistics describing:

• which units were analyzed (with flow analysis, proof, or both)

• if the analysis for a given unit was incomplete because of errors

• which subprograms in these units were analyzed (with flow analysis, proof, or both)

• the results of this analysis

7.2.3 Categories of Messages
GNATprove issues four different kinds of messages: errors, warnings, check messages and information messages.

• Errors are issued for SPARK violations or other language legality problems, or any other problem which does
not allow to proceed to analysis. Errors cannot be suppressed and must be fixed to proceed with analysis.

• Warnings are issued for any suspicious situation like unused values of variables, useless assignments, etc. Warn-
ings are prefixed with the text "warning: " and can be suppressed with pragma Warnings, see section Sup-
pressing Warnings.

• Check messages are issued for any potential problem in the code which could affect the correctness of the pro-
gram, such as missing initialization, possible failing run-time checks or unproved assertions. Checks come with
a severity, and depending on the severity the message text is prefixed with "low: ", "medium: " or "high:
". Check messages cannot be suppressed like warnings, but they can be individually justified with pragma
Annotate, see section Justifying Check Messages.
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• Information messages are issued to notify the user of limitations of GNATprove on some constructs, or to prevent
possible confusion in understanding the output of GNATprove. They are also issued to report proved checks in
some modes of GNATprove.

7.2.4 Errors and Completeness of Analysis
As mentioned in the previous section, if errors are encountered (manifested by an error message), the analysis may not
be complete.

At the project level, GNATprove analyzes the units of a project independently, and stops when a unit contains an error.
Other units may not be analyzed in this case. You can use the command line switch -k to analyze all units even in the
presence of errors. Of course this may take more time.

At the unit level, errors in earlier phases stop the analysis and block the display of other errors. If this happens, the
gnatprove.out file contains information about this, for example:

flow analysis and proof skipped for this unit (error during ownership checking)

It can be confusing to try to fix errors that come from later stages (e.g. proof) while errors in earlier stages are still
present (e.g. in other units). Therefore we recommend a gradual approach, eliminating simpler errors before going
to more advanced errors. This can be achieved by usind the --mode switch, which is explained in detail in the next
section.

7.2.5 Effect of Mode on Output
GNATprove can be run in four different modes, as selected with the switch --mode=<mode>, whose possible values are
check, check_all, flow, prove and all (see Running GNATprove from the Command Line). The output depends
on the selected mode.

In modes check and check_all, GNATprove prints on the standard output a list of error messages for violations of
SPARK restrictions on all the code for which SPARK_Mode is On.

In modes flow and prove, this checking is done as a first phase.

In mode flow, GNATprove prints on the standard output messages for possible reads of uninitialized data, mismatches
betwen the specified data dependencies and flow dependencies and the implementation, and suspicious situations such
as unused assignments and missing return statements. These messages are all based on flow analysis.

In mode prove, GNATprove prints on the standard output messages for possible reads of uninitialized data (using flow
analysis), possible run-time errors and mismatches between the specified functional contracts and the implementation
(using proof).

In mode all, GNATprove prints on the standard output both messages for mode flow and for mode prove.

If switch --report=all, --report=provers or --report=statistics is specified, GNATprove additionally
prints on the standard output information messages for proved checks.

7.2.6 Description of Messages
This section lists the different messages which GNATprove may output. Each message points to a very specific place
in the source code. For example, if a source file file.adb contains a division as follows:

if X / Y > Z then ...

GNATprove may output a message such as:

file.adb:12:37: medium: divide by zero might fail
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where the division sign / is precisely on line 12, column 37. Looking at the explanation in the first table below, which
states that a division check verifies that the divisor is different from zero, it is clear that the message is about Y, and
that GNATprove was unable to prove that Y cannot be zero. The explanations in the table below should be read with
the context that is given by the source location.

When switch --cwe is used, a corresponding CWE id is included in the message when relevant. For example, on the
example above, GNATprove will output a message such as:

file.adb:12:37: medium: divide by zero might fail [CWE 369]

Note that CWE ids are only included in check messages and warnings, never in information messages about proved
checks. For more information on CWE, see the MITRE Corporation’s Common Weakness Enumeration (CWE) Com-
patibility and Effectiveness Program (http://cwe.mitre.org/). The current version of GNATprove is based on CWE
version 3.2 released on January 3, 2019.

Messages reported by Proof

The following table shows all check messages reported by proof.

Message Kind CWE Explanation
run-time checks
divide by zero CWE 369 Check that the second operand of the division, mod or

rem operation is different from zero.
index check CWE 119 Check that the given index is within the bounds of the

array.
overflow check CWE 190 Check that the result of the given integer arithmetic op-

eration is within the bounds of the base type.
fp_overflow check CWE 739 Check that the result of the given floating point opera-

tion is within the bounds of the base type.
range check CWE 682 Check that the given value is within the bounds of the

expected scalar subtype.
predicate check CWE 682 Check that the given value respects the applicable type

predicate.
predicate check on default value CWE 682 Check that the default value for the type respects the

applicable type predicate.
null pointer dereference CWE 476 Check that the given pointer is not null so that it can be

dereferenced.
null exclusion Check that the subtype_indication of the allocator does

not specify a null_exclusion
dynamic accessibility check Check that the accessibility level of the result of a

traversal function call is not deeper than the accessi-
bility level of its traversed parameter.

resource or memory leak CWE 772 Check that the assignment does not lead to a resource
or memory leak

resource or memory leak at end of
scope

CWE 772 Check that the declaration does not lead to a resource
or memory leak

unchecked union restriction Check restrictions imposed on expressions of an
unchecked union type

length check Check that the given array is of the length of the ex-
pected array subtype.

continues on next page

7.2. How to View GNATprove Output 221

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/369.html
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/739.html
http://cwe.mitre.org/data/definitions/682.html
http://cwe.mitre.org/data/definitions/682.html
http://cwe.mitre.org/data/definitions/682.html
http://cwe.mitre.org/data/definitions/476.html
http://cwe.mitre.org/data/definitions/772.html
http://cwe.mitre.org/data/definitions/772.html


SPARK User’s Guide, Release 15.0

Table 1 – continued from previous page
Message Kind CWE Explanation
discriminant check CWE 136 Check that the discriminant of the given discriminated

record has the expected value. For variant records, this
can happen for a simple access to a record field. But
there are other cases where a fixed value of the dis-
criminant is required.

tag check CWE 136 Check that the tag of the given tagged object has the
expected value.

ceiling priority in Interrupt_Priority Check that the ceiling priority specified for a pro-
tected object containing a procedure with an aspect At-
tach_Handler is in Interrupt_Priority.

use of an uninitialized variable CWE 457 Check that a variable is initialized
interrupt is reserved Check that the interrupt specified by Attach_Handler is

not reserved.
invariant check Check that the given value respects the applicable type

invariant.
invariant check on default value Check that the default value for the type respects the

applicable type invariant.
ceiling priority protocol Check that the ceiling priority protocol is respected,

i.e., when a task calls a protected operation, the active
priority of the task is not higher than the priority of the
protected object (Ada RM Annex D.3).

task termination Check that the task does not terminate, as required by
Ravenscar.

assertions
initial condition Check that the initial condition of a package is true after

elaboration.
default initial condition Check that the default initial condition of a type is true

after default initialization of an object of the type.
precondition CWE 628 Check that the precondition aspect of the given call

evaluates to True.
precondition of main CWE 628 Check that the precondition aspect of the given main

procedure evaluates to True after elaboration.
postcondition CWE 682 Check that the postcondition aspect of the subprogram

evaluates to True.
refined postcondition CWE 682 Check that the refined postcondition aspect of the sub-

program evaluates to True.
contract case CWE 682 Check that all cases of the contract case evaluate to true

at the end of the subprogram.
disjoint contract or exit cases Check that the cases of the contract or exit cases aspect

are all mutually disjoint.
complete contract cases Check that the cases of the contract cases aspect cover

the state space that is allowed by the precondition as-
pect.

exceptional case CWE 682 Check that all cases of the exceptional cases evaluate
to true on exceptional exits.

exit case CWE 682 Check that, for all cases of the exit cases, the exit hap-
pens as specified.

loop invariant Check that the loop invariant evaluates to True on all
iterations of the loop.

continues on next page
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Table 1 – continued from previous page
Message Kind CWE Explanation
loop invariant in first iteration Check that the loop invariant evaluates to True on the

first iteration of the loop.
loop invariant after first iteration Check that the loop invariant evaluates to True at each

further iteration of the loop.
loop variant CWE 835 Check that the given loop variant decreases/increases

as specified during each iteration of the loop. This im-
plies termination of the loop.

subprogram variant Check that the given subprogram variant de-
creases/increases as specified during each recursive
call. This implies there will be no infinite recursion.

assertion Check that the given assertion evaluates to True.
assertion step Check that the side-condition of a cut operation evalu-

ates to True.
assertion premise Check that the premise of an assertion with cut opera-

tions evaluates to True.
raised exception Check that raise expressions can never be reached and

that all exceptions raised by raise statement and proce-
dure calls are expected.

feasible function Check that an abstract function or access-to-function
type is feasible.

Inline_For_Proof or Logical_Equal
annotation

Check that an Annotate pragma with the In-
line_For_Proof or Logical_Equal identifier is correct.

Container_Aggregates annotation Check the invariants used to translate container aggre-
gates using the primitives provided by the Aggregate
aspect and the Container_Aggregates annotation.

reclamation annotation Check that confirming annotations on hidden types
which need reclamation are consistent with their full
view.

termination check Check the termination of subprograms annotated with
an Always_Terminates aspect whose value is not
known at compile time and of calls to such subpro-
grams.

unchecked conversion source check CWE 843 Check that a source type in an unchecked conversion
can safely be used for such conversions. This means
that the memory occupied by objects of this type is
fully used by the object.

unchecked conversion target check CWE 843 Check that a target type in an unchecked conversion can
safely be used for such conversions. This means that
the memory occupied by objects of this type is fully
used by the object, and no invalid bitpatterns occur.

unchecked conversion size check CWE 843 Check that the two types in an unchecked conversion
instance are of the same size.

alignment check Check that the address within address clause is a mul-
tiple of the object’s alignment.

volatile overlay check Check that, if an object has an address clause that is not
simply the address of another object, it is volatile

Liskov Substitution Principle
precondition weaker than class-wide
precondition

Check that the precondition aspect of the subprogram
is weaker than its class-wide precondition.

continues on next page
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Table 1 – continued from previous page
Message Kind CWE Explanation
precondition not True while class-
wide precondition is True

Check that the precondition aspect of the subprogram
is True if its class-wide precondition is True.

postcondition stronger than class-
wide postcondition

Check that the postcondition aspect of the subprogram
is stronger than its class-wide postcondition.

class-wide precondition weaker than
overridden one

Check that the class-wide precondition aspect of the
subprogram is weaker than its overridden class-wide
precondition.

class-wide postcondition stronger
than overridden one

Check that the class-wide postcondition aspect of the
subprogram is stronger than its overridden class-wide
postcondition.

precondition of the source weaker
than precondition of the target

Check that the precondition aspect of the access-to-
subprogram type used as the target of a conversion im-
plies the precondition of the source.

postcondition of the source stronger
than postcondition of the target

Check that the postcondition aspect of the access-to-
subprogram type used as the target of a conversion is
implied by the postcondition of the source.

The following table shows all warning messages reported by proof when using switch --proof-warnings=on.

Warning Tag CWE Explanation
precondition always False CWE 570 Warn if precondition is found to be always False
postcondition always False CWE 570 Warn if postcondition is found to be always False
pragma Assume always False CWE 570 Warn if pragma Assume is found to be always False
unreachable branch CWE 561 Warn if branch is found to be unreachable
unreachable code CWE 561 Warn if code is found to be unreachable

Messages reported by Flow Analysis

The following table shows all flow analysis messages, (E)rrors, (W)arnings and (C)hecks.

Message Tag Class CWE Explanation
critically incomplete Global or Ini-
tializes contract

E A Global or Initializes contract fails to mention some
objects.

volatile function wrongly declared
as non-volatile

E A volatile function wrongly declared as non-volatile.

function with side effects E A function with side effects.
aliasing between subprogram pa-
rameters

C Aliasing between formal parameters or global objects.

invalid call in type invariant C CWE 674 A type invariant calls a boundary subprogram for the
type.

invalid context for call to Cur-
rent_Task

C Current_Task is called from an invalid context.

race condition C CWE 362 An unsynchronized global object is accessed concur-
rently.

wrong Default_Initial_Condition as-
pect

C CWE 457 A type is wrongly declared as initialized by default.

input item missing from the depen-
dency clause

C An input is missing from the dependency clause.

continues on next page
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Table 2 – continued from previous page
Message Tag Class CWE Explanation
output item missing from the depen-
dency clause

C An output item is missing from the dependency clause.

input item missing from the null de-
pendency clause

C An input item is missing from the null dependency
clause.

extra input item in the dependency
clause

C Extra input item in the dependency clause.

subprogram output depends on a
Proof_In global

C Subprogram output depends on a Proof_In global.

non-ghost output of ghost subpro-
gram

C A ghost subprogram has a non-ghost global output.

incomplete Global or Initializes con-
tract

C A Global or Initializes contract fails to mention some
objects.

an extra item in the Global or Initial-
izes contract

C A Global or Initializes contract wrongly mentions
some objects.

constants with variable inputs that is
not a state constituent

C Constants with variable inputs that are not state con-
stituents.

illegal write of a global input C Illegal write of a global input.
an extra item in the Initializes con-
tract

C An object that shall not appear in the Initializes con-
tract.

all execution paths raise exceptions
or do not return

C All execution paths raise exceptions or do not return.

illegal write of an object declared as
constant after elaboration

C Illegal write of an object declared as constant after
elaboration.

protected operation blocks C CWE 667 A protected operation may block.
illegal reference to a global object
in precondition of a protected opera-
tion

C An illegal reference to global in precondition of a pro-
tected operation.

constant with no variable inputs as
an abstract state’s constituent

C Constant with no variable inputs as an abstract state’s
constituent.

subprogram with aspect Al-
ways_Terminates may not terminate

C CWE 674 A subprogram with aspect Always_Terminates may not
terminate.

use of an uninitialized variable C CWE 457 Flow analysis has detected the use of an uninitialized
variable.

global object is not used C A global object is never used.
dead code W CWE 561 A statement is never executed.
a state abstraction that is impossible
to initialize

W A state abstraction that is impossible to initialize.

a statement with no effect on subpro-
gram’s outputs

W CWE 1164 A statement with no effect on subprogram’s outputs.

an IN OUT parameter or an In_Out
global that is not written

W An IN OUT parameter or an In_Out global that is not
written.

loop with stable statement W A loop with stable statement.
object is not used W CWE 563 A parameter or locally declared object is never used.
initial value of an object is not used W CWE 563 The initial value of an object is not used.
non-volatile function wrongly de-
clared as volatile

W A non-volatile function wrongly declared as volatile.

Note
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Certain messages emitted by flow analysis are classified as errors and consequently cannot be suppressed or justified.

Miscellaneous warnings reported by GNATprove

The following table shows default warnings reported by GNATprove outside of flow analysis and proof.

Warning Tag Explanation
address-to-access-conversion call to conversion function is assumed to return a valid

access designating a valid value
alias-volatile-atomic-mismatch aliased objects should both be volatile or non-volatile,

and both be atomic or non-atomic
alias-volatile-prop-mismatch aliased objects should have the same volatile properties
attribute-valid-always-true attribute Valid is assumed to return True
auto-lemma-calls the automatically instantiated lemma contains calls

which cannot be arbitrarily specialized
auto-lemma-different the automatically instantiated lemma contains calls to

its associated function with different specializations
auto-lemma-higher-order the automatically instantiated lemma is not annotated

with Higher_Order_Specialization
auto-lemma-specializable the automatically instantiated lemma does not contain

any specializable calls to its associated function
initialization-to-alias initialization of object is assumed to have no effects on

other non-volatile objects
is-valid-returns-true function Is_Valid is assumed to return True
generic-not-analyzed GNATprove doesn’t analyze generics, only instances
no-possible-termination procedure which does not return normally nor raises an

exception cannot always terminate
no-check-message-justified no check message justified by this pragma
proved-check-justified only proved check messages justified by this pragma
deprecated-feature Terminating, Always_Return, and Might_Not_Return

annotations are ignored
deprecated-feature External Axiomatizations are not supported anymore,

ignored
ignored-pragma pragma is ignored (it is not yet supported)
overflow-mode-ignored pragma Overflow_Mode in code is ignored
precondition-statically-false precondition is statically False
restriction-ignored restriction is ignored (it is not yet supported)
unreferenced-function analyzing unreferenced function
unreferenced-procedure analyzing unreferenced procedure
useless-relaxed-init-func-result function result annotated with Relaxed_Initialization

cannot be partially initialized
useless-relaxed-init-object object annotated with Relaxed_Initialization cannot be

partially initialized
variant-no-recursion no recursive call visible on subprogram with Subpro-

gram_Variant

The following table shows warnings guaranteed to be reported by GNATprove.
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Warning Tag Explanation
assumed-always-terminates no Always_Terminates aspect available for subpro-

gram, subprogram is assumed to always terminate
assumed-global-null no Global contract available for subprogram, null is as-

sumed
imprecise-address-specification object with an imprecisely supported address specifica-

tion: non-atomic objects should not be accessed con-
currently, volatile properties should be correct, indirect
writes to object to and through potential aliases are ig-
nored, and reads should be valid

The following warnings are disabled by default, and can be enabled collectively using switch --pedantic, or individ-
ually using switch -W.

Warning Tag Explanation
image-attribute-length string attribute has an implementation-defined length
operator-reassociation possible operator reassociation due to missing paren-

theses
representation-attribute-value representation attribute has an implementation-defined

value

Messages of a specific category or related to a specific CWE can be filtered inside GNAT Studio by typing the de-
sired substring in the search bar of the Locations panel. For example, search for “CWE” to get all messages with a
corresponding CWE, or “CWE 369” to get all messages related to division by zero vulnerability.

7.2.7 Understanding Counterexamples
When a check cannot be proved, GNATprove may generate a counterexample when switch --counterexamples=on
is used, either explicitly or implicitly through the use of switch --level. A counterexample consists in two parts:

• a path (or set of paths) through the subprogram

• an assignment of values to variables that appear on that path

The best way to look at a counterexample is to display it in GNAT Studio by clicking on the icon to the left of the failed
proof message, or to the left of the corresponding line in the editor (see Running GNATprove from GNAT Studio).
GNATprove then displays the path in one color, and the values of variables on the path by inserting lines in the editor
only (not in the file) which display these values. For example, consider procedure Counterex:

1 procedure Counterex (Cond : Boolean; In1, In2 : Integer; R : out Integer) with
2 SPARK_Mode,
3 Pre => In1 <= 25 and In2 <= 25
4 is
5 begin
6 R := 0;
7 if Cond then
8 R := R + In1;
9 if In1 < In2 then

10 R := R + In2;
11 pragma Assert (R < 42);
12 end if;

(continues on next page)

7.2. How to View GNATprove Output 227



SPARK User’s Guide, Release 15.0

(continued from previous page)

13 end if;
14 end Counterex;

The assertion on line 11 may fail when input parameter Cond is True and input parameters I1 and I2 are too big. The
counterexample generated by GNATprove is displayed as follows in GNAT Studio, where each line highlighted in the
path is followed by a line showing the value of variables from the previous line:

GNATprove also completes the message for the failed proof with an explanation giving the values of variables from
the checked expression for the counterexample. Here, the message issued by GNATprove on line 11 gives the value of
output parameter R:

counterex.adb:11:25: high: assertion might fail
11 | pragma Assert (R < 42);

| ^~~~~~
e.g. when R = 42

To limit the time spent trying to generate counterexamples, GNATprove sets a small timeout to prover cvc5 for generat-
ing counterexamples. It can be replaced by a number of reasoning steps in the prover by using the switch --ce-steps.
Generation of counterexamples is deterministic, hence the use of --ce-steps ensures that results are repeatable.

By default, GNATprove internally checks that counterexamples correctly point to a problem in the code or in the
contracts (which includes missing preconditions, loop invariants, etc.) so that only interesting counterexamples are
displayed to the user. As a result, some counterexamples from cvc5 are not displayed to the user, while in other
cases the ranking of messages might be promoted from medium to high after checking that the counterexample points
to an actual problem in the code. In cases where the counterexample generated by cvc5 is dropped, this checking
phase also tries to generate a candidate counterexample by fuzzing input values of the subprogram, based on extreme
values of input types. If a candidate counterexample passes the checking phase, it is displayed in place of the original
counterexample. This checking phase can be skipped with the switch --check-counterexamples=off.

The counterexample generated by GNATprove does not always correspond to a feasible execution of the program, in
particular when using the switch --check-counterexamples=off:

1. When some contracts or loop invariants are missing, thus causing the property to become unprovable (see details
in section on Investigating Unprovable Properties), the counterexample may help point to the missing contract or
loop invariant. For example, the postcondition of procedure Double_In_Call is not provable because the post-
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condition of the function Double that it calls is too weak, and the postcondition of procedure Double_In_Loop
is not provable because its loop does not have a loop invariant:

1 package Counterex_Unprovable with
2 SPARK_Mode
3 is
4

5 type Int is new Integer range -100 .. 100;
6

7 function Double (X : Int) return Int with
8 Pre => abs X <= 10,
9 Post => abs Double'Result <= 20;

10

11 procedure Double_In_Call (X : in out Int) with
12 Pre => abs X <= 10,
13 Post => X = 2 * X'Old;
14

15 procedure Double_In_Loop (X : in out Int) with
16 Pre => abs X <= 10,
17 Post => X = 2 * X'Old;
18

19 end Counterex_Unprovable;

1 package body Counterex_Unprovable with
2 SPARK_Mode
3 is
4

5 function Double (X : Int) return Int is
6 begin
7 return 2 * X;
8 end Double;
9

10 procedure Double_In_Call (X : in out Int) is
11 begin
12 X := Double (X);
13 end Double_In_Call;
14

15 procedure Double_In_Loop (X : in out Int) is
16 Result : Int := 0;
17 J : Integer := 1;
18 begin
19 while J <= 2 loop
20 Result := Result + X;
21 J := J + 1;
22 end loop;
23 X := Result;
24 end Double_In_Loop;
25

26 end Counterex_Unprovable;

The counterexample generated by GNATprove in the first case shows that the prover could deduce wrongly that
X on ouput is 0 when its value is 1 on input, due to a missing contract in the called function:
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counterex_unprovable.ads:13:14: medium: postcondition might fail
13 | Post => X = 2 * X'Old;

| ^~~~~~~~~~~~~
e.g. when X = 0

and X'Old = 1
possible fix: add or complete related loop invariants or postconditions

counterex_unprovable.ads:17:14: medium: postcondition might fail
17 | Post => X = 2 * X'Old;

| ^~~~~~~~~~~~~
e.g. when X = -1

and X'Old = 0
possible fix: add or complete related loop invariants or postconditions

Similarly, the counterexample generated by GNATprove in the second case shows that the prover could deduce
wrongly that X on ouput is -1 when its value is 0 on input, due to a missing loop invariant in the executed loop.

2. When some property cannot be proved due to prover shortcomings (see details in section on Investigating Prover
Shortcomings), the counterexample may explain why the prover cannot prove the property. However, note that
since the counterexample is always generated only using cvc5 prover, it can just explain why this prover cannot
prove the property. Also note that if cvc5 is not selected and generating of a counterexample is enabled by
--counterexamples=on switch (explicitly or implicitly through the use of --level switch), a counterexample
is still attempted to be generated using cvc5, but the proof result of cvc5 is not taken into account in this case.

3. When using a short value of timeout or steps, the prover may hit the resource bound before it has produced a full
counterexample. In such a case, the counterexample produced may not correspond to a feasible execution.

4. When the value of --proof switch is per_check (the default value), then the counterexample may give values
to variables on all paths through the subprogram, not only the path which corresponds to the feasible execution.
One can rerun GNATprove with value progressive or per_path to separate possible execution paths in the
counterexample.

7.3 How to Use GNATprove in a Team
The most common use of GNATprove is as part of a regular quality control or quality assurance activity inside a team.
Usually, GNATprove is run every night on the current codebase, and during the day by developers either on their
computer or on servers. For both nightly and daily runs, GNATprove results need to be shared between team members,
either for viewing results or to compare new results with the shared results. These various processes are supported by
specific ways to run GNATprove and share its results.

In all cases, the source code should not be shared directly (say, on a shared drive) between developers, as this is bound
to cause problems with file access rights and concurrent accesses. Rather, the typical usage is for each user to do a
check out of the sources/environment, and use therefore her own version/copy of sources and project files, instead of
physically sharing sources across all users.

The project file should also always specify a local, non shared, user writable directory as object directory (whether
explicitly or implicitly, as the absence of an explicit object directory means the project file directory is used as object
directory).

7.3.1 Possible Workflows
Multiple workflows allow to use GNATprove in a team:

1. GNATprove is run on a server or locally, and no warnings or check messages should be issued. Typically this is
achieved by suppressing spurious warnings and justifying unproved check messages.
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2. GNATprove is run on a server or locally, and textual results are shared in Configuration Management.

3. GNATprove is run on a server, and textual results are sent to a third-party qualimetry tool (like GNATdashboard,
SonarQube, SQUORE, etc.)

4. GNATprove is run on a server or locally, and the GNATprove session files are shared in Configuration Manage-
ment.

In all workflows (but critically for the first workflow), messages can be suppressed or justified. Indeed, like every sound
and complete verification tool, GNATprove may issue false alarms. A first step is to identify the type of message:

• warnings can be suppressed, see Suppressing Warnings

• check messages can be justified, see Justifying Check Messages

Check messages from proof may also correspond to provable checks, which require interacting with GNATprove to
find the correct contracts and/or analysis switches, see How to Investigate Unproved Checks.

The textual output in workflow 3 corresponds to the compiler-like output generated by GNATprove and controlled with
switches --report and --warnings (see Running GNATprove from the Command Line). By default messages are
issued only for unproved checks and warnings.

The textual output in workflow 2 comprises this compiler-like output, and possibly additional output generated by
GNATprove in file gnatprove.out (see Effect of Mode on Output and Managing Assumptions).

Workflow 4 is explained in more detail in Sharing Proof Results with Others.

7.3.2 Suppressing Warnings
GNATprove warnings are controlled with switch --warnings:

• --warnings=off suppresses all warnings

• --warnings=error treats warnings as errors

• --warnings=continue issues warnings but does not stop analysis (default)

The default is that GNATprove issues warnings but does not stop.

Warnings can be controlled in a more fine-grained way using two methods:

• the -W, -D and -A switches

• the use of pragma Warnings.

Use of Command-Line Switches to Control Warnings

Each different warning issued by GNATprove has a specific tag, as detailed in the tables in Description of Messages.
These tags can be used to allow the usage (that is, issue no warning) using -A, enable the warning using -W, or promote
the warning to an error using -D (deny). For example, users can specify -W image-attribute-length to enable the
warning about the implementation-defined length of return values of the 'Image attribute, which is normally disabled,
or -D image-attribute-length to transform this warning into an error.

Use of In-source Pragma to Suppress Warnings

Users can also suppress warnings selectively by the use of pragma Warnings in the source code. For example, GNAT-
prove issues three warnings on procedure Warn, which are suppressed by the three pragma Warnings in the source
code:

1 pragma Warnings (Off, "unused initial value of ""X""",
2 Reason => "Parameter mode is mandated by API");
3

(continues on next page)

7.3. How to Use GNATprove in a Team 231



SPARK User’s Guide, Release 15.0

(continued from previous page)

4 procedure Warn (X : in out Integer) with
5 SPARK_Mode
6 is
7 pragma Warnings (Off, "initialization has no effect",
8 Reason => "Coding standard requires initialization");
9 Y : Integer := 0;

10 pragma Warnings (On, "initialization has no effect");
11

12 begin
13 pragma Warnings (Off, "unused assignment",
14 Reason => "Test program requires double assignment");
15 X := Y;
16 pragma Warnings (On, "unused assignment");
17 X := Y;
18 end Warn;

Warnings with the specified message are suppressed in the region starting at pragma Warnings Off and ending at the
matching pragma Warnings On or at the end of the file (pragma Warnings is purely textual, so its effect does not stop
at the end of the enclosing scope). The Reason argument string is optional. A regular expression can be given instead
of a specific message in order to suppress all warnings of a given form. Pragma Warnings Off can be added in a
configuration file to suppress the corresponding warnings across all units in the project. Pragma Warnings Off can
be specified for an entity to suppress all warnings related to this entity.

Additionally, aspect Warnings Off on a static stand-alone constant object can be used to suppress warnings about
unreachable code due to a “statically disabled” condition of an IF statement. This is useful when using configuration
constants, which may trigger spurious warnings about unreachable code.

A “statically disabled” condition which evaluates to Value is either:

• a static stand-alone constant when it is of a boolean type, has aspect Warnings Off and its initial value evaluates
to Value

• a relational_operator where one operand is static stand-alone constant with aspect Warnings Off, the other
operand is a literal of the corresponding type and the operator evaluates to Value

• an and or and then operators when:

– Value is True and both operands are statically disabled conditions that evaluate to True

– Value is False and at least one operand is a statically disabled condition that evaluates to False

• an or or or else operators when:

– Value is True and at least one operand is a statically disabled condition that evaluates to True

– Value is False and both operands are statically disabled conditions that evaluate to False

• a not operator when the right operand is a statically disabled condition that evaluates to the negation of Value

Pragma Warnings can also take a first argument of GNATprove to specify that it applies only to GNATprove. For
example, the previous example can be modified to use these refined pragma Warnings:

1 pragma Warnings (GNATprove, Off, "unused initial value of ""X""",
2 Reason => "Parameter mode is mandated by API");
3

4 procedure Warn2 (X : in out Integer) with
5 SPARK_Mode
6 is

(continues on next page)
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(continued from previous page)

7 pragma Warnings (GNATprove, Off, "initialization has no effect",
8 Reason => "Coding standard requires initialization");
9 Y : Integer := 0;

10 pragma Warnings (GNATprove, On, "initialization has no effect");
11

12 begin
13 pragma Warnings (GNATprove, Off, "unused assignment",
14 Reason => "Test program requires double assignment");
15 X := Y;
16 pragma Warnings (GNATprove, On, "unused assignment");
17 X := Y;
18 end Warn2;

Besides the documentation benefit of using this refined version of pragma Warnings, it makes it possible to exclude
such pragma Warnings from the detection of useless pragma Warnings, that do not suppress any warning at compi-
lation, with compilation switch -gnatw.w. Indeed, this switch can then be used during compilation with GNAT, as
pragma Warnings that apply only to GNATprove can be identified as such.

See the GNAT Reference Manual for more details.

Additionally, GNATprove can issue warnings as part of proof, on preconditions or postconditions or pragma Assume
that are always false, unreachable branches in complex Boolean expressions (typically in assertions and contracts), dead
code at branching points in the program. These warnings are not enabled by default, as they require calling a prover
for each potential warning, which incurs a small cost (1 sec for each property thus checked). They can be enabled
with switch --proof-warnings=on, and their effect is controlled by switch --warnings and pragma Warnings as
described previously.

There are two benefits of activating these warnings:

• they may detect unintentional unreachable or useless code and assertions, which may originate from errors in
either code or assertions;

• they strengthen confidence in the tool output, acting as a smoke detector for cases where the tool would get into
an inconsistent context by error, and report some unreachable code or branch where there is none.

Note that GNATprove, just like GNAT, suppresses warnings about unused variables if their name contains any of the
substrings DISCARD, DUMMY, IGNORE, JUNK, UNUSED, in any casing.

7.3.3 Suppressing Information Messages
Information messages can be suppressed by the use of pragma Warnings in the source code, like for warnings.

7.3.4 Justifying Check Messages
GNATprove’s analysis relies on the fact that, at any given point in the program, previous checks on any execution
reaching that program point have been successful. Thus, given two successive assertions of the same property:

pragma Assert (Prop); -- possibly not proved
pragma Assert (Prop); -- proved

The second assertion will be reported as proved by GNATprove, even if the first assertion is reported as not proved.
This is because any execution that fails the first assertion is not analyzed further by GNATprove.

Similarly, consider two successive calls to the same procedure with a precondition:

Proc (Args); -- precondition possibly not proved
Proc (Args); -- precondition proved
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The precondition of the second call will be reported as proved by GNATprove, even if the precondition of the first
call is reported as not proved. This is because any execution that fails the first precondition is not analyzed further by
GNATprove.

This applies to all proof checks, and to a lesser extent to flow analysis checks. For example, outputs of a subprogram
are considered fully initialtized in a caller, as explained in Data Initialization Policy. In particular, such outputs are
considered to have values that respect the constraints of their type, which is used during proof.

Thus, the user should be careful when justifying check messages, as the incorrect justification of a check message that
could fail could also hide other possible failures later for the same execution of the analyzed program.

Direct Justification with Pragma Annotate

Check messages generated by GNATprove’s flow analysis or proof can be selectively justified by adding a pragma
Annotate in the source code. For example, the check message about a possible division by zero in the return expression
below can be justified as follows:

return (X + Y) / (X - Y);
pragma Annotate (GNATprove, False_Positive,

"divide by zero", "reviewed by John Smith");

The pragma has the following form:

pragma Annotate (GNATprove, Category, Pattern, Reason);

where the following table explains the different entries:

Item Explanation
GNATprove is a fixed identifier
Category is one of False_Positive or Intentional
Pattern is a string literal describing the pattern of the check messages which shall be jus-

tified
Reason is a string literal providing a justification for reviews

All arguments should be provided.

The Category currently has no impact on the behavior of the tool but serves a documentation purpose:

• False_Positive indicates that the check cannot fail, although GNATprove was unable to prove it.

• Intentional indicates that the check can fail but that it is not considered to be a bug.

Pattern is a pattern that is used to match against the text of the check message to justify (not including the initial
"low: ", "medium: " or "high: " prefix). The pattern follows the same rules as for pragma Warnings. It may
contain asterisks, which match zero or more characters in the message, and no other characters are interpreted as regular
expression notations (it is not necessary to put an asterisk at the start and the end of the message, since this is implied).
The match is case insensitive.

Reason is a string provided by the user as a justification for reviews. This reason may be present in a GNATprove
report.

Placement rules are as follows: in a statement list or declaration list, pragma Annotate applies to the preceding item in
the list, ignoring other pragma Annotate. If there is no preceding item, the pragma applies to the enclosing construct.
For example, if the pragma is the first element of the then-branch of an if-statement, it will apply to condition in the
if-statement.

If the preceding or enclosing construct is a subprogram body, the pragma applies to both the subprogram body and the
spec including its contract. This allows to place a justification for a check message issued by GNATprove either on the
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spec when it is relevant for callers. Note that this placement of a justification is ineffective on subprograms analyzed
only in the context of their calls (see details in Contextual Analysis of Subprograms Without Contracts).

An aspect on a package or subprogram declaration/body can be used instead of a pragma at the beginning of the
corresponding declaration list inside the declaration/body:

package Pack with
Annotate => (GNATprove, False_Positive,

"divide by zero", "reviewed by John Smith")
is

...

procedure Proc with
Annotate => (GNATprove, False_Positive,

"divide by zero", "reviewed by John Smith")
is

...

As a point of caution, the following placements of pragma Annotate will apply the pragma to a possibly large range of
source lines:

• when the pragma appears in a statement list after a block, it will apply to the entire block (e.g. an if statement
including all branches, or a loop including the loop body).

• when the pragma appears directly after a subprogram body, it will apply to the entire body and the spec of the
subprogram.

Users should take care to not justify checks which were not intended to be justified, when placing pragma Annotate in
such places.

procedure Do_Something_1 (X, Y : in out Integer) with
Depends => ((X, Y) => (X, Y));

pragma Annotate (GNATprove, Intentional, "incorrect dependency ""Y => X""",
"Dependency is kept for compatibility reasons");

or on the body when it is an implementation choice that need not be visible to users of the unit:

procedure Do_Something_2 (X, Y : in out Integer) with
Depends => ((X, Y) => (X, Y));

procedure Do_Something_2 (X, Y : in out Integer) is
begin

X := X + Y;
Y := Y + 1;

end Do_Something_2;
pragma Annotate (GNATprove, Intentional, "incorrect dependency ""Y => X""",

"Currently Y does not depend on X, but may change later");

Pragmas Annotate of the form above that do not justify any check message are useless and result in a warning
by GNATprove. Like other warnings emitted by GNATprove, this warning is treated like an error if the switch
--warnings=error is set.
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Indirect Justification with Pragma Assume

Check messages generated by GNATprove’s proof can alternatively be justified indirectly by adding a Pragma Assume
in the source code, which allows the check to be proved. For example, the check message about a possible integer
overflow in the assignment statement below can be justified as follows:

procedure Next_Tick is
begin
pragma Assume (Clock_Ticks < Natural'Last,

"Device uptime is short enough that Clock_Ticks is less than 1_000␣
↪→always");

Clock_Ticks := Clock_Ticks + 1;
end Next_Tick;

Using pragma Assume is more powerful than using pragma Annotate, as the property assumed may be used to prove
more than one check. Thus, one should in general use pragma Annotate rather than pragma Assume to justify simple
runtime checks. There are some cases though where using a pragma Assume may be preferred. In particular:

• To keep assumptions local:

pragma Assume (<External_Call's precondition>,
"because for these internal reasons I know it holds");

External_Call;

If the precondition of External_Call changes, it may not be valid anymore to assume it here, though the
assumption will stay True for the same reasons it used to be. Incompatible changes in the precondition of
External_Call will lead to a failure in the proof of External_Call’s precondition.

• To sum up what is expected from the outside world so that it can be reviewed easily:

External_Find (A, E, X);
pragma Assume (X = 0 or (X in A'Range and A (X) = E),

"because of the documentation of External_Find");

Maintenance and review is easier with a single pragma Assume than if it is spread out into various pragmas
Annotate. If the information is required at several places, the pragma Assume can be factorized into a procedure:

function External_Find_Assumption (A : Array, E : Element, X : Index) return Boolean
is (X = 0 or (X in A'Range and A (X) = E))
with Ghost;

procedure Assume_External_Find_Assumption (A : Array, E : Element, X : Index) with
Ghost,
Post => External_Find_Assumption (A, E, X)
is
pragma Assume (External_Find_Assumption (A, E, X),

"because of the documentation of External_Find");
end Assume_External_Find_Assumption;

External_Find (A, E, X);
Assume_External_Find_Assumption (A, E, X);

In general, assumptions should be kept as small as possible (only assume what is needed for the code to work). Indirect
justifications with pragma Assume should be carefully inspected as they can easily introduce errors in the verification
process.
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7.3.5 Sharing Proof Results with Others
GNATprove stores proof results in so-called session files. If session files are shared with others (e.g. via Configuration
Management), either between members of the same team, or between the developer and users of a library, others can
reproduce/recheck the proofs using the --replay option of GNATprove.

For a single project, proof results are typically stored in many session files, each of them having the filename
why3session.xml. To avoid name clashes, the files are stored in subdirectories that correspond to subparts of the
project (such as unit names and subprogram names). By default, these directories are stored in the gnatprove sub-
directory of the object directory of the project. If the Proof_Dir attribute is set in the Project Attributes, the session
directories will be stored in a sessions subdirectory of this directory. To generate session files, GNATprove should
be run without the --replay option.

To share the session files, we recommend adding the why3session.xml files to version control. Note that the session
directories may contain other files (the so-called shapes files why3shapes or why3shapes.gz). We advise against
adding these other files to version control. To avoid version control conflicts, it can be advantageous to avoid updates
to the session files by each developer, and instead update these files periodically using a centralized mechanism. For
example, a nightly run on a server, or a dedicated team member, can be responsible for updating the proof directory
with the latest version generated by GNATprove.

If a user has access to the session files (e.g. via the just-described version control) for a project, he can use the --replay
option to reproduce/recheck the proofs that are stored in the session files. See Running GNATprove from the Command
Line for more details on this command line option.

7.3.6 Sharing Proof Results Via a Cache
GNATprove can cache and share results between distinct runs of the tool. This feature can be enabled using the
--memcached-server switch. This switch accepts two arguments separated by a colon, and there are two different
forms:

• The switch is of the form --memcached-server=file:<directory>, that is, the part before the colon is the
string file, and the part after it is a directory that exists.

• The switch is of the form --memcached-server=<hostname>:<portnumber>, with the hostname being dif-
ferent from “file”.

If the switch is of the first form, GNATprove uses the specified directory to store results between runs of the tool. Note
that this directory will tend to grow over time and should be deleted and recreated from time to time.

If the switch is of the second form, GNATprove will attempt to connect to a Memcached server (see https://memcached.
org/) located at the specified hostname and port, to cache intermediate results between runs.

In both cases, significant speedups can be observed after the cache is filled with an initial GNATprove run.

7.3.7 Managing Assumptions
Because GNATprove analyzes separately subprograms and packages, its results depend on assumptions about other
subprograms and packages. For example, the verification that a subprogram is free from run-time errors depends on
the property that all the subprograms it calls implement their specified contract. If a program is completely analyzed
with GNATprove, GNATprove will report messages on those other subprograms, if they might not implement their
contract correctly. But in general, a program is partly in SPARK and partly in other languages, mostly Ada, C and
assembly languages. Thus, assumptions on parts of the program that cannot be analyzed with GNATprove need to be
recorded for verification by other means, like testing, manual analysis or reviews.
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Partial Listing of Detailed Assumptions

When switch --assumptions is used, GNATprove generates information about remaining assumptions in its result file
gnatprove.out. These remaining assumptions need to be justified to ensure that the desired verification objectives
are met. An assumption on a subprogram may be generated in various cases:

• the subprogram was not analyzed (for example because it is marked SPARK_Mode => Off)

• the subprogram was not completely verified by GNATprove (that is, some unproved checks remain)

Note that currently, only assumptions on called subprograms are output, and not assumptions on calling subprograms.

The following table explains the meaning of assumptions and claims which gnatprove may output:

Assumption Explanation
effects on parameters and global variables The subprogram does not read or write any other parameters or global variables

than what is described in its spec (signature + data dependencies).
absence of run-time errors The subprogram is free from run-time errors.
the postcondition The postconditon of the subprogram holds after each call of the subprogram.

Complete List of Assumptions

For the sake of these assumptions, we define a precisely supported address specification to be an address clause or
aspect whose expression is a reference to the Address attribute on a part of a standalone object or constant. We define
an imprecisely supported address specification to be an address clause or aspect that is not a precisely supported address
specification.

For the sake of these assumptions, we define an object with an imprecisely supported address to be either a stand-
alone object with an address clause or aspect that is an imprecisely supported address specification or an object that is a
reachable part of an object with an imprecisely supported address (a component of a composite value or the designated
object of an access value).

The following assumptions need to be addressed when using SPARK on all or part of a program:

• [SPARK_JUSTIFICATION] All justifications of check messages should be reviewed (see Justifying Check Mes-
sages), both when using Direct Justification with Pragma Annotate and when using Indirect Justification with
Pragma Assume.

• [SPARK_EXTERNAL] The modeling of Interfaces to the Physical World needs to be reviewed for objects whose
value may be modified concurrently.

– They should be effectively volatile in SPARK (see SPARK RM 7.1.2), so that GNATprove takes into account
possible concurrent changes in the object’s value. The warning imprecisely supported address specification
is guaranteed to be issued in cases where review is required.

– They should be synchronized in SPARK (see SPARK RM 9) to prevent race conditions which could lead to
reading invalid values. The warning imprecisely supported address specification is guaranteed to be issued
in cases where review is required.

– They should have specified all necessary Properties of Volatile Variables corresponding to their usage. The
warning imprecisely supported address specification is guaranteed to be issued in cases where review is
required.

• [SPARK_ALIASING_ADDRESS] Aliases between objects with an imprecisely supported address specification
are ignored by GNATprove. Reviews are necessary to ensure that:

– The objects themselves are annotated with the Asynchronous_Writers volatile property if they can be
affected by the modification of another object. The warning imprecisely supported address specification is
guaranteed to be issued in cases where review is required.
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– Other objects visible from SPARK code which might be affected by a modification of such a variable have
the Asynchronous_Writers volatile property set to True. The warning imprecisely supported address
specification is guaranteed to be issued in cases where review is needed.

– Other objects visible from SPARK code which might be affected by a modification of such a variable
have valid values for their type when read. The warning imprecisely supported address specification is
guaranteed to be issued in cases where review is needed.

• [SPARK_VALID] Attribute ‘Valid is currently assumed to always return True, as no invalid value
can be constructed in SPARK (see Data Validity). If assumptions [SPARK_ALIASING_ADDRESS],
[SPARK_EXTERNAL_VALID], and [ADA_EXTERNAL] are satisfied, then this assumption will be satisfied
as well. However, it is valuable to explicitly state this assumption because it highlights an important consequence
of compliance with the other assumptions.

• [SPARK_EXTERNAL_VALID] Values read from objects whose address is specified are assumed to be valid
values. This assumption is limited to objects with an imprecisely supported address (because an explicit check
is emitted otherwise). Currently there is no model of invalidity or undefinedness. The onus is on the user to
ensure that all values read from an external source are valid. The use of an invalid value invalidates any proofs
associated with the value. The warning imprecisely supported address specification is guaranteed to be issued
in cases where review is required.

• [SPARK_STORAGE_ERROR] As explained in section Dealing with Storage_Error, GNATprove does not issue
messages about possible memory exhaustion, which leads to raising exception Storage_Error at runtime. The
computation of suitable stack and heap sizes should be performed independently.

• [SPARK_TARGET_AND_RUNTIME] When the target configuration and runtime library for running the pro-
gram are different from those on the host when GNATprove is run, the target configuration (see Specifying the
Target Architecture and Implementation-Defined Behavior) and runtime library (see Using the GNAT Target Run-
time Directory) should be set, so that GNATprove correctly interprets the behavior of the program at runtime.

• [SPARK_FLOATING_POINT] When using floating-point numbers, GNATprove relies on the Semantics of
Floating Point Operations as defined in IEEE-754. The compiler, OS, and hardware should all be configured so
that IEEE-754 semantics are respected.

• [SPARK_COMPILATION_SWITCHES] Compilation switches that change the behavior of the program should
be the same between compilation and analysis. This is in particular the case for Overflow Modes.

• [SPARK_ITERABLE] When a type is annotated with an Iterable aspect:

– the function Has_Element shall be such that, for any container object Container and cursor object
Cursor, Has_Element (Container, Cursor) only evaluates to True if Cursor is accessible from
First (Container) using the function Next, and

– for any container object Container, the iteration from First (Container) through the function Next
shall reach a cursor Cursor for which Has_Element (Container, Cursor) evaluates to False in a finite
number of steps.

• [SPARK_ITERABLE_FOR_PROOF] When a type has an Iterable_For_Proof annotation,

– the function Contains shall be such that, for any container object Container and any element E,
Contains (Container, E) evaluates to True if and only if there is a cursor object Cursor such that
Has_Element (Container, Cursor) evaluates to True and E is the result of Element (Container,
Cursor), or

– the function Model shall be such that, for any container object Container and any element E, there is
a cursor object Cursor such that Has_Element (Container, Cursor) evaluates to True and E is the
result of Element (Container, Cursor) if and only if there is a cursor object M_Cursor for the model
type such that Has_Element (Model (Container), M_Cursor) evaluates to True and E is the result
of Element (Model (Container), M_Cursor).
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• [SPARK_INITIALIZED_ATTRIBUTE] GNATprove assumes that the Initialized attribute is not referenced
in any SPARK code that is executed. This assumption is necessary because evaluation of the Initialized
attribute during execution is based on Valid_Scalars, and Valid_Scalars sometimes evaluates to True on
uninitialized data. Note that, despite this assumption, it can be valuable during testing to execute contracts and
other ghost code that references the Initialized attribute, as long as the executable code of the product itself
does not reference the Initialized attribute.

• [SPARK_OVERRIDING_AND_TASKING] If there are overriding operations called using a dispatching call,
then GNATprove assumes that the overriding operation does not have any adverse tasking-related effects. In
particular, GNATprove assumes that the overriding operation:

– does not call protected entries,

– does not suspend on suspension objects,

– does not lock protected objects with calls to protected subprograms,

– does not call Ada.Task_Identification.Current_Task.

• [SPARK_C_STRINGS_FREE] GNATprove assumes that the procedure SPARK.C.Strings.Free is never
called when deallocation is prohibited (eg: cert runtimes).

• [SPARK_MONOTONIC_TIME] GNATprove assumes that the following properties hold for constants declared
in Ada.Real_Time:

– Time_First <= 0.0,

– Time_Last >= (2.0 ** 63 - 1.0) * Time_Unit,

– Time_Span_First <= - (2.0 ** 63 - 1.0) * Time_Unit, and

– Time_Span_Last >= (2.0 ** 63 - 1.0) * Time_Unit.

In addition, the following assumptions need to be addressed when using SPARK on only part of a program:

• [ADA_TASKING] If entry points for concurrent tasks (either OS tasks or units of computations scheduled by a
runtime component) are not identified as tasks in SPARK, then during each invocation of a SPARK subprogram
from such a task such that the SPARK subprogram is not being called directly or indirectly from another SPARK
subprogram in the same task, the Global contract and by-reference parameters of the subprogram shall not con-
flict with either (a) the Global contract and by-reference parameters of any other such subprogram executing
concurrently in another such task or (b) the Global contract of any concurrent task identified as a task in SPARK.
Two global objects and/or by-reference parameters referring to the same object are said to conflict if both (1)
they are not both synchronized and (2) at least one can be modified by the callee.

In addition, calls from SPARK units to subprograms which are not analyzed by GNATprove should not have any
adverse tasking-related effects. In particular, GNATprove assumes that such calls do not cause tasks visible from
SPARK to:

– call protected entries that they are not calling in a way which is visible from SPARK,

– suspend on suspension objects on which they do not suspend in a way which is visible from SPARK.

• [ADA_EXTERNAL] Objects accessed outside of SPARK, either directly for statically allocated objects,
or through their address or a pointer for all objects, should comply with the assumptions described in
[SPARK_EXTERNAL], [SPARK_ALIASING_ADDRESS] and [SPARK_EXTERNAL_VALID].

• [ADA_EXTERNAL_ABSTRACT_STATE] The modeling of Interfaces to the Physical World needs to be re-
viewed for abstract states whose value may be modified concurrently, when their refinement is not in SPARK.
These abstract states should comply with the assumptions described in [SPARK_EXTERNAL].

• [ADA_EXTERNAL_NAME] Objects annotated with an aspect External_Name or Link_Name should
comply with the assumptions described in [SPARK_EXTERNAL], [SPARK_ALIASING_ADDRESS] and
[SPARK_EXTERNAL_VALID].
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• [ADA_PRIVATE_TYPES] Private types whose full view is not analyzed, yet are used in SPARK code, need
to comply with the implicit or explicit contracts used by GNATprove to analyze references to these types. This
concerns:

– private types and private type extensions declared in a package with a pragma SPARK_Mode (Off); in
its private part,

– type completions in a non-SPARK package body.

The (explicit or implicit) type contract to check is made up of:

– Default Initial Condition (explicit or implicit, no runtime error shall occur during default initialization of
an object of this type unless its default initial condition does not refer to the current type instance or only
refers to its discriminants and it evaluates to False)

– Ownership annotations (implicit, if a type is not annotated with Ownership, copying it around shall not
create visible aliasing and if it is not annotated with Needs_Reclamation, its finalization shall not leak
resources or memory).

In addition, the default initialization of values of the type and the evaluation of its potential type invariant or
subtype predicate shall not access any mutable state.

• [ADA_TAGGED_TYPES] When a tagged type T visible in SPARK is extended outside of SPARK code, ex-
tensions of T whose full view is not analyzed by GNATprove shall not break the assumptions on values of type
T'Class. In particular, they should abide by its Default Initial Condition, and should not add components which
require a specific handling with respect to ownership.

• [ADA_RECURSIVE_TYPES] Recursive data-structures accessed by SPARK code but created out of SPARK
should not be cyclic even if they are constant (but sharing is OK).

• [ADA_ELABORATION] If a package is not analyzed but is part of the application code, its elaboration:

– shall not modify any global state visible from SPARK unless it is part of the package’s own state.

– shall always terminate normally.

In addition, if the package specification is referenced, directly or indirectly, from a SPARK unit, it needs to
comply with the implicit or explicit contracts used by GNATprove to analyze these user packages.

The (explicit or implicit) package contract to check is made up of:

– Initializes contracts (explicit or implicitly generated by GNATprove)

– Initial_Condition (only explicit)

– the aliases constraints of SPARK (implicit - there shall not be any aliases in the global state visible from
SPARK after the package elaboration)

• [ADA_SUBPROGRAMS] Subprograms that are not analyzed, yet are called from SPARK code, need to comply
with the implicit or explicit contracts used by GNATprove to analyze calls to these subprograms. This concerns:

– subprograms whose body is not given for analysis; and

– subprograms whose body is marked SPARK_Mode => Off, either explicitly or implicitly (inherited from
the enclosing scope).

Note that we consider here both non-generic subprograms and instantiations of generic subprograms, never
generic subprograms themselves.

The (explicit or implicit) subprogram contract to check is made up of:

– Type Contracts of parameters, result (for a function) and global objects produced as outputs from the non-
SPARK callee to the SPARK caller

– Postconditions (only explicit)
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– Contract Cases (only explicit)

– Data Dependencies (explicit or implicitly generated by GNATprove)

– Flow Dependencies (explicit or implicitly generated by GNATprove)

– Exceptional Contracts (explicit or implicit) - the exceptional contract should list all exceptions that might
be propagated by the subprogram and the associated postconditions should hold whenever an exception is
propagated

– Subprogram Termination (only explicit except for functions without side effects which should always return
in SPARK) - subprograms annotated with Always_Terminates should terminate (return normally or raise
an exception) whenever the associated boolean condition evaluates to True on entry of the subprogram,
assuming that primary stack, secondary stack, and heap memory allocations never fail. Other subprograms
are not restricted

– the aliasing constraints of SPARK (implicit - the subprogram shall not introduce any visible aliases between
its parameters, accessed global objects, and return value if any, unless it is a traversal function, in which
case its return value shall be a part of its traversed parameter, or unless the aliases introduced are compatible
with assumption [SPARK_ALIASING_ADDRESS])

– parameter modes - in particular, parameters of mode in which are not considered to be variable should
not be modified, including the values designated by their potential access-to-variable subcomponents, and
parameters of mode out which are not subject to relaxed initialization (see Aspect Relaxed_Initialization
and Ghost Attribute Initialized) should be entirely initialized.

– the Extensions_Visible aspect (explicit or implicit) - the subprogram shall neither access nor mod-
ify the invisible components of its parameters of a specific (not class-wide) tagged type unless it has the
Extensions_Visible aspect (see Dynamic Types and Invisible Components).

Note that this also applies to subprograms which are called indirectly from SPARK code, either through a dis-
patching call or through a call to an access-to-subprogram, and to (predefined) operators like "=".

• [ADA_CALLS] Calls to SPARK subprograms from subprograms that are not analyzed need to comply with the
implicit or explicit preconditions used by GNATprove to analyze the called SPARK subprograms. This concerns
the same subprograms as considered in [ADA_SUBPROGRAMS].

The (explicit or implicit) precondition to check is made up of:

– Type Contracts of both parameters and global objects taken as input by the SPARK callee from the non-
SPARK caller

– Preconditions (explicit)

– the aliasing constraints of SPARK (implicit) - the context shall not alias the callee’s parameters and accessed
global objects in ways that are not allowed in SPARK

– the initialization of inputs (implicit) - parameters of mode in or in out and global variables of mode Input or
In_Out which are not subject to relaxed initialization (see Aspect Relaxed_Initialization and Ghost Attribute
Initialized) should be entirely initialized

• [ADA_OBJECT_ADDRESSES] When the body of a function is not analyzed by GNATprove, its result should
not depend on the address or pointer value of parts of its parameters or global inputs unless it is annotated
with Volatile_Function. When the body of a procedure, entry, or function with side effects is not analyzed
by GNATprove, none of its outputs should depend on the address or pointer value of parts of its parameters or
global inputs unless the output is volatile for reading, or its value depends on an input which is volatile for reading
as stated in a Depends contract.

• [ADA_STATE_ABSTRACTION] Units whose body is not analyzed, yet are used from SPARK code, need to
declare suitable State Abstraction, and subprograms defining the API of such a unit should have correct Data
Dependencies describing how a subprogram reads or writes parts of the state abstraction. The state abstraction
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may represent program variables, but also states of the OS, aspects of the file system, attributes of the underlying
hardware, etc.

All entities that are part of the SPARK-compatible spec of the unit need to comply with the implicit or explicit
contracts used by GNATprove to analyze use of these entities. This concerns:

– the package itself (see Package Contracts); and

– the API of the package.

• [ADA_LOGICAL_EQUAL] If the aspect or pragma Logical_Equal is used on a function whose implemen-
tation is not analyzed, yet called from SPARK code, the implementation of this function should correspond to
the logical equality for the corresponding type as used by GNATprove. See Annotation for Accessing the Log-
ical Equality for a Type for information about the logical equality. Note that this assumption does not apply to
functions without any implementation.

• [ADA_INLINE_FOR_PROOF] If the aspect or pragma Inline_For_Proof is used on a function with a post-
condition whose implementation is not analyzed, yet called from SPARK code, and the function has a post-
condition whose expression is syntactically a relation using the ‘=’ relational_operator (or an expression that
parenthesizes such a relation), where one side of the relation is syntactically an attribute_reference to the Result
attribute of the function, then GNATprove assumes that the value of the postcondition expression is true if and
only if the function return value is logically equal to an Ada copy of the value of the other side of the relation.

• [ADA_PREDEFINED_EQUALITY] If a private type whose full view is not visible by GNATprove is annotated
with a Predefined_Equality annotation, its predefined equality should conform to the profile supplied by
the annotation, see Annotation for the Predefined Equality of Private Types. In addition, when the body of a
function is not analyzed by GNATprove, its result should not depend on a usage of the predefined equality that is
disallowed by the Predefined_Equality annotation unless it is annotated with Volatile_Function. When
the body of a procedure, entry, or function with side effects is not analyzed by GNATprove, none of its outputs
should depend on a usage of the predefined equality that is disallowed by the Predefined_Equality annotation
unless the output is volatile for reading, or its value depends on an input which is volatile for reading as stated in a
Depends contract. This is similar to the [ADA_OBJECT_ADDRESSES] rule for pointers hidden inside private
types.

In addition, the following assumptions need to be addressed when calling GNATprove on only part of a SPARK program
at a time (either on an individual unit or on a group of units), while providing only the specs of those units that are not
analyzed (not their bodies), so that the complete SPARK program is analyzed by calling GNATprove multiple times
with different sets of unit bodies being available:

• [PARTIAL_GLOBAL] Subprograms which are called across the boundary of those units analyzed together
should have a Global contract describing their effect on global data, otherwise they will be assumed to have
no effect on global data. The warning assumed Global null is guaranteed to be issued in cases where review is
required.

• [PARTIAL_TERMINATION] Procedures, entries and functions with side effects which are called across the
boundary of those units analyzed together should be annotated to specify under which condition they shall termi-
nate using the Always_Terminates aspect. Otherwise, these subprograms will be assumed to never terminate (if
they are annotated with No_Return) or always terminate (otherwise). The warning assumed Always_Terminates
is guaranteed to be issued in cases where review is required.

• [PARTIAL_TASKING] If no single run of GNATprove analyzes all units that define tasks, then for each
run of GNATprove, all tasks not defined in units analyzed during that run of GNATprove must comply with
[ADA_TASKING] as if those tasks were not SPARK tasks. Note: The environment task, which is present in
every Ada partition, is considered by GNATprove to be defined by the unit that defines the main subprogram of
that Ada partition. Note also: If an Ada partition defines no tasks other than the environment task, then that Ada
partition is trivially in compliance with this assumption.

• [PARTIAL_ACYCLIC_ANALYSIS] Consider the directed graph where the nodes are the compilation units and
there is an edge from a unit A to a unit B if there is a with clause for B in the specification or the body of A. All
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(bodies of) units of a strongly connected component in this graph should be analyzed as part of a single analysis
of GNATprove. This is so GNATprove can detect that the analyses of strongly connected units depend on each
other and use its internal mechanism to avoid unsoundness.

In addition, the following assumptions need to be addressed when compiling the program with another compiler than
GNAT:

• [GNAT_SPARKLIB_LEMMAS] When using lemmas from the SPARK Lemma Library, GNAT-specific lemmas
(e.g. on fixed-point arithmetic) should be reviewed to ensure that the same semantics is used in the compiler.
The name of such lemmas starts with “GNAT” and the associated comment explains how it is specific to GNAT.

• [GNAT_PEDANTIC] The switch --pedantic should be used as explained in section Specifying the Target
Architecture and Implementation-Defined Behavior to warn about possible implementation-defined behavior,
and the resulting warnings if any should be reviewed.

• [GNAT_PORTABILITY] The section Ensure Portability of Programs should be reviewed for possible differ-
ences in implementation defined behavior between GNAT/GNATprove and the chosen compiler (e.g. regarding
choice of base type for scalars).

7.4 How to Write Subprogram Contracts
GNATprove relies on contracts to perform its analysis. User-specified subprogram contracts are assumed to analyze a
subprogram’s callers, and verified when the body of the subprogram is analyzed.

By default, no contracts are compulsory in GNATprove. In the absence of user-provided contracts, GNATprove inter-
nally generates default contracts, which may or not be suitable depending on the verification objective:

• data dependencies (Global)

See Generation of Dependency Contracts. The generated contract may be exact when completed from user-
specified flow dependencies (Depends), or precise when generated from a body in SPARK, or coarse when
generated from a body in full Ada.

• flow dependencies (Depends)

See Generation of Dependency Contracts. The contract is generated from the user-specified or generated data
dependencies, by considering that all outputs depend on all inputs.

• precondition (Pre)

A default precondition of True is used in absence of a user-specified precondition.

• postcondition (Post)

A default postcondition of True is used in absence of a user-specified postcondition, except for expression func-
tions. For the latter, the body of the expression function is used to generate a matching postcondition. See
Expression Functions.

• exceptional contract (Exceptional_Cases)

As a default, procedures and functions with side effects are not considered to propagate any exceptions
(Exceptional_Cases => (others => False)). If they have an exit cases contract mentioning excep-
tions (Exception_Raised => E), all mentioned exceptions will be considered to be potentially propagated
(Exceptional_Cases => (E | ... => True)). If the exception potentially propagated is left unspecified
by at least one exit case (Exception_Raised with no exception name), then the subprogram is assumed to
potentially propagate any exception (Exceptional_Cases => (others => True)).

• termination contract (Always_Terminates)

The contract is generated from a body in SPARK and a default contract of False is used if the body is in full
Ada. If there is no body, a default contract of True (or False for No_Return procedures) is used.
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Knowing which contracts to write depends on the specific verification objectives to achieve.

7.4.1 Generation of Dependency Contracts
By default, GNATprove does not require the user to write data dependencies (introduced with aspect Global) and flow
dependencies (introduced with aspect Depends), as it can automatically generate them from the program.

This behavior can be disabled using the --no-global-generation switch, which means a missing data dependency
is the same as Global => null. Note that this option also forces --no-inlining (see Contextual Analysis of Sub-
programs Without Contracts).

Note

GNATprove does not generate warning or check messages when the body of a subprogram does not respect a
generated contract. Indeed, the generated contract is a safe over-approximation of the real contract, hence it is
unlikely that the subprogram body respects it. The generated contract is used instead to verify proper initialization
and respect of dependency contracts in the callers of the subprogram.

Note

Intrinsic subprograms such as arithmetic operations, and shift/rotate functions without user-provided functional
contracts (precondition, postcondition or contract cases) are handled specially by GNATprove.

Note

The --no-global-generation switch makes GNATprove behave more like the previous SPARK 2005 tools,
which makes this switch attractive for project trying to migrate to the new GNATprove tools, or for projects that
maintain dual annotations.

Auto Completion for Incomplete Contracts

When only the data dependencies (resp. only the flow dependencies) are given on a subprogram, GNATprove completes
automatically the subprogram contract with the matching flow dependencies (resp. data dependencies).

Writing Only the Data Dependencies

When only the data dependencies are given on a subprogram, GNATprove completes them with flow dependencies
that have all outputs depending on all inputs. This is a safe over-approximation of the real contract of the subprogram,
which allows to detect all possible errors of initialization and contract violation in the subprogram and its callers, but
which may also lead to false alarms because it is imprecise.

Take for example procedures Add and Swap for which data dependencies are given, but no flow dependencies:

1 package Only_Data_Dependencies with
2 SPARK_Mode
3 is
4 V : Integer;
5

6 procedure Add (X : Integer) with
7 Global => (In_Out => V);
8

(continues on next page)
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9 procedure Swap (X : in out Integer) with
10 Global => (In_Out => V);
11

12 procedure Call_Add (X, Y : Integer) with
13 Global => (In_Out => V),
14 Depends => (V =>+ (X, Y));
15

16 procedure Call_Swap (X, Y : in out Integer) with
17 Global => (In_Out => V),
18 Depends => (X => Y, Y => X, V => V);
19

20 end Only_Data_Dependencies;

GNATprove completes the contract of Add and Swap with flow dependencies that are equivalent to:

procedure Add (X : Integer) with
Global => (In_Out => V),
Depends => (V =>+ X);

procedure Swap (X : in out Integer) with
Global => (In_Out => V),
Depends => ((X, V) => (X, V));

Other flow dependencies with fewer dependencies between inputs and outputs would be compatible with the given data
dependencies of Add and Swap. GNATprove chooses the contracts with the most dependencies. Here, this corresponds
to the actual contract for Add, but to an imprecise contract for Swap:

1 package body Only_Data_Dependencies with
2 SPARK_Mode
3 is
4 procedure Add (X : Integer) is
5 begin
6 V := V + X;
7 end Add;
8

9 procedure Swap (X : in out Integer) is
10 Tmp : constant Integer := V;
11 begin
12 V := X;
13 X := Tmp;
14 end Swap;
15

16 procedure Call_Add (X, Y : Integer) is
17 begin
18 Add (X);
19 Add (Y);
20 end Call_Add;
21

22 procedure Call_Swap (X, Y : in out Integer) is
23 begin
24 Swap (X);
25 Swap (Y);

(continues on next page)
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26 Swap (X);
27 end Call_Swap;
28

29 end Only_Data_Dependencies;

This results in false alarms when GNATprove verifies the dependency contract of procedure Call_Swap which calls
Swap, while it succeeds in verifying the dependency contract of Call_Add which calls Add:

only_data_dependencies.adb:6:14: high: overflow check might fail, cannot prove lower␣
↪→bound for V + X

6 | V := V + X;
| ~~^~~

e.g. when V = Integer'First
and X = -1

reason for check: result of addition must fit in a 32-bits machine integer
possible fix: subprogram at only_data_dependencies.ads:6 should mention X and V in a␣

↪→precondition
6 | procedure Add (X : Integer) with
| ^ here

only_data_dependencies.ads:18:18: medium: missing dependency "X => V"
18 | Depends => (X => Y, Y => X, V => V);

| ^ here

only_data_dependencies.ads:18:18: medium: missing self-dependency "X => X"
18 | Depends => (X => Y, Y => X, V => V);

| ^ here

only_data_dependencies.ads:18:26: medium: missing dependency "Y => V"
18 | Depends => (X => Y, Y => X, V => V);

| ^ here

only_data_dependencies.ads:18:26: medium: missing self-dependency "Y => Y"
18 | Depends => (X => Y, Y => X, V => V);

| ^ here

only_data_dependencies.ads:18:34: medium: missing dependency "V => X"
18 | Depends => (X => Y, Y => X, V => V);

| ^ here

only_data_dependencies.ads:18:34: medium: missing dependency "V => Y"
18 | Depends => (X => Y, Y => X, V => V);

| ^ here

The most precise dependency contract for Swap would be:

procedure Swap (X : in out Integer) with
Global => (In_Out => V),
Depends => (V => X, X => V);

If you add this precise contract in the program, then GNATprove can also verify the dependency contract of Call_Swap.

Note that the generated dependency contracts are used in the analysis of callers, but GNATprove generates no warnings
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or check messages if the body of Add or Swap have fewer flow dependencies, as seen above. That’s a difference between
these contracts being present in the code or auto completed.

Writing Only the Flow Dependencies

When only the flow dependencies are given on a subprogram, GNATprove completes it with the only compatible data
dependencies.

Take for example procedures Add and Swap as previously, expect now flow dependencies are given, but no data depen-
dencies:

1 package Only_Flow_Dependencies with
2 SPARK_Mode
3 is
4 V : Integer;
5

6 procedure Add (X : Integer) with
7 Depends => (V =>+ X);
8

9 procedure Swap (X : in out Integer) with
10 Depends => (V => X, X => V);
11

12 procedure Call_Add (X, Y : Integer) with
13 Global => (In_Out => V),
14 Depends => (V =>+ (X, Y));
15

16 procedure Call_Swap (X, Y : in out Integer) with
17 Global => (In_Out => V),
18 Depends => (X => Y, Y => X, V => V);
19

20 end Only_Flow_Dependencies;

The body of the unit is the same as before:

1 package body Only_Flow_Dependencies with
2 SPARK_Mode
3 is
4 procedure Add (X : Integer) is
5 begin
6 V := V + X;
7 end Add;
8

9 procedure Swap (X : in out Integer) is
10 Tmp : constant Integer := V;
11 begin
12 V := X;
13 X := Tmp;
14 end Swap;
15

16 procedure Call_Add (X, Y : Integer) is
17 begin
18 Add (X);
19 Add (Y);
20 end Call_Add;

(continues on next page)
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21

22 procedure Call_Swap (X, Y : in out Integer) is
23 begin
24 Swap (X);
25 Swap (Y);
26 Swap (X);
27 end Call_Swap;
28

29 end Only_Flow_Dependencies;

GNATprove verifies the data and flow dependencies of all subprograms, including Call_Add and Call_Swap, based
on the completed contracts for Add and Swap.

Precise Generation for SPARK Subprograms

When no data or flow dependencies are given on a SPARK subprogram, GNATprove generates precise data and flow
dependencies by using path-sensitive flow analysis to track data flows in the subprogram body:

• if a variable is written completely on all paths in a subprogram body, it is considered an output of the subprogram;
and

• other variables that are written in a subprogram body are considered both inputs and outputs of the subprogram
(even if they are not read explicitly, their output value may depend on their input value); and

• if a variable is only read in a subprogram body, it is considered an input of the subprogram; and

• all outputs are considered to potentially depend on all inputs.

Case 1: No State Abstraction

Take for example a procedure Set_Global without contract which initializes a global variable V and is called in a
number of contexts:

1 package Gen_Global with
2 SPARK_Mode
3 is
4 procedure Set_Global;
5

6 procedure Do_Nothing;
7

8 procedure Set_Global_Twice;
9

10 end Gen_Global;

1 package body Gen_Global with
2 SPARK_Mode
3 is
4 V : Boolean;
5

6 procedure Set_Global is
7 begin
8 V := True;
9 end Set_Global;

10

(continues on next page)
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11 procedure Do_Nothing is
12 begin
13 null;
14 end Do_Nothing;
15

16 procedure Set_Global_Twice is
17 begin
18 Set_Global;
19 Set_Global;
20 end Set_Global_Twice;
21

22 procedure Set_Global_Conditionally (X : Boolean) with
23 Global => (Output => V),
24 Depends => (V => X)
25 is
26 begin
27 if X then
28 Set_Global;
29 else
30 V := False;
31 end if;
32 end Set_Global_Conditionally;
33

34 end Gen_Global;

GNATprove generates data and flow dependencies for procedure Set_Global that are equivalent to:

procedure Set_Global with
Global => (Output => V),
Depends => (V => null);

Note that the above contract would be illegal as given, because it refers to global variable V which is not visible at the
point where Set_Global is declared in gen_global.ads. Instead, a user who would like to write this contract on
Set_Global would have to use abstract state.

That generated contract for Set_Global allows GNATprove to both detect possible errors when calling Set_Global
and to verify contracts given by the user on callers of Set_Global. For example, procedure Set_Global_Twice calls
Set_Global twice in a row, which makes the first call useless as the value written in V is immediately overwritten by
the second call. This is detected by GNATprove, which issues two warnings on line 18:

gen_global.adb:18:07: warning: statement has no effect
18 | Set_Global;

| ^~~~~~~~~~

gen_global.adb:18:07: warning: "V" is set by "Set_Global" but not used after the call
18 | Set_Global;

| ^~~~~~~~~~

GNATprove also uses the generated contract for Set_Global to analyze procedure Set_Global_Conditionally,
which allows it to verify the contract given by the user for Set_Global_Conditionally:

procedure Set_Global_Conditionally (X : Boolean) with
(continues on next page)
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Global => (Output => V),
Depends => (V => X)

Case 2: State Abstraction Without Dependencies

If an abstract state (see State Abstraction) is declared by the user but no dependencies are specified on subprogram
declarations, then GNATprove generates data and flow dependencies which take abstract state into account.

For example, take unit Gen_Global previously seen, where an abstract state State is defined for package
Gen_Abstract_Global, and refined into global variable V in the body of the package:

1 package Gen_Abstract_Global with
2 SPARK_Mode,
3 Abstract_State => State
4 is
5 procedure Set_Global;
6

7 procedure Set_Global_Twice;
8

9 procedure Set_Global_Conditionally (X : Boolean) with
10 Global => (Output => State),
11 Depends => (State => X);
12

13 end Gen_Abstract_Global;

1 package body Gen_Abstract_Global with
2 SPARK_Mode,
3 Refined_State => (State => V)
4 is
5 V : Boolean;
6

7 procedure Set_Global is
8 begin
9 V := True;

10 end Set_Global;
11

12 procedure Set_Global_Twice is
13 begin
14 Set_Global;
15 Set_Global;
16 end Set_Global_Twice;
17

18 procedure Set_Global_Conditionally (X : Boolean) with
19 Refined_Global => (Output => V),
20 Refined_Depends => (V => X)
21 is
22 begin
23 if X then
24 Set_Global;
25 else
26 V := False;
27 end if;

(continues on next page)
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28 end Set_Global_Conditionally;
29

30 end Gen_Abstract_Global;

We have chosen here to declare procedure Set_Global_Conditionally in gen_abstract_global.ads, and so to
express its user contract abstractly. We could also have kept it local to the unit.

GNATprove gives the same results on this unit as before: it issues warnings for the possible error in
Set_Global_Twice and it verifies the contract given by the user for Set_Global_Conditionally:

gen_abstract_global.adb:14:07: warning: statement has no effect
14 | Set_Global;

| ^~~~~~~~~~

gen_abstract_global.adb:14:07: warning: "V" constituent of "State" is set by "Set_Global
↪→" but not used after the call

14 | Set_Global;
| ^~~~~~~~~~

Case 3: State Abstraction Without Refined Dependencies

If abstract state is declared by the user and abstract dependencies are specified on subprogram declarations, but no
refined dependencies are specified on subprogram implementations (as described State Abstraction and Dependencies),
then GNATprove generates refined data and flow dependencies for subprogram implementations.

For example, take unit Gen_Abstract_Global previously seen, where only abstract data and flow dependencies are
specified:

1 package Gen_Refined_Global with
2 SPARK_Mode,
3 Abstract_State => State
4 is
5 procedure Set_Global with
6 Global => (Output => State);
7

8 procedure Set_Global_Twice with
9 Global => (Output => State);

10

11 procedure Set_Global_Conditionally (X : Boolean) with
12 Global => (Output => State),
13 Depends => (State => X);
14

15 end Gen_Refined_Global;

1 package body Gen_Refined_Global with
2 SPARK_Mode,
3 Refined_State => (State => V)
4 is
5 V : Boolean;
6

7 procedure Set_Global is
8 begin

(continues on next page)
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9 V := True;
10 end Set_Global;
11

12 procedure Set_Global_Twice is
13 begin
14 Set_Global;
15 Set_Global;
16 end Set_Global_Twice;
17

18 procedure Set_Global_Conditionally (X : Boolean) is
19 begin
20 if X then
21 Set_Global;
22 else
23 Set_Global;
24 end if;
25 end Set_Global_Conditionally;
26

27 end Gen_Refined_Global;

GNATprove gives the same results on this unit as before: it issues warnings for the possible error in
Set_Global_Twice and it verifies the contract given by the user for Set_Global_Conditionally:

gen_refined_global.adb:14:07: warning: statement has no effect
14 | Set_Global;

| ^~~~~~~~~~

gen_refined_global.adb:14:07: warning: "V" constituent of "State" is set by "Set_Global"␣
↪→but not used after the call

14 | Set_Global;
| ^~~~~~~~~~

Note that although abstract and refined dependencies are the same here, this is not always the case, and GNATprove
will use the more precise generated dependencies to analyze calls to subprograms inside the unit.

Coarse Generation for non-SPARK Subprograms

When no data or flow dependencies are given on a non-SPARK subprogram, GNATprove generates coarser data and
flow dependencies based on the reads and writes to variables in the subprogram body:

• if a variable is written in a subprogram body, it is considered both an input and an output of the subprogram; and

• if a variable is only read in a subprogram body, it is considered an input of the subprogram; and

• all outputs are considered to potentially depend on all inputs.

For example, take unit Gen_Global previously seen, where the body of Set_Global is marked with SPARK_Mode =>
Off:

1 package Gen_Ada_Global with
2 SPARK_Mode
3 is
4 procedure Set_Global;
5

(continues on next page)
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6 procedure Set_Global_Twice;
7

8 end Gen_Ada_Global;

1 package body Gen_Ada_Global with
2 SPARK_Mode
3 is
4 V : Boolean;
5

6 procedure Set_Global with
7 SPARK_Mode => Off
8 is
9 begin

10 V := True;
11 end Set_Global;
12

13 procedure Set_Global_Twice is
14 begin
15 Set_Global;
16 Set_Global;
17 end Set_Global_Twice;
18

19 procedure Set_Global_Conditionally (X : Boolean) with
20 Global => (Output => V),
21 Depends => (V => X)
22 is
23 begin
24 if X then
25 Set_Global;
26 else
27 V := False;
28 end if;
29 end Set_Global_Conditionally;
30

31 end Gen_Ada_Global;

GNATprove generates a data and flow dependencies for procedure Set_Global that are equivalent to:

procedure Set_Global with
Global => (In_Out => V),
Depends => (V => V);

This is a safe over-approximation of the real contract for Set_Global, which allows to detect all possible errors of ini-
tialization and contract violation in Set_Global callers, but which may also lead to false alarms because it is imprecise.
Here, GNATprove generates a wrong high message that the call to Set_Global on line 25 reads an uninitialized value
for V:

gen_ada_global.adb:25:10: high: "V" is not an input in the Global contract of subprogram
↪→"Set_Global_Conditionally" at line 19

25 | Set_Global;
| ^~~~~~~~~~

(continues on next page)
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either make "V" an input in the Global contract or initialize it before use

This is because the generated contract for Set_Global is not precise enough, and considers V as an input of the
procedure. Even if the body of Set_Global is not in SPARK, the user can easily provide the precise information to
GNATprove by adding a suitable contract to Set_Global, which requires to define an abstract state State like in the
previous section:

procedure Set_Global with
Global => (Output => State),
Depends => (State => null);

With such a user contract on Set_Global, GNATprove can verify the contract of Set_Global_Conditionally
without false alarms.

Writing Dependency Contracts

Since GNATprove generates data and flow dependencies, you don’t need in general to add such contracts if you don’t
want to.

The main reason to add such contracts is when you want GNATprove to verify that the implementation respects specified
data dependencies and flow dependencies. For those projects submitted to certification, verification of data coupling and
input/output relations may be a required verification objective, which can be achieved automatically with GNATprove
provided the specifications are written as contracts.

Even if you write dependency contracts for the publicly visible subprograms, which describe the services offered by
the unit, there is no need to write similar contracts on internal subprograms defined in the unit body. GNATprove can
generate data and flow dependencies on these.

Also, as seen in the previous section, the data and flow dependencies generated by GNATprove may be imprecise, in
which case it is necessary to add manual contracts to avoid false alarms.

7.4.2 Infeasible Subprogram Contracts
A contract is said to be infeasible if, for some values of its inputs satisfying the precondition of the subprogram, there
exists no values of its outputs satisfying its postcondition. As an example of an infeasible (implict) contract, consider
the function Add below. It states that it returns a valid integer value equal to X + Y for all valid integer values X and Y.
This is not possible for some valid values of X and Y, so this contract is infeasible:

function Add (X, Y : Integer) return Integer is (X + Y);

Infeasible contracts are an issue when they occur on functions. Indeed, such functions can lead to the generation of an
incorrect assumption which might invalidate the verification of every subprogram which directly or indirectly calls the
function.

Generally, SPARK checks that subprograms correctly implement their implicit and explicit contracts, so infeasible
contracts can only occur on subprograms which might not return normally on some inputs. As functions shall always
terminate normally in SPARK, infeasible contracts on functions can never occur on a verified program entirely written
in the SPARK subset. When working on code partially in another language, GNATprove also assumes that this is the
case for subprograms that are not verified by the tool, see Managing Assumptions. Therefore, special care should be
taken when Writing Contracts on Imported Subprograms.

To limit the impact of infeasible contracts, GNATprove inserts by default implicit guards, so that potentially incorrect
postconditions are only used on input values on which the unverified subprogram is actually called. This is not a full
proof system however, so users should not rely on it to avoid incorrect assumptions in the tool. What is more, these
guards have a non-negligible impact on prover performance. So if in your project, all subprograms are in the SPARK
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subset, or you have confidence in the contracts you wrote for the subprograms which are not in SPARK, you can disable
these guards using the --function-sandboxing=off option.

Note

The effects of an infeasible contract can sometimes be detected by enabling warnings produced by proof using the
switch --proof-warnings=on. An incorrect assumption might cause branches and code snippets to be wrongly
flagged as dead by this mechanism.

7.4.3 Writing Contracts for Program Integrity
The most common use of contracts is to ensure program integrity, that is, the program keeps running within safe
boundaries. For example, this includes the fact that the control flow of the program cannot be circumvented (e.g.
through a buffer overflow vulnerability) and that data is not corrupted (e.g. data invariants are preserved).

Preconditions can be written to ensure program integrity, and in particular they ensure:

• absence of run-time errors (AoRTE): no violations of language rules which would lead to raising an exception
at run time (preconditions added to all subprograms which may raise a run-time error); and

• defensive programming: no execution of a subprogram from an unexpected state (preconditions added to sub-
programs in the public API, to guard against possible misuse by client units); and

• support of maintenance: prevent decrease in integrity (regressions, code rot) introduced during program evo-
lution (preconditions added to internal subprograms, to guard against violations of the conditions to call these
subprograms inside the unit itself); and

• invariant checking: ensure key data invariants are maintained throughout execution (preconditions added to all
subprograms which may break the invariant).

For example, unit Integrity contains examples of all four kinds of preconditions:

• Precondition X >= 0 on procedure Seen_One ensures AoRTE, as otherwise a negative value for X would cause
the call to Update to fail a range check, as Update expects a non-negative value for its parameter.

• Precondition X < Y on procedure Seen_Two ensures defensive programming, as the logic of the procedure is
only correctly updating global variables Max1 and Max2 to the two maximal values seen if parameters X and Y
are given in strictly increasing order.

• Precondition X > Max2 on procedure Update ensures support of maintenance, as this internal procedure relies
on this condition on its parameter to operate properly.

• Precondition Invariant on procedure Update ensures invariant checking, as the property that Max2 is less than
Max1 expressed in Invariant should be always respected.

1 pragma Assertion_Policy (Pre => Check);
2

3 package Integrity with
4 SPARK_Mode
5 is
6 procedure Seen_One (X : Integer) with
7 Pre => X >= 0; -- AoRTE
8

9 procedure Seen_Two (X, Y : Natural) with
10 Pre => X < Y; -- defensive programming
11

12 end Integrity;
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1 package body Integrity with
2 SPARK_Mode
3 is
4 Max1 : Natural := 0; -- max value seen
5 Max2 : Natural := 0; -- second max value seen
6

7 function Invariant return Boolean is
8 (Max2 <= Max1);
9

10 procedure Update (X : Natural) with
11 Pre => X > Max2 and then -- support of maintenance
12 Invariant -- invariant checking
13 is
14 begin
15 if X > Max1 then
16 Max2 := Max1;
17 Max1 := X;
18 elsif X < Max1 then
19 Max2 := X;
20 end if;
21 end Update;
22

23 procedure Seen_One (X : Integer) is
24 begin
25 if X > Max2 then
26 Update (X);
27 end if;
28 end Seen_One;
29

30 procedure Seen_Two (X, Y : Natural) is
31 begin
32 if X > Max1 then
33 Max1 := Y;
34 Max2 := X;
35 elsif X > Max2 then
36 Update (Y);
37 Seen_One (X);
38 else
39 Seen_One (Y);
40 end if;
41 end Seen_Two;
42

43 end Integrity;

Note that pragma Assertion_Policy (Pre => Check) in integrity.ads ensures that the preconditions on the
public procedures Seen_One and Seen_Two are always enabled at run time, while the precondition on internal subpro-
gram Update is only enabled at run time if compiled with switch -gnata (typically set only for debugging or testing).
GNATprove always takes contracts into account, whatever value of Assertion_Policy.

GNATprove cannot verify that all preconditions on Integrity are respected. Namely, it cannot verify that the call to
Update inside Seen_One respects its precondition, as it is not known from the calling context that Invariant holds:

(continues on next page)
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integrity.adb:26:10: high: precondition might fail
26 | Update (X);

| ^~~~~~~~~
e.g. when Max1 = 0

and Max2 = 1
and X = 2

possible fix: precondition of subprogram at integrity.ads:6 should mention Max1 and␣
↪→Max2

6 | procedure Seen_One (X : Integer) with
| ^ here

Note that, although Invariant is not required to hold either on entry to Seen_Two, the tests performed in if-statements
in the body of Seen_Two ensure that Invariant holds when calling Update inside Seen_Two.

To prove completely the integrity of unit Integrity, it is sufficient to add Invariant as a precondition and postcon-
dition on every subprogram which modifies the value of global variables Max1 and Max2:

1 pragma Assertion_Policy (Pre => Check);
2

3 package Integrity_Proved with
4 SPARK_Mode
5 is
6 procedure Seen_One (X : Integer) with
7 Pre => X >= 0 and then -- AoRTE
8 Invariant, -- invariant checking
9 Post => Invariant; -- invariant checking

10

11 procedure Seen_Two (X, Y : Natural) with
12 Pre => X < Y and then -- defensive programming
13 Invariant, -- invariant checking
14 Post => Invariant; -- invariant checking
15

16 function Invariant return Boolean;
17

18 end Integrity_Proved;

1 package body Integrity_Proved with
2 SPARK_Mode
3 is
4 Max1 : Natural := 0; -- max value seen
5 Max2 : Natural := 0; -- second max value seen
6

7 function Invariant return Boolean is (Max2 <= Max1);
8

9 procedure Update (X : Natural) with
10 Pre => X > Max2 and then -- support of maintenance
11 Invariant, -- invariant checking
12 Post => Invariant -- invariant checking
13 is
14 begin
15 if X > Max1 then
16 Max2 := Max1;

(continues on next page)
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17 Max1 := X;
18 elsif X < Max1 then
19 Max2 := X;
20 end if;
21 end Update;
22

23 procedure Seen_One (X : Integer) is
24 begin
25 if X > Max2 then
26 Update (X);
27 end if;
28 end Seen_One;
29

30 procedure Seen_Two (X, Y : Natural) is
31 begin
32 if X > Max1 then
33 Max1 := Y;
34 Max2 := X;
35 elsif X > Max2 then
36 Update (Y);
37 Seen_One (X);
38 else
39 Seen_One (Y);
40 end if;
41 end Seen_Two;
42

43 end Integrity_Proved;

Here is the result of running GNATprove:

integrity_proved.adb:12:14: info: postcondition proved
integrity_proved.adb:26:10: info: precondition proved
integrity_proved.adb:26:18: info: range check proved
integrity_proved.adb:36:10: info: precondition proved
integrity_proved.adb:37:10: info: precondition proved
integrity_proved.adb:39:10: info: precondition proved
integrity_proved.ads:9:14: info: postcondition proved
integrity_proved.ads:14:14: info: postcondition proved
integrity_proved.ads:16:13: info: implicit aspect Always_Terminates on "Invariant" has␣
↪→been proved, subprogram will terminate

7.4.4 Writing Contracts for Functional Correctness
Going beyond program integrity, it is possible to express functional properties of the program as subprogram contracts.
Such a contract can express either partially or completely the behavior of the subprogram. Typical simple functional
properties express the range/constraints for parameters on entry and exit of subprograms (encoding their type-state),
and the state of the module/program on entry and exit of subprograms (encoding a safety or security automaton). For
those projects submitted to certification, expressing a subprogram requirement or specification as a complete functional
contract allows GNATprove to verify automatically the implementation against the requirement/specification.

For example, unit Functional is the same as Integrity_Proved seen previously, with additional functional con-
tracts:

• The postcondition on procedure Update (expressed as a Post aspect) is a complete functional description of the
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behavior of the subprogram. Note the use of an if-expression.

• The postcondition on procedure Seen_Two (expressed as a Post aspect) is a partial functional description of the
behavior of the subprogram.

• The postcondition on procedure Seen_One (expressed as a Contract_Cases aspect) is a complete functional
description of the behavior of the subprogram. There are three cases which correspond to different possible
behaviors depending on the values of parameter X and global variables Max1 and Max2. The benefit of expressing
the postcondition as contract cases is both the gain in readability (no need to use 'Old for the guards, as in the
postcondition of Update) and the automatic verification that the cases are disjoint and complete.

Note that global variables Max1 and Max2 are referred to through public accessor functions Max_Value_Seen and
Second_Max_Value_Seen. These accessor functions can be declared after the contracts in which they appear, as
contracts are semantically analyzed only at the end of package declaration.

1 pragma Assertion_Policy (Pre => Check);
2

3 package Functional with
4 SPARK_Mode
5 is
6 procedure Seen_One (X : Integer) with
7 Pre => X >= 0 and then -- AoRTE
8 Invariant, -- invariant checking
9 Post => Invariant, -- invariant checking

10 Contract_Cases => -- full functional
11 (X > Max_Value_Seen =>
12 -- max value updated
13 Max_Value_Seen = X and
14 Second_Max_Value_Seen = Max_Value_Seen'Old,
15 X > Second_Max_Value_Seen and
16 X < Max_Value_Seen =>
17 -- second max value updated
18 Max_Value_Seen = Max_Value_Seen'Old and
19 Second_Max_Value_Seen = X,
20 X = Max_Value_Seen or
21 X <= Second_Max_Value_Seen =>
22 -- no value updated
23 Max_Value_Seen = Max_Value_Seen'Old and
24 Second_Max_Value_Seen = Second_Max_Value_Seen'Old);
25

26 procedure Seen_Two (X, Y : Natural) with
27 Pre => X < Y and then -- defensive programming
28 Invariant, -- invariant checking
29 Post => Invariant and then -- invariant checking
30 Max_Value_Seen > 0 and then -- partial functional
31 Max_Value_Seen /= Second_Max_Value_Seen;
32

33 function Invariant return Boolean;
34

35 function Max_Value_Seen return Integer;
36

37 function Second_Max_Value_Seen return Integer;
38

39 end Functional;
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1 package body Functional with
2 SPARK_Mode
3 is
4 Max1 : Natural := 0; -- max value seen
5 Max2 : Natural := 0; -- second max value seen
6

7 function Invariant return Boolean is (Max2 <= Max1);
8

9 function Max_Value_Seen return Integer is (Max1);
10

11 function Second_Max_Value_Seen return Integer is (Max2);
12

13 procedure Update (X : Natural) with
14 Pre => X > Max2 and then -- support of maintenance
15 Invariant, -- invariant checking
16 Post => Invariant and then -- invariant checking
17 (if X > Max1'Old then -- complete functional
18 Max2 = Max1'Old and Max1 = X
19 elsif X < Max1'Old then
20 Max2 = X and Max1 = Max1'Old
21 else
22 Max2 = Max2'Old and Max1 = Max1'Old)
23 is
24 begin
25 if X > Max1 then
26 Max2 := Max1;
27 Max1 := X;
28 elsif X < Max1 then
29 Max2 := X;
30 end if;
31 end Update;
32

33 procedure Seen_One (X : Integer) is
34 begin
35 if X > Max2 then
36 Update (X);
37 end if;
38 end Seen_One;
39

40 procedure Seen_Two (X, Y : Natural) is
41 begin
42 if X > Max1 then
43 Max1 := Y;
44 Max2 := X;
45 elsif X > Max2 then
46 Update (Y);
47 Seen_One (X);
48 else
49 Seen_One (Y);
50 end if;
51 end Seen_Two;
52

53 end Functional;
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GNATprove manages to prove automatically almost all of these functional contracts, except for the postcondition of
Seen_Two (note in particular the proof that the contract cases for Seen_One on line 10 are disjoint and complete):

functional.ads:31:14: medium: postcondition might fail, cannot prove Max_Value_Seen /=␣
↪→Second_Max_Value_Seen

31 | Max_Value_Seen /= Second_Max_Value_Seen;
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

e.g. when Max1 = 2
and Max2 = 2

The counterexample displayed for the postcondition not proved corresponds to a case where Max1 = Max2 = 2 on
entry to procedure Seen_Two. By highlighting the path for the counterexample in GNAT Studio (see Running GNAT-
prove from GNAT Studio), the values of parameters for this counterexample are also displayed, here X = 0 and Y = 1.
With these values, Max1 and Max2 would still be equal to 2 on exit, thus violating the part of the postcondition stating
that Max_Value_Seen /= Second_Max_Value_Seen.

Another way to see it is to run GNATprove in mode per_path (see Running GNATprove from the Command Line or
Running GNATprove from GNAT Studio), and highlight the path on which the postcondition is not proved, which shows
that when the last branch of the if-statement is taken, the following property is not proved:

functional.ads:31:14: medium: postcondition might fail, cannot prove Max_Value_Seen /=␣
↪→(Second_Max_Value_Seen)

The missing piece of information here is that Max1 and Max2 are never equal, except when they are both zero (the initial
value). This can be added to function Invariant as follows:

function Invariant return Boolean is
(if Max1 = 0 then Max2 = 0 else Max2 < Max1);

With this more precise definition for Invariant, all contracts are now proved by GNATprove:

functional_proved.adb:17:14: info: postcondition proved
functional_proved.adb:37:10: info: precondition proved
functional_proved.adb:37:18: info: range check proved
functional_proved.adb:47:10: info: precondition proved
functional_proved.adb:48:10: info: precondition proved
functional_proved.adb:50:10: info: precondition proved
functional_proved.ads:9:14: info: postcondition proved
functional_proved.ads:10:06: info: disjoint contract or exit cases proved
functional_proved.ads:10:06: info: complete contract cases proved
functional_proved.ads:11:09: info: contract case proved
functional_proved.ads:15:09: info: contract case proved
functional_proved.ads:20:09: info: contract case proved
functional_proved.ads:29:14: info: postcondition proved
functional_proved.ads:33:13: info: implicit aspect Always_Terminates on "Invariant" has␣
↪→been proved, subprogram will terminate
functional_proved.ads:35:13: info: implicit aspect Always_Terminates on "Max_Value_Seen"␣
↪→has been proved, subprogram will terminate
functional_proved.ads:37:13: info: implicit aspect Always_Terminates on "Second_Max_
↪→Value_Seen" has been proved, subprogram will terminate

In general, it may be needed to further refine the preconditions of subprograms to be able to prove their functional
postconditions, to express either specific constraints on their calling context, or invariants maintained throughout the
execution.
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7.4.5 Writing Contracts on Main Subprograms
Parameterless procedures and parameterless functions with Integer return type, that are in their own compilation unit,
are identified by GNATprove as potential main subprograms. These subprograms are special because they can serve
as an entry point to the program. If a main subprogram has a precondition, SPARK will generate a check that this
precondition holds at the beginning of the execution of the main subprogram, assuming the Initial_Condition
aspects of all with’ed packages.

Note that apart from this additional check, main subprograms behave like any other subprogram. They can be called
from anywhere, and their preconditions need to be checked when they are called.

7.4.6 Writing Contracts on Imported Subprograms
Contracts are particularly useful to specify the behavior of imported subprograms, which cannot be analyzed by GNAT-
prove. It is compulsory to specify in data dependencies the global variables these imported subprograms may read
and/or write, otherwise GNATprove assumes null data dependencies (no global variable read or written). It is also
compulsory to specify procedures which may not terminate with aspect Always_Terminates (see Contracts for Ter-
mination), otherwise GNATprove assumes that imported subprograms always terminate. Note that a function is in
general expected to terminate in SPARK, so functions that do otherwise should be replaced by procedures with a suit-
able annotation.

Note

A subprogram whose implementation is not available to GNATprove, either because the corresponding unit body
has not been developed yet, or because the unit body is not part of the files analyzed by GNATprove (see Specifying
Files To Analyze and Excluding Files From Analysis), is treated by GNATprove like an imported subprogram. The
latter includes in particular subprograms from library projects that are externally built.

Note

Intrinsic subprograms such as arithmetic operations and shift/rotate functions are handled specially by GNATprove.
Except for shift/rotate operations with a user-provided functional contract (precondition, postcondition or contract
cases) which are treated like regular functions.

For example, unit Gen_Imported_Global is a modified version of the Gen_Abstract_Global unit seen previously
in Generation of Dependency Contracts, where procedure Set_Global is imported from C:

1 package Gen_Imported_Global with
2 SPARK_Mode,
3 Abstract_State => (State with External =>
4 (Async_Writers,
5 Async_Readers => False,
6 Effective_Reads => False,
7 Effective_Writes => False))
8 is
9 procedure Set_Global with

10 Import,
11 Convention => C,
12 Global => (Output => State),
13 Always_Terminates;
14

15 procedure Set_Global_Twice;
(continues on next page)
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16

17 procedure Set_Global_Conditionally (X : Boolean) with
18 Global => (Output => State),
19 Depends => (State => X);
20

21 end Gen_Imported_Global;

Note that we added data dependencies to procedure Set_Global, which can be used to analyze its callers. We did
not add flow dependencies, as they are the same as the auto completed ones (see Auto Completion for Incomplete
Contracts).

1 with System.Storage_Elements;
2

3 package body Gen_Imported_Global with
4 SPARK_Mode,
5 Refined_State => (State => V)
6 is
7 pragma Warnings (GNATprove, Off, "assuming correct volatile properties");
8 pragma Warnings (GNATprove, Off, "assuming no concurrent accesses");
9 V : Integer with

10 Size => 32,
11 Volatile,
12 Async_Writers => True,
13 Async_Readers => False,
14 Effective_Reads => False,
15 Effective_Writes => False,
16 Address => System.Storage_Elements.To_Address (16#8000_0000#);
17 pragma Warnings (GNATprove, On, "assuming correct volatile properties");
18 pragma Warnings (GNATprove, On, "assuming no concurrent accesses");
19

20 procedure Set_Global_Twice is
21 begin
22 Set_Global;
23 Set_Global;
24 end Set_Global_Twice;
25

26 procedure Set_Global_Conditionally (X : Boolean) with
27 Refined_Global => (Output => V),
28 Refined_Depends => (V => X)
29 is
30 begin
31 if X then
32 Set_Global;
33 else
34 V := 42;
35 end if;
36 end Set_Global_Conditionally;
37

38 end Gen_Imported_Global;

Note that we added an Address aspect to global variable V, so that it can be read/written from a C file; this also requires
the variable to be volatile, which in turn requires the abstract state to be marked as external.
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GNATprove gives the same results on this unit as before: it issues warnings for the possible error in
Set_Global_Twice and it verifies the contract given by the user for Set_Global_Conditionally:

gen_imported_global.adb:22:07: warning: statement has no effect
22 | Set_Global;

| ^~~~~~~~~~

gen_imported_global.adb:22:07: warning: "V" constituent of "State" is set by "Set_Global
↪→" but not used after the call

22 | Set_Global;
| ^~~~~~~~~~

It is also possible to add functional contracts on imported subprograms, which GNATprove uses to prove properties
of their callers. It is compulsory to specify in a precondition the conditions for calling these imported subprograms
without errors, otherwise GNATprove assumes a default precondition of True (no constraints on the calling context).
One benefit of these contracts is that they are verified at run time when the corresponding assertion is enabled in Ada
(either with pragma Assertion_Policy or compilation switch -gnata).

Note

A subprogram whose implementation is not in SPARK is treated by GNATprove almost like an imported sub-
program, except that coarse data and flow dependencies are generated (see Coarse Generation for non-SPARK
Subprograms). In particular, unless the user adds a precondition to such a subprogram, GNATprove assumes a
default precondition of True.

For example, unit Functional_Imported is a modified version of the Functional_Proved unit seen previously in
Writing Contracts for Functional Correctness, where procedures Update and Seen_One are imported from C:

1 pragma Assertion_Policy (Pre => Check);
2

3 package Functional_Imported with
4 SPARK_Mode,
5 Abstract_State => Max_And_Snd,
6 Initializes => Max_And_Snd
7 is
8 procedure Seen_One (X : Integer) with
9 Import,

10 Convention => C,
11 Global => (In_Out => Max_And_Snd),
12 Always_Terminates,
13 Pre => X >= 0 and then -- AoRTE
14 Invariant, -- invariant checking
15 Post => Invariant, -- invariant checking
16 Contract_Cases => -- full functional
17 (X > Max_Value_Seen =>
18 -- max value updated
19 Max_Value_Seen = X and
20 Second_Max_Value_Seen = Max_Value_Seen'Old,
21 X > Second_Max_Value_Seen and
22 X < Max_Value_Seen =>
23 -- second max value updated
24 Max_Value_Seen = Max_Value_Seen'Old and

(continues on next page)
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25 Second_Max_Value_Seen = X,
26 X = Max_Value_Seen or
27 X <= Second_Max_Value_Seen =>
28 -- no value updated
29 Max_Value_Seen = Max_Value_Seen'Old and
30 Second_Max_Value_Seen = Second_Max_Value_Seen'Old);
31

32 procedure Seen_Two (X, Y : Natural) with
33 Pre => X < Y and then -- defensive programming
34 Invariant, -- invariant checking
35 Post => Invariant and then -- invariant checking
36 Max_Value_Seen > 0 and then -- partial functional
37 Max_Value_Seen /= Second_Max_Value_Seen;
38

39 function Invariant return Boolean;
40

41 function Max_Value_Seen return Integer;
42

43 function Second_Max_Value_Seen return Integer;
44

45 end Functional_Imported;

1 with System.Storage_Elements;
2

3 package body Functional_Imported with
4 SPARK_Mode,
5 Refined_State => (Max_And_Snd => (Max, Snd))
6 is
7 Max : Natural := 0 -- max value seen
8 with Address => System.Storage_Elements.To_Address (16#8000_0000#),
9 Warnings => Off;

10

11 Snd : Natural := 0 -- second max value seen
12 with Address => System.Storage_Elements.To_Address (16#8000_0004#),
13 Warnings => Off;
14

15 function Invariant return Boolean is
16 (if Max = 0 then Snd = 0 else Snd < Max);
17

18 function Max_Value_Seen return Integer is (Max);
19

20 function Second_Max_Value_Seen return Integer is (Snd);
21

22 procedure Update (X : Natural) with
23 Import,
24 Convention => C,
25 Global => (In_Out => (Max, Snd)),
26 Always_Terminates,
27 Pre => X > Snd and then -- support of maintenance
28 Invariant, -- invariant checking
29 Post => Invariant and then -- invariant checking
30 (if X > Max'Old then -- complete functional

(continues on next page)
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31 Snd = Max'Old and Max = X
32 elsif X < Max'Old then
33 Snd = X and Max = Max'Old
34 else
35 Snd = Snd'Old and Max = Max'Old);
36

37 procedure Seen_Two (X, Y : Natural) is
38 begin
39 if X > Max then
40 Max := Y;
41 Snd := X;
42 elsif X > Snd then
43 Update (Y);
44 Seen_One (X);
45 else
46 Seen_One (Y);
47 end if;
48 end Seen_Two;
49

50 end Functional_Imported;

Note that we added data dependencies to the imported procedures, as GNATprove would assume otherwise incorrectly
null data dependencies.

As before, all contracts are proved by GNATprove:

functional_imported.adb:7:04: info: address in address clause is compatible with object␣
↪→alignment
functional_imported.adb:11:04: info: address in address clause is compatible with object␣
↪→alignment
functional_imported.adb:43:10: info: precondition proved
functional_imported.adb:44:10: info: precondition proved
functional_imported.adb:46:10: info: precondition proved
functional_imported.ads:6:03: info: flow dependencies proved
functional_imported.ads:16:06: info: disjoint contract or exit cases proved
functional_imported.ads:16:06: info: complete contract cases proved
functional_imported.ads:35:14: info: postcondition proved
functional_imported.ads:39:13: info: implicit aspect Always_Terminates on "Invariant"␣
↪→has been proved, subprogram will terminate
functional_imported.ads:41:13: info: implicit aspect Always_Terminates on "Max_Value_Seen
↪→" has been proved, subprogram will terminate
functional_imported.ads:43:13: info: implicit aspect Always_Terminates on "Second_Max_
↪→Value_Seen" has been proved, subprogram will terminate

7.4.7 Contextual Analysis of Subprograms Without Contracts
It may be convenient to create local subprograms without necessarily specifying a contract for these. GNATprove
attempts to perform a contextual analysis of these local subprograms without contract, at each call site, as if the code
of the subprograms was inlined. Thus, the analysis proceeds in that case as if it had the most precise contract for the
local subprogram, in the context of its calls.

Let’s consider as previously a subprogram which adds two to its integer input:
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1 package Arith_With_Local_Subp
2 with SPARK_Mode
3 is
4 procedure Add_Two (X : in out Integer) with
5 Pre => X <= Integer'Last - 2,
6 Post => X = X'Old + 2;
7

8 end Arith_With_Local_Subp;

And let’s implement it by calling two local subprograms without contracts (which may or not have a separate declara-
tion), which each increment the input by one:

1 package body Arith_With_Local_Subp
2 with SPARK_Mode
3 is
4 -- Local procedure without external visibility
5 procedure Increment_In_Body (X : in out Integer) is
6 begin
7 X := X + 1;
8 end Increment_In_Body;
9

10 procedure Add_Two (X : in out Integer) is
11

12 -- Local procedure defined inside Add_Two
13 procedure Increment_Nested (X : in out Integer) is
14 begin
15 X := X + 1;
16 end Increment_Nested;
17

18 begin
19 Increment_In_Body (X);
20 Increment_Nested (X);
21 end Add_Two;
22

23 end Arith_With_Local_Subp;

GNATprove would not be able to prove that the addition in Increment_In_Body or Increment_Nested cannot
overflow in any context. If it was using only the default contract for these subprograms, it also would not prove that the
contract of Add_Two is respected. But since it analyzes these subprograms in the context of their calls only, it proves
here that no overflow is possible, and that the two increments correctly implement the contract of Add_Two:

1 arith_with_local_subp.adb:7:14: info: overflow check proved, in call inlined at arith_
↪→with_local_subp.adb:19

2 arith_with_local_subp.adb:15:17: info: overflow check proved, in call inlined at arith_
↪→with_local_subp.adb:20

3 arith_with_local_subp.ads:6:14: info: postcondition proved
4 arith_with_local_subp.ads:6:24: info: overflow check proved

This contextual analysis is available only for regular functions (not expression functions) or procedures that are not
externally visible (not declared in the public part of the unit), without contracts (any of Global, Depends, Pre, Post,
Contract_Cases), and respect the following conditions:

• not dispatching

• not marked No_Return
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• not a generic instance

• not defined in a generic instance

• not defined in a protected type

• without a parameter of unconstrained record type with discriminant dependent components

• without a parameter or result of deep type (access type or composite type containing an access type)

• not a traversal function

• without an annotation to skip part of the analysis (see Annotation for Skipping Parts of the Analysis for an Entity)

• without an annotation to hide or unhide information on another entity (see Pruning the Proof Context on a Case
by Case Basis)

Subprograms that respects all of the above conditions are candidates for contextual analysis, and calls to such subpro-
grams are inlined provided the subprogram and its calls respect the following additional conditions:

• does not contain nested subprogram or package declarations or instantiations

• not recursive

• not called in an assertion or a contract

• not called in a potentially unevaluated context

• not called before its body is seen

If any of the above conditions is violated, GNATprove issues an info message to explain why the subprogram could not
be analyzed in the context of its calls, and then proceeds to analyze it normally, using the default contract. Otherwise,
both flow analysis and proof are done for the subprogram in the context of its calls.

Note that it is very simple to prevent contextual analysis of a local subprogram, by adding a contract to it, for example
a simple Pre => True or Global => null. To prevent contextual analysis of all subprograms, pass the switch
--no-inlining to GNATprove. This may be convenient during development if the ultimate goal is to add contracts
to subprograms to analyze them separately, as contextual analysis may cause the analysis to take much more time and
memory.

7.4.8 Subprogram Termination
GNATprove can be used to verify the termination of subprograms. It will do it unconditionnally for regular functions
and package elaboration (which shall have no side effects in SPARK), and on demand for procedures, entries and
functions with side effects (see Aspect Side_Effects). In the following example, we specify that the five procedures
should terminate using the Always_Terminates aspect (see Contracts for Termination):

1 package Terminating_Annotations with SPARK_Mode is
2

3 procedure P_Rec (X : Natural) with
4 Always_Terminates;
5

6 procedure P_While (X : Natural) with
7 Always_Terminates;
8

9 procedure P_Not_SPARK (X : Natural) with
10 Always_Terminates;
11

12 procedure Not_SPARK (X : Natural);
13 procedure P_Call (X : Natural) with
14 Always_Terminates;

(continues on next page)
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15

16 procedure P_Term (X : Natural) with
17 Always_Terminates,
18 Subprogram_Variant => (Decreases => X);
19 end Terminating_Annotations;

To verify these annotations, GNATprove will look for while loops with no loop variants, recursive calls, and calls to
procedures or entries which are not known to terminate. If it cannot make sure that the annotated subprogram will
always terminate, it will then emit a failed check. As an example, let us consider the following implementation of the
five procedures:

1 package body Terminating_Annotations with SPARK_Mode is
2

3 procedure P_Rec (X : Natural) is
4 begin
5 if X = 0 then
6 return;
7 else
8 P_Rec (X - 1);
9 end if;

10 end P_Rec;
11

12 procedure P_While (X : Natural) is
13 Y : Natural := X;
14 begin
15 while Y > 0 loop
16 Y := Y - 1;
17 end loop;
18 end P_While;
19

20 procedure P_Not_SPARK (X : Natural) with SPARK_Mode => Off is
21 Y : Natural := X;
22 begin
23 while Y > 0 loop
24 Y := Y - 1;
25 end loop;
26 end P_Not_SPARK;
27

28 procedure Not_SPARK (X : Natural) with SPARK_Mode => Off is
29 begin
30 null;
31 end Not_SPARK;
32

33 procedure P_Call (X : Natural) is
34 begin
35 Not_SPARK (X);
36 end P_Call;
37

38 procedure P_Term (X : Natural) is
39 Y : Natural := X;
40 begin
41 P_Rec (Y);

(continues on next page)
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42 P_While (Y);
43 P_Not_SPARK (Y);
44 P_Call (Y);
45

46 while Y > 0 loop
47 pragma Loop_Variant (Decreases => Y);
48 Y := Y - 1;
49 end loop;
50

51 if X = 0 then
52 return;
53 else
54 P_Term (X - 1);
55 end if;
56 end P_Term;
57 end Terminating_Annotations;

As can be easily verified by review, all these procedures terminate. However, GNATprove will fail to verify that P_Rec,
P_While, and P_Call always terminate:

1

2 terminating_annotations.adb:8:10: medium: aspect Always_Terminates on "P_Rec" could be␣
↪→incorrect, subprogram is recursive

3 8 | P_Rec (X - 1);
4 | ^~~~~~~~~~~~
5 possible fix: annotate "P_Rec" with a Subprogram_Variant aspect
6

7 terminating_annotations.adb:15:19: medium: aspect Always_Terminates on "P_While" could␣
↪→be incorrect, loop might be nonterminating

8 15 | while Y > 0 loop
9 | ^~~~

10 possible fix: add loop variant in the loop body
11

12 terminating_annotations.adb:35:07: medium: aspect Always_Terminates on "P_Call" could be␣
↪→incorrect, call to "Not_SPARK" might be nonterminating

13 35 | Not_SPARK (X);
14 | ^~~~~~~~~~~~
15 possible fix: annotate "Not_SPARK" with aspect Always_Terminates

Let us look at each procedure to understand what happens. The procedure P_Rec is recursive, and P_While contains a
while loop. Both cases can theoretically lead to an infinite path in the subprogram, which is why GNATprove cannot ver-
ify that they terminate. GNATprove does not complain about not being able to verify the termination of P_Not_SPARK.
Clearly, it is not because it could verify it, as it contains exactly the same loop as P_While. It is because, as the body
of P_Not_SPARK has been excluded from analysis using SPARK_Mode => Off, GNATprove does not attempt to prove
that it terminates. When looking at the body of P_Call, we can see that it calls a procedure Not_SPARK. Clearly, this
procedure always returns, as it does not do anything. But, as the body of No_SPARK has been hidden from analysis
using SPARK_Mode => Off, GNATprove cannot deduce that it terminates. As a result, it stays in the safe side, and
assumes that Not_SPARK could loop, which causes the verification of P_Call to fail. Finally, GNATprove is able to
verify that P_Term terminates, though it contains both a while loop and a recursive call. Indeed, we have bounded
both the number of possible iterations of the loop and the number of recursive calls using a Loop_Variant (for the
loop iterations) and a Subprogram_Variant (for the recursive calls). Also note that, though it was not able to prove
termination of P_Rec, P_While, and P_Call, GNATprove will still trust the annotation when verifying P_Term.
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7.5 How to Write Object Oriented Contracts
Object Oriented Programming (OOP) may require the use of special Class-Wide Subprogram Contracts for dispatching
subprograms, so that GNATprove can check Liskov Substitution Principle on every overriding subprogram.

7.5.1 Object Oriented Code Without Dispatching
In the special case where OOP is used without dispatching, it is possible to use the regular Subprogram Contracts
instead of the special Class-Wide Subprogram Contracts.

For example, consider a variant of the Logging and Range_Logging units presented in Class-Wide Subprogram Con-
tracts, where no dispatching is allowed. Then, it is possible to use regular preconditions and postconditions as contracts,
provided Log_Type is publicly declared as an untagged private type in both units:

1 package Logging_No_Dispatch with
2 SPARK_Mode
3 is
4 Max_Count : constant := 10_000;
5

6 type Log_Count is range 0 .. Max_Count;
7

8 type Log_Type is private;
9

10 function Log_Size (Log : Log_Type) return Log_Count;
11

12 procedure Init_Log (Log : out Log_Type) with
13 Post => Log_Size (Log) = 0;
14

15 procedure Append_To_Log (Log : in out Log_Type; Incr : in Integer) with
16 Pre => Log_Size (Log) < Max_Count,
17 Post => Log_Size (Log) = Log_Size (Log)'Old + 1;
18

19 private
20

21 subtype Log_Index is Log_Count range 1 .. Max_Count;
22 type Integer_Array is array (Log_Index) of Integer;
23

24 type Log_Type is tagged record
25 Log_Data : Integer_Array;
26 Log_Size : Log_Count;
27 end record;
28

29 function Log_Size (Log : Log_Type) return Log_Count is (Log.Log_Size);
30

31 end Logging_No_Dispatch;

1 with Logging_No_Dispatch; use Logging_No_Dispatch;
2

3 package Range_Logging_No_Dispatch with
4 SPARK_Mode
5 is
6 type Log_Type is private;
7

8 function Log_Size (Log : Log_Type) return Log_Count;
(continues on next page)
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9

10 function Log_Min (Log : Log_Type) return Integer;
11

12 function Log_Max (Log : Log_Type) return Integer;
13

14 procedure Init_Log (Log : out Log_Type) with
15 Post => Log_Size (Log) = 0 and
16 Log_Min (Log) = Integer'Last and
17 Log_Max (Log) = Integer'First;
18

19 procedure Append_To_Log (Log : in out Log_Type; Incr : in Integer) with
20 Pre => Log_Size (Log) < Logging_No_Dispatch.Max_Count,
21 Post => Log_Size (Log) = Log_Size (Log)'Old + 1 and
22 Log_Min (Log) = Integer'Min (Log_Min (Log)'Old, Incr) and
23 Log_Max (Log) = Integer'Max (Log_Max (Log)'Old, Incr);
24

25 private
26

27 type Log_Type is tagged record
28 Log : Logging_No_Dispatch.Log_Type;
29 Min_Entry : Integer;
30 Max_Entry : Integer;
31 end record;
32

33 function Log_Size (Log : Log_Type) return Log_Count is (Log_Size (Log.Log));
34

35 function Log_Min (Log : Log_Type) return Integer is (Log.Min_Entry);
36 function Log_Max (Log : Log_Type) return Integer is (Log.Max_Entry);
37

38 end Range_Logging_No_Dispatch;

7.5.2 Writing Contracts on Dispatching Subprograms
Whenever dispatching is used, the contract that applies in proof to a dispatching call is the class-wide contract, defined
as the first one present in the following list:

1. the class-wide precondition (resp. postcondition) attached to the subprogram

2. or otherwise the class-wide precondition (resp. postcondition) being inherited by the subprogram from the sub-
program it overrides

3. or otherwise the default class-wide precondition (resp. postcondition) of True.

For abstract subprograms (on interfaces or regular tagged types), only a class-wide contract can be specified. For other
dispatching subprograms, it is possible to specify both a regular contract and a class-wide contract. In such a case,
GNATprove uses the regular contract to analyze static calls to the subprogram and the class-wide contract to analyze
dispatching calls to the subprogram, and it checks that the specific contract is a refinement of the class-wide contract,
as explained in Mixing Class-Wide and Specific Subprogram Contracts.

Let’s consider the various cases that may occur when overriding a subprogram:

1 package Geometry with
2 SPARK_Mode
3 is

(continues on next page)
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4 type Shape is tagged record
5 Pos_X, Pos_Y : Float;
6 end record;
7

8 function Valid (S : Shape) return Boolean is
9 (S.Pos_X in -100.0 .. 100.0 and S.Pos_Y in -100.0 .. 100.0);

10

11 procedure Operate (S : in out Shape) with
12 Pre'Class => Valid (S);
13

14 procedure Set_Default (S : in out Shape) with
15 Post'Class => Valid (S);
16

17 procedure Set_Default_Repeat (S : in out Shape) with
18 Post'Class => Valid (S);
19

20 procedure Set_Default_No_Post (S : in out Shape);
21

22 type Rectangle is new Shape with record
23 Len_X, Len_Y : Float;
24 end record;
25

26 function Valid (S : Rectangle) return Boolean is
27 (Valid (Shape (S)) and S.Len_X in 0.0 .. 10.0 and S.Len_Y in 0.0 .. 10.0);
28

29 procedure Operate (S : in out Rectangle);
30

31 procedure Set_Default (S : in out Rectangle);
32

33 procedure Set_Default_Repeat (S : in out Rectangle) with
34 Post'Class => Valid (S);
35

36 procedure Set_Default_No_Post (S : in out Rectangle) with
37 Post'Class => Valid (S);
38

39 end Geometry;

In package Geometry, a type Shape is derived in a type Rectangle. A function Shape.Valid defines what it is to
be a valid shape. It is overridden by Rectangle.Valid which defines what it is to be a valid rectangle. Here, a valid
rectangle is also a valid shape, but that need not be the case. Procedure Set_Default and its variants demonstrate the
various configurations that can be found in practice:

1. The overridden subprogram Shape.Set_Default defines a class-wide contract (here only a postcondition),
which is inherited in the overriding subprogram Rectangle.Set_Default. By the semantics of Ada, the
postcondition of Shape.Set_Default calls Shape.Valid, while the inherited postcondition of Rectangle.
Set_Default calls Rectangle.Valid.

2. Both the overridden subprogram Shape.Set_Default_Repeat and the overriding subprogram Rectangle.
Set_Default_Repeat define a class-wide contract (here only a postcondition). Here, since the contract is
simply repeated, this is equivalent to case 1 above of inheriting the contract: the postcondition of Shape.
Set_Default_Repeat calls Shape.Valid, while the postcondition of Rectangle.Set_Default_Repeat
calls Rectangle.Valid.

3. Only the overriding subprogram Rectangle.Set_Default_No_Post defines a class-wide contract (here
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only a postcondition). The default class-wide postcondition of True is used for the overridden Shape.
Set_Default_No_Post.

In case 1, the overriding subprogram satisfies Liskov Substitution Principle by construction, so GNATprove emits no
check in that case. Note that this is not the same as saying that Shape.Set_Default and Rectangle.Set_Default
have the same contract: here the two postconditions differ, as one calls Shape.Valid, while the other calls Rectangle.
Valid.

In case 2, GNATprove checks that Liskov Substitution Principle is verified between the contracts of the overridden and
the overriding subprograms. Here, it checks that the postcondition of Rectangle.Set_Default_Repeat is stronger
than the postcondition of Shape.Set_Default_Repeat.

In case 3, GNATprove also checks that Liskov Substitution Principle is verified between the default contract of the
overridden subprogram and the specified contract of the overriding subprograms. Here, only a postcondition is
specified for Rectangle.Set_Default_No_Post, so it is indeed stronger than the default postcondition of Shape.
Set_Default_No_Post.

Hence the results of GNATprove’s analysis on this program:

geometry.ads:8:13: info: implicit aspect Always_Terminates on "Valid" has been proved,␣
↪→subprogram will terminate
geometry.ads:26:13: info: implicit aspect Always_Terminates on "Valid" has been proved,␣
↪→subprogram will terminate
geometry.ads:34:20: info: class-wide postcondition is stronger than overridden one
geometry.ads:37:20: info: class-wide postcondition is stronger than overridden one

Let’s consider now calls to these subprograms in procedure Use_Geometry:

1 with Geometry; use Geometry;
2

3 procedure Use_Geometry (S : in out Shape'Class) with
4 SPARK_Mode
5 is
6 begin
7 S.Set_Default;
8 S.Operate;
9

10 S.Set_Default_Repeat;
11 S.Operate;
12

13 S.Set_Default_No_Post;
14 S.Operate;
15 end Use_Geometry;

Here are the results of GNATprove’s analysis on this program:

geometry.ads:9:13: info: implicit aspect Always_Terminates on "Valid" has been proved,␣
↪→subprogram will terminate
geometry.ads:31:13: info: implicit aspect Always_Terminates on "Valid" has been proved,␣
↪→subprogram will terminate
geometry.ads:44:20: info: class-wide postcondition is stronger than overridden one
geometry.ads:49:20: info: class-wide postcondition is stronger than overridden one
use_geometry.adb:8:05: info: precondition proved
use_geometry.adb:11:05: info: precondition proved

use_geometry.adb:14:05: medium: precondition might fail
(continues on next page)
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14 | S.Operate;
| ~^~~~~~~~

possible fix: call at line 13 should mention S (for argument S) in a postcondition
13 | S.Set_Default_No_Post;

| ^ here

Parameter S is of class-wide type Shape'Class, so it can be dynamically of both types Shape or Rectangle.
All calls on S are dispatching. In this program, GNATprove needs to check that the precondition of the calls to
Operate is satisfied. As procedures Shape.Set_Default and Shape.Set_Default_Repeat state precisely this
condition in postcondition, the precondition to the calls to Operate that follow can be proved. As procedure Shape.
Set_Default_No_Post has no postcondition, the precondition to the last call to Operate cannot be proved. Note that
these proofs take into account both possible types of S, for example:

• If S is dynamically a shape, then the call to Shape.Set_Default on line 7 ensures that Shape.Valid holds,
which ensures that the precondition to the call to Shape.Operate is satisfied on line 8.

• If S is dynamically a rectangle, then the call to Rectangle.Set_Default on line 7 ensures that Rectangle.
Valid holds, which ensures that the precondition to the call to Rectangle.Operate is satisfied on line 8.

7.5.3 Writing Contracts on Subprograms with Class-wide Parameters
Subprograms with class-wide parameters are not in general dispatching subprograms, hence they are specified through
regular Subprogram Contracts, not Class-Wide Subprogram Contracts. Inside the regular contract, calls on primitive
subprograms of the class-wide parameters are dispatching though, like in the code. For example, consider procedure
More_Use_Geometry which takes four class-wide parameters of type Shape'Class, which can all be dynamically of
both types Shape or Rectangle:

1 with Geometry; use Geometry;
2

3 procedure More_Use_Geometry (S1, S2, S3, S4 : in out Shape'Class) with
4 SPARK_Mode,
5 Pre => S1.Valid
6 is
7 begin
8 S1.Operate;
9

10 if S2.Valid then
11 S2.Operate;
12 end if;
13

14 S3.Set_Default;
15 S3.Operate;
16

17 S4.Operate;
18 end More_Use_Geometry;

The precondition of More_Use_Geometry specifies that S1.Valid holds, which takes into account both possible types
of S1:

• If S1 is dynamically a shape, then the precondition specifies that Shape.Valid holds, which ensures that the
precondition to the call to Shape.Operate is satisfied on line 8.

• If S1 is dynamically a rectangle, then the precondition specifies that Rectangle.Valid holds, which ensures
that the precondition to the call to Rectangle.Operate is satisfied on line 8.
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Similarly, the test on S2.Valid on line 10 ensures that the precondition to the call to S2.Operate on line 11 is
satisfied, and the call to S3.Set_Default on line 14 ensures through its postcondition that the precondition to the call
to S3.Operate on line 15 is satisfied. But no precondition or test or call ensures that the precondition to the call to
S4.Operate on line 17 is satisfied. Hence the results of GNATprove’s analysis on this program:

geometry.ads:9:13: info: implicit aspect Always_Terminates on "Valid" has been proved,␣
↪→subprogram will terminate
geometry.ads:31:13: info: implicit aspect Always_Terminates on "Valid" has been proved,␣
↪→subprogram will terminate
geometry.ads:43:20: info: class-wide postcondition is stronger than overridden one
geometry.ads:47:20: info: class-wide postcondition is stronger than overridden one
more_use_geometry.adb:8:06: info: precondition proved
more_use_geometry.adb:11:09: info: precondition proved
more_use_geometry.adb:15:06: info: precondition proved

more_use_geometry.adb:17:06: medium: precondition might fail
17 | S4.Operate;

| ~~^~~~~~~~
possible fix: precondition of subprogram at line 3 should mention S4
3 |procedure More_Use_Geometry (S1, S2, S3, S4 : in out Shape'Class) with

|^ here

7.6 How to Write Package Contracts
Like for subprogram contracts, GNATprove can generate default package contracts when not specified by a user. By
default, GNATprove does not require the user to write any package contracts.

The default state abstraction generated by GNATprove maps every internal global variable to a different internal abstract
state (which is not really abstract as a result).

The default package initialization generated by GNATprove lists all variables initialized either at declaration or in the
package body statements. The generated Initializes aspect is an over-approximation of the actual Initializes aspect. All
outputs are considered to be initialized from all inputs. For example, consider package Init_Data which initializes
all its global variables during elaboration, from either constants or variables:

1 package External_Data with
2 SPARK_Mode
3 is
4 Val : Integer with Import;
5 end External_Data;

1 with External_Data;
2 pragma Elaborate_All(External_Data);
3

4 package Init_Data with
5 SPARK_Mode
6 is
7 pragma Elaborate_Body;
8 Start_From_Zero : Integer := 0;
9 Start_From_Val : Integer := External_Data.Val;

10 Start_From_Zero_Bis : Integer;
11 Start_From_Val_Bis : Integer;
12 end Init_Data;
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1 package body Init_Data with
2 SPARK_Mode
3 is
4 begin
5 Start_From_Zero_Bis := 0;
6 Start_From_Val_Bis := External_Data.Val;
7 end Init_Data;

GNATprove generates a package initialization contract on package Init_Data which is equivalent to:

Initializes => (Start_From_Zero => External_Data.Val,
Start_From_Zero_Bis => External_Data.Val,
Start_From_Val => External_Data.Val,
Start_From_Val_Bis => External_Data.Val)

As a result, GNATprove can check that global variables are properly initialized when calling the main procedure
Main_Proc, and it does not issue any message when analyzing this code:

1 with Init_Data;
2 procedure Main_Proc with
3 SPARK_Mode
4 is
5 Tmp : Integer;
6 begin
7 Tmp := Init_Data.Start_From_Zero;
8 Tmp := Init_Data.Start_From_Val;
9 Tmp := Init_Data.Start_From_Zero_Bis;

10 Tmp := Init_Data.Start_From_Val_Bis;
11 end Main_Proc;

The user may specify explicitly package contracts to:

• name explicitly the parts of state abstraction that can be used in subprogram dependency contracts, in order to
Address Data and Control Coupling; or

• improve scalability and running time of GNATprove’s analysis, as a single explicit abstract state may be mapped
to hundreds of concrete global variables, which would otherwise be considered separately in the analysis; or

• check that initialization of global data at elaboration is as specified in the specified package initialization con-
tracts.

7.7 How to Write Loop Invariants
As described in Loop Invariants, proving properties of subprograms that contain loops may require the addition of
explicit loop invariant contracts. This section describes a systematic approach for writing loop invariants.

7.7.1 Automatic Unrolling of Simple For-Loops
GNATprove automatically unrolls simple for-loops, defined as:

• for-loops over a range,

• with a number of iterations smaller than 20,

• without Loop Invariants or Loop Variants,

• that declare no local variables, or only variables of scalar type.
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In addition, GNATprove always unrolls loops of the form for J in 1 .. 1 loop that don’t have a Loop Invariants
or Loop Variants, even when they declare local variables of non-scalar type.

As a result of unrolling, GNATprove conveys the exact meaning of the loop to provers, without requiring a loop invari-
ant. While this is quite powerful, it is best applied to loops where the body of the loop is small, otherwise the unrolling
may lead to complex formulas that provers cannot prove.

For example, consider the subprograms Init and Sum below:

1 package Loop_Unrolling with
2 SPARK_Mode
3 is
4 subtype Index is Integer range 1 .. 10;
5 type Arr is array (Index) of Integer;
6

7 procedure Init (A : out Arr) with
8 Post => (for all J in Index => A(J) = J);
9

10 function Sum (A : Arr) return Integer with
11 Pre => (for all J in Index => A(J) = J),
12 Post => Sum'Result = (A'First + A'Last) * A'Length / 2;
13

14 end Loop_Unrolling;

1 package body Loop_Unrolling with
2 SPARK_Mode
3 is
4 procedure Init (A : out Arr) is
5 begin
6 for J in Index loop
7 A (J) := J;
8 end loop;
9 end Init;

10

11 function Sum (A : Arr) return Integer is
12 Result : Integer := 0;
13 begin
14 for J in Index loop
15 Result := Result + A (J);
16 end loop;
17 return Result;
18 end Sum;
19

20 end Loop_Unrolling;

As the loops in both subprograms are simple for-loops, GNATprove unrolls them and manages to prove the postcondi-
tions of Init and Sum without requiring a loop invariant:

1 loop_unrolling.adb:15:27: info: overflow check proved
2 loop_unrolling.ads:7:20: info: initialization of "A" proved
3 loop_unrolling.ads:8:14: info: postcondition proved
4 loop_unrolling.ads:10:13: info: implicit aspect Always_Terminates on "Sum" has been␣

↪→proved, subprogram will terminate
5 loop_unrolling.ads:12:14: info: postcondition proved
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Automatic loop unrolling can be disabled locally by explicitly adding a default loop invariant at the start of the loop:

for X in A .. B loop
pragma Loop_Invariant (True);
...

end loop;

It can also be disabled globally by using the switch --no-loop-unrolling.

7.7.2 Automatically Generated Loop Invariants
In general, GNATprove relies on the user to manually supply the necessary information about variables modified by
loop statements in the loop invariant. Though variables which are not modified in the loop need not be mentioned in
the invariant, it is usually necessary to state explicitly the preservation of unmodified object parts, such as record or
array components. In particular, when a loop modifies a collection, which can be either an array or a container (see
Formal Containers Library), it may be necessary to state in the loop invariant those parts of the collection that have not
been modified up to the current iteration. This property called frame condition in the scientific literature is essential
for GNATprove, which otherwise must assume that all elements in the collection may have been modified. Special
care should be taken to write adequate frame conditions, as they usually look obvious to programmers, and so it is very
common to forget to write them and not being able to realize what’s the problem afterwards.

To alleviate this problem, the GNATprove tool generates automatically frame conditions in some cases. As examples
of use of such generated frame conditions, consider the code of procedures Update_Arr and Update_Rec below:

1 package Frame_Condition with
2 SPARK_Mode
3 is
4 type Index is range 1 .. 100;
5 type Arr is array (Index) of Integer;
6

7 procedure Update_Arr (A : in out Arr; Idx : Index) with
8 Post => A(Idx + 1 .. A'Last) = A(Idx + 1 .. A'Last)'Old;
9

10 type Rec is record
11 A : Arr;
12 X : Integer;
13 end record;
14

15 procedure Update_Rec (R : in out Rec) with
16 Post => R.X = R.X'Old;
17

18 end Frame_Condition;

1 package body Frame_Condition with
2 SPARK_Mode
3 is
4 procedure Update_Arr (A : in out Arr; Idx : Index) is
5 begin
6 for J in A'First .. Idx loop
7 A(J) := Integer(J);
8 end loop;
9 end Update_Arr;

10

11 procedure Update_Rec (R : in out Rec) is
(continues on next page)
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12 begin
13 for J in R.A'Range loop
14 R.A(J) := Integer(J);
15 end loop;
16 end Update_Rec;
17

18 end Frame_Condition;

Without this feature, GNATprove would not be able to prove the postconditions of either procedure because:

• To prove the postcondition of Update_Arr, one needs to know that only the indexes up to Idx have been updated
in the loop.

• To prove the postcondition of Update_Rec, one needs to know that only the component A of record R has been
updated in the loop.

Thanks to this feature, GNATprove automatically proves the postconditions of both procedures, without the need for
loop invariants:

1 frame_condition.ads:8:14: info: range check proved
2 frame_condition.ads:8:14: info: postcondition proved
3 frame_condition.ads:8:37: info: range check proved
4 frame_condition.ads:16:14: info: postcondition proved

In particular, it is able to infer the preservation of unmodified components of record variables. It also handles unmod-
ified components of array variables as long as they are preserved at every index in the array. As an example, consider
the following loop which only updates some record component of a nested data structure:

1 procedure Preserved_Fields with SPARK_Mode is
2 type R is record
3 F1 : Integer := 0;
4 F2 : Integer := 0;
5 end record;
6

7 type R_Array is array (1 .. 100) of R;
8

9 type R_Array_Record is record
10 F3 : R_Array;
11 F4 : R_Array;
12 end record;
13

14 D : R_Array_Record;
15

16 begin
17 for I in 1 .. 100 loop
18 D.F3 (I).F1 := 0;
19 pragma Assert (for all J in 1 .. 100 =>
20 D.F3 (J).F2 = D.F3'Loop_Entry (J).F2);
21 pragma Assert (D.F4 = D.F4'Loop_Entry);
22 end loop;
23

24 end Preserved_Fields;

Despite the absence of a loop invariant in the above code, GNATprove is able to prove that the assertions on lines 19-21
about variable D which is modified in the loop are proved, thanks to the generated loop invariants:
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1 preserved_fields.adb:14:04: info: initialization of "D" proved
2 preserved_fields.adb:19:22: info: assertion proved
3 preserved_fields.adb:21:22: info: assertion proved

Note that GNATprove will not generate a frame condition for a record component if the record variable is modified
as a whole either through an assignment or through a procedure call, et cetera, even if the component happens to be
preserved by the modification.

GNATprove can also infer preservation of unmodified array components for arrays that are only updated at constant
indexes or at indexes equal to the loop index. As an example, consider the following loops, only updating some cells
of a matrix of arrays:

1 procedure Preserved_Components with SPARK_Mode is
2

3 type A is array (1 .. 100) of Natural with Default_Component_Value => 1;
4

5 type A_Matrix is array (1 .. 100, 1 .. 100) of A;
6

7 M : A_Matrix;
8

9 begin
10 L1: for I in 1 .. 100 loop
11 M (I, 1) (1 .. 50) := (others => 0);
12 pragma Assert
13 (for all K1 in 1 .. 100 =>
14 (for all K2 in 1 .. 100 =>
15 (for all K3 in 1 .. 100 =>
16 (if K1 > I or else K2 /= 1 or else K3 > 50 then
17 M (K1, K2) (K3) = M'Loop_Entry (K1, K2) (K3)))));
18 end loop L1;
19

20 L2: for I in 1 .. 99 loop
21 M (I + 1, I) (I .. 100) := (others => 0);
22 pragma Assert
23 (for all K1 in 1 .. 100 =>
24 (for all K2 in 1 .. 100 =>
25 (for all K3 in 1 .. 100 =>
26 (if K1 > I + 1 then
27 M (K1, K2) (K3) = M'Loop_Entry (K1, K2) (K3)))));
28 pragma Assert
29 (for all K1 in 1 .. 100 =>
30 (for all K2 in 1 .. 100 =>
31 (for all K3 in 1 .. 100 =>
32 (if K3 < K2 then
33 M (K1, K2) (K3) = M'Loop_Entry (K1, K2) (K3)))));
34 end loop L2;
35

36 end Preserved_Components;

Despite the absence of a loop invariant in the above code, GNATprove can succesfully verify the assertion on line 13
thanks to the generated loop invariant. Note that loop invariant generation for preserved array components is based
on heuristics, and that it is therefore far from complete. In particular, it does not handle updates to variable indexes
different from the loop index, as can be seen by the failed attempt to verify the assertion on line 22. GNATprove does
not either handle dependences between indexes in an update, resulting in the failed attempt to verify the assertion on
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line 33:

1 preserved_components.adb:7:04: info: initialization of "M" proved
2 preserved_components.adb:13:10: info: assertion proved
3 preserved_components.adb:21:07: info: range check proved
4 preserved_components.adb:21:21: info: index check proved
5 preserved_components.adb:21:26: info: index check proved
6 preserved_components.adb:21:31: info: length check proved
7 preserved_components.adb:21:34: info: length check proved
8

9 preserved_components.adb:27:30: medium: assertion might fail, cannot prove M (K1, K2)␣
↪→(K3) = M'Loop_Entry (K1, K2) (K3)

10 27 | M (K1, K2) (K3) = M'Loop_Entry (K1, K2) (K3)))));
11 | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
12 possible fix: loop at line 20 should mention M in a loop invariant
13 20 | L2: for I in 1 .. 99 loop
14 | ^ here
15

16 preserved_components.adb:33:30: medium: assertion might fail, cannot prove M (K1, K2)␣
↪→(K3) = M'Loop_Entry (K1, K2) (K3)

17 33 | M (K1, K2) (K3) = M'Loop_Entry (K1, K2) (K3)))));
18 | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
19 possible fix: loop at line 20 should mention M in a loop invariant
20 20 | L2: for I in 1 .. 99 loop
21 | ^ here

7.7.3 The Four Properties of a Good Loop Invariant
A loop invariant can describe more or less precisely the behavior of a loop. What matters is that the loop invariant
allows proving absence of run-time errors in the subprogram, that the subprogram respects its contract, and that the
loop invariant itself holds at each iteration of the loop. There are four properties that a good loop invariant should
fulfill:

1. [INIT] It should be provable in the first iteration of the loop.

2. [INSIDE] It should allow proving absence of run-time errors and local assertions inside the loop.

3. [AFTER] It should allow proving absence of run-time errors, local assertions and the subprogram postcondition
after the loop.

4. [PRESERVE] It should be provable after the first iteration of the loop.

As a first example, here is a variant of the search algorithm described in SPARK Tutorial, which returns whether a
collection contains a desired value, and if so, at which index. The collection is implemented as an array.

The specification of Linear_Search is given in file linear_search.ads. The postcondition of Search expresses
that, either the search returns a result within the array bounds, in which case it is the desired index, otherwise the array
does not contain the value searched.

1 package Linear_Search
2 with SPARK_Mode
3 is
4 type Opt_Index is new Natural;
5

6 subtype Index is Opt_Index range 1 .. Opt_Index'Last - 1;
7

(continues on next page)
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8 No_Index : constant Opt_Index := 0;
9

10 type Ar is array (Index range <>) of Integer;
11

12 function Search (A : Ar; I : Integer) return Opt_Index with
13 Post => (if Search'Result in A'Range then A (Search'Result) = I
14 else (for all K in A'Range => A (K) /= I));
15

16 end Linear_Search;

The implementation of Linear_Search is given in file linear_search.adb. The loop invariant of Search expresses
that, at the end of each iteration, if the loop has not been exited before, then the value searched is not in the range of
indexes between the start of the array A'First and the current index Pos. The loop variant is used to prove termination
of the loop.

1 package body Linear_Search
2 with SPARK_Mode
3 is
4

5 function Search (A : Ar; I : Integer) return Opt_Index is
6 begin
7 for Pos in A'Range loop
8 if A (Pos) = I then
9 return Pos;

10 end if;
11

12 pragma Loop_Invariant (for all K in A'First .. Pos => A (K) /= I);
13 end loop;
14

15 return No_Index;
16 end Search;
17

18 end Linear_Search;

With this loop invariant, GNATprove is able to prove all checks in Linear_Search, both those related to absence of
run-time errors and those related to verification of contracts:

1 linear_search.adb:9:20: info: range check proved
2 linear_search.adb:12:33: info: loop invariant preservation proved
3 linear_search.adb:12:33: info: loop invariant initialization proved
4 linear_search.adb:12:67: info: index check proved
5 linear_search.ads:12:13: info: implicit aspect Always_Terminates on "Search" has been␣

↪→proved, subprogram will terminate
6 linear_search.ads:13:14: info: postcondition proved
7 linear_search.ads:13:57: info: index check proved
8 linear_search.ads:14:48: info: index check proved

In particular, the loop invariant fulfills all four properties that we listed above:

1. [INIT] It is proved in the first iteration (message on line 3).

2. [INSIDE] It allows proving absence of run-time errors inside the loop (messages on lines 1 and 4).

3. [AFTER] It allows proving absence of run-time errors after the loop (messages on lines 6 and 7) and the subpro-
gram postcondition (message on line 5).
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4. [PRESERVE] It is proved after the first iteration (message on line 2).

Note that the loop invariant closely resembles the second line in the postcondition of the subprogram, except with
a different range of values in the quantification: instead of stating a property for all indexes in the array A, the loop
invariant states the same property for all indexes up to the current loop index Pos. In fact, if we equate Pos to A'Last
for the last iteration of the loop, the two properties are equal. This explains here how the loop invariant allows proving
the subprogram postcondition when the value searched is not found.

Note also that we chose to put the loop invariant at the end of the loop. We could as easily put it at the start of the loop.
In that case, the range of values in the quantification should be modified to state that, at the start of each iteration, if
the loop has not been exited before, then the value searched is not in the range of indexes between the start of the array
A'First and the current index Pos excluded:

pragma Loop_Invariant (for all K in A'First .. Pos - 1 => A (K) /= I);

Indeed, the test for the value at index Pos is done after the loop invariant in that case.

We will now demonstrate techniques to complete a loop invariant so that it fulfills all four properties [INIT], [INSIDE],
[AFTER] and [PRESERVE], on a more complex algorithm searching in an ordered collection of elements. Like the
naive search algorithm just described, this algorithm returns whether the collection contains the desired value, and if
so, at which index. The collection is also implemented as an array.

The specification of this Binary_Search is given in file binary_search.ads:

1 package Binary_Search
2 with SPARK_Mode
3 is
4 type Opt_Index is new Natural;
5

6 subtype Index is Opt_Index range 1 .. Opt_Index'Last - 1;
7

8 No_Index : constant Opt_Index := 0;
9

10 type Ar is array (Index range <>) of Integer;
11

12 function Empty (A : Ar) return Boolean is (A'First > A'Last);
13

14 function Sorted (A : Ar) return Boolean is
15 (for all I1 in A'Range =>
16 (for all I2 in I1 .. A'Last => A (I1) <= A (I2)));
17

18 function Search (A : Ar; I : Integer) return Opt_Index with
19 Pre => Sorted (A),
20 Post => (if Search'Result in A'Range then A (Search'Result) = I
21 else (for all Index in A'Range => A (Index) /= I));
22

23 end Binary_Search;

The implementation of Binary_Search is given in file binary_search.adb:

1 package body Binary_Search
2 with SPARK_Mode
3 is
4

5 function Search (A : Ar; I : Integer) return Opt_Index is
6 Left : Index;

(continues on next page)
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(continued from previous page)

7 Right : Index;
8 Med : Index;
9 begin

10 if Empty (A) then
11 return No_Index;
12 end if;
13

14 Left := A'First;
15 Right := A'Last;
16

17 if Left = Right and A (Left) = I then
18 return Left;
19 elsif A (Left) > I or A (Right) < I then
20 return No_Index;
21 end if;
22

23 while Left <= Right loop
24 pragma Loop_Variant (Increases => Left, Decreases => Right);
25

26 Med := Left + (Right - Left) / 2;
27

28 if A (Med) < I then
29 Left := Med + 1;
30 elsif A (Med) > I then
31 Right := Med - 1;
32 else
33 return Med;
34 end if;
35 end loop;
36

37 return No_Index;
38 end Search;
39

40 end Binary_Search;

Note that, although function Search has a loop, we have not given an explicit loop invariant yet, so the default loop
invariant of True will be used by GNATprove. We have added a loop variant to prove termination of the function. We
are running GNATprove with a prover timeout of 60 seconds (switch --timeout=60) to get the results presented in
the rest of this section.

7.7.4 Proving a Loop Invariant in the First Iteration
Property [INIT] is the easiest one to prove. This is equivalent to proving a pragma Assert in the sequence of statements
obtained by unrolling the loop once. In particular, if the loop invariant is at the start of the loop, this is equivalent to
proving a pragma Assert just before the loop. Therefore, the usual techniques for investigating unproved checks apply,
see How to Investigate Unproved Checks.

7.7.5 Completing a Loop Invariant to Prove Checks Inside the Loop
Let’s start by running GNATprove on program Binary_Search without loop invariant. It generates two medium
messages, one corresponding to a possible run-time check failure, and one corresponding to a possible failure of the
postcondition:
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binary_search.adb:28:16: medium: array index check might fail
28 | if A (Med) < I then

| ^~~
reason for check: value must be a valid index into the array
possible fix: loop at line 23 should mention Med in a loop invariant
23 | while Left <= Right loop

| ^ here

binary_search.ads:21:49: medium: postcondition might fail, cannot prove A (Index) /= I
21 | else (for all Index in A'Range => A (Index) /= I));

| ^~~~~~~~~~~~~~

We will focus here on the message inside the loop, which corresponds to property [INSIDE]. The problem is that
variable Med varies in the loop, so GNATprove only knows that its value is in the range of its type Index at the start of
an iteration (line 23), and that it is then assigned the value of Left + (Right - Left) / 2 (line 24) before being
used as an index into array A (lines 26 and 28) and inside expressions assigned to Left and Right (lines 27 and 29).

As Left and Right also vary in the loop, GNATprove cannot use the assignment on line 24 to compute a more precise
range for variable Med, hence the message on index check.

What is needed here is a loop invariant that states that the values of Left and Right stay within the bounds of A inside
the loop:

while Left <= Right loop
pragma Loop_Variant (Increases => Left, Decreases => Right);
pragma Loop_Invariant (Left in A'Range and Right in A'Range);

With this simple loop invariant, GNATprove now reports that the check on line 26 is proved. GNATprove computes
that the value assigned to Med in the loop is also within the bounds of A.

7.7.6 Completing a Loop Invariant to Prove Checks After the Loop
With the simple loop invariant given before, GNATprove still reports that the postcondition of Search may fail, which
corresponds to property [AFTER]. By instructing GNATprove to prove checks progressively, as seens in Proving
SPARK Programs, we even get a precise message pointing to the part of the postcondition that could not be proved:

binary_search.ads:21:49: medium: postcondition might fail, cannot prove A (Index) /= I
21 | else (for all Index in A'Range => A (Index) /= I));

| ^~~~~~~~~~~~~~

Here, the message shows that the second line of the postcondition could not be proved. This line expresses that, in the
case where Search returns No_Index after the loop, the array A should not contain the value searched I.

One can very easily check that, if GNATprove can prove this property, it can also prove the postcondition. Simply
insert a pragma Assert after the loop stating this property:

end if;
end loop;
pragma Assert (for all Index in A'Range => A (Index) /= I);

GNATprove now succeeds in proving the postcondition, but it fails to prove the assertion:
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binary_search.adb:37:50: medium: assertion might fail, cannot prove A (Index) /= I
37 | pragma Assert (for all Index in A'Range => A (Index) /= I);

| ^~~~~~~~~~~~~~
possible fix: precondition of subprogram at binary_search.ads:18 should mention I
18 | function Search (A : Ar; I : Integer) return Opt_Index with

| ^ here

The problem is that GNATprove only knows what the user specified about A in the precondition, namely that it is
sorted in ascending order. Nowhere it is said that A does not contain the value I. Note that adding this assertion is not
compulsory. It simply helps identifying what is needed to achieve property [AFTER], but it can be removed afterwards.

What is needed here is a loop invariant stating that, if A contains the value I, it must be at an index in the range Left.
.Right, so when the loop exits because Left > Right (so the loop test becomes false), A cannot contain the value
I.

One way to express this property is to state that the value of A at index Left - 1 is less than I, while the value of A
at index Right + 1 is greater than I. Taking into account the possibility that there are no such indexes in A if either
Left or Right are at the boundaries of the array, we can express it as follows:

while Left <= Right loop
pragma Loop_Variant (Increases => Left, Decreases => Right);
pragma Loop_Invariant (Left in A'Range and Right in A'Range);
pragma Loop_Invariant (Left = A'First or else A (Left - 1) < I);
pragma Loop_Invariant (Right = A'Last or else I < A (Right + 1));

GNATprove manages to prove these additional loop invariants, but it still cannot prove the assertion after the loop.
The reason is both simple and far-reaching. Although the above loop invariant together with the property that the
array is sorted imply the property we want to express, it still requires additional work for the prover to reach the same
conclusion, which may prevent automatic proof in the allocated time. In that case, it is better to express the equivalent
but more explicit property directly, as follows:

while Left <= Right loop
pragma Loop_Variant (Increases => Left, Decreases => Right);
pragma Loop_Invariant (Left in A'Range and Right in A'Range);
pragma Loop_Invariant
(for all Index in A'First .. Left - 1 => A (Index) < I);

pragma Loop_Invariant
(for all Index in A'Range =>

(if Index > Right then I < A (Index)));

GNATprove now proves the assertion after the loop. In general, it is simpler to understand the relationship between the
loop invariant and the checks that follow the loop when the loop invariant is directly followed by the exit statement that
controls loop termination. In a “for” or “while” loop, this can mean it is easier to place the Loop_Invariant pragmas
at the end of the loop body, where they precede the (implicit) exit statement. In such cases, the loop invariant is more
likely to resemble the postcondition.

7.7.7 Proving a Loop Invariant After the First Iteration
With the loop invariant given before, GNATprove also proves that the loop invariant of Search holds after the first
iteration, which corresponds to property [PRESERVE]. In fact, we have now arrived at a loop invariant which allows
GNATprove to prove all checks for subprogram Search.

This is not always the case. In general, when the loop invariant is not proved after the first iteration, the problem is that
the loop invariant is not precise enough. The only information that GNATprove knows about the value of variables that
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are modified in the loop, at each loop iteration, is the information provided in the loop invariant. If the loop invariant is
missing some crucial information about these variables, which is needed to prove the loop invariant after N iterations,
GNATprove won’t be able to prove that the loop invariant holds at each iteration.

In loops that modify variables of composite types (records and arrays), it is usually necessary at this stage to add in
the loop invariant some information about those parts of the modified variables which are not modified by the loop,
or which are not modified in the first N iterations of the loop. Otherwise, GNATprove assumes that these parts may
also be modified, which can prevent it from proving the preservation of the loop invariant. See Loop Invariants for an
example where this is needed.

In other cases, it may be necessary to guide the prover with intermediate assertions. A rule of thumb for deciding which
properties to assert, and where to assert them, is to try to locate at which program point the prover does not success in
proving the property of interest, and to restate other properties that are useful for the proof.

In yet other cases, where the difficulty is related to the size of the loop rather than the complexity of the properties,
it may be useful to factor the loop into local subprograms so that the subprograms’ preconditions and postconditions
provide the intermediate assertions that are needed to prove the loop invariant.

7.8 How to Investigate Unproved Checks
One of the most challenging aspects of formal verification is the analysis of failed proofs. If GNATprove fails to prove
automatically that a run-time check or an assertion holds, there might be various reasons:

• [CODE] The check or assertion does not hold, because the code is wrong.

• [ASSERT] The assertion does not hold, because it is incorrect.

• [SPEC] The check or assertion cannot be proved, because of some missing assertions about the behavior of the
program.

• [MODEL] The check or assertion is not proved because of current limitations in the model used by GNATprove.

• [TIMEOUT] The check or assertion is not proved because the prover timeouts.

• [PROVER] The check or assertion is not proved because the prover is not smart enough.

7.8.1 Investigating Incorrect Code or Assertion
The first step is to check whether the code is incorrect [CODE] or the assertion is incorrect [ASSERT], or both. Since
run-time checks and assertions can be executed at run time, one way to increase confidence in the correction of the
code and assertions is to test the program on representative inputs. The following GNAT switches can be used:

• -gnato: enable run-time checking of intermediate overflows

• -gnat-p: reenable run-time checking even if -gnatp was used to suppress all checks

• -gnata: enable run-time checking of assertions

7.8.2 Investigating Unprovable Properties
The second step is to consider whether the property is provable [SPEC]. A check or assertion might be unprovable
because a necessary annotation is missing:

• the precondition of the enclosing subprogram might be too weak; or

• the postcondition of a subprogram called might be too weak; or

• a loop invariant for an enclosing loop might be too weak; or

• a loop invariant for a loop before the check or assertion might be too weak.
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In particular, GNATprove does not look into subprogram bodies, so all the necessary information for calls should be
explicit in the subprogram contracts. GNATprove may emit a tentative fix for the unprovable property when it suspects
a missing precondition, postcondition or loop invariant to be the cause of the unprovability. The fix part follows the
usual message of the form:

file:line:col: severity: check might fail

with a text such as:

possible fix: subprogram at line xxx should mention Var in a precondition
possible fix: loop at line xxx should mention Var in a loop invariant
possible fix: call at line xxx should mention Var in a postcondition

A focused manual review of the code and assertions can efficiently diagnose many cases of missing annotations. Even
when an assertion is quite large, GNATprove precisely locates the part that it cannot prove, which can help figuring
out the problem. It may useful to simplify the code during this investigation, for example by adding a simpler assertion
and trying to prove it.

GNATprove provides path information that might help the code review. You can display inside the editor the path on
which the proof failed, as described in Running GNATprove from GNAT Studio. In some cases, a counterexample is
also generated on the path, with values of variables which exhibit the problem (see Understanding Counterexamples).
In many cases, this is sufficient to spot a missing assertion.

A property can also be conceptually provable, but the model used by GNATprove can currently not reason about it
[MODEL]. (See GNATprove Limitations for a list of the current limitations in GNATprove.) In particular using the
following features of the language may yield checks that should be true, but cannot be proved:

• Floating point arithmetic

• The specific value of dispatching calls when the tag is known

In the cases where no prover can prove the check, the missing information can usually be added using pragma Assume.

It may be difficult sometimes to distinguish between unprovable properties and prover shortcomings (the next section).
The most generally useful action to narrow down the issue to its core is to insert assertions in the code that test whether
the property (or part of it) can be proved at some specific point in the program. For example, if a postcondition states
a property (P or Q), and the implementation contains many branches and paths, try adding assertions that P holds or Q
holds where they are expected to hold. This can help distinguish between the two cases:

• In the case of an unprovable property, this may point to a specific path in the program, and a specific part of the
property, which cause the issue.

• In the case of a prover shortcoming, this may also help provers to manage to prove both the assertion and the
property. Then, it is good practice to keep in the code only those assertions that help getting automatic proof,
and to remove other assertions that were inserted during interaction.

When using switch --info, GNATprove issues information messages regarding internal decisions that could influence
provability:

• whether candidate loops for Automatic Unrolling of Simple For-Loops are effectively unrolled or not;

• whether candidate subprograms for Contextual Analysis of Subprograms Without Contracts are effectively inlined
for proof or not;

• whether possible subprogram nontermination impacts the proof of calls to that subprogram (see the note in the
section on Subprogram Termination)
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7.8.3 Investigating Prover Shortcomings
The last step is to investigate if the prover would find a proof given enough time [TIMEOUT] or if another prover can
find a proof [PROVER]. To that end, GNATprove provides switch --level, usable either from the command-line (see
Running GNATprove from the Command Line), inside GNAT Studio (see Running GNATprove from GNAT Studio) or
inside GNATbench (see Running GNATprove from GNATbench). The level of 0 is only adequate for simple proofs. In
general, one should increase the level of proof (up to level 4) until no more automatic proofs can be obtained.

As described in the section about Running GNATprove from the Command Line, switch --level is equivalent to
setting directly various lower level switches like --timeout, --prover, and --proof. Hence, one can also set more
powerful (and thus leading to longer proof time) values for the individual switches rather than using the predefined
combinations set through --level.

Note that for the above experiments, it is quite convenient to use the SPARK → Prove Line or SPARK → Prove Subpro-
gram menus in GNAT Studio, as described in Running GNATprove from GNAT Studio and Running GNATprove from
GNATbench, to get faster results for the desired line or subprogram.

A current limitation of automatic provers is that they don’t handle floating-point arithmetic very precisely, in particular
when there are either a lot of operations, or some non-linear operations (multiplication, division, exponentiation).

Another common limitation of automatic provers is that they don’t handle non-linear arithmetic well. For example,
they might fail to prove simple checks involving multiplication, division, modulo or exponentiation.

In that case, a user may either:

• add in the code a call to a lemma from the SPARK lemma library (see details in Manual Proof Using SPARK
Lemma Library), or

• add in the code a call to a user lemma (see details in Manual Proof Using User Lemmas), or

• add an assumption in the code (see details in Indirect Justification with Pragma Assume), or

• add a justification in the code (see details in Direct Justification with Pragma Annotate), or

• import the formula passed to the automatic prover in the language of an interactive prover, and complete the
proof interactively (see details in Calling an Interactive Prover From GNAT Studio), or

• manually review the unproved checks and record that they can be trusted (for example by storing the result of
GNATprove under version control).

For advanced users, in particular those who would like to do manual proof, we will provide a description of the format
of the proof files generated by GNATprove, so that users can understand the actual files passed to the prover. Each indi-
vidual file is stored under the sub-directory gnatprove of the project object directory (default is the project directory).
The file name follows the convention:

<file>_<line>_<column>_<check>_<num>.<ext>

where:

• file is the name of the Ada source file for the check

• line is the line where the check appears

• column is the column

• check is an identifier for the check

• num is an optional number and identifies different paths through the program, between the start of the subprogram
and the location of the check

• ext is the extension corresponding to the file format chosen. The format of the file depends on the prover used.
For example, files for Alt-Ergo are are in Why3 format, and files for cvc5 are in SMTLIB2 format.
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For example, the proof files generated for prover Alt-Ergo for a range check at line 160, column 42, of the file f.adb
are stored in:

f.adb_160_42_range_check.why
f.adb_160_42_range_check_2.why
f.adb_160_42_range_check_3.why
...

Corresponding proof files generated for prover cvc5 are stored in:

f.adb_160_42_range_check.smt2
f.adb_160_42_range_check_2.smt2
f.adb_160_42_range_check_3.smt2
...

To be able to inspect these files, you should instruct GNATprove to keep them around by adding the switch -d to
GNATprove’s command line. You can also use the switch -v to get a detailed log of which proof files GNATprove is
producing and attempting to prove.

7.8.4 Looking at Machine-Parsable GNATprove Output
GNATprove generates files which contain the results of SPARK analysis in machine-parsable form. These files are
located in the gnatprove subdirectory of the project object directory, and have the suffix .spark. The structure of
these files exposes internal details such as the exact way some checks are proved, therefore the structure of these files
may change. Still, we provide here the structure of these files for convenience.

At various places in these files, we refer to entities. These are Ada entities, either subprograms or packages. Entities
are defined by their name and their source location (file and line). In JSON this translates to the following dictionary
for entities:

{ "name" : string,
"file" : string,
"line" : int }

A .spark file is of this form:

{ "spark" : list spark_result,
"flow" : list flow_result,
"pragma_assume" : list assume_result,
"proof" : list proof_result }

Each entry is mapped to a list of entries whose format is described below.

The spark_result entry is simply an entity, with an extra field for spark status, so that the entire dictionary looks like
this:

spark_result = { "name" : string,
"file" : string,
"line" : int,
"spark" : string }

Field “spark” takes value in “spec”, “all” or “no” to denote respectively that only the spec is in SPARK, both spec/body
are in SPARK (or spec is in SPARK for a package without body), or the spec is not in SPARK.

Entries for proof are of the following form:
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proof_result =
{ "file" : string,
"line" : int,
"col" : int,
"suppressed" : string,
"rule" : string,
"severity" : string,
"tracefile" : string,
"check_tree" : list goal,
"msg_id" : int,
"how_proved" : string,
"entity" : entity }

• (“file”, “line”, “col”) describe the source location of the message.

• “rule” describes the kind of check.

• “severity” describes the kind status of the message, possible values used by gnatwhy3 are “info”, “low”,
“medium”, “high” and “error”.

• “tracefile” contains the name of a trace file, if any.

• “entity” contains the entity dictionary for the entity that this check belongs to.

• “msg_id” - if present indicates that this entry corresponds to a message issued on the commandline, with the
exact same msg_id in brackets: “[#12]”

• “suppressed” - if present, the message is in fact suppressed by a pragma Annotate, and this field contains the
justification message.

• “how_proved” - if present, indicates how the check has been proved (i.e. which prover). A special value is
“interval”, which designates the special interval analysis, done in the frontend. It has its own column in the
summary table.

• “check_tree” basically contains a copy of the session tree in JSON format. It’s a tree structure whose nodes are
goals, transformations and proof attempts:

goal = { "transformations" : list trans,
"pa" : proof_attempt }

trans = { [transname : goal] }

proof_attempt = { [prover : infos] }

infos = { "time" : float,
"steps" : integer,
"result" : string }

Flow entries are of the same form as for proof. Differences are in the possible values for “rule”, which can only be the
ones for flow messages. Also “how_proved” field is never set.

The pragma Assume entries are of the form:

assume_result = { "file" : string,
"line" : int,
"col" : int,
"entity" : entity }
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• (“file”, “line”, “col”) describe the source location of the pragma Assume statement.

• “entity” contains the entity dictionary for the entity that this pragma Assume belongs to.

7.8.5 Understanding Proof Strategies
We now explain in more detail how the provers are run on the logical formula(s) generated for a given check, a.k.a.
Verification Conditions or VCs.

• In per_check mode, a single VC is generated for each check at the source level (e.g. an assertion, run-time
check, or postcondition); in some cases two VCs can appear. Before attempting proof, this VC is then split into
the conjuncts, that is, the parts that are combined with and or and then. All provers are tried on the VCs
obtained in this way until one of them proves the VC or no more provers are left.

• In per_path mode, a VC is generated not only for each check at the source level, but for each path to the check.
For example, for an assertion that appears after an if-statement, at least two VCs will be generated - one for each
path through the if-statement. For each such VC, all provers are attempted. Unproved VCs are then further split
into their conjuncts, and proof is again attempted.

• In progressive mode, first the actions described for per_check are tried. For all unproved VCs, the VC is
then split into the paths that lead to the check, like for per_path. Each part is then attempted to be proved
independently.

7.9 GNATprove by Example
GNATprove is based on advanced technology for modular static analysis and deductive verification. It is very different
both from compilers, which do very little analysis of the code, and static analyzers, which execute symbolically the
program. GNATprove does a very powerful local analysis of the program, but it generally does not cross subprogram
boundaries. Instead, it uses the Subprogram Contracts provided by users to analyze calls. GNATprove also requires
sometimes that users direct the analysis with Assertion Pragmas. Thus, it is essential to understand how GNATprove
uses contracts and assertion pragmas. This section aims at providing a deeper insight into how GNATprove’s flow
analysis and proof work, through a step-by-step exploration of small code examples.

All the examples presented in this section, as well as some code snippets presented in the Overview of SPARK Language,
are available in the example called gnatprove_by_example distributed with the SPARK toolset. It can be found in
the share/examples/spark directory below the directory where the toolset is installed, and can be accessed from
the IDE (either GNAT Studio or GNATBench) via the Help → SPARK → Examples menu item.

7.9.1 Basic Examples
The examples in this section have no loops, and do not use more complex features of SPARK like Ghost Code, Interfaces
to the Physical World, or Object Oriented Programming and Liskov Substitution Principle.

Increment

Consider a simple procedure that increments its integer parameter X:

1 procedure Increment (X : in out Integer) with
2 SPARK_Mode
3 is
4 begin
5 X := X + 1;
6 end Increment;

As this procedure does not have a contract yet, GNATprove only checks that there are no possible reads of uninitialized
data and no possible run-time errors in the procedure. Here, it issues a message about a possible overflow check failure
on X + 1:
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increment.adb:5:11: high: overflow check might fail, cannot prove upper bound for X + 1
5 | X := X + 1;
| ~~^~~

e.g. when X = Integer'Last
reason for check: result of addition must fit in a 32-bits machine integer
possible fix: subprogram at line 1 should mention X in a precondition
1 |procedure Increment (X : in out Integer) with
|^ here

The counterexample displayed tells us that Increment could be called on value Integer'Last for parameter X,
which would cause the increment to raise a run-time error. As suggested by the possible fix in the message issued by
GNATprove, one way to eliminate this vulnerability is to add a precondition to Increment specifying that X should
be less than Integer'Last when calling the procedure:

1 procedure Increment_Guarded (X : in out Integer) with
2 SPARK_Mode,
3 Pre => X < Integer'Last
4 is
5 begin
6 X := X + 1;
7 end Increment_Guarded;

As this procedure has a contract now, GNATprove checks like before that there are no possible reads of uninitialized
data and no possible run-time errors in the procedure, including in its contract, and that the procedure implements its
contract. As expected, GNATprove now proves that there is no possible overflow check failure on X + 1:

increment_guarded.adb:6:11: info: overflow check proved

The precondition is usually the first contract added to a subprogram, but there are other Subprogram Contracts. Here
is a version of Increment with:

• global dependencies (aspect Global) stating that the procedure reads and writes no global variables

• flow dependencies (aspect Depends) stating that the final value of parameter X only depends on its input value

• a precondition (aspect Pre) stating that parameter X should be less than Integer'Last on entry

• a postcondition (aspect Post) stating that parameter X should have been incremented by the procedure on exit

1 procedure Increment_Full (X : in out Integer) with
2 SPARK_Mode,
3 Global => null,
4 Depends => (X => X),
5 Pre => X < Integer'Last,
6 Post => X = X'Old + 1
7 is
8 begin
9 X := X + 1;

10 end Increment_Full;

GNATprove checks that Increment_Full implements its contract, and that it cannot raise run-time errors or read
uninitialized data. By default, GNATprove’s output is empty in such a case, but we can request that it prints one line
per check proved by using switch --report=all, which we do here:
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increment_full.adb:3:03: info: data dependencies proved
increment_full.adb:4:03: info: flow dependencies proved
increment_full.adb:6:14: info: postcondition proved
increment_full.adb:6:24: info: overflow check proved
increment_full.adb:9:11: info: overflow check proved

As subprogram contracts are used to analyze callers of a subprogram, let’s consider a procedure Increment_Calls
that calls the different versions of Increment presented so far:

1 with Increment;
2 with Increment_Guarded;
3 with Increment_Full;
4

5 procedure Increment_Calls with
6 SPARK_Mode
7 is
8 X : Integer;
9 begin

10 X := 0;
11 Increment (X);
12 Increment (X);
13

14 X := 0;
15 Increment_Guarded (X);
16 Increment_Guarded (X);
17

18 X := 0;
19 Increment_Full (X);
20 Increment_Full (X);
21 end Increment_Calls;

GNATprove proves all preconditions expect the one on the second call to Increment_Guarded:

increment_calls.adb:8:04: info: initialization of "X" proved
increment_calls.adb:15:04: info: precondition proved

increment_calls.adb:16:04: medium: precondition might fail
16 | Increment_Guarded (X);

| ^~~~~~~~~~~~~~~~~~~~
e.g. when X = Integer'Last
possible fix: call at line 15 should mention X (for argument X) in a postcondition
15 | Increment_Guarded (X);

| ^ here
increment_calls.adb:19:04: info: precondition proved
increment_calls.adb:20:04: info: precondition proved

Increment has no precondition, so there is nothing to check here except the initialization of Xwhen calling Increment
on lines 11 and 12. But remember that GNATprove did issue a message about a true vulnerability on Increment’s
implementation.

This vulnerability was corrected by adding a precondition to Increment_Guarded. This has the effect of pushing
the constraint on callers, here procedure Increment_Calls. As expected, GNATprove proves that the first call to
Increment_Guarded on line 15 satisfies its precondition. But it does not prove the same for the second call to
Increment_Guarded on line 16, because the value of X on line 16 was set by the call to Increment_Guarded on line
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15, and the contract of Increment_Guarded does not say anything about the possible values of X on exit.

As suggested by the possible fix in the message issued by GNATprove, a postcondition like the one on Increment_Full
is needed so that GNATprove can check the second call to increment X. As expected, GNATprove proves that both calls
to Increment_Full on lines 19 and 20 satisfy their precondition.

In some cases, the user is not interested in specifying and verifying a complete contract like the one on
Increment_Full, typically for helper subprograms defined locally in a subprogram or package body. GNATprove
allows performing Contextual Analysis of Subprograms Without Contracts for these local subprograms. For example,
consider a local definition of Increment inside procedure Increment_Local:

1 procedure Increment_Local with
2 SPARK_Mode
3 is
4 procedure Increment (X : in out Integer) is
5 begin
6 X := X + 1;
7 end Increment;
8

9 X : Integer;
10

11 begin
12 X := 0;
13 Increment (X);
14 Increment (X);
15 pragma Assert (X = 2);
16 end Increment_Local;

Although Increment has no contract (like the previous non-local version), GNATprove proves that this program is
free from run-time errors, and that the assertion on line 15 holds:

increment_local.adb:6:14: info: overflow check proved, in call inlined at increment_
↪→local.adb:13
increment_local.adb:6:14: info: overflow check proved, in call inlined at increment_
↪→local.adb:14
increment_local.adb:9:04: info: initialization of "X" proved
increment_local.adb:15:19: info: assertion proved

Swap

Consider a simple procedure that swaps its integer parameters X and Y, whose simple-minded implementation is wrong:

1 procedure Swap_Bad (X, Y : in out Integer) with
2 SPARK_Mode
3 is
4 begin
5 X := Y;
6 Y := X;
7 end Swap_Bad;

As this procedure does not have a contract yet, GNATprove only checks that there are no possible reads of uninitialized
data and no possible run-time errors in the procedure. Here, it simply issues a warning:

swap_bad.adb:1:21: warning: unused initial value of "X"
(continues on next page)
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1 |procedure Swap_Bad (X, Y : in out Integer) with
| ^ here

But we know the procedure is wrong, so we’d like to get an error of some sort! We could not detect it with GNATprove
because the error is functional, and GNATprove cannot guess the intended functionality of Swap_Bad. Fortunately, we
can give this information to GNATprove by adding a contract to Swap_Bad.

One such contract is the flow dependencies introduced by aspect Depends. Here it specifies that the final value of X
(resp. Y) should depend on the initial value of Y (resp. X):

1 procedure Swap_Bad_Depends (X, Y : in out Integer) with
2 SPARK_Mode,
3 Depends => (X => Y, Y => X)
4 is
5 begin
6 X := Y;
7 Y := X;
8 end Swap_Bad_Depends;

GNATprove issues 3 check messages (and a warning) on Swap_Bad_Depends:

swap_bad_depends.adb:1:29: warning: unused initial value of "X"
1 |procedure Swap_Bad_Depends (X, Y : in out Integer) with
| ^ here

swap_bad_depends.adb:3:03: medium: missing dependency "null => X"
3 | Depends => (X => Y, Y => X)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~

swap_bad_depends.adb:3:23: medium: missing self-dependency "Y => Y"
3 | Depends => (X => Y, Y => X)
| ^ here

swap_bad_depends.adb:3:28: medium: incorrect dependency "Y => X"
3 | Depends => (X => Y, Y => X)
| ^ here

The last message informs us that the dependency Y => X stated in Swap_Bad_Depends’s contract is incorrect for the
given implementation. That might be either an error in the code or an error in the contract. Here this is an error in the
code. The two other messages are consequences of this error.

Another possible contract is the postcondition introduced by aspect Post. Here it specifies that the final value of X
(resp. Y) is equal to the initial value of Y (resp. X):

1 procedure Swap_Bad_Post (X, Y : in out Integer) with
2 SPARK_Mode,
3 Post => X = Y'Old and then Y = X'Old
4 is
5 begin
6 X := Y;
7 Y := X;
8 end Swap_Bad_Post;
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GNATprove issues one check message on the unproved postcondition of Swap_Bad_Post (and a warning), with a
counterexample giving concrete values of a wrong execution:

swap_bad_post.adb:1:26: warning: unused initial value of "X"
1 |procedure Swap_Bad_Post (X, Y : in out Integer) with
| ^ here

swap_bad_post.adb:3:30: high: postcondition might fail, cannot prove Y = X'Old
3 | Post => X = Y'Old and then Y = X'Old
| ^~~~~~~~~

e.g. when X'Old = 1
and Y = 0

Both the check messages on Swap_Bad_Depends and on Swap_Bad_Post inform us that the intended functionality as
expressed in the contracts is not implemented in the procedure. And looking again at the warning issued by GNATprove
on Swap_Bad, this was already pointing at the same issue: swapping the values of X and Y should obviously lead to
reading the initial value of X; the fact that this value is not used is a clear sign that there is an error in the implementation.
The correct version of Swap uses a temporary value to hold the value of X:

1 procedure Swap (X, Y : in out Integer) with
2 SPARK_Mode,
3 Depends => (X => Y, Y => X),
4 Post => X = Y'Old and Y = X'Old
5 is
6 Tmp : constant Integer := X;
7 begin
8 X := Y;
9 Y := Tmp;

10 end Swap;

GNATprove proves both contracts on Swap and it informs us that the postcondition was proved:

swap.adb:3:03: info: flow dependencies proved
swap.adb:4:14: info: postcondition proved

Let’s now consider a well-known in place implementation of Swap that avoids introducing a temporary variable by
using bitwise operations:

1 with Interfaces; use Interfaces;
2

3 procedure Swap_Modulo (X, Y : in out Unsigned_32) with
4 SPARK_Mode,
5 Post => X = Y'Old and Y = X'Old
6 is
7 begin
8 X := X xor Y;
9 Y := X xor Y;

10 X := X xor Y;
11 end Swap_Modulo;

GNATprove understands the bitwise operations on values of modular types, and it proves here that the postcondition
of Swap_Modulo is proved:
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swap_modulo.adb:5:11: info: postcondition proved

GNATprove’s flow analysis issues warnings like the one on Swap_Bad whenever it detects that some variables or
statements are not used in the computation, which is likely uncovering an error. For example, consider procedure
Swap_Warn which assigns X and Tmp_Y out of order:

1 procedure Swap_Warn (X, Y : in out Integer) with
2 SPARK_Mode
3 is
4 Tmp_X : Integer;
5 Tmp_Y : Integer;
6 begin
7 Tmp_X := X;
8 X := Tmp_Y;
9 Tmp_Y := Y;

10 Y := Tmp_X;
11 end Swap_Warn;

On this wrong implementation, GNATprove issues a high check message for the certain read of an uninitialized variable,
and three warnings that point to unused constructs:

swap_warn.adb:1:25: warning: unused initial value of "Y"
1 |procedure Swap_Warn (X, Y : in out Integer) with
| ^ here

swap_warn.adb:8:09: high: "Tmp_Y" is not initialized
8 | X := Tmp_Y;
| ^~~~~

In general, warnings issued by GNATprove’s flow analysis should be carefully reviewed, as they may lead to the dis-
covery of errors in the program.

Addition

Consider a simple function Addition that returns the sum of its integer parameters X and Y. As in Increment, we add
a suitable precondition and postcondition for this function:

1 function Addition (X, Y : Integer) return Integer with
2 SPARK_Mode,
3 Depends => (Addition'Result => (X, Y)),
4 Pre => X + Y in Integer,
5 Post => Addition'Result = X + Y
6 is
7 begin
8 return X + Y;
9 end Addition;

We also added flow dependencies to Addition for illustration purposes, but they are the same as the default generated
ones (the result of the function depends on all its inputs), so are not in general given explicitly.

GNATprove issues a check message about a possible overflow in the precondition of Addition:
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addition.adb:4:16: high: overflow check might fail, cannot prove lower bound for X + Y
4 | Pre => X + Y in Integer,
| ~~^~~

e.g. when X = Integer'First
and Y = -1

reason for check: result of addition must fit in a 32-bits machine integer
possible fix: use pragma Overflow_Mode or switch -gnato13 or unit SPARK.Big_Integers

Indeed, if we call for example Addition on values Integer'Last for X and 1 for Y, the expression X + Y evaluated
in the precondition does not fit in a machine integer and raises an exception at run time. In this specific case, some
people may consider that it does not really matter that an exception is raised due to overflow as the failure of the
precondition should also raise a run-time exception. But in general the precondition should not fail (just consider the
precondition X + Y not in Integer for example), and even here, the different exceptions raised may be treated
differently (Constraint_Error in the case of an overflow, Assertion_Error in the case of a failing precondition).

One way to avoid this vulnerability is to rewrite the precondition so that no overflow can occur:

1 function Addition (X, Y : Integer) return Integer with
2 SPARK_Mode,
3 Depends => (Addition'Result => (X, Y)),
4 Pre => (X >= 0 and then Y <= Integer'Last - X) or else (X < 0 and then Y >= Integer

↪→'First - X),
5 Post => Addition'Result = X + Y
6 is
7 begin
8 return X + Y;
9 end Addition;

Although GNATprove proves that Addition implements its contract and is free from run-time errors, the rewritten
precondition is not so readable anymore:

addition.adb:1:10: info: implicit aspect Always_Terminates on "Addition" has been proved,
↪→ subprogram will terminate
addition.adb:3:03: info: flow dependencies proved
addition.adb:4:49: info: overflow check proved
addition.adb:4:97: info: overflow check proved
addition.adb:5:14: info: postcondition proved
addition.adb:5:34: info: overflow check proved
addition.adb:8:13: info: overflow check proved

A better way to achieve the same goal without losing in readability is to use the Big Numbers Library for arithmetic
operations which could overflow:

1 with SPARK.Big_Integers;
2 use SPARK.Big_Integers;
3

4 function Addition (X, Y : Big_Integer) return Big_Integer with
5 SPARK_Mode,
6 Depends => (Addition'Result => (X, Y)),
7 Post => Addition'Result = X + Y
8 is
9 begin

10 return X + Y;
(continues on next page)
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11 end Addition;

In that case, GNATprove proves that there are no run-time errors in function Addition, and that it implements its
contract:

addition.adb:4:10: info: implicit aspect Always_Terminates on "Addition" has been proved,
↪→ subprogram will terminate
addition.adb:6:03: info: flow dependencies proved
addition.adb:7:14: info: postcondition proved
addition.adb:7:22: info: predicate check proved
addition.adb:7:32: info: predicate check proved
addition.adb:7:36: info: predicate check proved
addition.adb:10:11: info: predicate check proved
addition.adb:10:15: info: predicate check proved

Finally, we can choose to expand the range of applicability of the function, by accepting any values of inputs X and Y,
and saturating when the addition would overflow the bounds of machine integers. That’s what the rewritten function
Addition does, and its saturating behavior is expressed in Contract Cases:

1 function Addition (X, Y : Integer) return Integer with
2 SPARK_Mode,
3 Contract_Cases => ((X + Y in Integer) => Addition'Result = X + Y,
4 X + Y < Integer'First => Addition'Result = Integer'First,
5 X + Y > Integer'Last => Addition'Result = Integer'Last)
6 is
7 begin
8 if X < 0 and Y < 0 then -- both negative
9 if X < Integer'First - Y then

10 return Integer'First;
11 else
12 return X + Y;
13 end if;
14

15 elsif X > 0 and Y > 0 then -- both positive
16 if X > Integer'Last - Y then
17 return Integer'Last;
18 else
19 return X + Y;
20 end if;
21

22 else -- one positive or null, one negative or null, adding them is safe
23 return X + Y;
24 end if;
25 end Addition;

GNATprove proves that Addition implements its contract and is free from run-time errors:

addition.adb:1:10: info: implicit aspect Always_Terminates on "Addition" has been proved,
↪→ subprogram will terminate
addition.adb:3:03: info: disjoint contract or exit cases proved
addition.adb:3:03: info: complete contract cases proved
addition.adb:3:22: info: contract case proved
addition.adb:4:22: info: contract case proved

(continues on next page)
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addition.adb:5:22: info: contract case proved
addition.adb:9:28: info: overflow check proved
addition.adb:12:19: info: overflow check proved
addition.adb:16:27: info: overflow check proved
addition.adb:19:19: info: overflow check proved
addition.adb:23:16: info: overflow check proved

Note that we analyzed this function in ELIMINATED overflow mode, using the switch -gnato13, otherwise there
would be possible overflows in the guard expressions of the contract cases.

7.9.2 Loop Examples
The examples in this section contain loops, and thus require in general that users write suitable Loop Invariants. We
start by explaining the need for a loop invariant, and we continue with a description of the most common patterns of
loops and their loop invariant. We summarize each pattern in a table of the following form:

Loop Pattern Loop Over Data Structure
Proof Objective Establish property P.
Loop Behavior Loops over the data structure and establishes P.
Loop Invariant Property P is established for the part of the data structure looped over so far.

The examples in this section use the types defined in package Loop_Types:

1 with SPARK.Containers.Formal.Doubly_Linked_Lists;
2 with SPARK.Containers.Formal.Vectors;
3 with SPARK.Big_Integers; use SPARK.Big_Integers;
4

5 package Loop_Types
6 with SPARK_Mode
7 is
8 subtype Index_T is Positive range 1 .. 1000;
9 subtype Opt_Index_T is Natural range 0 .. 1000;

10 subtype Component_T is Natural;
11

12 type Arr_T is array (Index_T) of Component_T;
13

14 package Vectors is new SPARK.Containers.Formal.Vectors (Index_T, Component_T);
15 subtype Vec_T is Vectors.Vector;
16

17 package Lists is new SPARK.Containers.Formal.Doubly_Linked_Lists (Component_T);
18 subtype List_T is Lists.List;
19

20 type List_Cell;
21 type List_Acc is access List_Cell;
22 type List_Cell is record
23 Value : Component_T;
24 Next : List_Acc;
25 end record;
26

27 function Length (L : access constant List_Cell) return Big_Natural is
28 (if L = null then 0 else Length (L.Next) + 1)

(continues on next page)
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29 with Subprogram_Variant => (Structural => L);
30

31 function At_End
32 (L : access constant List_Cell) return access constant List_Cell
33 is (L)
34 with Ghost,
35 Annotate => (GNATprove, At_End_Borrow);
36

37 type Property is access function (X : Component_T) return Boolean;
38

39 function For_All_List
40 (L : access constant List_Cell;
41 P : not null Property) return Boolean
42 is
43 (L = null or else (P (L.Value) and then For_All_List (L.Next, P)))
44 with
45 Subprogram_Variant => (Structural => L);
46 pragma Annotate (GNATprove, False_Positive, "call via access-to-subprogram",
47 "We only call For_All_List on terminating functions");
48

49 type Relation is access function (X, Y : Component_T) return Boolean;
50

51 function For_All_List
52 (L1, L2 : access constant List_Cell;
53 P : not null Relation) return Boolean
54 is
55 ((L1 = null) = (L2 = null)
56 and then
57 (if L1 /= null
58 then P (L1.Value, L2.Value)
59 and then For_All_List (L1.Next, L2.Next, P)))
60 with
61 Subprogram_Variant => (Structural => L1);
62 pragma Annotate (GNATprove, False_Positive, "call via access-to-subprogram",
63 "We only call For_All_List on terminating functions");
64

65 end Loop_Types;

As there is no built-in way to iterate over the elements of a recursive data structure, the first function For_All_List
can be used to state that all elements of a list have a given property. The second variant of For_All_List takes two
lists and states that both lists have the same number of elements and that the corresponding elements of both lists are
related by the given relation. The function At_End is used to refer to the value of a borrowed list or a local borrower at
the end of the borrow, see Annotation for Referring to a Value at the End of a Local Borrow for more explanations.

Note

Although the structural subprogram variant of For_All_List is proved, this is not sufficient to prove the termi-
nation of For_All_List, as we have no way for now to state on the access-to-subprogram type Property that all
elements of this type must terminate. Therefore, we justify this check, see section on Justifying Check Messages.
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The Need for a Loop Invariant

Consider a simple procedure that increments its integer parameter X a number N of times:

1 procedure Increment_Loop (X : in out Integer; N : Natural) with
2 SPARK_Mode,
3 Pre => X <= Integer'Last - N,
4 Post => X = X'Old + N
5 is
6 begin
7 for I in 1 .. N loop
8 X := X + 1;
9 end loop;

10 end Increment_Loop;

The precondition of Increment_Loop ensures that there is no overflow when incrementing X in the loop, and its post-
condition states that X has been incremented N times. This contract is a generalization of the contract given for a single
increment in Increment. GNATprove does not manage to prove either the absence of overflow or the postcondition of
Increment_Loop:

increment_loop.adb:4:11: medium: postcondition might fail
4 | Post => X = X'Old + N
| ^~~~~~~~~~~~~

possible fix: loop at line 7 should mention X in a loop invariant
7 | for I in 1 .. N loop
| ^ here

increment_loop.adb:8:14: medium: overflow check might fail, cannot prove upper bound for␣
↪→X + 1

8 | X := X + 1;
| ~~^~~

reason for check: result of addition must fit in a 32-bits machine integer
possible fix: loop at line 7 should mention X in a loop invariant
7 | for I in 1 .. N loop
| ^ here

As described in How to Write Loop Invariants, this is because variable X is modified in the loop, hence GNATprove
knows nothing about it unless it is stated in a loop invariant. If we add such a loop invariant, as suggested by the possible
explanation in the message issued by GNATprove, that describes precisely the value of X in each iteration of the loop:

1 procedure Increment_Loop_Inv (X : in out Integer; N : Natural) with
2 SPARK_Mode,
3 Pre => X <= Integer'Last - N,
4 Post => X = X'Old + N
5 is
6 begin
7 for I in 1 .. N loop
8 X := X + 1;
9 pragma Loop_Invariant (X = X'Loop_Entry + I);

10 end loop;
11 end Increment_Loop_Inv;

then GNATprove proves both the absence of overflow and the postcondition of Increment_Loop_Inv:
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increment_loop_inv.adb:3:29: info: overflow check proved
increment_loop_inv.adb:4:11: info: postcondition proved
increment_loop_inv.adb:4:21: info: overflow check proved
increment_loop_inv.adb:8:14: info: overflow check proved
increment_loop_inv.adb:9:30: info: loop invariant preservation proved
increment_loop_inv.adb:9:30: info: loop invariant initialization proved
increment_loop_inv.adb:9:47: info: overflow check proved

Fortunately, many loops fall into some broad categories for which the loop invariant is known. In the following sections,
we describe these common patterns of loops and their loop invariant, which involve in general iterating over the content
of a collection (either an array, a container from the Formal Containers Library, or a pointer-based linked list).

Initialization Loops

This kind of loops iterates over a collection to initialize every element of the collection to a given value:

Loop Pattern Separate Initialization of Each Element
Proof Objective Every element of the collection has a specific value.
Loop Behavior Loops over the collection and initializes every element of the collection.
Loop Invariant Every element initialized so far has its specific value.

In the simplest case, every element is assigned the same value. For example, in procedure Init_Arr_Zero below,
value zero is assigned to every element of array A:

1 with Loop_Types; use Loop_Types;
2

3 procedure Init_Arr_Zero (A : out Arr_T) with
4 SPARK_Mode,
5 Post => (for all J in A'Range => A(J) = 0)
6 is
7 pragma Annotate (GNATprove, False_Positive, """A"" might not be initialized",
8 "Entire array is initialized element-by-element in a loop");
9 begin

10 for J in A'Range loop
11 A(J) := 0;
12 pragma Loop_Invariant (for all K in A'First .. J => A(K) = 0);
13 pragma Annotate (GNATprove, False_Positive, """A"" might not be initialized",
14 "Part of array up to index J is initialized at this point");
15 end loop;
16 end Init_Arr_Zero;

The loop invariant expresses that all elements up to the current loop index J have the value zero. With this loop
invariant, GNATprove is able to prove the postcondition of Init_Arr_Zero, namely that all elements of the array
have value zero:

init_arr_zero.adb:3:26: info: justified that "A" might not be initialized in "Init_Arr_
↪→Zero"
init_arr_zero.adb:5:11: info: postcondition proved
init_arr_zero.adb:5:36: info: justified that "A" might not be initialized
init_arr_zero.adb:12:30: info: loop invariant initialization proved
init_arr_zero.adb:12:30: info: loop invariant preservation proved

(continues on next page)
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init_arr_zero.adb:12:59: info: justified that "A" might not be initialized
init_arr_zero.adb:12:61: info: index check proved

In the example above, pragma Annotate is used in Init_Arr_Zero to justify a message issued by flow analysis, about
the possible read of uninitialized value A(K) in the loop invariant. Indeed, flow analysis is not currently able to infer
that all elements up to the loop index J have been initialized, hence it issues a message that "A" might not be
initialized. For more details, see section on Justifying Check Messages.

To verify this loop completely, it is possible to annotate A with the Relaxed_Initialization aspect to use proof to verify
its correct initialization (see Aspect Relaxed_Initialization and Ghost Attribute Initialized for more details). In this
case, the loop invariant should be extended to state that the elements of A have been initialized by the loop up to the
current index:

1 with Loop_Types; use Loop_Types;
2

3 procedure Init_Arr_Zero (A : out Arr_T) with
4 SPARK_Mode,
5 Relaxed_Initialization => A,
6 Post => A'Initialized and then (for all J in A'Range => A(J) = 0)
7 is
8 begin
9 for J in A'Range loop

10 A(J) := 0;
11 pragma Loop_Invariant (for all K in A'First .. J => A(K)'Initialized);
12 pragma Loop_Invariant (for all K in A'First .. J => A(K) = 0);
13 end loop;
14 end Init_Arr_Zero;

Remark that the postcondition of Init_Arr_Zero also needs to state that A is entirely initialized by the call.

Consider now a variant of the same initialization loop over a vector:

1 with Loop_Types; use Loop_Types; use Loop_Types.Vectors;
2

3 procedure Init_Vec_Zero (V : in out Vec_T) with
4 SPARK_Mode,
5 Post => (for all J in First_Index (V) .. Last_Index (V) => Element (V, J) = 0)
6 is
7 begin
8 for J in First_Index (V) .. Last_Index (V) loop
9 Replace_Element (V, J, 0);

10 pragma Loop_Invariant (Last_Index (V) = Last_Index (V)'Loop_Entry);
11 pragma Loop_Invariant (for all K in First_Index (V) .. J => Element (V, K) = 0);
12 end loop;
13 end Init_Vec_Zero;

Like before, the loop invariant expresses that all elements up to the current loop index J have the value zero. Another
loop invariant is needed here to express that the length of the vector does not change in the loop: as variable V is
modified in the loop, GNATprove does not know its length stays the same (for example, calling procedure Append or
Delete_Lastwould change this length) unless the user says so in the loop invariant. This is different from arrays whose
length cannot change. With this loop invariant, GNATprove is able to prove the postcondition of Init_Vec_Zero,
namely that all elements of the vector have value zero:
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init_vec_zero.adb:5:11: info: postcondition proved
init_vec_zero.adb:5:62: info: precondition proved
init_vec_zero.adb:5:74: info: range check proved
init_vec_zero.adb:9:07: info: precondition proved
init_vec_zero.adb:10:30: info: loop invariant preservation proved
init_vec_zero.adb:10:30: info: loop invariant initialization proved
init_vec_zero.adb:11:30: info: loop invariant preservation proved
init_vec_zero.adb:11:30: info: loop invariant initialization proved
init_vec_zero.adb:11:67: info: precondition proved
init_vec_zero.adb:11:79: info: range check proved

Similarly, consider a variant of the same initialization loop over a list:

1 with Loop_Types; use Loop_Types; use Loop_Types.Lists;
2 with Ada.Containers; use Ada.Containers; use Loop_Types.Lists.Formal_Model;
3

4 procedure Init_List_Zero (L : in out List_T) with
5 SPARK_Mode,
6 Post => (for all E of L => E = 0)
7 is
8 Cu : Cursor := First (L);
9 begin

10 while Has_Element (L, Cu) loop
11 pragma Loop_Invariant (for all I in 1 .. P.Get (Positions (L), Cu) - 1 =>
12 Element (Model (L), I) = 0);
13 Replace_Element (L, Cu, 0);
14 Next (L, Cu);
15 end loop;
16 end Init_List_Zero;

Contrary to arrays and vectors, lists are not indexed. Instead, a cursor can be defined to iterate over the list. The loop
invariant expresses that all elements up to the current cursor Cu have the value zero. To access the element stored at a
given position in a list, we use the function Model which computes the mathematical sequence of the elements stored
in the list. The position of a cursor in this sequence is retrieved using the Positions function. Contrary to the case
of vectors, no loop invariant is needed to express that the length of the list does not change in the loop, because the
postcondition remains provable here even if the length of the list changes. With this loop invariant, GNATprove is able
to prove the postcondition of Init_List_Zero, namely that all elements of the list have value zero:

init_list_zero.adb:6:11: info: postcondition proved
init_list_zero.adb:11:30: info: loop invariant initialization proved
init_list_zero.adb:11:30: info: loop invariant preservation proved
init_list_zero.adb:11:49: info: precondition proved
init_list_zero.adb:12:32: info: precondition proved
init_list_zero.adb:13:07: info: precondition proved
init_list_zero.adb:14:07: info: precondition proved

The case of sets and maps is similar to the case of lists.

Note

The parameter of Init_Vec_Zero and Init_List_Zero is an in out parameter. This is because some components
of the vector/list parameter are preserved by the initialization procedure (in particular the component corresponding
to its length). This is different from Init_Arr_Zero which takes an out parameter, as all components of the array
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are initialized by the procedure (the bounds of an array are not modifiable, hence considered separately from the
parameter mode).

Consider now a variant of the same initialization loop over a pointer-based list:

1 with Loop_Types; use Loop_Types;
2

3 package P with
4 SPARK_Mode
5 is
6 function Is_Zero (X : Component_T) return Boolean is
7 (X = 0);
8

9 procedure Init_List_Zero (L : access List_Cell) with
10 Post => For_All_List (L, Is_Zero'Access);
11 end P;

1 with Loop_Types; use Loop_Types;
2

3 package body P with
4 SPARK_Mode
5 is
6 procedure Init_List_Zero (L : access List_Cell) is
7 B : access List_Cell := L;
8 begin
9 while B /= null loop

10 pragma Loop_Invariant
11 (if For_All_List (At_End (B), Is_Zero'Access)
12 then For_All_List (At_End (L), Is_Zero'Access));
13 B.Value := 0;
14 B := B.Next;
15 end loop;
16 end Init_List_Zero;
17 end P;

Like in the other variants, the postcondition of Init_List_Zero states that the elements of the list L after the call are
all 0. It uses the For_All_List function from Loop_Types to quantify over all the elements of the list. The loop
iterates over the list L using a local borrower B which is a local variable which borrows the ownership of a part of a
datastructure for the duration of its scope, see Borrowing for more details. The loop invariant uses the At_End function
to express properties about the values of L and B at the end of the borrow. It states that the elements of L at the end
of the borrow will all be 0 if the elements of B at the end of the borrow are all 0. This is provable because we know
while verifying the invariant that the already traversed elements were all set to 0 and that they can no longer be changed
during the scope of B. With this loop invariant, GNATprove is able to prove the postcondition of Init_List_Zero:

p.adb:11:13: info: loop invariant initialization proved
p.adb:11:13: info: loop invariant preservation proved
p.adb:11:49: info: null exclusion check proved
p.adb:12:51: info: null exclusion check proved
p.adb:13:11: info: pointer dereference check proved
p.adb:14:16: info: pointer dereference check proved
p.ads:6:13: info: implicit aspect Always_Terminates on "Is_Zero" has been proved,␣
↪→subprogram will terminate

(continues on next page)
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p.ads:10:14: info: postcondition proved
p.ads:10:38: info: null exclusion check proved

Consider now a case where the value assigned to each element is not the same. For example, in procedure
Init_Arr_Index below, each element of array A is assigned the value of its index:

1 with Loop_Types; use Loop_Types;
2

3 procedure Init_Arr_Index (A : out Arr_T) with
4 SPARK_Mode,
5 Post => (for all J in A'Range => A(J) = J)
6 is
7 pragma Annotate (GNATprove, False_Positive, """A"" might not be initialized",
8 "Entire array is initialized element-by-element in a loop");
9 begin

10 for J in A'Range loop
11 A(J) := J;
12 pragma Loop_Invariant (for all K in A'First .. J => A(K) = K);
13 pragma Annotate (GNATprove, False_Positive, """A"" might not be initialized",
14 "Part of array up to index J is initialized at this point");
15 end loop;
16 end Init_Arr_Index;

The loop invariant expresses that all elements up to the current loop index J have the value of their index. With this
loop invariant, GNATprove is able to prove the postcondition of Init_Arr_Index, namely that all elements of the
array have the value of their index:

init_arr_index.adb:3:27: info: justified that "A" might not be initialized in "Init_Arr_
↪→Index"
init_arr_index.adb:5:11: info: postcondition proved
init_arr_index.adb:5:36: info: justified that "A" might not be initialized
init_arr_index.adb:12:30: info: loop invariant initialization proved
init_arr_index.adb:12:30: info: loop invariant preservation proved
init_arr_index.adb:12:59: info: justified that "A" might not be initialized
init_arr_index.adb:12:61: info: index check proved

As for Init_Arr_Zero above, it is possible to annotate A with the Relaxed_Initialization aspect to use proof to verify
its correct initialization:

1 with Loop_Types; use Loop_Types;
2

3 procedure Init_Arr_Index (A : out Arr_T) with
4 SPARK_Mode,
5 Relaxed_Initialization => A,
6 Post => A'Initialized and then (for all J in A'Range => A(J) = J)
7 is
8 begin
9 for J in A'Range loop

10 A(J) := J;
11 pragma Loop_Invariant (for all K in A'First .. J => A(K)'Initialized);
12 pragma Loop_Invariant (for all K in A'First .. J => A(K) = K);
13 end loop;
14 end Init_Arr_Index;
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Everything is proved by GNATprove:

init_arr_index.adb:6:11: info: postcondition proved
init_arr_index.adb:6:59: info: initialization check proved
init_arr_index.adb:11:30: info: loop invariant initialization proved
init_arr_index.adb:11:30: info: loop invariant preservation proved
init_arr_index.adb:11:61: info: index check proved
init_arr_index.adb:12:30: info: loop invariant preservation proved
init_arr_index.adb:12:30: info: loop invariant initialization proved
init_arr_index.adb:12:59: info: initialization check proved
init_arr_index.adb:12:61: info: index check proved

Similarly, variants of Init_Vec_Zero and Init_List_Zero that assign a different value to each element of the
collection would be proved by GNATprove.

Mapping Loops

This kind of loops iterates over a collection to map every element of the collection to a new value:

Loop Pattern Separate Modification of Each Element
Proof Objective Every element of the collection has an updated value.
Loop Behavior Loops over the collection and updates every element of the collection.
Loop Invariant Every element updated so far has its specific value.

In the simplest case, every element is assigned a new value based only on its initial value. For example, in procedure
Map_Arr_Incr below, every element of array A is incremented by one:

1 with Loop_Types; use Loop_Types;
2

3 procedure Map_Arr_Incr (A : in out Arr_T) with
4 SPARK_Mode,
5 Pre => (for all J in A'Range => A(J) /= Component_T'Last),
6 Post => (for all J in A'Range => A(J) = A'Old(J) + 1)
7 is
8 begin
9 for J in A'Range loop

10 A(J) := A(J) + 1;
11 pragma Loop_Invariant (for all K in A'First .. J => A(K) = A'Loop_Entry(K) + 1);
12 -- The following loop invariant is generated automatically by GNATprove:
13 -- pragma Loop_Invariant (for all K in J + 1 .. A'Last => A(K) = A'Loop_Entry(K));
14 end loop;
15 end Map_Arr_Incr;

The loop invariant expresses that all elements up to the current loop index J have been incremented (using Attribute
Loop_Entry). With this loop invariant, GNATprove is able to prove the postcondition of Map_Arr_Incr, namely that
all elements of the array have been incremented:

map_arr_incr.adb:6:11: info: postcondition proved
map_arr_incr.adb:6:52: info: overflow check proved
map_arr_incr.adb:10:20: info: overflow check proved
map_arr_incr.adb:11:30: info: loop invariant initialization proved
map_arr_incr.adb:11:30: info: loop invariant preservation proved
map_arr_incr.adb:11:61: info: index check proved

(continues on next page)
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map_arr_incr.adb:11:79: info: index check proved
map_arr_incr.adb:11:82: info: overflow check proved

Note that the commented loop invariant expressing that other elements have not been modified is not needed, as it is
an example of Automatically Generated Loop Invariants.

Consider now a variant of the same initialization loop over a vector:

1 pragma Unevaluated_Use_Of_Old (Allow);
2 with Loop_Types; use Loop_Types; use Loop_Types.Vectors;
3 use Loop_Types.Vectors.Formal_Model;
4

5 procedure Map_Vec_Incr (V : in out Vec_T) with
6 SPARK_Mode,
7 Pre => (for all I in 1 .. Last_Index (V) =>
8 Element (V, I) /= Component_T'Last),
9 Post => Last_Index (V) = Last_Index (V)'Old

10 and then (for all I in 1 .. Last_Index (V) =>
11 Element (V, I) = Element (Model (V)'Old, I) + 1)
12 is
13 begin
14 for J in 1 .. Last_Index (V) loop
15 pragma Loop_Invariant (Last_Index (V) = Last_Index (V)'Loop_Entry);
16 pragma Loop_Invariant
17 (for all I in 1 .. J - 1 =>
18 Element (V, I) = Element (Model (V)'Loop_Entry, I) + 1);
19 pragma Loop_Invariant
20 (for all I in J .. Last_Index (V) =>
21 Element (V, I) = Element (Model (V)'Loop_Entry, I));
22 Replace_Element (V, J, Element (V, J) + 1);
23 end loop;
24 end Map_Vec_Incr;

Like before, we need an additionnal loop invariant to state that the length of the vector is not modified by the loop.
The other two invariants are direct translations of those used for the loop over arrays: the first one expresses that all
elements up to the current loop index J have been incremented, and the second one expresses that other elements have
not been modified. Note that, as formal vectors are limited, we need to use the Model function of vectors to express
the set of elements contained in the vector before the loop (using attributes Loop_Entry and Old). With this loop
invariant, GNATprove is able to prove the postcondition of Map_Vec_Incr, namely that all elements of the vector have
been incremented:

map_vec_incr.adb:8:16: info: precondition proved
map_vec_incr.adb:8:28: info: range check proved
map_vec_incr.adb:9:11: info: postcondition proved
map_vec_incr.adb:11:18: info: precondition proved
map_vec_incr.adb:11:30: info: range check proved
map_vec_incr.adb:11:35: info: precondition proved
map_vec_incr.adb:11:59: info: range check proved
map_vec_incr.adb:11:62: info: overflow check proved
map_vec_incr.adb:15:30: info: loop invariant initialization proved
map_vec_incr.adb:15:30: info: loop invariant preservation proved
map_vec_incr.adb:17:10: info: loop invariant initialization proved
map_vec_incr.adb:17:10: info: loop invariant preservation proved

(continues on next page)
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map_vec_incr.adb:18:12: info: precondition proved
map_vec_incr.adb:18:24: info: range check proved
map_vec_incr.adb:18:29: info: precondition proved
map_vec_incr.adb:18:60: info: range check proved
map_vec_incr.adb:18:63: info: overflow check proved
map_vec_incr.adb:20:10: info: loop invariant initialization proved
map_vec_incr.adb:20:10: info: loop invariant preservation proved
map_vec_incr.adb:21:12: info: precondition proved
map_vec_incr.adb:21:24: info: range check proved
map_vec_incr.adb:21:29: info: precondition proved
map_vec_incr.adb:21:60: info: range check proved
map_vec_incr.adb:22:07: info: precondition proved
map_vec_incr.adb:22:30: info: precondition proved
map_vec_incr.adb:22:45: info: overflow check proved

Similarly, consider a variant of the same mapping loop over a list:

1 with Loop_Types; use Loop_Types; use Loop_Types.Lists;
2 with Ada.Containers; use Ada.Containers; use Loop_Types.Lists.Formal_Model;
3

4 procedure Map_List_Incr (L : in out List_T) with
5 SPARK_Mode,
6 Pre => (for all E of L => E /= Component_T'Last),
7 Post => Length (L) = Length (L)'Old
8 and then (for all I in 1 .. Length (L) =>
9 Element (Model (L), I) = Element (Model (L'Old), I) + 1)

10 is
11 Cu : Cursor := First (L);
12 begin
13 while Has_Element (L, Cu) loop
14 pragma Loop_Invariant (Length (L) = Length (L)'Loop_Entry);
15 pragma Loop_Invariant
16 (for all I in 1 .. P.Get (Positions (L), Cu) - 1 =>
17 Element (Model (L), I) = Element (Model (L'Loop_Entry), I) + 1);
18 pragma Loop_Invariant
19 (for all I in P.Get (Positions (L), Cu) .. Length (L) =>
20 Element (Model (L), I) = Element (Model (L'Loop_Entry), I));
21 Replace_Element (L, Cu, Element (L, Cu) + 1);
22 Next (L, Cu);
23 end loop;
24 end Map_List_Incr;

Like before, we need to use a cursor to iterate over the list. The loop invariants express that all elements up to the current
loop index J have been incremented and that other elements have not been modified. Note that it is necessary to state
here that the length of the list is not modified during the loop. It is because the length is used to bound the quantification
over the elements of the list both in the invariant and in the postcondition. With this loop invariant, GNATprove is able
to prove the postcondition of Map_List_Incr, namely that all elements of the list have been incremented:

map_list_incr.adb:7:11: info: postcondition proved
map_list_incr.adb:9:18: info: precondition proved
map_list_incr.adb:9:43: info: precondition proved
map_list_incr.adb:9:70: info: overflow check proved

(continues on next page)
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map_list_incr.adb:14:30: info: loop invariant initialization proved
map_list_incr.adb:14:30: info: loop invariant preservation proved
map_list_incr.adb:16:10: info: loop invariant initialization proved
map_list_incr.adb:16:10: info: loop invariant preservation proved
map_list_incr.adb:16:29: info: precondition proved
map_list_incr.adb:17:12: info: precondition proved
map_list_incr.adb:17:37: info: precondition proved
map_list_incr.adb:17:71: info: overflow check proved
map_list_incr.adb:19:10: info: loop invariant preservation proved
map_list_incr.adb:19:10: info: loop invariant initialization proved
map_list_incr.adb:19:24: info: precondition proved
map_list_incr.adb:20:12: info: precondition proved
map_list_incr.adb:20:32: info: range check proved
map_list_incr.adb:20:37: info: precondition proved
map_list_incr.adb:20:68: info: range check proved
map_list_incr.adb:21:07: info: precondition proved
map_list_incr.adb:21:31: info: precondition proved
map_list_incr.adb:21:47: info: overflow check proved
map_list_incr.adb:22:07: info: precondition proved

Finally, consider a variant of the same mapping loop over a pointer-based list:

1 with Loop_Types; use Loop_Types;
2

3 package P with
4 SPARK_Mode
5 is
6 function Small_Enough (X : Component_T) return Boolean is
7 (X /= Component_T'Last);
8 function Bigger_Than_First (X : Component_T) return Boolean is
9 (X /= Component_T'First);

10

11 procedure Map_List_Incr (L : access List_Cell) with
12 Pre => For_All_List (L, Small_Enough'Access),
13 Post => For_All_List (L, Bigger_Than_First'Access);
14 end P;

1 with Loop_Types; use Loop_Types;
2

3 package body P with
4 SPARK_Mode
5 is
6 procedure Map_List_Incr (L : access List_Cell) is
7 B : access List_Cell := L;
8 begin
9 while B /= null loop

10 pragma Loop_Invariant (For_All_List (B, Small_Enough'Access));
11 pragma Loop_Invariant
12 (if For_All_List (At_End (B), Bigger_Than_First'Access)
13 then For_All_List (At_End (L), Bigger_Than_First'Access));
14 B.Value := B.Value + 1;
15 B := B.Next;

(continues on next page)
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16 end loop;
17 end Map_List_Incr;
18 end P;

Like in the other variants, the precondition of Map_List_Incr states that all elements of the input list L are less than
Component_T'Last before the call. It uses the For_All_List function from Loop_Types to quantify over all the
elements of the list. The postcondition is weaker than in other variants of the loop. Indeed, referring to the value
of a pointer-based datastructure before the call is not allowed in the SPARK language. Therefore we changed the
postcondition to state instead that all elements of the list are bigger than Component_T'First after the call.

The loop iterates over the list L using a local borrower B which is a local variable which borrows the ownership of a part
of a datastructure for the duration of its scope, see Borrowing for more details. The loop invariant is made of two parts.
The first one states that the initial property still holds on the elements of L accessible through B. The second uses the
At_End function to express properties about the values of L and B at the end of the borrow. It states that the elements
of L at the end of the borrow will have the Bigger_Than_First property if the elements of B at the end of the borrow
have this property. This is provable because we know when verifying the invariant that the already traversed elements
currently have the Bigger_Than_First property and that they can no longer be changed during the scope of B. With
this loop invariant, GNATprove is able to prove the postcondition of Map_List_Incr:

p.adb:10:33: info: loop invariant preservation proved
p.adb:10:33: info: loop invariant initialization proved
p.adb:10:62: info: null exclusion check proved
p.adb:12:13: info: loop invariant initialization proved
p.adb:12:13: info: loop invariant preservation proved
p.adb:12:59: info: null exclusion check proved
p.adb:13:61: info: null exclusion check proved
p.adb:14:11: info: pointer dereference check proved
p.adb:14:22: info: pointer dereference check proved
p.adb:14:29: info: overflow check proved
p.adb:15:16: info: pointer dereference check proved
p.ads:6:13: info: implicit aspect Always_Terminates on "Small_Enough" has been proved,␣
↪→subprogram will terminate
p.ads:8:13: info: implicit aspect Always_Terminates on "Bigger_Than_First" has been␣
↪→proved, subprogram will terminate
p.ads:12:43: info: null exclusion check proved
p.ads:13:14: info: postcondition proved
p.ads:13:48: info: null exclusion check proved

If we want to retain the most precise postcondition relating the elements of the structure before and after the loop,
we need to introduce a way to store the values of the list before the call in a separate data structure. In the following
example, it is done by declaring a Copy function which returns a copy of its input list. In its postcondition, we use
the two-valued For_All_List function to state that the elements of the new structure are equal to the elements of the
input structure. An alternative could be to store the elements in a structure not subject to ownership like an array.

Note

The function Copy is marked as Import as it is not meant to be executed. It could be implemented in SPARK by
returning a deep copy of the argument list, reallocating all cells of the list in the result.

1 with Loop_Types; use Loop_Types;
2

(continues on next page)
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3 package P with
4 SPARK_Mode
5 is
6 function Small_Enough (X : Component_T) return Boolean is
7 (X /= Component_T'Last);
8

9 function Equal (X, Y : Component_T) return Boolean is (X = Y);
10

11 function Is_Incr (X, Y : Component_T) return Boolean is
12 (X < Y and then Y = X + 1);
13

14 function Copy (L : access List_Cell) return List_Acc with
15 Ghost,
16 Import,
17 Global => null,
18 Post => For_All_List (L, Copy'Result, Equal'Access);
19

20 procedure Map_List_Incr (L : access List_Cell) with
21 Pre => For_All_List (L, Small_Enough'Access),
22 Post => For_All_List (Copy (L)'Old, L, Is_Incr'Access);
23 pragma Annotate (GNATprove, Intentional, "memory leak might occur",
24 "The code will be compiled with assertions disabled");
25 end P;

1 with Loop_Types; use Loop_Types;
2

3 package body P with
4 SPARK_Mode
5 is
6 procedure Map_List_Incr (L : access List_Cell) is
7 L_Old : constant List_Acc := Copy (L) with Ghost;
8 pragma Annotate (GNATprove, Intentional, "memory leak might occur",
9 "The code will be compiled with assertions disabled");

10 B : access List_Cell := L;
11 B_Old : access constant List_Cell := L_Old with Ghost;
12 begin
13 while B /= null loop
14 pragma Loop_Invariant (For_All_List (B, Small_Enough'Access));
15 pragma Loop_Invariant (For_All_List (B, B_Old, Equal'Access));
16 pragma Loop_Invariant
17 (if For_All_List (B_Old, At_End (B), Is_Incr'Access)
18 then For_All_List (L_Old, At_End (L), Is_Incr'Access));
19 B.Value := B.Value + 1;
20 B := B.Next;
21 B_Old := B_Old.Next;
22 end loop;
23 pragma Assert
24 (For_All_List (L_Old, At_End (L), Is_Incr'Access));
25 end Map_List_Incr;
26 end P;

The postcondition of Map_List_Incr is similar to the postcondition of Copy. It uses the two-valued For_All_List
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function to relate the elements of L before and after the call. Like in the previous variant, the loop traverses L using a
local borrower B. To be able to speak about the initial value of L in the invariant, we introduce a ghost constant L_Old
storing a copy of this value. As we need to traverse both lists at the same time, we declare a ghost variable B_Old as a
local observer of L_Old.

The loop invariant is made of three parts now. The first one is similar to the one in the previous example. The third
loop invariant is a direct adaptation of the second loop invariant of the previous example. It states that if, at the end of
the borrow, the values accessible through B are related to their equivalent element in B_Old through Is_Incr, then so
are all the elements of L. The loop invariant in the middle states that the elements reachable through B have not been
modified by the loop. GNATprove can verify these loop invariants as well as the postcondition of Map_List_Incr:

p.adb:7:07: info: absence of resource or memory leak at end of scope justified
p.adb:14:33: info: loop invariant initialization proved
p.adb:14:33: info: loop invariant preservation proved
p.adb:14:62: info: null exclusion check proved
p.adb:15:33: info: loop invariant initialization proved
p.adb:15:33: info: loop invariant preservation proved
p.adb:15:62: info: null exclusion check proved
p.adb:17:13: info: loop invariant initialization proved
p.adb:17:13: info: loop invariant preservation proved
p.adb:17:56: info: null exclusion check proved
p.adb:18:58: info: null exclusion check proved
p.adb:19:11: info: pointer dereference check proved
p.adb:19:22: info: pointer dereference check proved
p.adb:19:29: info: overflow check proved
p.adb:20:16: info: pointer dereference check proved
p.adb:21:24: info: pointer dereference check proved
p.adb:24:10: info: assertion proved
p.adb:24:50: info: null exclusion check proved
p.ads:6:13: info: implicit aspect Always_Terminates on "Small_Enough" has been proved,␣
↪→subprogram will terminate
p.ads:9:13: info: implicit aspect Always_Terminates on "Equal" has been proved,␣
↪→subprogram will terminate
p.ads:11:13: info: implicit aspect Always_Terminates on "Is_Incr" has been proved,␣
↪→subprogram will terminate
p.ads:12:28: info: overflow check proved
p.ads:21:43: info: null exclusion check proved
p.ads:22:14: info: postcondition proved
p.ads:22:28: info: absence of resource or memory leak justified
p.ads:22:52: info: null exclusion check proved

Note

The second loop invariant does not subsume the first. Indeed, proving that, if all elements of L_Old are small
enough, so are all elements of an unknown observer B_Old of L_Old, is beyond the capacity of GNATprove.

Validation Loops

This kind of loops iterates over a collection to validate that every element of the collection has a valid value. The most
common pattern is to exit or return from the loop if an invalid value if encountered:
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Loop Pattern Sequence Validation with Early Exit
Proof Objective Determine (flag) if there are any invalid elements in a given collection.
Loop Behavior Loops over the collection and exits/returns if an invalid element is encountered.
Loop Invariant Every element encountered so far is valid.

Consider a procedure Validate_Arr_Zero that checks that all elements of an array A have value zero:

1 with Loop_Types; use Loop_Types;
2

3 procedure Validate_Arr_Zero (A : Arr_T; Success : out Boolean) with
4 SPARK_Mode,
5 Post => Success = (for all J in A'Range => A(J) = 0)
6 is
7 begin
8 for J in A'Range loop
9 if A(J) /= 0 then

10 Success := False;
11 return;
12 end if;
13 pragma Loop_Invariant (for all K in A'First .. J => A(K) = 0);
14 end loop;
15

16 Success := True;
17 end Validate_Arr_Zero;

The loop invariant expresses that all elements up to the current loop index J have value zero. With this loop invariant,
GNATprove is able to prove the postcondition of Validate_Arr_Zero, namely that output parameter Success is
True if-and-only-if all elements of the array have value zero:

validate_arr_zero.adb:3:41: info: initialization of "Success" proved
validate_arr_zero.adb:5:11: info: postcondition proved
validate_arr_zero.adb:13:30: info: loop invariant initialization proved
validate_arr_zero.adb:13:30: info: loop invariant preservation proved
validate_arr_zero.adb:13:61: info: index check proved

Consider now a variant of the same validation loop over a vector:

1 with Loop_Types; use Loop_Types; use Loop_Types.Vectors;
2

3 procedure Validate_Vec_Zero (V : Vec_T; Success : out Boolean) with
4 SPARK_Mode,
5 Post => Success = (for all J in First_Index (V) .. Last_Index (V) => Element (V, J) =␣

↪→0)
6 is
7 begin
8 for J in First_Index (V) .. Last_Index (V) loop
9 if Element (V, J) /= 0 then

10 Success := False;
11 return;
12 end if;
13 pragma Loop_Invariant (for all K in First_Index (V) .. J => Element (V, K) = 0);
14 end loop;

(continues on next page)
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15

16 Success := True;
17 end Validate_Vec_Zero;

Like before, the loop invariant expresses that all elements up to the current loop index J have the value zero. Since
variable V is not modified in the loop, no additional loop invariant is needed here for GNATprove to know that its
length stays the same (this is different from the case of Init_Vec_Zero seen previously). With this loop invariant,
GNATprove is able to prove the postcondition of Validate_Vec_Zero, namely that output parameter Success is
True if-and-only-if all elements of the vector have value zero:

validate_vec_zero.adb:3:41: info: initialization of "Success" proved
validate_vec_zero.adb:5:11: info: postcondition proved
validate_vec_zero.adb:5:72: info: precondition proved
validate_vec_zero.adb:5:84: info: range check proved
validate_vec_zero.adb:9:10: info: precondition proved
validate_vec_zero.adb:13:30: info: loop invariant initialization proved
validate_vec_zero.adb:13:30: info: loop invariant preservation proved
validate_vec_zero.adb:13:67: info: precondition proved
validate_vec_zero.adb:13:79: info: range check proved

Similarly, consider a variant of the same validation loop over a list:

1 with Loop_Types; use Loop_Types; use Loop_Types.Lists;
2 with Ada.Containers; use Ada.Containers; use Loop_Types.Lists.Formal_Model;
3

4 procedure Validate_List_Zero (L : List_T; Success : out Boolean) with
5 SPARK_Mode,
6 Post => Success = (for all E of L => E = 0)
7 is
8 Cu : Cursor := First (L);
9 begin

10 while Has_Element (L, Cu) loop
11 pragma Loop_Invariant (for all I in 1 .. P.Get (Positions (L), Cu) - 1 =>
12 Element (Model (L), I) = 0);
13 if Element (L, Cu) /= 0 then
14 Success := False;
15 return;
16 end if;
17 Next (L, Cu);
18 end loop;
19

20 Success := True;
21 end Validate_List_Zero;

Like in the case of Init_List_Zero seen previously, we need to define a cursor here to iterate over the list. The
loop invariant expresses that all elements up to the current cursor Cu have the value zero. With this loop invariant,
GNATprove is able to prove the postcondition of Validate_List_Zero, namely that output parameter Success is
True if-and-only-if all elements of the list have value zero:

validate_list_zero.adb:4:43: info: initialization of "Success" proved
validate_list_zero.adb:6:11: info: postcondition proved
validate_list_zero.adb:11:30: info: loop invariant initialization proved
validate_list_zero.adb:11:30: info: loop invariant preservation proved

(continues on next page)
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validate_list_zero.adb:11:49: info: precondition proved
validate_list_zero.adb:12:32: info: precondition proved
validate_list_zero.adb:13:10: info: precondition proved
validate_list_zero.adb:17:07: info: precondition proved

The case of sets and maps is similar to the case of lists.

Consider now a variant of the same validation loop over a pointer-based list:

1 with Loop_Types; use Loop_Types;
2

3 package P with
4 SPARK_Mode
5 is
6 function Is_Zero (X : Component_T) return Boolean is
7 (X = 0);
8

9 procedure Validate_List_Zero
10 (L : access constant List_Cell;
11 Success : out Boolean)
12 with
13 Post => Success = For_All_List (L, Is_Zero'Access);
14 end P;

1 with Loop_Types; use Loop_Types;
2

3 package body P with
4 SPARK_Mode
5 is
6 procedure Validate_List_Zero
7 (L : access constant List_Cell;
8 Success : out Boolean)
9 is

10 C : access constant List_Cell := L;
11 begin
12 while C /= null loop
13 pragma Loop_Invariant
14 (For_All_List (L, Is_Zero'Access) = For_All_List (C, Is_Zero'Access));
15 if C.Value /= 0 then
16 Success := False;
17 return;
18 end if;
19 C := C.Next;
20 end loop;
21

22 Success := True;
23 end Validate_List_Zero;
24 end P;

The loop is implemented using a local observer (see Observing) which borrows a read-only permission over a part of a
datastructure until the end of the scope of the observer. In the loop invariant, we cannot, like in the other versions of the
algorithm, speak about the value of the elements which have already been traversed to say that they are all 0. Instead,
we state that the list L only contains 0 iff C only contains 0. This is true since the loop exits as soon as a non-zero value
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is encountered. With this invariant, the postcondition can be proved by GNATprove:

p.adb:14:13: info: loop invariant initialization proved
p.adb:14:13: info: loop invariant preservation proved
p.adb:14:37: info: null exclusion check proved
p.adb:14:72: info: null exclusion check proved
p.adb:15:14: info: pointer dereference check proved
p.adb:19:16: info: pointer dereference check proved
p.ads:6:13: info: implicit aspect Always_Terminates on "Is_Zero" has been proved,␣
↪→subprogram will terminate
p.ads:11:07: info: initialization of "Success" proved
p.ads:13:14: info: postcondition proved
p.ads:13:48: info: null exclusion check proved

A variant of the previous validation pattern is to continue validating elements even after an invalid value has been
encountered, which allows for example logging all invalid values:

Loop
Pattern

Sequence Validation that Validates Entire Collection

Proof
Objec-
tive

Determine (flag) if there are any invalid elements in a given collection.

Loop Be-
havior

Loops over the collection. If an invalid element is encountered, flag this, but keep validating
(typically logging every invalidity) for the entire collection.

Loop In-
variant

If invalidity is not flagged, every element encountered so far is valid.

Consider a variant of Validate_Arr_Zero that keeps validating elements of the array after a non-zero element has
been encountered:

1 with Loop_Types; use Loop_Types;
2

3 procedure Validate_Full_Arr_Zero (A : Arr_T; Success : out Boolean) with
4 SPARK_Mode,
5 Post => Success = (for all J in A'Range => A(J) = 0)
6 is
7 begin
8 Success := True;
9

10 for J in A'Range loop
11 if A(J) /= 0 then
12 Success := False;
13 -- perform some logging here instead of returning
14 end if;
15 pragma Loop_Invariant (Success = (for all K in A'First .. J => A(K) = 0));
16 end loop;
17 end Validate_Full_Arr_Zero;

The loop invariant has been modified to state that all elements up to the current loop index J have value zero if-and-
only-if the output parameter Success is True. This in turn requires to move the assignment of Success before the loop.
With this loop invariant, GNATprove is able to prove the postcondition of Validate_Full_Arr_Zero, which is the
same as the postcondition of Validate_Arr_Zero, namely that output parameter Success is True if-and-only-if all
elements of the array have value zero:
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validate_full_arr_zero.adb:3:46: info: initialization of "Success" proved
validate_full_arr_zero.adb:5:11: info: postcondition proved
validate_full_arr_zero.adb:15:30: info: loop invariant initialization proved
validate_full_arr_zero.adb:15:30: info: loop invariant preservation proved
validate_full_arr_zero.adb:15:72: info: index check proved

Similarly, variants of Validate_Vec_Zero and Validate_List_Zero that keep validating elements of the collection
after a non-zero element has been encountered would be proved by GNATprove.

Counting Loops

This kind of loops iterates over a collection to count the number of elements of the collection that satisfy a given
criterion:

Loop
Pattern

Count Elements Satisfying Criterion

Proof
Objec-
tive

Count elements that satisfy a given criterion.

Loop
Behav-
ior

Loops over the collection. Increments a counter each time the value of an element satisfies
the criterion.

Loop
Invari-
ant

The value of the counter is either 0 when no element encountered so far satisfies the criterion,
or a positive number bounded by the current iteration of the loop otherwise.

Consider a procedure Count_Arr_Zero that counts elements with value zero in array A:

1 with Loop_Types; use Loop_Types;
2

3 procedure Count_Arr_Zero (A : Arr_T; Counter : out Natural) with
4 SPARK_Mode,
5 Post => (Counter in 0 .. A'Length) and then
6 ((Counter = 0) = (for all K in A'Range => A(K) /= 0))
7 is
8 begin
9 Counter := 0;

10

11 for J in A'Range loop
12 if A(J) = 0 then
13 Counter := Counter + 1;
14 end if;
15 pragma Loop_Invariant (Counter in 0 .. J);
16 pragma Loop_Invariant ((Counter = 0) = (for all K in A'First .. J => A(K) /= 0));
17 end loop;
18 end Count_Arr_Zero;

The loop invariant expresses that the value of Counter is a natural number bounded by the current loop index J, and
that Counter is equal to zero exactly when all elements up to the current loop index have a non-zero value. With
this loop invariant, GNATprove is able to prove the postcondition of Count_Arr_Zero, namely that output parameter
Counter is a natural number bounded by the length of the array A, and that Counter is equal to zero exactly when all
elements in A have a non-zero value:
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count_arr_zero.adb:3:38: info: initialization of "Counter" proved
count_arr_zero.adb:5:11: info: postcondition proved
count_arr_zero.adb:13:29: info: overflow check proved
count_arr_zero.adb:15:30: info: loop invariant initialization proved
count_arr_zero.adb:15:30: info: loop invariant preservation proved
count_arr_zero.adb:16:30: info: loop invariant preservation proved
count_arr_zero.adb:16:30: info: loop invariant initialization proved
count_arr_zero.adb:16:78: info: index check proved

Consider now a variant of the same counting loop over a vector:

1 with Loop_Types; use Loop_Types; use Loop_Types.Vectors;
2

3 procedure Count_Vec_Zero (V : Vec_T; Counter : out Natural) with
4 SPARK_Mode,
5 Post => (Counter in 0 .. Natural (Length (V))) and then
6 ((Counter = 0) = (for all K in First_Index (V) .. Last_Index (V) => Element (V,

↪→ K) /= 0))
7 is
8 begin
9 Counter := 0;

10

11 for J in First_Index (V) .. Last_Index (V) loop
12 if Element (V, J) = 0 then
13 Counter := Counter + 1;
14 end if;
15 pragma Loop_Invariant (Counter in 0 .. J);
16 pragma Loop_Invariant ((Counter = 0) = (for all K in First_Index (V) .. J =>␣

↪→Element (V, K) /= 0));
17 end loop;
18 end Count_Vec_Zero;

Like before, the loop invariant expresses that the value of Counter is a natural number bounded by the current loop
index J, and that Counter is equal to zero exactly when all elements up to the current loop index have a non-zero
value. With this loop invariant, GNATprove is able to prove the postcondition of Count_Vec_Zero, namely that
output parameter Counter is a natural number bounded by the length of the vector V, and that Counter is equal to
zero exactly when all elements in V have a non-zero value:

count_vec_zero.adb:3:38: info: initialization of "Counter" proved
count_vec_zero.adb:5:11: info: postcondition proved
count_vec_zero.adb:6:79: info: precondition proved
count_vec_zero.adb:6:91: info: range check proved
count_vec_zero.adb:12:10: info: precondition proved
count_vec_zero.adb:13:29: info: overflow check proved
count_vec_zero.adb:15:30: info: loop invariant initialization proved
count_vec_zero.adb:15:30: info: loop invariant preservation proved
count_vec_zero.adb:16:30: info: loop invariant initialization proved
count_vec_zero.adb:16:30: info: loop invariant preservation proved
count_vec_zero.adb:16:84: info: precondition proved
count_vec_zero.adb:16:96: info: range check proved
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Search Loops

This kind of loops iterates over a collection to search an element of the collection that meets a given search criterion:

Loop Pattern Search with Early Exit
Proof Objec-
tive

Find an element or position that meets a search criterion.

Loop Behavior Loops over the collection. Exits when an element that meets the search criterion is
found.

Loop Invariant Every element encountered so far does not meet the search criterion.

Consider a procedure Search_Arr_Zero that searches an element with value zero in array A:

1 with Loop_Types; use Loop_Types;
2

3 procedure Search_Arr_Zero (A : Arr_T; Pos : out Opt_Index_T; Success : out Boolean) with
4 SPARK_Mode,
5 Post => Success = (for some J in A'Range => A(J) = 0) and then
6 (if Success then A (Pos) = 0)
7 is
8 begin
9 for J in A'Range loop

10 if A(J) = 0 then
11 Success := True;
12 Pos := J;
13 return;
14 end if;
15 pragma Loop_Invariant (for all K in A'First .. J => A(K) /= 0);
16 end loop;
17

18 Success := False;
19 Pos := 0;
20 end Search_Arr_Zero;

The loop invariant expresses that all elements up to the current loop index J have a non-zero value. With this loop
invariant, GNATprove is able to prove the postcondition of Search_Arr_Zero, namely that output parameter Success
is True if-and-only-if there is an element of the array that has value zero, and that Pos is the index of such an element:

search_arr_zero.adb:3:39: info: initialization of "Pos" proved
search_arr_zero.adb:3:62: info: initialization of "Success" proved
search_arr_zero.adb:5:11: info: postcondition proved
search_arr_zero.adb:6:31: info: index check proved
search_arr_zero.adb:15:30: info: loop invariant initialization proved
search_arr_zero.adb:15:30: info: loop invariant preservation proved
search_arr_zero.adb:15:61: info: index check proved

Consider now a variant of the same search loop over a vector:

1 with Loop_Types; use Loop_Types; use Loop_Types.Vectors;
2

3 procedure Search_Vec_Zero (V : Vec_T; Pos : out Opt_Index_T; Success : out Boolean) with
4 SPARK_Mode,

(continues on next page)
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5 Post => Success = (for some J in First_Index (V) .. Last_Index (V) => Element (V, J) =␣
↪→0) and then

6 (if Success then Element (V, Pos) = 0)
7 is
8 begin
9 for J in First_Index (V) .. Last_Index (V) loop

10 if Element (V, J) = 0 then
11 Success := True;
12 Pos := J;
13 return;
14 end if;
15 pragma Loop_Invariant (for all K in First_Index (V) .. J => Element (V, K) /= 0);
16 end loop;
17

18 Success := False;
19 Pos := 0;
20 end Search_Vec_Zero;

Like before, the loop invariant expresses that all elements up to the current loop index J have a non-zero value. With
this loop invariant, GNATprove is able to prove the postcondition of Search_Vec_Zero, namely that output parameter
Success is True if-and-only-if there is an element of the vector that has value zero, and that Pos is the index of such
an element:

search_vec_zero.adb:3:39: info: initialization of "Pos" proved
search_vec_zero.adb:3:62: info: initialization of "Success" proved
search_vec_zero.adb:5:11: info: postcondition proved
search_vec_zero.adb:5:73: info: precondition proved
search_vec_zero.adb:5:85: info: range check proved
search_vec_zero.adb:6:28: info: precondition proved
search_vec_zero.adb:10:10: info: precondition proved
search_vec_zero.adb:15:30: info: loop invariant preservation proved
search_vec_zero.adb:15:30: info: loop invariant initialization proved
search_vec_zero.adb:15:67: info: precondition proved
search_vec_zero.adb:15:79: info: range check proved

Similarly, consider a variant of the same search loop over a list:

1 with Loop_Types; use Loop_Types; use Loop_Types.Lists;
2 with Ada.Containers; use Ada.Containers; use Loop_Types.Lists.Formal_Model;
3

4 procedure Search_List_Zero (L : List_T; Pos : out Cursor; Success : out Boolean) with
5 SPARK_Mode,
6 Post => Success = (for some E of L => E = 0) and then
7 (if Success then Element (L, Pos) = 0)
8 is
9 Cu : Cursor := First (L);

10 begin
11 while Has_Element (L, Cu) loop
12 pragma Loop_Invariant (for all I in 1 .. P.Get (Positions (L), Cu) - 1 =>
13 Element (Model (L), I) /= 0);
14 if Element (L, Cu) = 0 then
15 Success := True;

(continues on next page)
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16 Pos := Cu;
17 return;
18 end if;
19 Next (L, Cu);
20 end loop;
21

22 Success := False;
23 Pos := No_Element;
24 end Search_List_Zero;

The loop invariant expresses that all elements up to the current cursor Cu have a non-zero value. With this loop invariant,
GNATprove is able to prove the postcondition of Search_List_Zero, namely that output parameter Success is True
if-and-only-if there is an element of the list that has value zero, and that Pos is the cursor of such an element:

search_list_zero.adb:4:41: info: initialization of "Pos" proved
search_list_zero.adb:4:59: info: initialization of "Success" proved
search_list_zero.adb:6:11: info: postcondition proved
search_list_zero.adb:7:28: info: precondition proved
search_list_zero.adb:12:30: info: loop invariant initialization proved
search_list_zero.adb:12:30: info: loop invariant preservation proved
search_list_zero.adb:12:49: info: precondition proved
search_list_zero.adb:13:32: info: precondition proved
search_list_zero.adb:14:10: info: precondition proved
search_list_zero.adb:19:07: info: precondition proved

The case of sets and maps is similar to the case of lists.

Consider a variant of the same search loop over a pointer-based list:

1 with Loop_Types; use Loop_Types;
2

3 package P with
4 SPARK_Mode
5 is
6 function Is_Non_Zero (X : Component_T) return Boolean is
7 (X /= 0);
8

9 function Search_List_Zero (L : access List_Cell) return access List_Cell with
10 Post =>
11 ((Search_List_Zero'Result = null) = For_All_List (L, Is_Non_Zero'Access)
12 and then
13 (if Search_List_Zero'Result /= null then Search_List_Zero'Result.Value = 0));
14 end P;

1 with Loop_Types; use Loop_Types;
2

3 package body P with
4 SPARK_Mode
5 is
6 function Search_List_Zero (L : access List_Cell) return access List_Cell is
7 B : access List_Cell := L;
8 begin
9 while B /= null and then B.Value /= 0 loop

(continues on next page)
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10 pragma Loop_Variant (Structural => B);
11 pragma Loop_Invariant
12 (For_All_List (L, Is_Non_Zero'Access) =
13 For_All_List (B, Is_Non_Zero'Access));
14 B := B.Next;
15 end loop;
16

17 return B;
18 end Search_List_Zero;
19 end P;

As our pointer-based lists do not support cursors, the result of the search is a pointer inside the list which can be used
to access or even update the corresponding element. Storing such an object inside an OUT parameter would break
the ownership model of SPARK by creating an alias. Instead, we use a traversal function (see Traversal Functions) to
return this pointer as a local borrower of the input list. Since we now have a function, we can no longer have an explicit
Success flag to encode whether or not the value was found. Instead, we simply return null in case of failure.

The loop iterates over the input list L using a local borrower B. The iteration stops when either B is null or B.Value
is zero. In the loop invariant, we cannot speak directly about the elements of L that have been traversed to say that they
are not 0. Instead, we write in the invariant that L contains only non-zero values iff B contains only non-zero values.
Thanks to this loop invariant, GNATprove is able to verify the postcondition of Search_List_Zero:

p.adb:9:33: info: pointer dereference check proved
p.adb:10:10: info: loop variant proved
p.adb:12:13: info: loop invariant initialization proved
p.adb:12:13: info: loop invariant preservation proved
p.adb:12:41: info: null exclusion check proved
p.adb:13:45: info: null exclusion check proved
p.adb:14:16: info: pointer dereference check proved
p.adb:17:14: info: dynamic accessibility check proved
p.ads:6:13: info: implicit aspect Always_Terminates on "Is_Non_Zero" has been proved,␣
↪→subprogram will terminate
p.ads:9:13: info: implicit aspect Always_Terminates on "Search_List_Zero" has been␣
↪→proved, subprogram will terminate
p.ads:11:08: info: postcondition proved
p.ads:11:72: info: null exclusion check proved
p.ads:13:77: info: pointer dereference check proved

For more complex examples of search loops, see the SPARK Tutorial as well as the section on How to Write Loop
Invariants.

Maximize Loops

This kind of loops iterates over a collection to search an element of the collection that maximizes a given optimality
criterion:
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Loop Pat-
tern

Search Optimum to Criterion

Proof Ob-
jective

Find an element or position that maximizes an optimality criterion.

Loop Be-
havior

Loops over the collection. Records maximum value of criterion so far and possibly index
that maximizes this criterion.

Loop In-
variant

Exactly one element encountered so far corresponds to the recorded maximum over other
elements encountered so far.

Consider a procedure Search_Arr_Max that searches an element maximum value in array A:

1 with Loop_Types; use Loop_Types;
2

3 procedure Search_Arr_Max (A : Arr_T; Pos : out Index_T; Max : out Component_T) with
4 SPARK_Mode,
5 Post => (for all J in A'Range => A(J) <= Max) and then
6 (for some J in A'Range => A(J) = Max) and then
7 A(Pos) = Max
8 is
9 begin

10 Max := 0;
11 Pos := A'First;
12

13 for J in A'Range loop
14 if A(J) > Max then
15 Max := A(J);
16 Pos := J;
17 end if;
18 pragma Loop_Invariant (for all K in A'First .. J => A(K) <= Max);
19 pragma Loop_Invariant (for some K in A'First .. J => A(K) = Max);
20 pragma Loop_Invariant (A(Pos) = Max);
21 end loop;
22 end Search_Arr_Max;

The loop invariant expresses that all elements up to the current loop index J have a value less than Max, and that Max
is the value of one of these elements. The last loop invariant gives in fact this element, it is A(Pos), but this part of
the loop invariant may not be present if the position Pos for the optimum is not recorded. With this loop invariant,
GNATprove is able to prove the postcondition of Search_Arr_Max, namely that output parameter Max is the maximum
of the elements in the array, and that Pos is the index of such an element:

search_arr_max.adb:3:38: info: initialization of "Pos" proved
search_arr_max.adb:3:57: info: initialization of "Max" proved
search_arr_max.adb:5:11: info: postcondition proved
search_arr_max.adb:18:30: info: loop invariant initialization proved
search_arr_max.adb:18:30: info: loop invariant preservation proved
search_arr_max.adb:18:61: info: index check proved
search_arr_max.adb:19:30: info: loop invariant preservation proved
search_arr_max.adb:19:30: info: loop invariant initialization proved
search_arr_max.adb:19:62: info: index check proved
search_arr_max.adb:20:30: info: loop invariant initialization proved
search_arr_max.adb:20:30: info: loop invariant preservation proved
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Consider now a variant of the same search loop over a vector:

1 with Loop_Types; use Loop_Types; use Loop_Types.Vectors;
2

3 procedure Search_Vec_Max (V : Vec_T; Pos : out Index_T; Max : out Component_T) with
4 SPARK_Mode,
5 Pre => not Is_Empty (V),
6 Post => (for all J in First_Index (V) .. Last_Index (V) => Element (V, J) <= Max) and␣

↪→then
7 (for some J in First_Index (V) .. Last_Index (V) => Element (V, J) = Max) and␣

↪→then
8 Pos in First_Index (V) .. Last_Index (V) and then
9 Element (V, Pos) = Max

10 is
11 begin
12 Max := 0;
13 Pos := First_Index (V);
14

15 for J in First_Index (V) .. Last_Index (V) loop
16 if Element (V, J) > Max then
17 Max := Element (V, J);
18 Pos := J;
19 end if;
20 pragma Loop_Invariant (for all K in First_Index (V) .. J => Element (V, K) <= Max);
21 pragma Loop_Invariant (for some K in First_Index (V) .. J => Element (V, K) = Max);
22 pragma Loop_Invariant (Pos in First_Index (V) .. J);
23 pragma Loop_Invariant (Element (V, Pos) = Max);
24 end loop;
25 end Search_Vec_Max;

Like before, the loop invariant expresses that all elements up to the current loop index J have a value less than Max,
and that Max is the value of one of these elements, most precisely the value of Element (V, Pos) if the position Pos
for the optimum is recorded. An additional loop invariant is needed here compared to the case of arrays to state that
Pos remains within the bounds of the vector. With this loop invariant, GNATprove is able to prove the postcondition
of Search_Vec_Max, namely that output parameter Max is the maximum of the elements in the vector, and that Pos is
the index of such an element:

search_vec_max.adb:3:38: info: initialization of "Pos" proved
search_vec_max.adb:3:57: info: initialization of "Max" proved
search_vec_max.adb:6:11: info: postcondition proved
search_vec_max.adb:6:62: info: precondition proved
search_vec_max.adb:6:74: info: range check proved
search_vec_max.adb:7:63: info: precondition proved
search_vec_max.adb:7:75: info: range check proved
search_vec_max.adb:9:11: info: precondition proved
search_vec_max.adb:16:10: info: precondition proved
search_vec_max.adb:17:17: info: precondition proved
search_vec_max.adb:20:30: info: loop invariant initialization proved
search_vec_max.adb:20:30: info: loop invariant preservation proved
search_vec_max.adb:20:67: info: precondition proved
search_vec_max.adb:20:79: info: range check proved
search_vec_max.adb:21:30: info: loop invariant initialization proved
search_vec_max.adb:21:30: info: loop invariant preservation proved
search_vec_max.adb:21:68: info: precondition proved
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search_vec_max.adb:21:80: info: range check proved
search_vec_max.adb:22:30: info: loop invariant preservation proved
search_vec_max.adb:22:30: info: loop invariant initialization proved
search_vec_max.adb:23:30: info: precondition proved
search_vec_max.adb:23:30: info: loop invariant preservation proved
search_vec_max.adb:23:30: info: loop invariant initialization proved

Similarly, consider a variant of the same search loop over a list:

1 with Loop_Types; use Loop_Types; use Loop_Types.Lists;
2 with Ada.Containers; use Ada.Containers; use Loop_Types.Lists.Formal_Model;
3

4 procedure Search_List_Max (L : List_T; Pos : out Cursor; Max : out Component_T) with
5 SPARK_Mode,
6 Pre => not Is_Empty (L),
7 Post => (for all E of L => E <= Max) and then
8 (for some E of L => E = Max) and then
9 Has_Element (L, Pos) and then

10 Element (L, Pos) = Max
11 is
12 Cu : Cursor := First (L);
13 begin
14 Max := 0;
15 Pos := Cu;
16

17 while Has_Element (L, Cu) loop
18 pragma Loop_Invariant (for all I in 1 .. P.Get (Positions (L), Cu) - 1 =>
19 Element (Model (L), I) <= Max);
20 pragma Loop_Invariant (Has_Element (L, Pos));
21 pragma Loop_Invariant (Max = 0 or else Element (L, Pos) = Max);
22

23 if Element (L, Cu) > Max then
24 Max := Element (L, Cu);
25 Pos := Cu;
26 end if;
27 Next (L, Cu);
28 end loop;
29 end Search_List_Max;

The loop invariant expresses that all elements up to the current cursor Cu have a value less than Max, and that Max
is the value of one of these elements, most precisely the value of Element (L, Pos) if the cursor Pos for the
optimum is recorded. Like for vectors, an additional loop invariant is needed here compared to the case of arrays
to state that cursor Pos is a valid cursor of the list. A minor difference is that a loop invariant now starts with
Max = 0 or else .. because the loop invariant is stated at the start of the loop (for convenience with the use of
First_To_Previous) which requires this modification. With this loop invariant, GNATprove is able to prove the
postcondition of Search_List_Max, namely that output parameter Max is the maximum of the elements in the list,
and that Pos is the cursor of such an element:

search_list_max.adb:4:40: info: initialization of "Pos" proved
search_list_max.adb:4:58: info: initialization of "Max" proved
search_list_max.adb:7:11: info: postcondition proved
search_list_max.adb:10:11: info: precondition proved
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search_list_max.adb:18:30: info: loop invariant preservation proved
search_list_max.adb:18:30: info: loop invariant initialization proved
search_list_max.adb:18:49: info: precondition proved
search_list_max.adb:19:32: info: precondition proved
search_list_max.adb:20:30: info: loop invariant initialization proved
search_list_max.adb:20:30: info: loop invariant preservation proved
search_list_max.adb:21:30: info: loop invariant initialization proved
search_list_max.adb:21:30: info: loop invariant preservation proved
search_list_max.adb:21:46: info: precondition proved
search_list_max.adb:23:10: info: precondition proved
search_list_max.adb:24:17: info: precondition proved
search_list_max.adb:27:07: info: precondition proved

The case of sets and maps is similar to the case of lists.

Consider a variant of the same search loop over a pointer-based list:

1 with Loop_Types; use Loop_Types;
2

3 package P with
4 SPARK_Mode
5 is
6 function All_Smaller_Than_Max
7 (L : access constant List_Cell; Max : Component_T) return Boolean
8 is (L = null or else
9 (L.Value <= Max and then All_Smaller_Than_Max (L.Next, Max)))

10 with
11 Subprogram_Variant => (Structural => L);
12

13 function Search_List_Max
14 (L : not null access List_Cell) return not null access List_Cell
15 with
16 Post => All_Smaller_Than_Max (L, Search_List_Max'Result.Value);
17 end P;

1 with Loop_Types; use Loop_Types;
2 with SPARK.Big_Integers; use SPARK.Big_Integers;
3

4 package body P with
5 SPARK_Mode
6 is
7 function Search_List_Max
8 (L : not null access List_Cell) return not null access List_Cell
9 is

10 B : access List_Cell := L;
11 begin
12 loop
13 pragma Loop_Invariant (B /= null);
14 pragma Loop_Invariant
15 (for all M in B.Value .. Component_T'Last =>
16 (if All_Smaller_Than_Max (B, M)
17 then All_Smaller_Than_Max (L, M)));

(continues on next page)
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18 pragma Loop_Variant (Decreases => Length (B));
19 declare
20 Prec : access List_Cell := B;
21 Max : constant Component_T := B.Value;
22 begin
23 loop
24 B := B.Next;
25 exit when B = null or else B.Value > Max;
26 pragma Loop_Invariant (B /= null);
27 pragma Loop_Invariant (B.Value <= Max);
28 pragma Loop_Invariant (Length (B) < Length (B)'Loop_Entry);
29 pragma Loop_Invariant
30 (for all M in Max .. Component_T'Last =>
31 (if All_Smaller_Than_Max (B, M)
32 then All_Smaller_Than_Max (L, M)));
33 pragma Loop_Variant (Decreases => Length (B));
34 end loop;
35 if B = null then
36 return Prec;
37 end if;
38 end;
39 end loop;
40 end Search_List_Max;
41 end P;

As our pointer-based lists do not support cursors, the result of the search is a pointer inside the list which can be used
to access or even update the corresponding element. Storing such an object inside an OUT parameter would break the
ownership model of SPARK by creating an alias. Instead, we use a traversal function (see Traversal Functions) to return
this pointer as a local borrower of the input list. Since we now have a function, we can no longer explicitely return
the value of the maximum. It is not a problem, as it can be accessed easily as the Value component of the returned
pointer. In the postcondition of Search_List_Max, we cannot use For_All_List to express that the returned pointer
designates the maximum value in the list. Indeed, the property depends on the value of this maximum. Instead, we
create a specific recursive function taking the maximum as an additional parameter.

The iteration over the input list L uses a local borrower B. It is expressed as two nested loops. The inner loop declares
a local borrower Prec to register the current value of the maximum. Then it iterates through the loop using B until a
value bigger than the current maximum is found. The outer loop repeats this step as many times as necessary. This
split into two loops is necessary as the SPARK language prevents borrowers from jumping into a different part of the
data structure. As B is not syntactically a path rooted at Prec, Prec cannot be assigned the current value of B when
a new maximal value is found. We therefore need to create a new variable to hold the current maximum each time it
changes.

In the loop invariant of the outer loop, we cannot speak directly about the elements of L that have been traversed to say
that they are smaller than the current maximum. Instead, we write in the invariant that the all values of L are smaller
than any given value bigger than the current maximum iff the values of B are. A similar invariant is necessary on the
inner loop. Thanks to these loop invariants, GNATprove is able to verify the postcondition of Search_List_Max:

p.adb:13:33: info: loop invariant preservation proved
p.adb:13:33: info: loop invariant initialization proved
p.adb:15:13: info: loop invariant initialization proved
p.adb:15:13: info: loop invariant preservation proved
p.adb:15:27: info: pointer dereference check proved
p.adb:16:44: info: range check proved

(continues on next page)
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p.adb:17:46: info: range check proved
p.adb:18:31: info: loop variant proved
p.adb:18:44: info: range check proved
p.adb:21:45: info: pointer dereference check proved
p.adb:24:22: info: pointer dereference check proved
p.adb:25:44: info: pointer dereference check proved
p.adb:26:39: info: loop invariant initialization proved
p.adb:26:39: info: loop invariant preservation proved
p.adb:27:39: info: loop invariant initialization proved
p.adb:27:39: info: loop invariant preservation proved
p.adb:27:40: info: pointer dereference check proved
p.adb:28:39: info: predicate check proved
p.adb:28:39: info: loop invariant initialization proved
p.adb:28:39: info: loop invariant preservation proved
p.adb:28:62: info: predicate check proved
p.adb:30:19: info: loop invariant initialization proved
p.adb:30:19: info: loop invariant preservation proved
p.adb:31:50: info: range check proved
p.adb:32:52: info: range check proved
p.adb:33:37: info: loop variant proved
p.adb:33:50: info: range check proved
p.adb:36:23: info: dynamic accessibility check proved
p.adb:36:23: info: null exclusion check proved
p.ads:6:13: info: implicit aspect Always_Terminates on "All_Smaller_Than_Max" has been␣
↪→proved, subprogram will terminate
p.ads:9:12: info: pointer dereference check proved
p.ads:9:35: info: subprogram variant proved
p.ads:9:58: info: pointer dereference check proved
p.ads:13:13: info: implicit aspect Always_Terminates on "Search_List_Max" has been␣
↪→proved, subprogram will terminate
p.ads:16:14: info: postcondition proved

The loop variants state that the length of B is strictly decreasing. This is used to prove that the loop terminates.

For more complex examples of search loops, see the SPARK Tutorial as well as the section on How to Write Loop
Invariants.

Update Loops

This kind of loops iterates over a collection to update individual elements based either on their value or on their position.
The first pattern we consider is the one that updates elements based on their value:

Loop Pat-
tern

Modification of Elements Based on Value

Proof Objec-
tive

Elements of the collection are updated based on their value.

Loop Behav-
ior

Loops over a collection and assigns the elements whose value satisfies a given modifi-
cation criterion.

Loop Invari-
ant

Every element encountered so far has been assigned according to its value.
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Consider a procedure Update_Arr_Zero that sets to zero all elements in array A that have a value smaller than a given
Threshold:

1 with Loop_Types; use Loop_Types;
2

3 procedure Update_Arr_Zero (A : in out Arr_T; Threshold : Component_T) with
4 SPARK_Mode,
5 Post => (for all J in A'Range => A(J) = (if A'Old(J) <= Threshold then 0 else A

↪→'Old(J)))
6 is
7 begin
8 for J in A'Range loop
9 if A(J) <= Threshold then

10 A(J) := 0;
11 end if;
12 pragma Loop_Invariant (for all K in A'First .. J => A(K) = (if A'Loop_Entry(K) <=␣

↪→Threshold then 0 else A'Loop_Entry(K)));
13 -- The following loop invariant is generated automatically by GNATprove:
14 -- pragma Loop_Invariant (for all K in J + 1 .. A'Last => A(K) = A'Loop_Entry(K));
15 end loop;
16 end Update_Arr_Zero;

The loop invariant expresses that all elements up to the current loop index J have been zeroed out if initially smaller
than Threshold (using Attribute Loop_Entry). With this loop invariant, GNATprove is able to prove the postcondition
of Update_Arr_Zero, namely that all elements initially smaller than Threshold have been zeroed out, and that other
elements have not been modified:

update_arr_zero.adb:5:11: info: postcondition proved
update_arr_zero.adb:12:30: info: loop invariant initialization proved
update_arr_zero.adb:12:30: info: loop invariant preservation proved
update_arr_zero.adb:12:61: info: index check proved
update_arr_zero.adb:12:83: info: index check proved
update_arr_zero.adb:12:124: info: index check proved

Note that the commented loop invariant expressing that other elements have not been modified is not needed, as it is
an example of Automatically Generated Loop Invariants.

Consider now a variant of the same update loop over a vector:

1 pragma Unevaluated_Use_Of_Old (Allow);
2 with Loop_Types; use Loop_Types; use Loop_Types.Vectors;
3 use Loop_Types.Vectors.Formal_Model;
4

5 procedure Update_Vec_Zero (V : in out Vec_T; Threshold : Component_T) with
6 SPARK_Mode,
7 Post => Last_Index (V) = Last_Index (V)'Old
8 and (for all I in 1 .. Last_Index (V) =>
9 Element (V, I) =

10 (if Element (Model (V)'Old, I) <= Threshold then 0
11 else Element (Model (V)'Old, I)))
12 is
13 begin
14 for J in First_Index (V) .. Last_Index (V) loop
15 pragma Loop_Invariant (Last_Index (V) = Last_Index (V)'Loop_Entry);
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16 pragma Loop_Invariant
17 (for all I in 1 .. J - 1 =>
18 Element (V, I) =
19 (if Element (Model (V)'Loop_Entry, I) <= Threshold then 0
20 else Element (Model (V)'Loop_Entry, I)));
21 pragma Loop_Invariant
22 (for all I in J .. Last_Index (V) =>
23 Element (V, I) = Element (Model (V)'Loop_Entry, I));
24 if Element (V, J) <= Threshold then
25 Replace_Element (V, J, 0);
26 end if;
27 end loop;
28 end Update_Vec_Zero;

Like for Map_Vec_Incr, we need to use the Model function over arrays to access elements of the vector before the
loop as the vector type is limited. The loop invariant expresses that all elements up to the current loop index J have
been zeroed out if initially smaller than Threshold, that elements that follow the current loop index have not been
modified, and that the length of V is not modified (like in Init_Vec_Zero). With this loop invariant, GNATprove is
able to prove the postcondition of Update_Vec_Zero:

update_vec_zero.adb:7:11: info: postcondition proved
update_vec_zero.adb:9:13: info: precondition proved
update_vec_zero.adb:9:25: info: range check proved
update_vec_zero.adb:10:18: info: precondition proved
update_vec_zero.adb:10:42: info: range check proved
update_vec_zero.adb:11:20: info: precondition proved
update_vec_zero.adb:11:44: info: range check proved
update_vec_zero.adb:15:30: info: loop invariant initialization proved
update_vec_zero.adb:15:30: info: loop invariant preservation proved
update_vec_zero.adb:17:10: info: loop invariant initialization proved
update_vec_zero.adb:17:10: info: loop invariant preservation proved
update_vec_zero.adb:17:30: info: overflow check proved
update_vec_zero.adb:18:14: info: precondition proved
update_vec_zero.adb:18:26: info: range check proved
update_vec_zero.adb:19:19: info: precondition proved
update_vec_zero.adb:19:50: info: range check proved
update_vec_zero.adb:20:21: info: precondition proved
update_vec_zero.adb:20:52: info: range check proved
update_vec_zero.adb:22:10: info: loop invariant initialization proved
update_vec_zero.adb:22:10: info: loop invariant preservation proved
update_vec_zero.adb:23:14: info: precondition proved
update_vec_zero.adb:23:26: info: range check proved
update_vec_zero.adb:23:31: info: precondition proved
update_vec_zero.adb:23:62: info: range check proved
update_vec_zero.adb:24:10: info: precondition proved
update_vec_zero.adb:25:10: info: precondition proved

Similarly, consider a variant of the same update loop over a list:

1 with Loop_Types; use Loop_Types; use Loop_Types.Lists;
2 with Ada.Containers; use Ada.Containers; use Loop_Types.Lists.Formal_Model;
3

(continues on next page)

7.9. GNATprove by Example 335



SPARK User’s Guide, Release 15.0

(continued from previous page)

4 procedure Update_List_Zero (L : in out List_T; Threshold : Component_T) with
5 SPARK_Mode,
6 Post => Length (L) = Length (L)'Old
7 and (for all I in 1 .. Length (L) =>
8 Element (Model (L), I) =
9 (if Element (Model (L'Old), I) <= Threshold then 0

10 else Element (Model (L'Old), I)))
11 is
12 Cu : Cursor := First (L);
13 begin
14 while Has_Element (L, Cu) loop
15 pragma Loop_Invariant (Length (L) = Length (L)'Loop_Entry);
16 pragma Loop_Invariant
17 (for all I in 1 .. P.Get (Positions (L), Cu) - 1 =>
18 Element (Model (L), I) =
19 (if Element (Model (L'Loop_Entry), I) <= Threshold then 0
20 else Element (Model (L'Loop_Entry), I)));
21 pragma Loop_Invariant
22 (for all I in P.Get (Positions (L), Cu) .. Length (L) =>
23 Element (Model (L), I) = Element (Model (L'Loop_Entry), I));
24 if Element (L, Cu) <= Threshold then
25 Replace_Element (L, Cu, 0);
26 end if;
27 Next (L, Cu);
28 end loop;
29 end Update_List_Zero;

The loop invariant expresses that all elements up to the current cursor Cu have been zeroed out if initially smaller than
Threshold (using function Model to access the element stored at a given position in the list and function Positions
to query the position of the current cursor), and that elements that follow the current loop index have not been modified.
Note that it is necessary to state here that the length of the list is not modified during the loop. It is because the length
is used to bound the quantification over the elements of the list both in the invariant and in the postcondition.

With this loop invariant, GNATprove is able to prove the postcondition of Update_List_Zero, namely that all ele-
ments initially smaller than Threshold have been zeroed out, and that other elements have not been modified:

update_list_zero.adb:6:11: info: postcondition proved
update_list_zero.adb:8:13: info: precondition proved
update_list_zero.adb:9:18: info: precondition proved
update_list_zero.adb:10:20: info: precondition proved
update_list_zero.adb:15:30: info: loop invariant initialization proved
update_list_zero.adb:15:30: info: loop invariant preservation proved
update_list_zero.adb:17:10: info: loop invariant preservation proved
update_list_zero.adb:17:10: info: loop invariant initialization proved
update_list_zero.adb:17:29: info: precondition proved
update_list_zero.adb:18:13: info: precondition proved
update_list_zero.adb:19:18: info: precondition proved
update_list_zero.adb:20:20: info: precondition proved
update_list_zero.adb:22:10: info: loop invariant preservation proved
update_list_zero.adb:22:10: info: loop invariant initialization proved
update_list_zero.adb:22:24: info: precondition proved
update_list_zero.adb:23:13: info: precondition proved
update_list_zero.adb:23:33: info: range check proved

(continues on next page)

336 Chapter 7. Formal Verification with GNATprove



SPARK User’s Guide, Release 15.0

(continued from previous page)

update_list_zero.adb:23:38: info: precondition proved
update_list_zero.adb:23:69: info: range check proved
update_list_zero.adb:24:10: info: precondition proved
update_list_zero.adb:25:10: info: precondition proved
update_list_zero.adb:27:07: info: precondition proved

The case of sets and maps is similar to the case of lists.

Consider now a variant of the same update loop over a pointer-based list. To express the postcondition relating the
elements of the structure before and after the loop, we need to introduce a way to store the values of the list before the
call in a separate data structure. Indeed, the Old attribute cannot be used on L directly has it would introduce an alias.
In this example, it is done by declaring a Copy function which returns a copy of its input list. In its postcondition, we
use the two-valued For_All_List function to state that the elements of the new structure are equal to the elements of
its input structure. An alternative could be to store the elements in a structure not subject to ownership like an array.

Note

The function Copy is marked as Import as it is not meant to be executed. It could be implemented in SPARK by
returning a deep copy of the argument list, reallocating all cells of the list in the result.

1 with Loop_Types; use Loop_Types;
2

3 package P with
4 SPARK_Mode
5 is
6 function Equal (X, Y : Component_T) return Boolean is (X = Y);
7

8 function Copy (L : access List_Cell) return List_Acc with
9 Ghost,

10 Import,
11 Global => null,
12 Post => For_All_List (L, Copy'Result, Equal'Access);
13

14 function Updated_If_Less_Than_Threshold
15 (L1, L2 : access constant List_Cell;
16 Threshold : Component_T) return Boolean
17 is
18 ((L1 = null) = (L2 = null)
19 and then
20 (if L1 /= null then
21 (if L1.Value <= Threshold then L2.Value = 0
22 else L2.Value = L1.Value)
23 and then Updated_If_Less_Than_Threshold (L1.Next, L2.Next, Threshold)))
24 with
25 Subprogram_Variant => (Structural => L1);
26

27 procedure Update_List_Zero (L : access List_Cell; Threshold : Component_T) with
28 Post => Updated_If_Less_Than_Threshold (Copy (L)'Old, L, Threshold);
29 pragma Annotate (GNATprove, Intentional, "memory leak might occur",
30 "The code will be compiled with assertions disabled");
31 end P;
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1 with Loop_Types; use Loop_Types;
2

3 package body P with
4 SPARK_Mode
5 is
6 procedure Update_List_Zero (L : access List_Cell; Threshold : Component_T) is
7 L_Old : constant List_Acc := Copy (L) with Ghost;
8 pragma Annotate (GNATprove, Intentional, "memory leak might occur",
9 "The code will be compiled with assertions disabled");

10 B : access List_Cell := L;
11 B_Old : access constant List_Cell := L_Old with Ghost;
12 begin
13 while B /= null loop
14 pragma Loop_Invariant (For_All_List (B, B_Old, Equal'Access));
15 pragma Loop_Invariant
16 (if Updated_If_Less_Than_Threshold (B_Old, At_End (B), Threshold)
17 then Updated_If_Less_Than_Threshold (L_Old, At_End (L), Threshold));
18 if B.Value <= Threshold then
19 B.Value := 0;
20 end if;
21 B := B.Next;
22 B_Old := B_Old.Next;
23 end loop;
24 pragma Assert
25 (Updated_If_Less_Than_Threshold (L_Old, At_End (L), Threshold));
26 end Update_List_Zero;
27 end P;

In the postcondition of Update_List_Zero, we cannot use For_All_List to express the relation between the values
of the list before and after the call. Indeed, the relation depends on the value of the input Threshold. Instead, we
create a specific recursive function taking the threshold as an additional parameter.

The loop traverses L using a local borrower B. To be able to speak about the initial value of L in the invariant, we
introduce a ghost constant L_Old storing a copy of this value. As we need to traverse both lists at the same time, we
declare a ghost variable B_Old as a local observer of L_Old.

The loop invariant is made of two parts. The first one states that the elements reachable through B have not been
modified by the loop. In the second loop invariant, we want to use Updated_If_Less_Than_Threshold to relate
the elements of L that were already traversed to the elements of L_Old. As we cannot speak specifically about the
traversed elements of L, the invariant states that, if at the end of the borrow the values accessible through B are related
to their equivalent element in B_Old through Updated_If_Less_Than_Threshold, then so are all the elements of
L. GNATprove can verify these invariants as well as the postcondition of Update_List_Zero:

p.adb:7:07: info: absence of resource or memory leak at end of scope justified
p.adb:14:33: info: loop invariant initialization proved
p.adb:14:33: info: loop invariant preservation proved
p.adb:14:62: info: null exclusion check proved
p.adb:16:13: info: loop invariant initialization proved
p.adb:16:13: info: loop invariant preservation proved
p.adb:18:14: info: pointer dereference check proved
p.adb:19:14: info: pointer dereference check proved
p.adb:21:16: info: pointer dereference check proved
p.adb:22:24: info: pointer dereference check proved
p.adb:25:10: info: assertion proved

(continues on next page)
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p.ads:6:13: info: implicit aspect Always_Terminates on "Equal" has been proved,␣
↪→subprogram will terminate
p.ads:14:13: info: implicit aspect Always_Terminates on "Updated_If_Less_Than_Threshold"␣
↪→has been proved, subprogram will terminate
p.ads:21:20: info: pointer dereference check proved
p.ads:21:47: info: pointer dereference check proved
p.ads:22:22: info: pointer dereference check proved
p.ads:22:33: info: pointer dereference check proved
p.ads:23:19: info: subprogram variant proved
p.ads:23:53: info: pointer dereference check proved
p.ads:23:62: info: pointer dereference check proved
p.ads:28:14: info: postcondition proved
p.ads:28:46: info: absence of resource or memory leak justified

The second pattern of update loops that we consider now is the one that updates elements based on their position:

Loop Pat-
tern

Modification of Elements Based on Position

Proof Objec-
tive

Elements of the collection are updated based on their position.

Loop Behav-
ior

Loops over a collection and assigns the elements whose position satisfies a given mod-
ification criterion.

Loop Invari-
ant

Every element encountered so far has been assigned according to its position.

Consider a procedure Update_Range_Arr_Zero that sets to zero all elements in array A between indexes First and
Last:

1 with Loop_Types; use Loop_Types;
2

3 procedure Update_Range_Arr_Zero (A : in out Arr_T; First, Last : Index_T) with
4 SPARK_Mode,
5 Post => A = (A'Old with delta First .. Last => 0)
6 is
7 begin
8 for J in First .. Last loop
9 A(J) := 0;

10 pragma Loop_Invariant (A = (A'Loop_Entry with delta First .. J => 0));
11 end loop;
12 end Update_Range_Arr_Zero;

The loop invariant expresses that all elements between First and the current loop index J have been zeroed out, and that
other elements have not been modified (using a combination of Attribute Loop_Entry and Delta Aggregates to express
this concisely). With this loop invariant, GNATprove is able to prove the postcondition of Update_Range_Arr_Zero,
namely that all elements between First and Last have been zeroed out, and that other elements have not been modified:

update_range_arr_zero.adb:5:11: info: postcondition proved
update_range_arr_zero.adb:10:30: info: loop invariant initialization proved
update_range_arr_zero.adb:10:30: info: loop invariant preservation proved

Consider now a variant of the same update loop over a vector:
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1 pragma Unevaluated_Use_Of_Old (Allow);
2 with Loop_Types; use Loop_Types; use Loop_Types.Vectors;
3 use Loop_Types.Vectors.Formal_Model;
4

5 procedure Update_Range_Vec_Zero (V : in out Vec_T; First, Last : Index_T) with
6 SPARK_Mode,
7 Pre => Last <= Last_Index (V),
8 Post => (for all J in 1 .. Last_Index (V) =>
9 (if J in First .. Last then Element (V, J) = 0

10 else Element (V, J) = Element (Model (V)'Old, J)))
11 is
12 begin
13 for J in First .. Last loop
14 Replace_Element (V, J, 0);
15 pragma Loop_Invariant (Last_Index (V) = Last_Index (V)'Loop_Entry);
16 pragma Loop_Invariant
17 (for all I in 1 .. Last_Index (V) =>
18 (if I in First .. J then Element (V, I) = 0
19 else Element (V, I) = Element (Model (V)'Loop_Entry, I)));
20 end loop;
21 end Update_Range_Vec_Zero;

Like for Map_Vec_Incr, we need to use the Model function over arrays to access elements of the vector before the
loop as the vector type is limited. The loop invariant expresses that all elements between First and current loop index
J have been zeroed, and that other elements have not been modified. With this loop invariant, GNATprove is able to
prove the postcondition of Update_Range_Vec_Zero:

update_range_vec_zero.adb:8:11: info: postcondition proved
update_range_vec_zero.adb:9:44: info: precondition proved
update_range_vec_zero.adb:9:56: info: range check proved
update_range_vec_zero.adb:10:22: info: precondition proved
update_range_vec_zero.adb:10:34: info: range check proved
update_range_vec_zero.adb:10:39: info: precondition proved
update_range_vec_zero.adb:10:63: info: range check proved
update_range_vec_zero.adb:14:07: info: precondition proved
update_range_vec_zero.adb:15:30: info: loop invariant preservation proved
update_range_vec_zero.adb:15:30: info: loop invariant initialization proved
update_range_vec_zero.adb:17:10: info: loop invariant preservation proved
update_range_vec_zero.adb:17:10: info: loop invariant initialization proved
update_range_vec_zero.adb:18:41: info: precondition proved
update_range_vec_zero.adb:18:53: info: range check proved
update_range_vec_zero.adb:19:22: info: precondition proved
update_range_vec_zero.adb:19:34: info: range check proved
update_range_vec_zero.adb:19:39: info: precondition proved
update_range_vec_zero.adb:19:70: info: range check proved

Similarly, consider a variant of the same update loop over a list:

1 with Loop_Types; use Loop_Types; use Loop_Types.Lists;
2 with Ada.Containers; use Ada.Containers; use Loop_Types.Lists.Formal_Model;
3

4 procedure Update_Range_List_Zero (L : in out List_T; First, Last : Cursor) with
5 SPARK_Mode,
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6 Pre => Has_Element (L, First) and then Has_Element (L, Last)
7 and then P.Get (Positions (L), First) <= P.Get (Positions (L), Last),
8 Post => Length (L) = Length (L)'Old
9 and Positions (L) = Positions (L)'Old

10 and (for all I in 1 .. Length (L) =>
11 (if I in P.Get (Positions (L), First) .. P.Get (Positions (L), Last) then
12 Element (Model (L), I) = 0
13 else Element (Model (L), I) = Element (Model (L'Old), I)))
14 is
15 Cu : Cursor := First;
16 begin
17 loop
18 pragma Loop_Invariant (Has_Element (L, Cu));
19 pragma Loop_Invariant (P.Get (Positions (L), Cu) in P.Get (Positions (L), First) ..

↪→ P.Get (Positions (L), Last));
20 pragma Loop_Invariant (Length (L) = Length (L)'Loop_Entry);
21 pragma Loop_Invariant (Positions (L) = Positions (L)'Loop_Entry);
22 pragma Loop_Invariant (for all I in 1 .. Length (L) =>
23 (if I in P.Get (Positions (L), First) .. P.Get (Positions␣

↪→(L), Cu) - 1 then
24 Element (Model (L), I) = 0
25 else Element (Model (L), I) = Element (Model (L'Loop_

↪→Entry), I)));
26 Replace_Element (L, Cu, 0);
27 exit when Cu = Last;
28 Next (L, Cu);
29 end loop;
30 end Update_Range_List_Zero;

Compared to the vector example, it requires three additional invariants. As the loop is done via a cursor, the first two
loop invariants are necessary to know that the current cursor Cu stays between First and Last in the list. The fourth
loop invariant states that the position of cursors in L is not modified during the loop. It is necessary to know that the
two cursors First and Last keep designating the same range after the loop. With this loop invariant, GNATprove
is able to prove the postcondition of Update_Range_List_Zero, namely that all elements between First and Last
have been zeroed out, and that other elements have not been modified:

update_range_list_zero.adb:7:13: info: precondition proved
update_range_list_zero.adb:7:45: info: precondition proved
update_range_list_zero.adb:8:11: info: postcondition proved
update_range_list_zero.adb:11:23: info: precondition proved
update_range_list_zero.adb:11:55: info: precondition proved
update_range_list_zero.adb:12:16: info: precondition proved
update_range_list_zero.adb:13:19: info: precondition proved
update_range_list_zero.adb:13:44: info: precondition proved
update_range_list_zero.adb:18:30: info: loop invariant initialization proved
update_range_list_zero.adb:18:30: info: loop invariant preservation proved
update_range_list_zero.adb:19:30: info: loop invariant preservation proved
update_range_list_zero.adb:19:30: info: loop invariant initialization proved
update_range_list_zero.adb:19:31: info: precondition proved
update_range_list_zero.adb:19:60: info: precondition proved
update_range_list_zero.adb:19:92: info: precondition proved
update_range_list_zero.adb:20:30: info: loop invariant preservation proved

(continues on next page)
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update_range_list_zero.adb:20:30: info: loop invariant initialization proved
update_range_list_zero.adb:21:30: info: loop invariant preservation proved
update_range_list_zero.adb:21:30: info: loop invariant initialization proved
update_range_list_zero.adb:22:30: info: loop invariant preservation proved
update_range_list_zero.adb:22:30: info: loop invariant initialization proved
update_range_list_zero.adb:23:42: info: precondition proved
update_range_list_zero.adb:23:74: info: precondition proved
update_range_list_zero.adb:24:36: info: precondition proved
update_range_list_zero.adb:25:38: info: precondition proved
update_range_list_zero.adb:25:63: info: precondition proved
update_range_list_zero.adb:26:07: info: precondition proved
update_range_list_zero.adb:28:07: info: precondition proved

7.9.3 Manual Proof Examples
The examples in this section contain properties that are difficult to prove automatically and thus require more user
interaction to prove completely. The degre of interaction required depends on the difficuly of the proof:

• simple addition of calls to ghost lemmas for arithmetic properties involving multiplication, division and modulo
operations, as decribed in Manual Proof Using SPARK Lemma Library

• more involved addition of ghost code for universally or existentially quantified properties on data structures and
containers, as described in Manual Proof Using Ghost Code

• interaction at the level of Verification Condition formulas in the syntax of an interactive prover for arbitrary
complex properties, as described in Manual Proof Using Coq

Manual Proof Using SPARK Lemma Library

If the property to prove is part of the SPARK Lemma Library, then manual proof simply consists in calling the appro-
priate lemma in your code. For example, consider the following assertion to prove, where X1, X2 and Y may be signed
or modular positive integers:

R1 := X1 / Y;
R2 := X2 / Y;
pragma Assert (R1 <= R2);

The property here is the monotonicity of division on positive values. There is a corresponding lemma for both signed
and modular integers, for both 32 bits and 64 bits integers:

• for signed 32 bits integers, use SPARK.Integer_Arithmetic_Lemmas.Lemma_Div_Is_Monotonic

• for signed 64 bits integers, use SPARK.Long_Integer_Arithmetic_Lemmas.Lemma_Div_Is_Monotonic

• for modular 32 bits integers, use SPARK.Mod32_Arithmetic_Lemmas.Lemma_Div_Is_Monotonic

• for modular 64 bits integers, use SPARK.Mod64_Arithmetic_Lemmas.Lemma_Div_Is_Monotonic

For example, the lemma for signed integers has the following signature:

procedure Lemma_Div_Is_Monotonic
(Val1 : Int;
Val2 : Int;
Denom : Pos)

with
Global => null,
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Pre => Val1 <= Val2,
Post => Val1 / Denom <= Val2 / Denom;

Assuming the appropriate library unit is with’ed and used in your code (see SPARK Lemma Library for details), using
the lemma is simply a call to the ghost procedure Lemma_Div_Is_Monotonic:

R1 := X1 / Y;
R2 := X2 / Y;
Lemma_Div_Is_Monotonic (X1, X2, Y);
-- at this program point, the prover knows that R1 <= R2
-- the following assertion is proved automatically:
pragma Assert (R1 <= R2);

Note that the lemma may have a precondition, stating in which contexts the lemma holds, which you will need to prove
when calling it. For example, a precondition check is generated in the code above to show that X1 <= X2. Similarly,
the types of parameters in the lemma may restrict the contexts in which the lemma holds. For example, the type Pos
for parameter Denom of Lemma_Div_Is_Monotonic is the type of positive integers. Hence, a range check may be
generated in the code above to show that Y is positive.

To apply lemmas to signed or modular integers of different types than the ones used in the instances provided in the
library, just convert the expressions passed in arguments, as follows:

R1 := X1 / Y;
R2 := X2 / Y;
Lemma_Div_Is_Monotonic (Integer(X1), Integer(X2), Integer(Y));
-- at this program point, the prover knows that R1 <= R2
-- the following assertion is proved automatically:
pragma Assert (R1 <= R2);

Manual Proof Using User Lemmas

If the property to prove is not part of the SPARK Lemma Library, then a user can easily add it as a separate lemma in
her program. For example, suppose you need to have a proof that a fix list of numbers are prime numbers. This can be
expressed easily in a lemma as follows:

function Is_Prime (N : Positive) return Boolean is
(for all J in Positive range 2 .. N - 1 => N mod J /= 0);

procedure Number_Is_Prime (N : Positive)
with
Ghost,
Global => null,
Pre => N in 15486209 | 15487001 | 15487469,
Post => Is_Prime (N);

Using the lemma is simply a call to the ghost procedure Number_Is_Prime:

Number_Is_Prime (15486209);
-- at this program point, the prover knows that 15486209 is prime, so
-- the following assertion is proved automatically:
pragma Assert (Is_Prime (15486209));

Note that the lemma here has a precondition, which you will need to prove when calling it. For example, the following
incorrect call to the lemma will be detected as a precondition check failure:
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Number_Is_Prime (10); -- check message issued here

Then, the lemma procedure can be either implemented as a null procedure, in which case GNATprove will issue a check
message about the unproved postcondition, which can be justified (see Justifying Check Messages) or proved with Coq
(see Manual Proof Using Coq):

procedure Number_Is_Prime (N : Positive) is null;

Or it can be implemented as a normal procedure body with a single assumption:

procedure Number_Is_Prime (N : Positive) is
begin
pragma Assume (Is_Prime (N));

end Number_Is_Prime;

Or it can be implemented in some cases as a normal procedure body with ghost code to achieve fully automatic proof,
see Manual Proof Using Ghost Code.

Manual Proof Using Ghost Code

Guiding automatic solvers by adding intermediate assertions is a commonly used technique. More generally, whole
pieces of Ghost Code can be added to enhance automated reasoning.

Proving Existential Quantification

Existentially quantified properties are difficult to verify for automatic solvers. Indeed, it requires coming up with a
concrete value for which the property holds and solvers are not good at guessing. As an example, consider the following
program:

type Nat_Array is array (Positive range <>) of Natural;

pragma Assume (A (A'First) = 0 and then A (A'Last) > 0);

pragma Assert
(for some I in A'Range =>

I < A'Last and then A (I) = 0 and then A (I + 1) > 0);

Here we assume that the first element of an array A of type Nat_Array is 0, whereas is last element is positive. In
such a case, we are sure that there is an index I in the array such A (I) is 0 but not A (I + 1). Indeed, we know that
A starts with a non-empty sequence of zeros. The last element of this sequence has the expected property. However,
automatic solvers are unable to prove such a property automatically because they cannot guess which index they should
consider. To help them, we can define a ghost function returning a value for which the property holds, and call it from
an assertion:

type Nat_Array is array (Positive range <>) of Natural;

function Find_Pos (A : Nat_Array) return Positive with Ghost,
Pre => A (A'First) = 0 and then A (A'Last) > 0,
Post => Find_Pos’Result in A'First .. A'Last - 1 and then

A (Find_Pos'Result) = 0 and then A (Find_Pos'Result + 1) > 0;

pragma Assume (A (A'First) = 0 and then A (A'Last) > 0);
pragma Assert (Find_Pos (A) in A'Range);
pragma Assert
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(for some I in A'Range =>
I < A'Last and then A (I) = 0 and then A (I + 1) > 0);

Automatic solvers are now able to discharge the proof.

Performing Induction

Another difficult point for automated solvers is proof by induction. Though some automatic solvers do have heuristics
allowing them to perform the most simple inductive proofs, they generally are lost when the induction is less straight-
forward. For example, in the example below, we state that the array A is sorted in two different ways, first by saying that
each element is bigger than the one just before, and then by saying that each element is bigger than all the ones before:

pragma Assume
(for all I in A'Range =>
(if I > A'First then A (I) > A (I - 1)));

pragma Assert
(for all I in A'Range =>
(for all J in A'Range => (if I > J then A (I) > A (J))));

The second assertion is provable from the first one by induction over the number of elements separating I and J, but
automatic solvers are unable to verify this code. To help them, we can use a ghost loop. In the loop invariant, we say
that the property holds for all indexes I and J separated by less than K elements:

procedure Prove_Sorted (A : Nat_Array) with Ghost is
begin
for K in 0 .. A'Length loop
pragma Loop_Invariant
(for all I in A'Range => (for all J in A'Range =>

(if I > J and then I - J <= K then A (I) > A (J))));
end loop;

end Prove_Sorted;

GNATprove will verify that the invariant holds in two steps, first it will show that the property holds at the first iteration,
and then that, if it holds at a given iteration, then it also holds at the next (see Loop Invariants). Both proofs are
straightforward using the assumption.

Note that we have introduced a ghost subprogram above to contain the loop. This will allow the compiler to recognize
that this loop is ghost, so that it can be entirely removed when assertions are disabled.

If Prove_Sorted is declared locally to the subprogram that we want to verify, it is not necessary to supply a contract
for it, as local subprograms with no contracts are inlined (see Contextual Analysis of Subprograms Without Contracts).
We can still choose to provide such a contract to turn Prove_Sorted into a lemma (see Manual Proof Using User
Lemmas).

A Concrete Example: a Sort Algorithm

We show how to prove the correctness of a sorting procedure on arrays using ghost code. In particular, we want to
show that the sorted array is a permutation of the input array. A common way to define permutations is to encode
the number of occurrences of each element in the array as a multiset, constructed inductively over the size of its array
parameter (but it is not the only one, see Ghost Variables). The Functional Containers Library of SPARK provides an
implementation of multisets that we use here:

1 pragma SPARK_Mode (On);
2

(continues on next page)
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3 with SPARK.Containers.Functional.Multisets;
4

5 package Nat_Multisets is new SPARK.Containers.Functional.Multisets (Natural, "=");

1 package Sort_Types with SPARK_Mode is
2 subtype Index is Integer range 1 .. 100;
3 type Nat_Array is array (Index range <>) of Natural;
4 end Sort_Types;

1 with SPARK.Big_Integers; use SPARK.Big_Integers;
2 with Nat_Multisets; use Nat_Multisets;
3 with Sort_Types; use Sort_Types;
4

5 package Perm with SPARK_Mode, Ghost is
6 use Nat_Multisets;
7

8 function Occurrences (Values : Nat_Array; Lst : Integer) return Multiset is
9 (if Lst < Values'First then Empty_Multiset

10 else Add (Occurrences (Values, Lst - 1), Values (Lst)))
11 with Subprogram_Variant => (Decreases => Lst),
12 Pre => Lst <= Values'Last;
13

14 function Occurrences (Values : Nat_Array) return Multiset is
15 (Occurrences (Values, Values'Last));
16

17 function Occ (Values : Nat_Array; N : Natural) return Big_Natural is
18 (Nb_Occurence (Occurrences (Values), N));
19

20 function Is_Perm (Left, Right : Nat_Array) return Boolean is
21 (Occurrences (Left) = Occurrences (Right));
22

23 end Perm;

The only property of the function Occurrences required to prove that swapping two elements of an array is in fact a
permutation, is the way Occurrences is modified when updating a value of the array.

There is no native construction for axioms in SPARK. As a workaround, a ghost subprogram, named “lemma subpro-
gram”, can be introduced with the desired property as a postcondition. An instance of the axiom will then be available
whenever the subprogram is called. Notice that an explicit call to the lemma subprogram with the proper arguments is
required whenever an instance of the axiom is needed, like in manual proofs in an interactive theorem prover. Here is
how a lemma subprogram can be defined for the desired property of Occurrences:

package Perm.Lemma_Subprograms with
SPARK_Mode,
Ghost,
Always_Terminates

is

function Is_Set (A : Nat_Array; I : Index; V : Natural; R : Nat_Array)
return Boolean

is (R'First = A'First and then R'Last = A'Last
and then R (I) = V
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and then (for all J in A'Range =>
(if I /= J then R (J) = A (J)))) with

Pre => I in A'Range;

procedure Occ_Set (A : Nat_Array; I : Index; V : Natural; R : Nat_Array)
with
Global => null,
Pre => I in A'Range and then Is_Set (A, I, V, R),
Post =>
(if V = A (I) then Occurrences (R) = Occurrences (A)
else Occ (R, V) = Occ (A, V) + 1
and then Occ (R, A (I)) = Occ (A, A (I)) - 1
and then
(for all E of Union (Occurrences (R), Occurrences (A)) =>

(if E not in V | A (I) then Occ (R, E) = Occ (A, E))));

end Perm.Lemma_Subprograms;

This “axiom” can then be used to prove an implementation of the selection sort algorithm. The lemma subprogram
needs to be explicitely called when needed:

with Nat_Multisets; use Nat_Multisets;
with Perm.Lemma_Subprograms; use Perm.Lemma_Subprograms;

package body Sort
with SPARK_Mode

is

-----------------------------------------------------------------------------

procedure Swap (Values : in out Nat_Array;
X : in Positive;
Y : in Positive)

with
Pre => (X in Values'Range and then

Y in Values'Range and then
X /= Y),

Post => Is_Perm (Values'Old, Values)
and Values (X) = Values'Old (Y)
and Values (Y) = Values'Old (X)
and (for all Z in Values'Range =>

(if Z /= X and Z /= Y then Values (Z) = Values'Old (Z)))
is

Temp : Integer;

-- Ghost variables
Init : constant Nat_Array (Values'Range) := Values with Ghost;
Interm : Nat_Array (Values'Range) with Ghost;

-- Ghost procedure
procedure Prove_Perm with Ghost,

(continues on next page)
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Pre => X in Values'Range and then Y in Values'Range and then
Is_Set (Init, X, Init (Y), Interm)
and then Is_Set (Interm, Y, Init (X), Values),
Post => Is_Perm (Init, Values)

is
begin

Occ_Set (Init, X, Init (Y), Interm);
Occ_Set (Interm, Y, Init (X), Values);
pragma Assert

(for all F of Union (Occurrences (Init), Occurrences (Values)) =>
Occ (Values, F) = Occ (Init, F));

end Prove_Perm;

begin
Temp := Values (X);
Values (X) := Values (Y);

-- Ghost code
pragma Assert (Is_Set (Init, X, Init (Y), Values));
Interm := Values;

Values (Y) := Temp;

-- Ghost code
pragma Assert (Is_Set (Interm, Y, Init (X), Values));
Prove_Perm;

end Swap;

-- Finds the index of the smallest element in the array
function Index_Of_Minimum (Values : in Nat_Array)

return Positive
with
Pre => Values'Length > 0,
Post => Index_Of_Minimum'Result in Values'Range and then
(for all I in Values'Range =>

Values (Index_Of_Minimum'Result) <= Values (I))
is

Min : Positive;
begin

Min := Values'First;
for Index in Values'Range loop
if Values (Index) < Values (Min) then

Min := Index;
end if;
pragma Loop_Invariant
(Min in Values'Range and then

(for all I in Values'First .. Index =>
Values (Min) <= Values (I)));

end loop;
return Min;

end Index_Of_Minimum;
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procedure Selection_Sort (Values : in out Nat_Array) is
Smallest : Positive; -- Index of the smallest value in the unsorted part

begin
if Values'Length = 0 then
return;

end if;

for Current in Values'First .. Values'Last - 1 loop
Smallest := Index_Of_Minimum (Values (Current .. Values'Last));

if Smallest /= Current then
Swap (Values => Values,

X => Current,
Y => Smallest);

end if;

pragma Loop_Invariant
(for all I in Values'First .. Current =>

(for all J in I + 1 .. Values'Last =>
Values (I) <= Values (J)));

pragma Loop_Invariant (Is_Perm (Values'Loop_Entry, Values));
end loop;

end Selection_Sort;

end Sort;

with SPARK.Big_Integers; use SPARK.Big_Integers;
with Sort_Types; use Sort_Types;
with Perm; use Perm;

package Sort with SPARK_Mode is

-- Sorts the elements in the array Values in ascending order
procedure Selection_Sort (Values : in out Nat_Array)
with
Post => Is_Perm (Values'Old, Values) and then

(if Values'Length > 0 then
(for all I in Values'First .. Values'Last - 1 =>

Values (I) <= Values (I + 1)));
end Sort;

The procedure Selection_Sort can be verified using GNATprove at level 2.

sort.adb:18:16: info: postcondition proved
sort.adb:19:18: info: index check proved
sort.adb:19:35: info: index check proved
sort.adb:20:18: info: index check proved
sort.adb:20:35: info: index check proved
sort.adb:22:48: info: index check proved
sort.adb:22:65: info: index check proved
sort.adb:24:07: info: initialization of "Temp" proved
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sort.adb:27:07: info: range check proved
sort.adb:27:53: info: length check proved
sort.adb:28:07: info: initialization of "Interm" proved
sort.adb:28:07: info: range check proved
sort.adb:33:09: info: precondition proved
sort.adb:33:23: info: range check proved
sort.adb:33:32: info: index check proved
sort.adb:34:18: info: precondition proved
sort.adb:34:34: info: range check proved
sort.adb:34:43: info: index check proved
sort.adb:35:17: info: postcondition proved
sort.adb:38:10: info: precondition proved
sort.adb:38:25: info: range check proved
sort.adb:38:34: info: index check proved
sort.adb:39:10: info: precondition proved
sort.adb:39:27: info: range check proved
sort.adb:39:36: info: index check proved
sort.adb:41:13: info: assertion proved
sort.adb:42:17: info: predicate check proved
sort.adb:42:35: info: predicate check proved
sort.adb:46:29: info: index check proved
sort.adb:47:15: info: index check proved
sort.adb:47:29: info: index check proved
sort.adb:50:22: info: precondition proved
sort.adb:50:22: info: assertion proved
sort.adb:50:36: info: range check proved
sort.adb:50:45: info: index check proved
sort.adb:51:14: info: length check proved
sort.adb:51:17: info: length check proved
sort.adb:53:15: info: index check proved
sort.adb:53:21: info: range check proved
sort.adb:56:22: info: precondition proved
sort.adb:56:22: info: assertion proved
sort.adb:56:38: info: range check proved
sort.adb:56:47: info: index check proved
sort.adb:57:07: info: precondition proved
sort.adb:61:13: info: implicit aspect Always_Terminates on "Index_Of_Minimum" has been␣
↪→proved, subprogram will terminate
sort.adb:65:16: info: postcondition proved
sort.adb:67:35: info: index check proved
sort.adb:67:55: info: index check proved
sort.adb:69:07: info: initialization of "Min" proved
sort.adb:71:20: info: range check proved
sort.adb:73:38: info: index check proved
sort.adb:74:20: info: range check proved
sort.adb:77:13: info: loop invariant initialization proved
sort.adb:77:13: info: loop invariant preservation proved
sort.adb:79:28: info: index check proved
sort.adb:79:44: info: index check proved
sort.adb:85:07: info: initialization of "Smallest" proved
sort.adb:91:50: info: overflow check proved
sort.adb:92:22: info: precondition proved
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sort.adb:92:40: info: range check proved
sort.adb:95:13: info: precondition proved
sort.adb:96:29: info: range check proved
sort.adb:101:13: info: loop invariant preservation proved
sort.adb:101:13: info: loop invariant initialization proved
sort.adb:102:31: info: overflow check proved
sort.adb:103:28: info: index check proved
sort.adb:103:42: info: index check proved
sort.adb:104:33: info: loop invariant initialization proved
sort.adb:104:33: info: loop invariant preservation proved
sort.ads:10:16: info: postcondition proved
sort.ads:12:51: info: overflow check proved
sort.ads:13:22: info: index check proved
sort.ads:13:38: info: overflow check proved
sort.ads:13:38: info: index check proved

To complete the verification of our selection sort, the only remaining issue is the correctness of the axiom for
Occurrences. It can be discharged using its definition. Since this definition is recursive, the proof requires induction,
which is not normally in the reach of an automated prover. For GNATprove to verify it, it must be implemented using
recursive calls on itself to assert the induction hypothesis. Note that the proof of the lemma is then conditioned to the
termination of the lemma functions, which can be verified by GNATprove using a Subprogram Variant.

package body Perm.Lemma_Subprograms with SPARK_Mode is

procedure Occ_Eq (A, B : Nat_Array; LA, LB : Integer) with
Subprogram_Variant => (Decreases => LA),
Pre => LA <= A'Last and then LB <= B'Last
and then A (A'First .. LA) = B (B'First .. LB),
Post => Occurrences (A, LA) = Occurrences (B, LB);

procedure Occ_Eq (A, B : Nat_Array; LA, LB : Integer) is
begin
if LA < A'First then
return;

end if;

Occ_Eq (A, B, LA - 1, LB - 1);
end Occ_Eq;

procedure Occ_Set_Rec
(A : Nat_Array; I : Index; V : Natural; R : Nat_Array; L : Integer)

with
Subprogram_Variant => (Decreases => L),
Pre => I in A'Range and then Is_Set (A, I, V, R) and then L <= A'Last,
Post =>
(if V = A (I) or else I > L then Occurrences (R, L) = Occurrences (A, L)
else Nb_Occurence (Occurrences (R, L), V) =
Nb_Occurence (Occurrences (A, L), V) + 1

and then Nb_Occurence (Occurrences (R, L), A (I)) =
Nb_Occurence (Occurrences (A, L), A (I)) - 1

and then
(for all E of Occurrences (R, L) =>

(continues on next page)
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(if E not in V | A (I)
then Nb_Occurence (Occurrences (R, L), E) =
Nb_Occurence (Occurrences (A, L), E)))

and then
(for all E of Occurrences (A, L) =>

(if E not in V | A (I)
then Nb_Occurence (Occurrences (R, L), E) =
Nb_Occurence (Occurrences (A, L), E))));

procedure Occ_Set_Rec
(A : Nat_Array; I : Index; V : Natural; R : Nat_Array; L : Integer)

is
begin
if L < A'First then
return;

end if;

if I = L then
Occ_Eq (A, R, L - 1, L - 1);

else
Occ_Set_Rec (A, I, V, R, L - 1);

end if;
end Occ_Set_Rec;

procedure Occ_Set (A : Nat_Array; I : Index; V : Natural; R : Nat_Array)
is
begin

Occ_Set_Rec (A, I, V, R, A'Last);
end Occ_Set;

end Perm.Lemma_Subprograms;

GNATprove proves automatically all checks on the final program at level 2.

perm.ads:8:13: info: implicit aspect Always_Terminates on "Occurrences" has been proved,␣
↪→subprogram will terminate
perm.ads:10:17: info: precondition proved
perm.ads:10:17: info: subprogram variant proved
perm.ads:10:42: info: overflow check proved
perm.ads:10:56: info: index check proved
perm.ads:14:13: info: implicit aspect Always_Terminates on "Occurrences" has been proved,
↪→ subprogram will terminate
perm.ads:15:07: info: precondition proved
perm.ads:17:13: info: implicit aspect Always_Terminates on "Occ" has been proved,␣
↪→subprogram will terminate
perm.ads:20:13: info: implicit aspect Always_Terminates on "Is_Perm" has been proved,␣
↪→subprogram will terminate
perm-lemma_subprograms.adb:3:14: info: aspect Always_Terminates on "Occ_Eq" has been␣
↪→proved, subprogram will terminate
perm-lemma_subprograms.adb:6:15: info: range check proved
perm-lemma_subprograms.adb:6:35: info: range check proved
perm-lemma_subprograms.adb:7:14: info: precondition proved

(continues on next page)
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perm-lemma_subprograms.adb:7:14: info: postcondition proved
perm-lemma_subprograms.adb:7:36: info: precondition proved
perm-lemma_subprograms.adb:15:07: info: precondition proved
perm-lemma_subprograms.adb:15:07: info: subprogram variant proved
perm-lemma_subprograms.adb:15:24: info: overflow check proved
perm-lemma_subprograms.adb:15:32: info: overflow check proved
perm-lemma_subprograms.adb:18:14: info: aspect Always_Terminates on "Occ_Set_Rec" has␣
↪→been proved, subprogram will terminate
perm-lemma_subprograms.adb:22:36: info: precondition proved
perm-lemma_subprograms.adb:24:08: info: postcondition proved
perm-lemma_subprograms.adb:24:19: info: index check proved
perm-lemma_subprograms.adb:24:41: info: precondition proved
perm-lemma_subprograms.adb:24:62: info: precondition proved
perm-lemma_subprograms.adb:25:14: info: predicate check proved
perm-lemma_subprograms.adb:25:28: info: precondition proved
perm-lemma_subprograms.adb:26:11: info: predicate check proved
perm-lemma_subprograms.adb:26:25: info: precondition proved
perm-lemma_subprograms.adb:26:50: info: predicate check proved
perm-lemma_subprograms.adb:27:18: info: predicate check proved
perm-lemma_subprograms.adb:27:32: info: precondition proved
perm-lemma_subprograms.adb:27:55: info: index check proved
perm-lemma_subprograms.adb:28:11: info: predicate check proved
perm-lemma_subprograms.adb:28:25: info: precondition proved
perm-lemma_subprograms.adb:28:48: info: index check proved
perm-lemma_subprograms.adb:28:54: info: predicate check proved
perm-lemma_subprograms.adb:30:25: info: precondition proved
perm-lemma_subprograms.adb:31:34: info: index check proved
perm-lemma_subprograms.adb:32:20: info: predicate check proved
perm-lemma_subprograms.adb:32:34: info: precondition proved
perm-lemma_subprograms.adb:33:17: info: predicate check proved
perm-lemma_subprograms.adb:33:31: info: precondition proved
perm-lemma_subprograms.adb:35:25: info: precondition proved
perm-lemma_subprograms.adb:36:34: info: index check proved
perm-lemma_subprograms.adb:37:20: info: predicate check proved
perm-lemma_subprograms.adb:37:34: info: precondition proved
perm-lemma_subprograms.adb:38:17: info: predicate check proved
perm-lemma_subprograms.adb:38:31: info: precondition proved
perm-lemma_subprograms.adb:49:10: info: precondition proved
perm-lemma_subprograms.adb:49:26: info: overflow check proved
perm-lemma_subprograms.adb:49:33: info: overflow check proved
perm-lemma_subprograms.adb:51:10: info: precondition proved
perm-lemma_subprograms.adb:51:10: info: subprogram variant proved
perm-lemma_subprograms.adb:51:37: info: overflow check proved
perm-lemma_subprograms.adb:58:07: info: precondition proved
perm-lemma_subprograms.ads:7:13: info: implicit aspect Always_Terminates on "Is_Set" has␣
↪→been proved, subprogram will terminate
perm-lemma_subprograms.ads:10:20: info: index check proved
perm-lemma_subprograms.ads:12:39: info: index check proved
perm-lemma_subprograms.ads:12:47: info: index check proved
perm-lemma_subprograms.ads:15:14: info: aspect Always_Terminates on "Occ_Set" has been␣
↪→proved, subprogram will terminate
perm-lemma_subprograms.ads:17:06: info: data dependencies proved

(continues on next page)
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perm-lemma_subprograms.ads:18:38: info: precondition proved
perm-lemma_subprograms.ads:20:08: info: postcondition proved
perm-lemma_subprograms.ads:20:19: info: index check proved
perm-lemma_subprograms.ads:21:14: info: predicate check proved
perm-lemma_subprograms.ads:21:27: info: predicate check proved
perm-lemma_subprograms.ads:21:40: info: predicate check proved
perm-lemma_subprograms.ads:22:20: info: predicate check proved
perm-lemma_subprograms.ads:22:31: info: index check proved
perm-lemma_subprograms.ads:22:37: info: predicate check proved
perm-lemma_subprograms.ads:22:48: info: index check proved
perm-lemma_subprograms.ads:22:54: info: predicate check proved
perm-lemma_subprograms.ads:25:36: info: index check proved
perm-lemma_subprograms.ads:25:44: info: predicate check proved
perm-lemma_subprograms.ads:25:57: info: predicate check proved

Manual Proof Using Coq

This section presents a simple example of how to prove interactively a check with an interactive prover like Coq when
GNATprove fails to prove it automatically (for installation of Coq, see also: Coq). Here is a simple SPARK procedure:

1 procedure Nonlinear (X, Y, Z : Positive; R1, R2 : out Natural) with
2 SPARK_Mode,
3 Pre => Y > Z,
4 Post => R1 <= R2
5 is
6 begin
7 R1 := X / Y;
8 R2 := X / Z;
9 end Nonlinear;

When only the Alt-Ergo prover is used, GNATprove does not prove automatically the postcondition of the procedure,
even when increasing the value of the timeout:

nonlinear.adb:4:11: medium: postcondition might fail
4 | Post => R1 <= R2
| ^~~~~~~~

This is expected, as the automatic prover Alt-Ergo has only a simple support for non-linear integer arithmetic. More
generally, it is a known difficulty for all automatic provers, although, in the case above, using prover cvc5 is enough
to prove automatically the postcondition of procedure Nonlinear. We will use this case to demonstrate the use of a
manual prover, as an example of what can be done when automatic provers fail to prove a check. We will use Coq here.

The Coq input file associated to this postcondition can be produced by either selecting SPARK → Prove Check and
specifying Coq as alternate prover in GNAT Studio or by executing on the command-line:

gnatprove -P <prj_file>.gpr --limit-line=nonlinear.adb:4:11:VC_POSTCONDITION
--prover=Coq

The generated file contains many definitions and axioms that can be used in the proof, in addition to the ones in Coq
standard library. The property we want to prove is at the end of the file:

Theorem def'vc :
forall (r1:Numbers.BinNums.Z) (r2:Numbers.BinNums.Z),

(continues on next page)
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dynamic_invariant1 x Init.Datatypes.true Init.Datatypes.false
Init.Datatypes.true Init.Datatypes.true ->
dynamic_invariant1 y Init.Datatypes.true Init.Datatypes.false
Init.Datatypes.true Init.Datatypes.true ->
dynamic_invariant1 z Init.Datatypes.true Init.Datatypes.false
Init.Datatypes.true Init.Datatypes.true ->
dynamic_invariant r1 Init.Datatypes.false Init.Datatypes.false
Init.Datatypes.true Init.Datatypes.true ->
dynamic_invariant r2 Init.Datatypes.false Init.Datatypes.false
Init.Datatypes.true Init.Datatypes.true -> (z < y)%Z ->
forall (r11:Numbers.BinNums.Z), (r11 = (ZArith.BinInt.Z.quot x y)) ->
forall (r21:Numbers.BinNums.Z), (r21 = (ZArith.BinInt.Z.quot x z)) ->
(r11 <= r21)%Z.

Proof.
intros r1 r2 h1 h2 h3 h4 h5 h6 r11 h7 r21 h8.

Qed.

From the forall to the first . we can see the expression of what must be proved, also called the goal. The proof
starts right after the dot and ends with the Qed keyword. Proofs in Coq are done with the help of different tactics
which will change the state of the current goal. The first tactic (automatically added) here is intros, which allows to
“extract” variables and hypotheses from the current goal and add them to the current environment. Each parameter to
the intros tactic is the name that the extracted element will have in the new environment. The intros tactic here puts
all universally quantified variables and all hypotheses in the environment. The goal is reduced to a simple inequality,
with all potentially useful information in the environment.

Here is the state of the proof as displayed in a suitable IDE for Coq:

1 subgoal
r1, r2 : int
h1 : dynamic_invariant1 x true false true true
h2 : dynamic_invariant1 y true false true true
h3 : dynamic_invariant1 z true false true true
h4 : dynamic_invariant r1 false false true true
h5 : dynamic_invariant r2 false false true true
h6 : (z < y)%Z
r11 : int
h7 : r11 = (x ÷ y)%Z
r21 : int
h8 : r21 = (x ÷ z)%Z
______________________________________(1/1)
(r11 <= r21)%Z

Some expresions are enclosed in ()%Z, which means that they are dealing with relative integers. This is necessarily in
order to use the operators (e.g. < or +) on relative integers instead of using the associated Coq function or to declare a
relative integer constant (e.g. 0%Z).

Next, we can use the subst tactic to automaticaly replace variables by terms to which they are equal (as stated by the
hypotheses in the current environment) and clean the environment of replaced variables. Here, we can get rid of many
variables at once with subst. (note the presence of the . at the end of each tactic). The new state is:

1 subgoal
r1, r2 : int

(continues on next page)
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h1 : dynamic_invariant1 x true false true true
h2 : dynamic_invariant1 y true false true true
h3 : dynamic_invariant1 z true false true true
h4 : dynamic_invariant r1 false false true true
h5 : dynamic_invariant r2 false false true true
h6 : (z < y)%Z
______________________________________(1/1)
(x ÷ y <= x ÷ z)%Z

At this state, the hypotheses alone are not enough to prove the goal without proving properties about ÷ and < opera-
tors. It is necessary to use theorems from the Coq standard library. Coq provides a command SearchAbout to find
theorems and definition concerning its argument. For instance, to find the theorems referring to the operator ÷, we use
SearchAbout Z.quot., where Z.quot is the underlying function for the ÷ operator. Among the theorems displayed,
the conclusion (the rightmost term separated by -> operator) of one of them seems to match our current goal:

Z.quot_le_compat_l:
forall p q r : int, (0 <= p)%Z -> (0 < q <= r)%Z -> (p ÷ r <= p ÷ q)%Z

The tactic apply allows the use of a theorem or an hypothesis on the current goal. Here we use: apply Z.
quot_le_compat_l.. This tactic will try to match the different variables of the theorem with the terms present in the
goal. If it succeeds, one subgoal per hypothesis in the theorem will be generated to verify that the terms matched with
the theorem variables satisfy the hypotheses on those variables required by the theorem. In this case, p is matched with
x, q with z and r with y and the new state is:

2 subgoals
r1, r2 : int
h1 : dynamic_invariant1 x true false true true
h2 : dynamic_invariant1 y true false true true
h3 : dynamic_invariant1 z true false true true
h4 : dynamic_invariant r1 false false true true
h5 : dynamic_invariant r2 false false true true
h6 : (z < y)%Z
______________________________________(1/2)
(0 <= x)%Z
______________________________________(2/2)
(0 < z <= y)%Z

As expected, there are two subgoals, one per hypothesis of the theorem. Once the first subgoal is proved, the rest of the
script will automatically apply to the second one. Now, if we look back at the SPARK code, X is of type Positive so X is
greater than 0 and dynamic_invariantN (where N is a number) are predicates generated by SPARK to state the range
of a value from a ranged subtype interpreted as a relative integer in Coq. Here, the predicate dynamic_invariant1
provides the property needed to prove the first subgoal which is that “All elements of subtype positive have their integer
interpretation in the range 1 .. (231 - 1)”. To be able to see the definition of dynamic_invariant1 in h1, we can use
the unfold tactic of Coq. We need to supply the name of the predicate to unfold: unfold dynamic_invariant1 in
h1. After this unfolding, we get a new predicate in_range1 that we can unfold too so that h1 is now true = true
\/ (1 <= 2147483647)%Z -> (1 <= x <= 2147483647)%Z.

We see now that the goal does not match exactly the hypothesis, because one is a comparison with 0, while the other is
a comparison with 1. Transitivity on “lesser or equal” relation is needed to prove this goal, of course this is provided
in Coq’s standard library:

Lemma Z.le_trans : forall n m p:Z, (n <= m)%Z -> (m <= p)%Z -> (n <= p)%Z.

Since the lemma’s conclusion contains only two variables while it uses three, using tactic apply Z.le_trans. will
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generate an error stating that Coq was not able to find a term for the variable m. In this case, m needs to be instantiated
explicitly, here with the value 1: apply Zle_trans with (m:= 1%Z). There are two new subgoals, one to prove
that 0 <= 1 and the other that 1 <= x:

3 subgoals
r1, r2 : int
h1 : true = true \/ (1 <= 2147483647)%Z -> (1 <= x <= 2147483647)%Z
h2 : dynamic_invariant1 y true false true true
h3 : dynamic_invariant1 z true false true true
h4 : dynamic_invariant r1 false false true true
h5 : dynamic_invariant r2 false false true true
h6 : (z < y)%Z
______________________________________(1/3)
(0 <= 1)%Z
______________________________________(2/3)
(1 <= x)%Z
______________________________________(3/3)
(0 < z <= y)%Z

To prove that 0 <= 1, the theorem Lemma Z.le_0_1 : (0 <= 1)%Z. is used. apply Z.le_0_1 will not generate
any new subgoals since it does not contain implications. Coq passes to the next subgoal:

2 subgoals
r1, r2 : int
h1 : true = true \/ (1 <= 2147483647)%Z -> (1 <= x <= 2147483647)%Z
h2 : dynamic_invariant1 y true false true true
h3 : dynamic_invariant1 z true false true true
h4 : dynamic_invariant r1 false false true true
h5 : dynamic_invariant r2 false false true true
h6 : (z < y)%Z
______________________________________(1/2)
(1 <= x)%Z
______________________________________(2/2)
(0 < z <= y)%Z

This goal is now adapted to the range information in hypothesis h1. It introduces a subgoal which is the disjunction in
the hypothesis of h1. To prove this disjunction, we need to tell Coq which operand we want to prove. Here, both are
obviously true. Let’s choose the left one using the tactic left.. We are left with only the equality to prove:

2 subgoals
r1, r2 : int
h1 : true = true \/ (1 <= 2147483647)%Z -> (1 <= x <= 2147483647)%Z
h2 : dynamic_invariant1 y true false true true
h3 : dynamic_invariant1 z true false true true
h4 : dynamic_invariant r1 false false true true
h5 : dynamic_invariant r2 false false true true
h6 : (z < y)%Z
______________________________________(1/2)
true = true
______________________________________(2/2)
(0 < z <= y)%Z

This can be discharged using apply eq_refl. to apply the reflexivity axiom of equality. Now the subgoal 1 is fully
proved, and all that remains is subgoal 2:
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1 subgoal
r1, r2 : int
h1 : dynamic_invariant1 x true false true true
h2 : dynamic_invariant1 y true false true true
h3 : dynamic_invariant1 z true false true true
h4 : dynamic_invariant r1 false false true true
h5 : dynamic_invariant r2 false false true true
h6 : (z < y)%Z
______________________________________(1/1)
(0 < z <= y)%Z

Transitivity is needed again, as well as the definition of dynamic_invariant1. In the previous subgoal, every step
was detailed in order to show how the tactic apply worked. Now, let’s see that proof doesn’t have to be this detailed.
The first thing to do is to add the fact that 1 <= z to the current environment: unfold dynamic_invariant1,
in_range1 in h3. will add the range of z as an hypthesis in the environment:

1 subgoal
r1, r2 : int
h1 : dynamic_invariant1 x true false true true
h2 : dynamic_invariant1 y true false true true
h3 : true = true \/ (1 <= 2147483647)%Z -> (1 <= z <= 2147483647)%Z
h4 : dynamic_invariant r1 false false true true
h5 : dynamic_invariant r2 false false true true
h6 : (z < y)%Z
______________________________________(1/1)
(0 < z <= y)%Z

At this point, the goal can be solved simply using the intuition. tactic. intuition is an automatic tactic of Coq
implementing a decision procedure for some simple goals. It either solves the goal or, if it fails, it does not generate any
subgoals. The benefit of the latter way is that there are less steps than with the previous subgoal for a more complicated
goal (there are two inequalities in the second subgoal) and we do not have to find the different theorems we need to
solve the goal without intuition.

Finally, here is the final version of the proof script for the postcondition:

Theorem def'vc :
forall (r1:Numbers.BinNums.Z) (r2:Numbers.BinNums.Z),
dynamic_invariant1 x Init.Datatypes.true Init.Datatypes.false
Init.Datatypes.true Init.Datatypes.true ->
dynamic_invariant1 y Init.Datatypes.true Init.Datatypes.false
Init.Datatypes.true Init.Datatypes.true ->
dynamic_invariant1 z Init.Datatypes.true Init.Datatypes.false
Init.Datatypes.true Init.Datatypes.true ->
dynamic_invariant r1 Init.Datatypes.false Init.Datatypes.false
Init.Datatypes.true Init.Datatypes.true ->
dynamic_invariant r2 Init.Datatypes.false Init.Datatypes.false
Init.Datatypes.true Init.Datatypes.true -> (z < y)%Z ->
forall (r11:Numbers.BinNums.Z), (r11 = (ZArith.BinInt.Z.quot x y)) ->
forall (r21:Numbers.BinNums.Z), (r21 = (ZArith.BinInt.Z.quot x z)) ->
(r11 <= r21)%Z.

Proof.
intros r1 r2 h1 h2 h3 h4 h5 h6 r11 h7 r21 h8.
subst.
apply Z.quot_le_compat_l.
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apply Z.le_trans with (m:=1%Z).
(* 0 <= x *)

- apply Z.le_0_1.
(* 1 <= x *)

- unfold dynamic_invariant1, in_range1 in h1.
apply h1. left. apply eq_refl.

(* 0 < z <= y *)
- unfold dynamic_invariant1, in_range1 in h3.
intuition.

Qed.

To check and save the proof:

gnatprove -P <prj_file>.gpr --limit-line=nonlinear.adb:4:11:VC_POSTCONDITION
--prover=Coq --report=all

Now running GNATprove on the project should confirm that all checks are proved:

nonlinear.adb:4:11: info: postcondition proved
nonlinear.adb:7:12: info: range check proved
nonlinear.adb:7:12: info: division check proved
nonlinear.adb:8:12: info: range check proved
nonlinear.adb:8:12: info: division check proved
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CHAPTER

EIGHT

APPLYING SPARK IN PRACTICE

SPARK tools offer different levels of analysis, which are relevant in different contexts. This section starts with a
description of the five Levels of Software Assurance that can be achieved with SPARK. It continues with a description
of the main Objectives of Using SPARK . This list gathers the most commonly found reasons for adopting SPARK in
industrial projects, but it is not intended to be an exhaustive list.

Whatever the objective(s) of using SPARK, any project fits in one of four possible Project Scenarios:

• the brown field scenario: Maintenance and Evolution of Existing Ada Software

• the green field scenario: New Developments in SPARK

• the migration scenario: Conversion of Existing SPARK Software to SPARK 2014

• the frozen scenario: Analysis of Frozen Ada Software

The end of this section examines each of these scenarios in turn and describes how SPARK can be applied in each case.

8.1 Levels of Software Assurance
SPARK analysis can give strong guarantees that a program:

• does not read uninitialized data,

• accesses global data only as intended,

• does not contain concurrency errors (deadlocks and data races),

• does not contain run-time errors (e.g., division by zero or buffer overflow), except for Storage_Error, which
is not covered by SPARK analysis (see also section Dealing with Storage_Error below)

• respects key integrity properties (e.g., interaction between components or global invariants),

• is a correct implementation of software requirements expressed as contracts.

SPARK can analyze either a complete program or those parts that are marked as being subject to analysis, but it can
only be applied to code that follows some restrictions designed to facilitate formal verification. In particular, tasking
is restricted to the Ravenscar or Jorvik profiles and use of pointers should follow a strict ownership policy aiming at
preventing aliasing of allocated data. Pointers and tasking are both features that, if supported completely, make formal
verification, as done by SPARK, infeasible, either because of limitations of state-of-the-art technology or because of
the disproportionate effort required from users to apply formal verification in such situations. The large subset of Ada
that is analyzed by SPARK is also called the SPARK language subset.

SPARK builds on the strengths of Ada to provide even more guarantees statically rather than dynamically. As sum-
marized in the following table, Ada provides strict syntax and strong typing at compile time plus dynamic checking of
run-time errors and program contracts. SPARK allows such checking to be performed statically. In addition, it enforces
the use of a safer language subset and detects data flow errors statically.
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Ada SPARK
Contract programming dynamic dynamic / static
Run-time errors dynamic dynamic / static
Data flow errors – static
Strong typing static static
Safer language subset – static
Strict clear syntax static static

The main benefit of formal program verification as performed by SPARK is that it allows verifying properties that
are difficult or very costly to verify by other methods, such as testing or reviews. That difficulty may stem from the
complexity of the software, the complexity of the requirements, and/or the unknown capabilities of attackers. Formal
verification allows giving guarantees that some properties are always verified, however complex the context. The latest
versions of international certification standards for avionics (DO-178C / ED-12C) and railway systems (CENELEC EN
50128:2011) have recognized these benefits by increasing the role that formal methods can play in the development
and verification of critical software.

8.1.1 Levels of SPARK Use
The scope and level of SPARK analysis depend on the objectives being pursued by the adoption of SPARK. The scope
of analysis may be the totality of a project, only some units, or only parts of units. The level of analysis may range from
simple guarantees provided by flow analysis to complex properties being proved. These can be divided into five easily
remembered levels:

1. Stone level - valid SPARK

2. Bronze level - initialization and correct data flow

3. Silver level - absence of run-time errors (AoRTE)

4. Gold level - proof of key integrity properties

5. Platinum level - full functional proof of requirements

Platinum level is defined here for completeness, but it is seldom applicable due to the high cost of achieving it. Each
level builds on the previous one, so that the code subject to the Gold level should be a subset of the code subject to
Silver level, which itself is a subset of the code subject to Bronze level, which is in general the same as the code subject
to Stone level. We advise using:

• Stone level only as an intermediate level during adoption,

• Bronze level for as large a part of the code as possible,

• Silver level as the default target for critical software (subject to costs and limitations),

• Gold level only for a subset of the code subject to specific key integrity (safety/security) properties,

• Platinum level only for those parts of the code with the highest integrity (safety/security) constraints.

Our starting point is a program in Ada, which could be thought of as the Brick level: thanks to the use of Ada pro-
gramming language, this level already provides some confidence: it is the highest level in The Three Little Pigs fable!
And indeed languages with weaker semantics could be thought of as Straw and Sticks levels. However, the adoption of
SPARK allows us to get stronger guarantees, should the wolf in the fable adopt more aggressive means of attack than
simply blowing.

A pitfall when using tools for automating human tasks is to end up “pleasing the tools” rather than working around
the tool limitations. Both flow analysis and proof, the two technologies used in SPARK, have known limitations.
Users should refrain from changing the program for the benefit of only getting fewer messages from the tools. When
relevant, users should justify tool messages through appropriate pragmas. See the sections on Suppressing Warnings
and Justifying Check Messages for more details.
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GNATprove can be run at the different levels mentioned in this document, either through the Integrated Development
Environments (IDE) GNAT Studio, Visual Studio Code or Eclipse, or on the command line. Use of the command-line
interface at a given level is facilitated by convenient synonyms:

• use switch --mode=stone for Stone level (synonym of --mode=check_all)

• use switch --mode=bronze for Bronze level (synonym of --mode=flow)

• use switch --mode=silver for Silver level (synonym of --mode=all)

• use switch --mode=gold for Gold level (synonym of --mode=all)

Note that levels Silver and Gold are activated with the same switches. Indeed, the difference between these levels is
not on how GNATprove is run, but on the objectives of verification. This is explained in the section on Gold Level.
Platinum level is not given a separate switch value, as it would be the same.

Sections Stone Level to Platinum Level present the details of the five levels of software assurance. Each section consists
in a short description of three key aspects of adopting SPARK at that level:

• Benefits - What is gained from adopting SPARK?

• Impact on Process - How should the process (i.e., the software life cycle development and verification activities)
be adapted to use SPARK?

• Costs and Limitations - What are the main costs and limitations for adopting SPARK?

Additionally, the index of this document contains entries for all levels (from Stone level to Platinum level) which point
to parts of the User’s Guide relevant for reaching a specific level.

8.1.2 Stone Level - Valid SPARK
The goal of reaching this level is to identify as much code as possible as belonging to the SPARK subset. The user
is responsible for identifying candidate SPARK code by applying the marker SPARK_Mode to flag SPARK code to
GNATprove, which is responsible for checking that the code marked with SPARK_Mode is indeed valid SPARK code.
Note that valid SPARK code may still be incorrect in many ways, such as raising run-time exceptions. Being valid
merely means that the code respects the legality rules that define the SPARK subset in the SPARK Reference Man-
ual (see http://docs.adacore.com/spark2014-docs/html/lrm/). The number of lines of SPARK code in a program can
be computed (along with other metrics such as the total number of lines of code) by the metrics computation tool
GNATmetric.

Benefits

The stricter SPARK rules are enforced on a (hopefully) large part of the program, which leads to higher quality and
maintainability, as error-prone features such as side effects in regular functions are avoided, and others, such as pointers,
are restricted to avoid common mistakes. Individual and peer review processes can be reduced on the SPARK parts of
the program, since analysis automatically eliminates some categories of defects. The parts of the program that don’t
respect the SPARK rules are carefully isolated so they can be more thoroughly reviewed and tested.

Impact on Process

After the initial pass of applying the SPARK rules to the program, ongoing maintenance of SPARK code is similar
to ongoing maintenance of Ada code, with a few additional rules, such as the need to avoid side effects in functions.
These additional rules are checked automatically by running GNATprove on the modified program, which can be done
either by the developer before committing changes or by an automatic system (continuous builder, regression testsuite,
etc.)
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Costs and Limitations

Pointer-heavy code needs to be rewritten to follow the ownership policy or to hide pointers from SPARK analysis,
which may be difficult. The initial pass may require large, but shallow, rewrites in order to transform the code, for
example to annotate functions with side effects with aspect Side_Effects and move calls to such functions to the
right-hand side of assignments.

8.1.3 Bronze Level - Initialization and Correct Data Flow
The goal of reaching this level is to make sure that no uninitialized data can ever be read and, optionally, to prevent unin-
tended access to global variables. This also ensures no possible interference between parameters and global variables;
i.e., the same variable isn’t passed multiple times to a subprogram, either as a parameter or global variable. Finally, it
ensures that functions must return in the absence of run-time error.

Benefits

The SPARK code is guaranteed to be free from a number of defects: no reads of uninitialized variables, no possible
interference between parameters and global variables, no unintended access to global variables, no infinite loop or
recursion in functions.

When Global contracts are used to specify which global variables are read and/or written by subprograms, maintenance
is facilitated by a clear documentation of intent. This is checked automatically by GNATprove, so that any mismatch
between the implementation and the specification is reported.

Impact on Process

An initial pass is required where flow analysis is enabled and the resulting messages are resolved either by rewriting
code or justifying any false alarms. Once this is complete, ongoing maintenance can preserve the same guarantees at
a low cost. A few simple idioms can be used to avoid most false alarms, and the remaining false alarms can be easily
justified.

Costs and Limitations

The guarantees offered at Bronze level do not extend to subprograms with the annotation Skip_Flow_And_Proof,
which are only analyzed at Stone level. These guarantees also do not extend to code in the following constructs:

• branches ending in an error-signaling statement such as pragma Assert (False), which flow analysis treats
as dead code.

• exception handlers and any code that can be executed after catching an exception, which flow analysis could treat
as dead code if no callee has a corresponding exceptional contract.

Analysis by proof at Silver Level and above is required in these two cases.

The property that no uninitialized data can be read can only be guaranteed when the following SPARK feature is not
used, as its purpose is precisely to allow more complex initialization patterns that can only be analyzed by proof at
Silver Level and above:

• relaxed initialization of types and variables using aspect Relaxed_Initialization.

The property that functions must return in the absence of run-time errors can only be guaranteed when the following
SPARK features are not used, as their purpose is precisely to allow more complex termination conditions that can only
be analyzed by proof at Silver Level and above:

• specification of termination with aspect Always_Terminate with a non-static expression;

• specification of subprogram variants with aspect Subprogram_Variant;

• specification of loop variants with pragma Loop_Variant;

• specification of exceptional contracts with aspect Exceptional_Cases.
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The initial pass may require a substantial effort to deal with the false alarms, depending on the coding style adopted
up to that point. The analysis may take a long time, up to an hour on large programs, but it is guaranteed to terminate.
Flow analysis is, by construction, limited to local understanding of the code, with no knowledge of values (only code
paths) and handling of composite variables is only through calls, rather than component by component, which may lead
to false alarms.

8.1.4 Silver Level - Absence of Run-time Errors (AoRTE)
The goal of this level is to ensure that the program does not raise an unexpected exception at run time. Among other
things, this guarantees that the control flow of the program cannot be circumvented by exploiting a buffer overflow, or
integer overflow. This also ensures that the program cannot crash or behave erratically when compiled without support
for run-time checking (compiler switch -gnatp) because of operations that would have triggered a run-time exception.

GNATprove can be used to prove the complete absence of possible run-time errors corresponding to the explicit rais-
ing of unexpected exceptions in the program, raising the exception Constraint_Error at run time, and failures of
assertions (corresponding to raising exception Assertion_Error at run time).

A special kind of run-time error that can be proved at this level is the absence of exceptions from defensive code. This
requires users to add subprogram preconditions (see section Preconditions for details) that correspond to the conditions
checked in defensive code. For example, defensive code that checks the range of inputs is modeled by a precondition
of the form Input_X in Low_Bound .. High_Bound. These conditions are then checked by GNATprove at each
call.

Benefits

The SPARK code is guaranteed to be free from run-time errors (Absence of Run Time Errors - AoRTE) plus all the
defects already detected at Bronze level: no reads of uninitialized variables, no possible interference between param-
eters and/or global variables, no unintended access to global variables, and no infinite loop or recursion in functions.
These guarantees extend to code using features that require proof for ensuring correct initialization and termination,
as described in the limitations for Bronze Level. Thus, the quality of the program can be guaranteed to achieve higher
levels of integrity than would be possible in other programming languages.

All the messages about possible run-time errors can be carefully reviewed and justified (for example by relying on
external system constraints such as the maximum time between resets) and these justifications can be later reviewed as
part of quality inspections.

The proof of AoRTE can be used to compile the final executable without run-time exceptions (compiler switch -gnatp),
which results in very efficient code comparable to what can be achieved in C or assembly.

The proof of AoRTE can be used to comply with the objectives of certification standards in various domains (DO-
178B/C in avionics, EN 50128 in railway, IEC 61508 in many safety-related industries, ECSS-Q-ST-80C in space, IEC
60880 in nuclear, IEC 62304 in medical, ISO 26262 in automotive). To date, the use of SPARK has been qualified in
an EN 50128 context. Qualification plans for DO-178 have been developed by AdaCore. Qualification material in any
context can be developed by AdaCore as part of a contract.

Impact on Process

An initial pass is required where proof of AoRTE is applied to the program, and the resulting messages are resolved by
either rewriting code or justifying any false alarms. Once this is complete, as for the Bronze level, ongoing maintenance
can retain the same guarantees at reasonable cost. Using precise types and simple subprogram contracts (preconditions
and postconditions) is sufficient to avoid most false alarms, and any remaining false alarms can be easily justified.

Special treatment is required for loops, which may need the addition of loop invariants to prove AoRTE inside and after
the loop. See the relevant sections of the SPARK User’s Guide for a description of the detailed process for adding loop
contracts, as well as examples of common patterns of loops and their corresponding loop invariants.
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Costs and Limitations

The guarantees offered at Silver level and above do not extend to subprograms with the annotations
Skip_Flow_And_Proof or Skip_Proof, which are only analyzed at Stone or Bronze level respectively.

The initial pass may require a substantial effort to resolve all false alarms, depending on the coding style adopted
previously. The analysis may take a long time, up to a few hours, on large programs but is guaranteed to terminate.
Proof is, by construction, limited to local understanding of the code, which requires using sufficiently precise types
of variables, and some preconditions and postconditions on subprograms to communicate relevant properties to their
callers.

Even if a property is provable, automatic provers may nevertheless not be able to prove it, due to limitations of the
heuristic techniques used in automatic provers. In practice, these limitations mostly show up on non-linear integer
arithmetic (such as division and modulo) and floating-point arithmetic.

8.1.5 Gold Level - Proof of Key Integrity Properties
The goal of the Gold level is to ensure key integrity properties such as maintaining critical data invariants throughout
execution and guaranteeing that transitions between states follow a specified safety automaton. Typically these prop-
erties derive from software requirements. Together with the Silver level, these goals ensure program integrity, that is,
the program executes within safe boundaries: the control flow of the program is correctly programmed and cannot be
circumvented through run-time errors and data cannot be corrupted.

SPARK has a number of useful features for specifying both data invariants and control flow constraints:

• Type predicates reflect properties that should always be true of any object of the type.

• Preconditions reflect properties that should always hold on subprogram entry.

• Postconditions reflect properties that should always hold on subprogram exit.

These features can be verified statically by running GNATprove in proof mode, similarly to what was done at the
Silver level. At every point where a violation of the property may occur, GNATprove issues either an ‘info’ message,
verifying that the property always holds, or a ‘check’ message about a possible violation. Of course, a benefit of proving
properties is that they don’t need to be tested, which can be used to reduce or completely eliminate unit testing.

These features can also be used to augment integration testing with dynamic verification of key integrity properties. To
enable this additional verification during execution, you can use either the compilation switch -gnata (which enables
verification of all invariants and contracts at run time) or pragma Assertion_Policy (which enables a subset of
the verification) either inside the code (so that it applies to the code that follows in the current unit) or in a pragma
configuration file (so that it applies to the entire program).

Benefits

The SPARK code is guaranteed to respect key integrity properties as well as being free from all the defects already
detected at the Bronze and Silver levels: no reads of uninitialized variables, no possible interference between parameters
and global variables, no unintended access to global variables, no infinite loop or recursion in functions, and no run-
time errors. This is a unique feature of SPARK that is not found in other programming languages. In particular, such
guarantees may be used in a safety case to make reliability claims.

The effort in achieving this level of confidence based on proof is relatively low compared to the effort required to
achieve the same level based on testing. Indeed, confidence based on testing has to rely on an extensive testing strategy.
Certification standards define criteria for approaching comprehensive testing, such as Modified Condition / Decision
Coverage (MC/DC), which are expensive to achieve. Some certification standards allow the use of proof as a replace-
ment for certain forms of testing, in particular DO-178C in avionics, EN 50128 in railway and IEC 61508 for functional
safety. Obtaining proofs, as done in SPARK, can thus be used as a cost-effective alternative to unit testing.
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Impact on Process

In a high-DAL certification context where proof replaces testing and independence is required between certain de-
velopment/verification activities, one person can define the architecture and low-level requirements (package specs)
and another person can develop the corresponding bodies and use GNATprove for verification. Using a common syn-
tax/semantics – Ada 2012 contracts – for both the specs/requirements and the code facilitates communication between
the two activities and makes it easier for the same person(s) to play different roles at different times.

Depending on the complexity of the property being proven, it may be more or less costly to add the necessary contracts
on types and subprograms and to achieve complete automatic proof by interacting with the tool. This typically requires
some experience with the tool, which can be gained by training and practice. Thus not all developers should be tasked
with developing such contracts and proofs, but instead a few developers should be designated for this task.

As with the proof of AoRTE at Silver level, special treatment is required for loops, such as the addition of loop invariants
to prove properties inside and after the loop. Details are presented in the SPARK User’s Guide, together with examples
of loops and their corresponding loop invariants.

Costs and Limitations

The analysis may take a long time, up to a few hours, on large programs, but it is guaranteed to terminate. It may also
take more or less time depending on the proof strategy adopted (as indicated by the switches passed to GNATprove).
Proof is, by construction, limited to local understanding of the code, which requires using sufficiently precise types
of variables and some preconditions and postconditions on subprograms to communicate relevant properties to their
callers.

Even if a property is provable, automatic provers may fail to prove it due to limitations of the heuristic techniques they
employ. In practice, these limitations are mostly visible on non-linear integer arithmetic (such as division and modulo)
and on floating-point arithmetic.

Some properties might not be easily expressible in the form of data invariants and subprogram contracts, for example
properties of execution traces or temporal properties. Other properties may require the use of non-intrusive instrumen-
tation in the form of ghost code.

8.1.6 Platinum Level - Full Functional Correctness
Platinum level is achieved when contracts fully cover the functional requirements. Achieving the Platinum level is rare
in itself, and usually done for small parts of an application.

Benefits

The SPARK code is guaranteed to correctly implement its specification, including being free from all the defects already
detected at the Bronze, Silver and Gold levels. These strong guarantees can be used as arguments in a safety/security
case for the overall software system, providing steps are taken for Managing Assumptions.

Impact on Process

The impact on process is mostly the same as for Gold level. When manual proof is used, which is very likely at this
level, there is an associated activity to maintain these proofs as the code evolves. Typically a dedicated verification
engineer with enough experience of formal program verification in SPARK should be tasked with this activity.

Costs and Limitations

These are the same as for Gold level, plus the cost of applying manual proof more systematically. Depending on the
manual proof technique used and the complexity of the proof, this might be more or less costly initially and during
maintenance:

• Manual Proof Using SPARK Lemma Library is the least costly of all, only requiring to use the right lemma from
the library.
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• Manual Proof Using Ghost Code is more costly, as it requires expertise and interactions with the tool to guide
automatic provers.

• Manual Proof Using Coq is the most costly, as it require expertise in interactive proof as well as knowledge of
the syntax of the Coq interactive prover.

While the use of manual proof allows to prove any provable property in principle, a balance needs to be found between
the higher cost of manual proof techniques and the benefits they bring compared to testing or manual justification.

8.2 Objectives of Using SPARK

8.2.1 Safe Coding Standard for Critical Software
SPARK is a subset of Ada meant for formal verification, by excluding features that are difficult or impossible to analyze
automatically. This means that SPARK can also be used as a coding standard to restrict the set of features used in critical
software. As a safe coding standard checker, SPARK allows both to prevent the introduction of errors by excluding
unsafe Ada features, and it facilitates their early detection with GNATprove’s flow analysis.

Exclusion of Unsafe Ada Features

Once the simple task of Identifying SPARK Code has been completed, one can use GNATprove in check mode to
verify that SPARK restrictions are respected in SPARK code. Here we list some of the most error-prone Ada features
that are excluded from SPARK (see Excluded Ada Features for the complete list).

• All expressions, including function calls, are free of side-effects. Expressions with side-effects are problematic
because they hide interactions that occur in the code, in the sense that a computation will not only produce a
value but also modify some hidden state in the program. In the worst case, they may even introduce interferences
between subexpressions of a common expression, which results in different executions depending on the order
of evaluation of subexpressions chosen by the compiler.

• The use of access types and allocators is restricted to pool specific access types and subject to an ownership
policy ensuring that a mutable memory cell has a single owner. In general, pointers can introduce aliasing, that
is, they can allow the same object to be visible through different names at the same program point. This makes
it difficult to reason about a program as modifying the object under one of the names will also modify the other
names. What is more, access types come with their own load of common mistakes, like double frees and dangling
pointers.

• SPARK also prevents dependencies on the elaboration order by ensuring that no package can write into variables
declared in other packages during its elaboration. The use of controlled types is also forbidden as they lead to
insertions of implicit calls by the compiler. Finally, backward goto statements are not permitted as they obfuscate
the control flow.

Early Detection of Errors

GNATprove’s flow analysis will find all the occurrences of the following errors:

• uses of uninitialized variables (see Data Initialization Policy)

• aliasing of parameters that can cause interferences, which are often not accounted for by programmers (see
Absence of Interferences)

It will also warn systematically about the following suspicious behaviors:

• wrong parameter modes (can hurt readability and maintainability or even be the sign of a bug, for example if the
programmer forgot to update a parameter, to read the value of an out parameter, or to use the initial value of a
parameter)

• unused variables or statements (again, can hurt readability and maintainability or even be the sign of a bug)
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8.2.2 Prove Absence of Run-Time Errors (AoRTE)
With Proof Only

GNATprove can be used to prove the complete absence of possible run-time errors corresponding to:

• all possible explicit raising of unexpected exceptions in the program,

• raising exception Constraint_Error at run time, and

• all possible failures of assertions corresponding to raising exception Assert_Error at run time.

AoRTE is important for ensuring safety in all possible operational conditions for safety-critical software (including
boundary conditions, or abnormal conditions) or for ensuring availability of a service (absence of DOS attack that can
crash the software).

When run-time checks are enabled during execution, Ada programs are not vulnerable to the kind of attacks like buffer
overflows that plague programs in C and C++, which allow attackers to gain control over the system. But in the case
where run-time checks are disabled (in general for efficiency, but it could be for other reasons), proving their absence
with GNATprove also prevents such attacks. This is specially important for ensuring security when some inputs may
have been crafted by an attacker.

Few subprogram contracts (Preconditions and Postconditions) are needed in general to prove AoRTE, far fewer than
for proving functional properties. Even fewer subprogram contracts are needed if types are suitably constrained with
Type Contracts. Typically, 95% to 98% of run-time checks can be proved automatically, and the remaining checks can
be either verified with manual provers or justified by manual analysis.

GNATprove supports this type of combination of results in the summary table of The Analysis Results Summary File.
Multiple columns display the number of checks automatically verified, while the column Justified displays the number
of checks manually justified. The column Unproved should be empty for all checks to be verified.

With a Combination of Proof and Test

It is not always possible to achieve 100% proof of AoRTE, for multiple reasons:

1. Formal verification is only applicable to the part of the program that is in SPARK. If the program includes parts
in Ada that are not in SPARK, for example, then it is not possible to prove AoRTE on those parts.

2. Some run-time checks may not be proved automatically due to prover shortcomings (see Investigating Prover
Shortcomings for details).

3. Storage_Error exceptions are not covered by SPARK analysis.

4. It may not be cost-effective to add the required contracts for proving AoRTE in a less critical part of the code,
compared to using testing as a means of verification.

For all these reasons, it is important to be able to combine the results of formal verification and testing on different
parts of a codebase. Formal verification works by making some assumptions, and these assumptions should be shown to
hold even when formal verification and testing are combined. Certainly, formal verification cannot guarantee the same
properties when part of a program is only tested, as when all of a program is proved. The goal then, when combining
formal verification and testing, is to reach a level of confidence as good as the level reached by testing alone.

At the Level of Individual Run-Time Checks

One way to get confidence that unproved run-time checks cannot fail during execution is to exercise them during
testing. Test coverage information allows guaranteeing a set of run-time checks have been executed successfully during
a test run. This coverage information may be gathered from the execution of a unit testing campaign, an integration
testing campaign, or the execution of a dedicated testsuite focussing on exercising the run-time checks (for example on
boundary values or random ones).

This strategy is already applied in other static analysis tools, for example in the integration between the CodePeer static
analyzer and the VectorCAST testing tool for Ada programs.
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Between Proof and Integration Testing

Contracts can also be exercised dynamically during integration testing. In cases where unit testing is not required
(either because proof has been applied to all subprograms, or because the verification context allows it), exercising
contracts during integration testing can complement proof results, by giving the assurance that the actual compiled
program behaves as expected.

This strategy has been applied at Capgemini Engineering on UK military projects submitted to Def Stan 00-56 certifi-
cation: AoRTE was proved on all the code, and contracts were exercised during integration testing, which allowed to
scrap unit testing.

Between Proof and Unit Testing

Contracts on subprograms provide a natural boundary for combining proof and test:

• If proof is used to demonstrate that a subprogram is free of run-time errors and respects its contract, this proof
depends on these properties being respected at the call site:

– the precondition of the subprogram;

– all inputs (including global variables) of the subprogram contain valid data for their types;

– the Anti-Aliasing rules in SPARK RM 6.4.2 are respected.

This verification can be achieved by proving the caller too, or, in the case of the precondition, by checking it
dynamically during unit testing of the caller.

• If proof is used to demonstrate that a subprogram is free of run-time errors and respects its contract, and this
subprogram calls other subprograms, this proof depends on the postconditions of the called subprogram being
respected at call sites. This verification can be achieved by proving the callees too, or by checking dynamically
the postcondition of the called subprograms during their unit testing.

Thus, it is possible to combine freely subprograms that are proved and subprograms that are unit tested, provided
subprogram contracts (Preconditions and Postconditions) are exercised during unit testing. This can be achieved by
compiling the program with assertions for testing (for example with switch -gnata in GNAT), or by using GNATtest
to create the test harness (see section 7.10.12 of GNAT User’s Guide on Testing with Contracts).

When combining proof and test on individual subprograms, one should make sure that the assumptions made for
proof are justified at the boundary between proved subprograms and tested subprograms (see section on Managing
Assumptions). To help with this verification, special switches are defined in GNAT to add run-time checks that verify
dynamically the assumptions made during proof:

• -gnateA adds checks that parameters are not aliased

• -gnateV adds checks that parameters are valid, including parameters of composite types (arrays, records)

• -gnatVa adds checks that objects are valid at more places than -gnateV, but only for scalar objects

This strategy is particularly well suited in the context of the DO-178C certification standard in avionics, which explicitly
allows proof or test to be used as verification means on each module.

8.2.3 Prove Correct Integration Between Components
Correct Integration In New Developments

GNATprove can be used to prove correct integration between components, where a component could be a subprogram, a
unit or a set of units. Indeed, even if components are verified individually (for example by proof or test or a combination
thereof), their combination may still fail because of unforeseen interactions or design problems.

SPARK is ideally equipped to support such analysis, with its detailed Subprogram Contracts:

370 Chapter 8. Applying SPARK in Practice



SPARK User’s Guide, Release 15.0

• With Data Dependencies, a user can specify exactly the input and output data of a subprogram, which goes a
long way towards uncovering unforeseen interactions.

• With functional contracts (Preconditions and Postconditions), a user can specify precisely properties about the
behavior of the subprogram that are relevant for component integration. In general, simple contracts are needed
for component integration, which means that they are easy to write and to verify automatically. See section on
Writing Contracts for Program Integrity for examples of such contracts.

When using data dependencies, GNATprove’s flow analysis is sufficient to check correct integration between compo-
nents. When using functional contracts, GNATprove’s proof should also be applied.

In Replacement of Comments

It is good practice to specify properties of a subprogram that are important for integration in the comments that are
attached to the subprogram declaration.

Comments can be advantageously replaced by contracts:

• Comments about the domain of the subprogram can be replaced by Preconditions.

• Comments about the effects of the subprogram can be replaced by Postconditions and Data Dependencies.

• Comments about the result of functions can be replaced by Postconditions.

• GNATprove can use the contracts to prove correct integration between components, as in new developments.

Contracts are less ambiguous than comments, and can be accompanied by (or interspersed with) higher level comments
that need not be focused on the finer grain details of which variables must have which values, as these are already
specified concisely and precisely in the contracts.

In Replacement of Defensive Coding

In existing Ada code that is migrated to SPARK, defensive coding is typically used to verify the correct integration
between components: checks are made at the start of a subprogram that inputs (parameters and global variables) satisfy
expected properties, and an exception is raised or the program halted if an unexpected situation is found.

Defensive code can be advantageously replaced by preconditions:

• The dynamic checks performed by defensive code at run time can be performed equally by preconditions, and
they can be enabled at a much finer grain thanks to Pragma Assertion_Policy.

• GNATprove can use the preconditions to prove correct integration between components, as in new developments.

8.2.4 Prove Functional Correctness
Functional Correctness In New Developments

GNATprove can be used to prove functional correctness of an implementation against its specification. This strongest
level of verification can be applied either to specific subprograms, or specific units, or the complete program. For those
subprograms whose functional correctness is to be checked, the user should:

1. express the specification of the subprogram as a subprogram contract (see Preconditions and Postconditions);

2. use GNATprove to prove automatically that most checks (including contracts) always hold; and

3. address the remaining unproved checks with manual justifications or testing, as already discussed in the section
on how to Prove Absence of Run-Time Errors (AoRTE).

As more complex contracts are required in general, it is expected that achieving that strongest level of verification is
also more costly than proving absence of run-time errors. Typically, SPARK features like Quantified Expressions and
Expression Functions are needed to express the specification, and features like Loop Invariants are needed to achieve
automatic proof. See section on Writing Contracts for Functional Correctness for examples of such contracts, and
section on How to Write Loop Invariants for examples of the required loop invariants.
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When the functional specification is expressed as a set of disjoint cases, the SPARK feature of Contract Cases can be
used to increase readability and to provide an automatic means to verify that cases indeed define a partitioning of the
possible operational contexts.

In Replacement of Unit Testing

In existing Ada code that is migrated to SPARK, unit testing is typically used to verify functional correctness: actual
outputs obtained when calling the subprogram are compared to expected outputs for given inputs. A test case defines
an expected behavior to verify; a test procedure implements a test case with specific given inputs and expected outputs.

Test cases can be used as a basis for functional contracts, as they define in general a behavior for a set of similar inputs.
Thus, a set of test cases can be transformed into Contract Cases, where each case corresponds to a test case: the test
input constraint becomes the guard of the corresponding case, while the test output constraint becomes the consequence
of the corresponding case.

GNATprove can be used to prove this initial functional contract, as in new developments. Then, cases can be progres-
sively generalized (by relaxing the conditions in the guards), or new cases added to the contract, until the full functional
behavior of the subprogram is specified and proved.

8.2.5 Ensure Correct Behavior of Parameterized Software
In some domains (railway, space), it is common to develop software which depends on parameterization data, which
changes from mission to mission. For example, the layout of railroads or the characteristics of the payload for a space-
craft are mission specific, but in general do not require developing completely new software for the mission. Instead,
the software may either depend on data definition units which are subject to changes between missions, or the software
may load at starting time (possibly during elaboration in Ada) the data which defines the characteristics of the mission.
Then, the issue is that a verification performed on a specific version of the software (for a given parameterization) is
not necessarily valid for all versions of the software. In general, this means that verification has to be performed again
for each new version of the software, which can be costly.

SPARK provides a better solution to ensure correct behavior of the software for all possible parameterizations. It
requires defining a getter function for every variable or constant in the program that represents an element of param-
eterization, and calling this getter function instead of reading the variable or constant directly. Because GNATprove
performs an analysis based on contracts, all that is known at analysis time about the value returned by a getter function
is what is available from its signature and contract. Typically, one may want to use Scalar Ranges or Predicates to
constrain the return subtype of such getter functions, to reflect the operational constraints respected by all parameteri-
zations.

This technique ensures that the results of applying GNATprove are valid not only for the version of the software ana-
lyzed, but for any other version that satisfies the same operational constraints. This is valid whatever the objective(s)
pursued with the use of SPARK: Prove Absence of Run-Time Errors (AoRTE), Prove Correct Integration Between
Components, Prove Functional Correctness, etc.

It may be the case that changing constants into functions makes the code illegal because the constants were used in
representation clauses that require static values. In that case, compilation switch -gnatI should be specified when
analyzing the modified code with GNATprove, so that representation clauses are ignored. As representation clauses
have no effect on GNATprove’s analysis, and their validity is checked by GNAT when compiling the original code, the
formal verification results are valid for the original code.

For constants of a non-scalar type (for example, constants of record or array type), an alternative way to obtain a similar
result as the getter function is to define the constant as a deferred constant, whose initial declaration in the visible part
of a package spec does not specify the value of the constant. Then, the private part of the package spec which defines
the completion of the deferred constant must be marked SPARK_Mode => Off, so that clients of the package only see
the visible constant declaration without value. In such a case, the analysis of client units with GNATprove is valid for
all possible values of the constant.
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8.2.6 Safe Optimization of Run-Time Checks
Enabling run-time checks in a program usually increases the running time by around 10%. This may not fit the timing
schedule in some highly constrained applications. In some cases where a piece of code is called a large number of
times (for example in a loop), enabling run-time checks on that piece of code may increase the running time by far
more than 10%. Thus, it may be tempting to remove run-time checking in the complete program (with compilation
switch -gnatp) or a selected piece of code (with pragma Suppress), for the purpose of decreasing running time. The
problem with that approach is that the program is not protected anymore against programming mistakes (for safety) or
attackers (for security).

GNATprove provides a better solution, by allowing users to prove the absence of all run-time errors (or run-time errors
of a specific kind, for example overflow checks) in a piece of code, provided the assumptions on which their proof
relies are respected. This includes in particular the fact that the precondition of the enclosing subprogram is respected.
Then, all run-time checks (or run-time errors of a specific kind) can be suppressed in that piece of code using pragma
Suppress, knowing that they will never fail at run time, provided the corresponding assumptions are checked. For
example, this can be done for the precondition of the enclosing subprogram by using Pragma Assertion_Policy. For
more details, see Choosing Which Run-time Checking to Keep. By replacing many checks with a few checks, we can
decrease the running time of the application by doing safe and controlled optimization of run-time checks.

8.2.7 Address Data and Control Coupling
As defined in the avionics standard DO-178, data coupling is “The dependence of a software component on data not
exclusively under the control of that software component” and control coupling is “The manner or degree by which
one software component influences the execution of another software component”, where a software component could
be a subprogram, a unit or a set of units.

Although analysis of data and control coupling are not performed at the same level of details in non-critical domains,
knowledge of data and control coupling is important to assess impact of code changes. In particular, it may be critical
for security that some secret data does not leak publicly, which can be rephrased as saying that only the specified data
dependencies are allowed. SPARK is ideally equipped to support such analysis, with its detailed Subprogram Contracts:

• With Data Dependencies, a user can specify exactly the input and output data of a subprogram, which identifies
the “data not exclusively under the control of that software component”:

– When taking the subprogram as component, any variable in the data dependencies is in general not exclu-
sively under the control of that software component.

– When taking the unit (or sets of units) as component, any variable in the data dependencies that is not
defined in the unit itself (or the set of units) is in general not exclusively under the control of that software
component.

• With Flow Dependencies, a user can specify the nature of the “dependence of a software component on data not
exclusively under the control of that software component”, by identifying how that data may influence specific
outputs of a subprogram.

• With Flow Dependencies, a user can also specify how “one software component influences the execution of
another software component”, by identifying the shared data potentially written by the subprogram.

• With functional contracts (Preconditions and Postconditions), a user can specify very precisely the behavior
of the subprogram, which defines how it “influences the execution of another software component”. These
contracts need not be complete, for example they could describe the precedence order rules for calling various
subprograms.

When using data and flow dependencies, GNATprove’s flow analysis is sufficient to check that the program implements
its specifications. When using functional contracts, GNATprove’s proof should also be applied.
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8.2.8 Ensure Portability of Programs
Using SPARK enhances portability of programs by excluding language features that are known to cause portability
problems, and by making it possible to obtain guarantees that specific portability problems cannot occur. In partic-
ular, analyses of SPARK code can prove the absence of run-time errors in the program, and that specified functional
properties always hold.

Still, porting a SPARK program written for a given compiler and target to another compiler and/or target may require
changes in the program. As SPARK is a subset of Ada, and because in general only some parts of a complete program
are in SPARK, we need to consider first the issue of portability in the context of Ada, and then specialize it in the
context of SPARK.

Note that we consider here portability in its strictest sense, whereby a program is portable if its observable behavior
is exactly the same across a change of compiler and/or target. In the more common sense of the word, a program is
portable if it can be reused without modification on a different target, or when changing compiler. That is consistent
with the definition of portability in WikiPedia: “Portability in high-level computer programming is the usability of the
same software in different environments”. As an example of a difference between both interpretations, many algorithms
which use trigonometry are portable in the more common sense, not in the strictest sense.

Portability of Ada Programs

Programs with errors cause additional portability issues not seen in programs without errors, which is why we consider
them separately.

Portability of Programs Without Errors

The Ada Reference Manual defines precisely which features of the language depend on choices made by the compiler
(see Ada RM 1.1.3 “Conformity of an Implementation with the Standard”):

• Implementation defined behavior - The set of possible behaviors is specified in the language, and the particular
behavior chosen in a compiler should be documented. An example of implementation defined behavior is the
size of predefined integer types (like Integer). All implementation defined behaviors are listed in Ada RM
M.2, and GNAT documents its implementation for each of these points in section 7 “Implementation Defined
Characteristics” of the GNAT Reference Manual.

• Unspecified behavior - The set of possible behaviors is specified in the language, but the particular behavior
chosen in a compiler need not be documented. An example of unspecified behavior is the order of evaluation of
arguments in a subprogram call.

Changes of compiler and/or target may lead to different implementation defined and unspecified behavior, which may
or not have a visible effect. For example, changing the order of evaluation of arguments in a subprogram call only has
a visible effect if the evaluation of arguments itself has some side-effects.

Section 18.4 “Implementation-dependent characteristics” of the GNAT Reference Manual gives some advice on how
to address implementation defined behavior for portability.

A particular issue is that the Ada Reference Manual gives much implementation freedom to the compiler in the imple-
mentation of operations of fixed-point and floating-point types:

• The small of a fixed-point type is implementation defined (Ada RM 3.5.9(8/2)) unless specified explicitly.

• The base type of a fixed-point type is implementation defined (Ada RM 3.5.9(12-16)), which has an impact on
possible overflows.

• The rounded result of an ordinary fixed-point multiplication or division is implementation defined (Ada RM
G.2.3(10)).

• For some combinations of types of operands and results for fixed-point multiplication and division, the value of
the result belongs to an implementation defined set of values (Ada RM G.2.3(5)).
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• The semantics of operations on floating-point types is implementation defined (Ada RM G.2). It may or may not
follow the IEEE 754 floating point standard.

• The precision of elementary functions (exponential and trigonometric functions) is implementation defined (Ada
RM G.2.4).

Section 18.1 “Writing Portable Fixed-Point Declarations” of the GNAT Reference Manual gives some advice on how
to reduce implementation defined behavior for fixed-point types. Use of IEEE 754 floating-point arithmetic can be en-
forced in GNAT by using the compilation switches “-msse2 -mfpmath=sse”, as documented in section 6.3.1.6 “Floating
Point Operations” of the GNAT User’s Guide.

Note that a number of restrictions can be used to prevent some features leading to implementation defined or unspecified
behavior:

• Restriction No_Fixed_Point forbids the use of fixed-point types.

• Restriction No_Floating_Point forbids the use of floating-point types.

• Restriction No_Implementation_Aspect_Specifications forbids the use of implementation defined as-
pects.

• Restriction No_Implementation_Attributes forbids the use of implementation defined attributes.

• Restriction No_Implementation_Pragmas forbids the use of implementation defined pragmas.

Note

SPARK defines a few constructs (aspects, pragmas and attributes) that are not defined in Ada. While GNAT supports
these constructs, care should be exercised to use these constructs with other compilers, or older versions of GNAT.
This issue is detailed in section Portability Issues.

Portability of Programs With Errors

In addition to the portability issues discussed so far, programs with errors cause specific portability issues related to
whether errors are detected and how they are reported. The Ada Reference Manual distinguishes between four types
of errors (see Ada RM 1.1.5 “Classification of Errors”):

• Compile-time errors - These errors make a program illegal, and should be detected by any Ada compiler. They
do not cause any portability issue, as they must be fixed before compilation.

• Run-time errors - These errors are signaled by raising an exception at run time. They might be a cause of
portability problems, as a change of compiler and/or target may lead to new run-time errors. For example, a new
compiler may cause the program to use more stack space, leading to an exception Storage_Error, and a new
target may change the size of standard integer types, leading to an exception Constraint_Error.

• Bounded errors - These errors need not be detected either at compiler time or at run time, but their effects should
be bounded. For example, reading an uninitialized value may result in any value of the type to be used, or to
Program_Error being raised. Like for run-time errors, they might be a cause of portability problems, as a
change of compiler and/or target may lead to new bounded errors.

• Erroneous execution - For the remaining errors, a program exhibits erroneous execution, which means that the
error need not be detected, and its effects are not bounded by the language rules. These errors might be a cause
of portability problems.

Portability issues may arise in a number of cases related to errors:

• The original program has an error that is not detected (a run-time error, bounded error or erroneous execution).
Changing the compiler and/or target causes the error to be detected (an exception is raised) or to trigger a different
behavior. Typically, reads of uninitialized data or illegal accesses to memory that are not detected in the original
program may result in errors when changing the compiler and/or the target.
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• The original program has no error, but changing the compiler and/or target causes an error to appear, which
may or not be detected. Typically, uses of low-level constructs like Unchecked_Conversion which depend
on the exact representation of values in bits may lead to errors when changing the compiler and/or the target.
Some run-time errors like overflow errors or storage errors are also particularly sensitive to compiler and target
changes.

To avoid portability issues, errors should be avoided by using suitable analyses and reviews in the context of the original
and the new compiler and/or target. Whenever possible, these analyses and reviews should be automated by tools to
guarantee that all possible errors of a given kind have been reported.

Benefits of Using SPARK for Portability

The Language Restrictions in SPARK favor portability by excluding problematic language features (see Excluded Ada
Features):

• By excluding side-effects in expressions, SPARK programs cannot suffer from effects occurring in different
orders depending on the order of evaluation of expressions chosen by the compiler.

• By excluding aliasing, the behavior of SPARK programs does not depend on the parameter passing mechanism
(by copy or by reference) or the order of assignment to out and in-out parameters passed by copy after the call,
which are both chosen by the compiler.

• By excluding controlled types, SPARK programs cannot suffer from the presence and ordering of effects taking
place as part of the initialization, assignment and finalization of controlled objects, which depend on choices
made by the compiler.

As permitted by the SPARK language rules (see section 1.4.1 “Further Details on Formal Verification” of the SPARK
Reference Manual), GNATprove rejects with an error programs which may implicitly raise a Program_Error in parts
of code that are in SPARK. For example, all static execution paths in a SPARK function should end with a return
statement, a raise statement, or a pragma Assert (False). GNATprove’s analysis can be further used to ensure that
dynamic executions can only end in a return.

GNATprove reduces portability issues related to the use of fixed-point and floating-point values:

• GNATprove supports a subset of fixed-point types and operations that ensures that the result of an operation
always belongs to the perfect result set as defined in Ada RM G.2.3. Note that the perfect result set still contains
in general two values (the two model fixed-point values above and below the perfect mathematical result), which
means that two compilers may give two different results for multiplication and division. Users should thus avoid
multiplication and division of fixed-point values for maximal portability. See GNATprove Limitations.

• GNATprove assumes IEEE 754 standard semantics for basic operations of floating-point types (addition, sub-
traction, multiplication, division). With GNAT, this is achieved by using compilation switches “-msse2 -
mfpmath=sse”. Users should still avoid elementary functions (exponential and trigonometric functions) for
maximal portability. See Semantics of Floating Point Operations.

Additionally, GNATprove can detect all occurrences of specific portability issues in SPARK code (that is, parts of the
program for which SPARK_Mode=On is specified, see section on Identifying SPARK Code) when run in specific modes
(see Effect of Mode on Output for a description of the different modes):

• In all modes (including mode check), when switch --pedantic is set, GNATprove issues a warning for every
arithmetic operation which could be re-ordered by the compiler, thus leading to a possible overflow with one
compiler and not another. For example, arithmetic operation A + B + C can be interpreted as (A + B) + C
by one compiler, and A + (B + C) (after re-ordering) by another compiler. Note that GNAT always uses the
former version without re-ordering. See Parenthesized Arithmetic Operations.

• In modes flow, prove and all, GNATprove issues high check messages on possible parameter aliasing, when
such an aliasing may lead to interferences. This includes all cases where the choice of parameter passing mech-
anism in a compiler (by copy or by reference) might influence the behavior of the subprogram. See Absence of
Interferences.

376 Chapter 8. Applying SPARK in Practice



SPARK User’s Guide, Release 15.0

• In modes flow, prove and all, GNATprove issues check messages on possible reads of uninitialized data.
These messages should be reviewed with respect to the stricter Data Initialization Policy in SPARK rather than
in Ada. Hence, it is possible when the program does not conform to the stricter SPARK rules to manually validate
them, see section Justifying Check Messages.

• In modes prove and all, GNATprove issues check messages on all possible run-time errors corresponding to
raising exception Constraint_Error at run time, all possible failures of assertions corresponding to raising
exception Assert_Error at run time, and all possible explicit raising of unexpected exceptions in the program.

The analysis of GNATprove can take into account characteristics of the target (size and alignment of standard scalar
types, endianness) by specifying a Target Parameterization.

How to Use SPARK for Portability

GNATprove’s analysis may be used to enhance the portability of programs. Note that the guarantees provided by this
analysis only hold for the source program. To ensure that these guarantees extend to the executable object code, one
should independently provide assurance that the object code correctly implements the semantics of the source code.

Avoiding Non-Portable Features

As much as possible, uses of non-portable language features should be avoided, or at least isolated in specific parts of
the program to facilitate analyses and reviews when changing the compiler and/or the target.

This includes in particular language features that deal with machine addresses, data representations, interfacing with
assembler code, and similar issues (for example, language attribute Size). When changing the compiler and/or the
target, the program logic should be carefully reviewed for possible dependences on the original compiler behavior
and/or original target characteristics. See also the section 18.4.5 “Target-specific aspects” of the GNAT Reference
Manual.

In particular, features that bypass the type system of Ada for reinterpreting values (Unchecked_Conversion) and
memory locations (Address clause overlays, in which multiple objects are defined to share the same address, something
that can also be achieved by sharing the same Link_Name or External_Name) have no impact on SPARK analysis,
yet they may lead to portability issues.

By using the following restrictions (or a subset thereof), one can ensure that the corresponding non-portable features
are not used in the program:

pragma No_Dependence (Ada.Unchecked_Conversion);
pragma No_Dependence (System.Machine_code);

Similarly, the program logic should be carefully reviewed for possible dependency on target characteristics (for example,
the size of standard integer types). GNATprove’s analysis may help here as it can take into account the characteristics
of the target. Hence, proofs of functional properties with GNATprove ensure that these properties will always hold on
the target.

In the specific case that the target is changing, it might be useful to run GNATprove’s analysis on the program in proof
mode, even if it cannot prove completely the absence of run-time errors and that the specified functional properties (if
any) hold. Indeed, by running GNATprove twice, once with the original target and once with the new target, comparing
the results obtained in both cases might point to parts of the code that are impacted by the change of target, which may
require more detailed manual reviews.

Apart from non-portable language features and target characteristics, non-portability in SPARK may come from a small
list of causes:

• Possible re-ordering of non-parenthesized arithmetic operations. These can be detected by running GNATprove
(see Benefits of Using SPARK for Portability). Then, either these operations may not be re-ordered by the com-
piler (for example, GNAT ensures this property), or re-ordering may not lead to an intermediate overflow (for
example, if the base type is large enough), or the user may introduce parentheses to prevent re-ordering.
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• Possible aliasing between parameters (or parameters and global variables) of a call causing interferences. These
can be detected by running GNATprove (see Benefits of Using SPARK for Portability). Then, either aliasing is not
possible in reality, or aliasing may not cause different behaviors depending on the parameter passing mechanism
chosen in the compiler, or the user may change the code to avoid aliasing. When SPARK subprograms are called
from non-SPARK code (for example Ada or C code), manual reviews should be performed to ensure that these
calls cannot introduce aliasing between parameters, or between parameters and global variables.

• Possible different choices of base type for user-defined integer types (contrary to derived types or subtypes, which
inherit their base type from their parent type). GNATprove follows GNAT in choosing as base type the smallest
multiple-words-size integer type that contains the type bounds (see Base Type of User-Defined Integer Types for
more information).

• Issues related to errors. See section Avoiding Errors to Enhance Portability.

• Issues related to the use of fixed-point or floating-point operations. See section Portability of Fixed-Point and
Floating-Point Computations below.

Avoiding Errors to Enhance Portability

Because errors in a program make portability particularly challenging (see Portability of Programs With Errors), it is
important to ensure that a program is error-free for portability. GNATprove’s analysis can help by ensuring that the
SPARK parts of a program are free from broad kinds of errors:

• all possible reads of uninitialized data

• all possible explicit raise of unexpected exceptions in the program

• all possible run-time errors except raising exception Storage_Error, corresponding to raising exception
Program_Error, Constraint_Error or Tasking_Error at run time

• all possible failures of assertions corresponding to raising exception Assert_Error at run time

When parts of the program are not in SPARK (for example, in Ada or C), the results of GNATprove’s analysis depend on
assumptions on the correct behavior of the non-SPARK code. For example, callers of a SPARK subprogram should only
pass initialized input values, and non-SPARK subprograms called from SPARK code should respect their postcondition.
See section Managing Assumptions for more details on assumptions.

In particular, when changing the target characteristics, GNATprove’s analysis can be used to show that no possible
overflow can occur as a result of changing the size of standard integer types.

GNATprove’s analysis does not detect possible run-time errors corresponding to raising exception Storage_Error at
run time, which should be independently assessed.

Portability of Fixed-Point and Floating-Point Computations

Portability issues related to the use of fixed-point or floating-point operations can be avoided altogether by ensuring
that the program does not use fixed-point or floating-point values, using:

pragma Restrictions (No_Fixed_Point);
pragma Restrictions (No_Floating_Point);

When fixed-point values are used, the value of the small and size in bits for the type should be specified explicitly, as
documented in section 18.1 “Writing Portable Fixed-Point Declarations” of the GNAT Reference Manual:

My_Small : constant := 2.0**(-15);
My_First : constant := -1.0;
My_Last : constant := +1.0 - My_Small;

type F2 is delta My_Small range My_First .. My_Last;
(continues on next page)
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(continued from previous page)

for F2'Small use my_Small;
for F2'Size use 16;

The program should also avoid multiplication and division of fixed-point values to ensure that the result of arithmetic
operations is exactly defined.

When floating-point values are used, use of IEEE 754 standard semantics for basic operations of floating-point types
(addition, subtraction, multiplication, division) should be enforced. With GNAT, this is achieved by using compilation
switches “-msse2 -mfpmath=sse”.

The program should also avoid elementary functions (exponential and trigonometric functions), which can be ensured
with a restriction:

pragma No_Dependence (Ada.Numerics);

If elementary functions are used, subject to reviews for ensuring portability, GNATprove’s proof results may depend
on the fact that elementary functions can be modeled as mathematical functions of their inputs that always return the
same result when taking the same values in arguments. GNAT compiler was modified to ensure this property (see
https://blog.adacore.com/how-our-compiler-learnt-from-our-analyzers), which may not hold for other Ada compilers.

8.3 Project Scenarios
The workflow for using SPARK depends not only on the chosen Objectives of Using SPARK , but also on the context in
which SPARK is used: Is it for a new development? Or an evolution of an existing codebase? Is the existing codebase
in Ada or in a version of SPARK prior to SPARK 2014? We examine all these project scenarios in this section.

8.3.1 Maintenance and Evolution of Existing Ada Software
Although SPARK is a large subset of Ada, it contains a number of Language Restrictions which prevent in general
direct application of GNATprove to an existing Ada codebase without any modifications. The suggested workflow is
to:

1. Identify violations of SPARK restrictions.

2. For each violation, either rewrite the code in SPARK or mark it SPARK_Mode => Off (see section on Identifying
SPARK Code).

3. Perform the required analyses to achieve the desired objectives (see section on Formal Verification with GNAT-
prove), a process which likely involved writing contracts (see in particular section on How to Write Subprogram
Contracts).

4. Make sure that the assumptions made for formal verification are justified at the boundary between SPARK and
full Ada code (see section on Managing Assumptions).

Identifying Violations of SPARK Restrictions

A simple way to identify violations of SPARK restrictions is by Setting the Default SPARK_Mode to SPARK_Mode
=> On, and then running GNATprove either in check mode (to report basic violations) or in flow mode (to report
violations whose detection requires flow analysis).

If only a subset of the project files should be analyzed, one should create a project file for Specifying Files To Analyze
or Excluding Files From Analysis.

Finally, one may prefer to work her way through the project one unit at a time by Using SPARK_Mode in Code, and
running GNATprove on the current unit only.

8.3. Project Scenarios 379

https://blog.adacore.com/how-our-compiler-learnt-from-our-analyzers


SPARK User’s Guide, Release 15.0

Rewriting the Code in SPARK

Depending on the violation, it may be more or less easy to rewrite the code in SPARK:

• Unsupported types should in general be rewritten as private types of a package whose public part is marked
SPARK_Mode => On and whose private part is marked SPARK_Mode => Off. Thus, the body of that package
cannot be analyzed by GNATprove, but clients of the package can be analyzed.

• Functions with side-effects should be rewritten as procedures, by adding an additional out parameter for the result
of the function.

• Aliasing should be either explicitly signed off by Justifying Check Messages or removed by introducing a copy
of the object to pass as argument to the call.

• Controlled types cannot be rewritten easily.

Using SPARK_Mode to Select or Exclude Code

Depending on the number and location of remaining violations, SPARK_Mode can be used in different ways:

• If most of the codebase is in SPARK, Setting the Default SPARK_Mode to SPARK_Mode => On is best. Violations
should be isolated in parts of the code marked SPARK_Mode => Off by either Excluding Selected Unit Bodies
or Excluding Selected Parts of a Unit.

• Otherwise, SPARK_Mode => On should be applied selectively for Verifying Selected Subprograms or Verifying
Selected Units. Violations are allowed outside the parts of the code marked SPARK_Mode => On.

• Even when most of the code is in SPARK, it may be more cost effective to apply SPARK_Mode => On selectively
rather than by default. This is the case in particular when some units have non-SPARK declarations in the public
part of their package spec. Rewriting the code of these units to isolate the non-SPARK declarations in a part that
can be marked SPARK_Mode => Off may be more costly than specifying no SPARK_Mode for these units, which
allows SPARK code elsewhere in the program to refer to the SPARK entities in these units.

When analyzing a unit for the first time, it may help to gradually mark the code SPARK_Mode => On:

1. Start with the unit spec marked SPARK_Mode => On and the unit body marked SPARK_Mode => Off. First run
GNATprove in flowmode, then in proof mode, until all errors are resolved (some unproved checks may remain,
as errors and checks are different Categories of Messages).

2. Continue with the both the unit spec and body marked SPARK_Mode => On. First run GNATprove in flow
mode, then in proof mode, until all errors are resolved.

3. Now that GNATprove can analyze the unit without any errors, continue with whatever analysis is required to
achieve the desired objectives.

Choosing Which Run-time Checking to Keep

Inside proven SPARK code, no run-time errors of the kinds that GNATprove targets can be raised (see Avoiding Errors
to Enhance Portability for details), provided the analysis assumptions are respected. See section Managing Assumptions
for more details on assumptions. In such proven code, it is possible to remove run-time checking as described in section
Safe Optimization of Run-Time Checks.

Note that GNATprove’s analysis does not detect possible run-time errors corresponding to raising exception
Storage_Error at run time. As described in “GNAT User’s Guide for Native Platforms”, section 6.6.1 on “Stack
Overflow Checking”, gcc option -fstack-check can be used to activate stack checking.

An important use case is the one of unproven code calling proven code, typically when rewriting core components of
the application in SPARK. In that case, the guarantees provided by proof on SPARK code rely on the following main
assumptions:
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• The preconditions of proven SPARK subprograms should be respected. If these subprograms can be called from
subprograms that are not proved, it is recommended to activate their preconditions at run time with Pragma
Assertion_Policy, as shown in Writing Contracts for Program Integrity.

• All inputs of proven SPARK subprograms should have valid values for their types. This is enforced by the
combination of flow analysis and proof in SPARK code, both for parameters and global variables that are read
in the subprogram. It can be partially verified (for parameters but not global variables) during testing for calls
from unproven subprograms by compiling the program with special switches to add run-time checks related to
validity, as described in section Between Proof and Unit Testing.

• Inputs and outputs that may interfere should not be aliased. See section Absence of Interferences for details.
Similar to validity, it can be partially verified (for parameters but not global variables) during testing for calls
from unproven subprograms by compiling the program with special switch -gnateA, as described in section
Between Proof and Unit Testing.

Inside unproven code, users may opt for keeping run-time checking and/or assertion checking in the executable or not,
depending on their overall error detection and recovery policy. At the level of a compilation unit, this choice can be
made through compilation switch -gnatp (for suppressing run-time checking) and -gnata (for activating assertion
checking). These choices can be reversed for a selected piece of code with pragmas Suppress and Unsuppress (for
all checks) and Assertion_Policy (for assertions only).

Additional compilation switches that activate validity checking are best kept for verification, as described in section
Between Proof and Unit Testing. Activating them in the final executable may lead to large increases in running time,
with some checks being inserted at unexpected/extra places, as these validity checks do not follow a formal definition
like the one found in Ada Reference Manual for other run-time checks.

8.3.2 New Developments in SPARK
In this scenario, a significant part of a software (possibly a module, possibly the whole software) is developed in
SPARK. Typically, SPARK is used for the most critical parts of the software, with less critical parts programmed in
Ada, C or Java (for example the graphical interface). A typical development process for this scenario might be:

1. Produce the high level (architectural) design in terms of package specifications. Determine which packages will
be in SPARK, to be marked SPARK_Mode => On.

2. Alternatively, if the majority of packages are to be SPARK, Setting the Default SPARK_Mode to SPARK_Mode
=> On is best. Those few units that are not SPARK should be marked SPARK_Mode => Off.

3. Add Package Contracts to SPARK packages and, depending on the desired objectives, add relevant Subprogram
Contracts to the subprograms declared in these packages. The package contracts should identify the key elements
of State Abstraction which might also be referred to in Data Dependencies and Flow Dependencies.

4. Begin implementing the package bodies. One typical method of doing this is to use a process of top-down decom-
position, starting with a top-level subprogram specification and implementing the body by breaking it down into
further (nested) subprograms which are themselves specified but not yet implemented, and to iterate until a level
is reached where it is appropriate to start writing executable code. However the exact process is not mandated
and will depend on other factors such as the design methodology being employed. Provided unimplemented
subprograms are stubbed (that is, they are given dummy bodies), GNATprove can be used at any point to analyze
the program.

5. As each subprogram is implemented, GNATprove can be used (in mode flow or proof depending on the ob-
jectives) to verify it (against its contract, and/or to show absence of run-time errors).

8.3.3 Conversion of Existing SPARK Software to SPARK 2014
If an existing piece of software has been developed in a previous version of SPARK and is still undergoing active
development/maintenance then it may be advantageous to upgrade to using SPARK 2014 in order to make use of the
larger language subset and the new tools and environment. This requires more efforts than previous upgrades between
versions of SPARK (SPARK 83, SPARK 95 and SPARK 2005) because the new version SPARK 2014 of SPARK is
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incompatible with those previous versions of the language. While the programming language itself in those previous
versions of SPARK is a strict subset of SPARK 2014, the contracts and assertions in previous versions of SPARK are
expressed as stylized comments that are ignored by GNATprove. Instead, those contracts and assertions should be
expressed as executable Ada constructs, as presented in the Overview of SPARK Language.

The SPARK Language Reference Manual has an appendix containing a SPARK 2005 to SPARK 2014 Mapping Spec-
ification which can be used to guide the conversion process. Various options can be considered for the conversion
process:

1. Only convert annotations into contracts and assertions, with minimal changes to the executable code - Note that
some changes to the code may be required when converting annotations, for example adding with-clauses in a
unit to give visibility over entities used in contracts in this unit but defined in another units (which was performed
in previous versions of SPARK with inherit annotations). This conversion should be relatively straightforward
by following the mapping of features between the two languages.

The SPARK tools should be used to analyze the work in progress throughout the conversion process (which
implies that a bottom-up approach may work best) and any errors corrected as they are found. This may also be
an occasion to dramatically simplify annotations, as GNATprove requires far fewer of them. See the README
of the SPARKSkein program distributed with SPARK.

Once the conversion is complete, development and maintenance can continue in SPARK.

2. In addition to converting annotations, benefit from the larger language and more powerful tools to simplify code
and contracts - SPARK 2014 is far less constraining than previous versions of SPARK in terms of dependen-
cies between units (which can form a graph instead of a tree), control structures (for example arbitrary return
statements and exit statements are allowed), data structures (for example scalar types with dynamic bounds are
allowed), expressions (for example local variables can be initialized with non-static expressions at declaration).
In addition, useful new language constructs are available:

• Contract Cases can be used to replace complex postconditions with implications.

• Predicates can be used to state invariant properties of subtypes, so that they need not be repeated in pre-
conditions, postconditions, loop invariants, etc.

• Expression Functions can be used to replace simple query functions and their postcondition.

• Ghost Code can be used to mark code only used for verification.

• Loop Variants can be used to prove the termination of loops.

Changing the code to use these new features may favor readability and maintenance. These changes can be
performed either while converting annotations, or as a second stage after all annotations have been converted
(the case discussed above). Like in the previous case, the SPARK tools should be used to analyze the work in
progress throughout the conversion process (which implies that a bottom-up approach may work best) and any
errors corrected as they are found. Once the conversion is complete, development and maintenance can continue
in SPARK.

3. Gradually convert annotations and code - It is possible to keep annotations in comments for the previous versions
of SPARK while gradually adding contracts and assertions in SPARK 2014. The latest version of the SPARK
2005 toolset facilitates this gradual migration by ignoring SPARK pragmas. Thus, new contracts (for example
Preconditions and Postconditions) should be expressed as pragmas rather than aspects in that case.

Typically, annotations and code would be converted when it needs to be changed. The granularity of how much
code needs to be converted when a module is touched should be considered, and is likely to be at the level of the
whole package.

The latest version of the SPARK 2005 toolset can be used to continue analyzing the parts of the program that do
not use the new features of SPARK 2014, including units which have the two versions of contracts in parallel.
GNATprove can be used to analyze parts of the program that have contracts in SPARK 2014 syntax, including
units which have the two versions of contracts in parallel.
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Note that some users may wish to take advantage of the new SPARK contracts and tools whilst retaining the more
restrictive nature of SPARK 2005. (Many of the restrictions from SPARK 2005 have been lifted in SPARK because
improvements in the tools mean that sound analysis can be performed without them, but some projects may need to
operate in a more constrained environment.) This can be achieved using pragma Restrictions (SPARK_05). For
further details of this restriction please see the GNAT Reference Manual.

8.3.4 Analysis of Frozen Ada Software
In some very specific cases, users may be interested in the results of GNATprove’s analysis on an unmodified code.
This may be the case for example if the only objective is to Ensure Portability of Programs for existing Ada programs
that cannot be modified (due to some certification or legal constraints).

In such a case, the suggested workflow is very similar to the one described for Maintenance and Evolution of Existing
Ada Software, except the code cannot be rewritten when a violation of SPARK restrictions is encountered, and instead
that part of the code should be marked SPARK_Mode => Off. To minimize the parts of the code that need to be marked
SPARK_Mode => Off, it is in general preferable to apply SPARK_Mode => On selectively rather than by default, so
that units that have non-SPARK declarations in the public part of their package spec need not be marked SPARK_Mode
=> Off. See Using SPARK_Mode to Select or Exclude Code for details.

8.3.5 Dealing with Storage_Error
As mentioned, SPARK analysis doesn’t cover the possible exhaustion of data storage, either by exhausting the stack
(this can happen by placing too much data on the stack, or via a too deep recursion) or by exhausting the heap (this can
happen by allocating too much data using new).

To protect against stack exhaustion, we recommend using GNATstack.

As GNATstack doesn’t analyze the secondary stack, if protection against exhaustion of the secondary stack is desired,
we recommend using pragma Restrictions (No_Secondary_Stack);.

To protect against heap exhaustion, a possible way is to encapsulate allocations in a wrapper that handles the possible
Storage_Error exception and signals the failure of the allocation to the calling environment via a return type. The
verification of this wrapper cannot be effectively done with SPARK as the handler would be considered unreachable.
The following example, inspired by this Stackoverflow post shows such a wrapper, that returns an “invalid” pointer that
can’t be dereferenced in case of memory exhaustion:

package Storage with SPARK_Mode is

type Int_Ptr is access Integer;

type Weak_Int_Ptr (Valid : Boolean := False) is record
case Valid is
when False => null;
when True => Ptr : Int_Ptr;

end case;
end record;

function New_Integer (N : Integer) return Weak_Int_Ptr
with Post => (if New_Integer'Result.Valid then New_Integer'Result.Ptr /= null);

procedure Free (P : in out Weak_Int_Ptr)
with
Pre => not P'Constrained,
Post => P.Valid = False;

end Storage;
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with Ada.Unchecked_Deallocation;
package body Storage with SPARK_Mode is

function New_Integer (N : Integer) return Weak_Int_Ptr is
pragma SPARK_Mode (Off);

begin
return Weak_Int_Ptr'(Valid => True, Ptr => new Integer'(N));

exception
when Storage_Error =>
return Weak_Int_Ptr'(Valid => False);

end New_Integer;

procedure Free (P : in out Weak_Int_Ptr) is

procedure Local_Free is new Ada.Unchecked_Deallocation
(Object => Integer, Name => Int_Ptr);

begin
if P.Valid then

Local_Free (P.Ptr);
P := Weak_Int_Ptr'(Valid => False);

end if;
end Free;

end Storage;
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COMMAND LINE INVOCATION

The following is an overview over the GNATprove commandline options. See also the section Running GNATprove
from the Command Line for more detailed information for many of the switches.

Usage: gnatprove -Pproj [switches] [-cargs switches]

proj is a GNAT project file
-cargs switches are passed to gcc

All main units in proj are analyzed by default. Switches to change this:
-u [files] Analyze only the given files

[files] Analyze given files and all dependencies
-U Analyze all files (including unused) of all projects

(can also be used with "--limit-*" switches to analyze
all instances of a generic)

gnatprove basic switches:
-aP=p Add path p to project path

--assumptions Output assumptions information
--clean Remove GNATprove intermediate files, and exit
--cwe Include CWE ids in message output
--explain=Ennnn Output explanation for explain code Ennnn

associated to a message (error, warning or check)
-f Force recompilation/analysis of all units
-h, --help Display this usage information

--info Output info messages about the analysis
-j N Use N parallel processes (default: 1; N=0 will use

all cores of the machine)
-k Do not stop analysis at the first error

--level=n Set the level of proof (0 = faster to 4 = more powerful)
--list-categories Output a list of all message categories and exit

-m Minimal reanalysis
--mode=m Set the mode of GNATprove (m=check, check_all, flow,

prove, all*, stone, bronze, silver, gold)
--no-subprojects Do not analyze subprojects, only the root project
--output-msg-only Do not run any provers, output current flow and proof

results
-q, --quiet Be quiet/terse

--replay Replay proofs, do not attempt new proofs
--report=r Set the report mode of GNATprove (r=fail*, all,

provers, statistics)
(continues on next page)
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(continued from previous page)

--subdirs=p Create all artifacts in this subdir
-v, --verbose Output extra verbose information

--version Output version of the tool and exit
--warnings=w Set the warning mode of GNATprove

(w=off, continue*, error)
-W=warning-tag (warn) Enable the warning corresponding to the tag
-A=warning-tag (allow) Disable the warning corresponding to the tag
-D=warning-tag (deny) Promote the warning corresponding to the tag

to an error

* Main mode values
. check - Fast partial check for SPARK violations
. check_all, stone - Full check for SPARK violations
. flow, bronze - Prove correct initialization and data flow
. prove - Prove absence of run-time errors and contracts
. all, silver, gold - Activates all modes (default)

* Report mode values
. fail - Report failures to prove checks (default)
. all - Report all results of proving checks
. provers - Same as all, plus prover usage information
. statistics - Same as provers, plus timing and steps information

* Warning mode values
. off - Do not issue warnings
. continue - Issue warnings and continue (default)
. error - Treat warnings as errors

gnatprove advanced switches:
--check-counterexamples=c

Enable or disable checking of counterexample (c=on*,off)
--checks-as-errors=c Treat unproved check messages as errors (c=on,off*)
--ce-steps=nnn Set the maximum number of proof steps for counterexamples.

This replaces the use of timeout for counterexamples.
--counterexamples=c Enable or disable counterexamples (c=on,off*)
-d, --debug Debug mode
--debug-save-vcs Do not delete intermediate files for provers
--debug-exec-rac Only execute runtime assertion checking (RAC) and exit
--flow-debug Extra debugging for flow analysis (requires graphviz)
--function-sandboxing=c

Enable or disable the generation of guards for axioms
providing contracts of functions (c=on*,off)

--limit-line=f:l Limit analysis to given file and line
--limit-line=f:l:c:k Limit analysis to given file, line, column and kind of

check
--limit-lines=file Limit analysis to lines specified in file (one per line)
--limit-name=s Limit analysis to subprogram with the specified name
--limit-region=f:l:l Limit analysis to given file and range of lines
--limit-subp=f:l Limit analysis to subprogram declared at the specified

location
--memcached-server=host:portnumber

Specify a memcached instance that will be used for

(continues on next page)
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(continued from previous page)

caching of proof results.
--memcached-server=file:directory

Use the fixed string "file" for part before the colon.
The cache will be stored in the directory after the
colon. Best for CI integration.

--memlimit=nnn Set the prover memory limit in MB. Use value 0 for
no limit (default when no level set)

--no-global-generation
Do not generate Global and Initializes contracts from
code, instead assume "null". Note that this option also
implies --no-inlining.

--no-inlining Do not inline calls to local subprograms for proof
--no-loop-unrolling Do not unroll loops with static bounds and no

(in)variant for proof
--output=o Set the output mode of GNATprove (o=brief, oneline,

pretty*)
--output-header Add a header with extra information in the generated

output file
--pedantic Use a strict interpretation of the Ada standard by

enabling the corresponding warnings
--proof-warnings=c Issue warnings by proof (c=on,off*)
--proof-warnings-timeout

Set the timeout for proof warnings
--proof=g[:l] Set the proof modes for generation of formulas

(g=per_check*, per_path, progressive) (l=lazy*, all)
--prover=s[,s]* Use given provers (s=altergo, cvc5*, z3, ..., or s=all

for using all built-in provers)
--RTS=dir Specify the Ada runtime name/location
--steps=nnn Set the maximum number of proof steps (prover-specific)

Use value 0 for no steps limit.
--target=target_name Specify the name of the target platform
--timeout=nnn Set the prover timeout in seconds. Use value 0 for

no timeout (default when no level set)
--why3-conf=f Specify a configuration file for why3

* Output mode values
. brief - Output minimal check message on a single line
. oneline - Output rich check message on a single line
. pretty - Pretty-print check messages for command-line use (default)

* Proof mode values for generation
. per_check - Generate one formula per check (default when no level set)
. per_path - Generate one formula per path for each check
. progressive - Start with one formula per check, then split into

paths when needed

* Proof mode values for laziness
. lazy - Stop at first unproved formula for each check

(most suited for fully automatic proof) (default)
. all - Attempt to prove all formulas

(most suited for combination of automatic and manual proof)

(continues on next page)
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* Prover name values
(Default prover is cvc5.)
. altergo - Use Alt-Ergo
. colibri - Use Colibri
. cvc5 - Use CVC5
. z3 - Use Z3
. ... - Any other prover configured in your .why3.conf file
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ALTERNATIVE PROVERS

B.1 Installed with SPARK Pro
The provers Alt-Ergo, Colibri, cvc5 and Z3 are installed with the SPARK tool. By default, GNATprove uses prover
cvc5 only. Switch --level changes the default to use one or more provers depending on the chosen level (see Running
GNATprove from the Command Line). Switch --prover allows to use another prover, or a list of provers. Prover
names altergo, colibri, cvc5 and z3 are used to refer to the versions of provers Alt-Ergo, Colibri, cvc5 and Z3
that are installed with the SPARK toolset. The string alt-ergo can also be used to refer to Alt-Ergo. Using the
switch --prover=all, one can select all four built-in provers, in the order cvc5, z3, colibri, altergo. More
information on Alt-Ergo, cvc5 and Z3 can be found on their respective websites:

• Alt-Ergo: https://alt-ergo.ocamlpro.com

• cvc5: https://cvc5.github.io/

• Z3: https://github.com/Z3Prover/z3

B.2 Installed with SPARK Discovery
In this case, only prover Alt-Ergo is installed with the SPARK tool. Hence, by default GNATprove only uses prover
Alt-Ergo. In particular, switch --level has no impact on the use of different provers, and --prover=all will only
select Alt-Ergo.

B.3 Installed with SPARK Community
The provers Alt-Ergo, cvc5 and Z3 are installed with the SPARK tool.

B.4 Other Automatic or Manual Provers

B.4.1 Updating the Why3 Configuration File
GNATprove can call other provers, as long as they are supported by the Why3 platform (see complete list on Why3
webpage). To use another prover, it must be listed in your Why3 configuration file.

To create or update automatically a Why3 configuration file, call the command <spark2014-install>/libexec/
spark/bin/why3config --detect-provers. It searches your PATH for any supported provers and adds them to the
default configuration file .why3.conf in your HOME, or a configuration file given in argument with switch -C <file>.
This file consists of a few general settings and a section for each prover which is supported.

Note that GNATprove never reads the default configuration file .why3.conf in your HOME. You need to pass the
configuration file explicitly with switch --why3-conf=<file>. Any prover name configured in this configuration file
can be used as an argument to switch --prover.
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Note that using this mechanism, you cannot replace the definitions provided with the SPARK tools for the provers
altergo, colibri, cvc5 and z3.

If more than one prover is specified, the provers are tried in order on each VC, until one of them succeeds or all fail.
Interactive provers cannot be combined with other provers, so must appear on their own.

B.4.2 Sharing Libraries of Theorems
When GNATprove is used with a manual prover, the user can provide libraries of theorems to use during the proof
process.

To do so, the user will need to set a proof directory (see Project Attributes for more details on this directory). The user
needs to create a folder with the same name as the chosen manual prover (the casing of the name is the same as the one
passed to the switch --prover) and put the library sources inside this folder.

Finally, some additional fields need to be added to the prover configuration in the Why3 configuration file (a basic
example of prover configuration can be found in the section on Coq):

• configure_build: this field allows you to specify a command to configure the compilation of the library of
theorems. This command will be called each time a source file is added to the library.

• build_commands: this field allows you to specify a set of command which will be called sequentially to build
your library. These commands will be called each time GNATprove runs the corresponding manual prover. (In
order to define multiple commands for this field, just set the field multiple times with different values, each time
the field is set it adds a new element to the set of build_commands).

Inside these commands, pattern %f refers to the name of the library file considered, and %o to the name of the main
gnatprove repository generated by GNATprove. This allows referring to the path of the compiled library of theorems
inside these commands with %o/user/<prover_name>.

B.5 Coq
gnatprove has support for the Coq interactive prover, even though Coq is not part of the SPARK distribution. If
you want to use Coq with SPARK, you need to install it yourself on your system and put it in your PATH environment
variable. Then, you can simply provide --prover=coq to gnatprove. Note that the only supported version currently
is Coq 8.11.
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PROJECT ATTRIBUTES

GNATprove reads the package Prove in the given project file. This package is allowed to contain the following at-
tributes:

• Proof_Switches, which defines additional command line switches that are used for the invokation of GNAT-
prove. This attribute can be used in two different settings:

– to define switches that should apply to all files in the project. As an example, the following package in the
project file sets the default report mode of GNATprove to all:

package Prove is
for Proof_Switches ("Ada") use ("--report=all");

end Prove;

– to define switches that should apply only to one file. The following example sets timeout for provers run by
GNATprove to 10 seconds for file.adb:

package Prove is
for Proof_Switches ("file.adb") use ("--timeout=10");

end Prove;

Note that, if a unit has both a body and specification file, the body file should be used for this attribute.

Switches given on the command line have priority over switches given in the project file, and file-specific switches
have priority over switches that apply to all files. A special case is the --level switch: the values for --timeout
etc implied by the --level switch are always overridden by more specific switches, regardless of where they
appear. For example, the timeout for the analysis of file.adb is set to 10 seconds below, despite the --level=0
switch (which implies a lower timeout) specified for this file:

package Prove is
for Proof_Switches ("Ada") use ("--timeout=10");
for Proof_Switches ("file.adb") use ("--level=0");

end Prove;

The following switches cannot be used inside project files: -P, -aP, --subdirs, --clean,
--list-categories, --version.

Only the following switches are allowed for file-specific switches: --steps, --timeout, --memlimit,
--proof, --prover, --level, --mode, --counterexamples, --no-inlining, --no-loop-unrolling,
--pedantic, -W, -A, -D.

• Switches. This deprecated attribute is the same as Proof_Switches ("Ada").

• Proof_Dir, which defines the directory where are stored the files concerning the state of the proof of a project.
This directory contains a sub-directory sessions with one directory per source package analyzed for proof.
Each of these package directories contains a Why3 session file. If a manual prover is used to prove some VCs,
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then a sub-directory called by the name of the prover is created next to sessions, with the same organization of
sub-directories. Each of these package directories contains manual proof files. Common proof files to be used
across various proofs can be stored at the toplevel of the prover-specific directory.
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IMPLEMENTATION DEFINED ASPECTS AND PRAGMAS

This appendix lists all the aspects or pragmas specific to GNATprove.

D.1 Aspect and Pragma SPARK_Mode
SPARK_Mode is a three-valued aspect. At least until we get to the next paragraph, a SPARK_Mode of On, Off, or
Auto is associated with each Ada construct. Roughly, the meaning of the three values is the following:

• a value of On means that the construct is required to be in SPARK, and the construct will be analyzed by GNAT-
prove.

• a value of Off means that the construct will not be analyzed by GNATprove, and does not need to obey the
SPARK restrictions. The construct also cannot be referenced from other parts that are required to be in SPARK.

• a value of Auto means that the construct will not be analyzed, and GNATprove will infer whether this construct
can be used in other SPARK parts or not.

As generic units are not directly analyzed by GNATprove, but only generic instances are, the meaning of the three
values is slightly different for generic units:

• a value of On means that instances can be in SPARK, depending on the parameters passed for the instantiation.

• a value of Off means that instances cannot be in SPARK, independent of the parameters passed for the instanti-
ation.

• a value of Auto provides no information on whether instances can be in SPARK or not.

We now explain in more detail how the SPARK_Mode pragma works.

Some Ada constructs are said to have more than one “section”. For example, a declaration which requires a completion
will have (at least) two sections: the initial declaration and the completion. The SPARK_Modes of the different sections
of one entity may differ. In other words, SPARK_Mode is not an aspect of an entity but rather of a section of an entity.

For example, if a subprogram declaration has a SPARK_Mode of On while its body has a SPARK_Mode of Off, then
an error would be generated if the subprogram took a parameter of a general access type but not if the subprogram
declared a local variable of a general access type (recall that general access types are not in SPARK).

A package is defined to have 4 sections: its visible part, its private part, its body declarations, and its body statements.
A protected or task unit has 3 sections: its visible part, its private part, and its body. Other declarations which require
a completion have two sections, as noted above; all other entities and constructs have only one section.

If the SPARK_Mode of a section of an entity is Off, then the SPARK_Mode of a later section of that entity shall not
be On. [For example, a subprogram can have a SPARK declaration and a non-SPARK body, but not vice versa.]

If the SPARK_Mode of a section of an entity is Auto, then the SPARK_Mode of a later section of that entity shall not
be On, and it shall not be Off unless that entity is a generic entity, or an instance of such a generic. [This makes it
possible to mark a later section of a generic unit as Off, in cases where its initial section is Auto to allow instantiations
to have any value of SPARK_Mode.]
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The SPARK_Mode aspect can be specified either via a pragma or via an aspect_specification. In some contexts, only
a pragma can be used because of syntactic limitations. In those contexts where an aspect_specification can be used, it
has the same effect as a corresponding pragma.

The form of a pragma SPARK_Mode is as follows:

pragma SPARK_Mode [ (On | Off) ]

The form for the aspect_definition of a SPARK_Mode aspect_specification is as follows:

[ On | Off ]

For example:

package P
with SPARK_Mode => On

is

The pragma can be used as a configuration pragma. The effect of such a configuration pragma is described below in the
rules for determining the SPARK_Mode aspect value for an arbitrary section of an arbitrary Ada entity or construct.

Pragma SPARK_Mode shall be used as a local pragma in only the following contexts and has the described semantics:

Pragma placement Affected construct Alternative aspect
form

Start of the visible declarations (preceded only by other pragmas) of
a package declaration

Visible part of the
package

As part of the pack-
age_specification

Start of the visible declarations (preceded only by other pragmas) of
a task or protected unit

Visible part of the
unit

As part of the decla-
ration

Start of the private declarations of a package, a protected unit, or
a task unit (only other pragmas can appear between the private
keyword and the SPARK_Mode pragma)

Private part None

Immediately at the start of the declarations of a package body (pre-
ceded only by other pragmas)

Body declarations of
the package

As part of the pack-
age_body

Start of the elaboration statements of a package body (only
other pragmas can appear between the begin keyword and the
SPARK_Mode pragma)

Body statements of
the package

None

Start of the declarations of a protected or task body (preceded only
by other pragmas)

Body As part of the pro-
tected or task body

After a subprogram declaration (with only other pragmas interven-
ing). [This does not include the case of a subprogram whose initial
declaration is via a subprogram_body_stub. Such a subprogram has
only one section because a subunit is not a completion.]

Subprogram’s speci-
fication

As part of
the subpro-
gram_declaration

Start of the declarations of a subprogram body (preceded only by
other pragmas)

Subprogram’s body As part of the sub-
program_body

A default argument of On is assumed for any SPARK_Mode pragma or aspect_specification for which no argument is
explicitly specified.

A SPARK_Mode of Auto can only be explicitly specified for a configuration pragma; the cases in which a
SPARK_Mode of Auto is implicitly specified are described below. Roughly speaking, Auto indicates that it is left
up to the formal verification tools to determine whether or not a given construct is in SPARK.

A SPARK_Mode pragma or aspect specification shall only apply to a (section of a) package, generic package, subpro-
gram, or generic subprogram.
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A SPARK_Mode of On shall only apply to a (section of a) library-level entity, except for the case of SPARK_Mode
specifications occurring within generic instances. A SPARK_Mode of On applying to a non-library-level entity within
a generic instance has no effect.

The SPARK_Mode aspect value of an arbitrary section of an arbitrary Ada entity or construct is then defined to be the
following value (except if this yields a result of Auto for a non-package; see below):

• If SPARK_Mode has been specified for the given section of the given entity or construct, then the specified value;

• else for the instance of a generic unit, follow the rules as for a declaration that would not be a generic instantiation;
take the resulting value of SPARK_Mode if it is Auto or Off; otherwise, take the value of SPARK_Mode specified
for the generic unit if any; otherwise the value is On.

• else for the private part of a public child unit whose parent unit’s private part has a SPARK_Mode of Off, the
SPARK_Mode is Off;

• else for the private part of a package or a protected or task unit, the SPARK_Mode of the visible part;

• else for a package body’s statements, the SPARK_Mode of the package body’s declarations;

• else for the first section (in the case of a package, the visible part) of a public child unit, the SPARK_Mode of
the visible part of the parent unit;

• else for the first section (in the case of a package, the visible part) of a private child unit, the SPARK_Mode of
the private part of the parent unit;

• else for any of the visible part or body declarations of a library unit package or either section of a library unit
subprogram, if there is an applicable SPARK_Mode configuration pragma then the value specified by the pragma;
if no such configuration pragma applies, then an implicit specification of Auto is assumed;

• else the SPARK_Mode of the enclosing section of the nearest enclosing package or subprogram;

• Corner case: the SPARK_Mode of the visible declarations of the limited view of a package is always Auto.

If the above computation yields a result of Auto for any construct other than one of the four sections of a package, then
a result of On or Off is determined instead based on the legality (with respect to the rules of SPARK) of the construct.
The construct’s SPARK_Mode is On if and only if the construct is in SPARK. [A SPARK_Mode of Auto is therefore
only possible for (sections of) a package.]

In code where SPARK_Mode is On (also called “SPARK code”), the rules of SPARK are enforced. In particular, such
code shall not reference non-SPARK entities, although such code may reference a SPARK declaration with one or more
non-SPARK subsequent sections (e.g., a package whose visible part has a SPARK_Mode of On but whose private part
has a SPARK_Mode of Off; a package whose visible part has a SPARK_Mode of Auto may also be referenced).

Code where SPARK_Mode is Off shall not enclose code where Spark_Mode is On. However, if an instance of a generic
unit is enclosed by code where SPARK_Mode is Off and if any SPARK_Mode specifications occur within the generic
unit, then the corresponding SPARK_Mode specifications occurring within the instance have no semantic effect. [In
particular, such an ignored SPARK_Mode specification could not violate the preceding “Off shall not enclose On” rule
because the SPARK_Mode of the entire instance is Off. Similarly, such an ignored SPARK_Mode specification could
not violate the preceding rule that a SPARK_Mode specification shall only apply to a (section of a) library-level entity.]

For purposes of the “Off shall not enclose On” rule just described, the initial section of a child unit is considered to
occur immediately within either the visible part (for a public child unit) or the private part (for a private child unit)
of the parent unit. In addition, the private part of a public child package is considered to occur immediately within
the private part of the parent unit. [This follows Ada’s visibility rules for child units. This means, for example, that if
a parent unit’s private part has a SPARK_Mode of Off, then the private part of a public child package shall not have
a SPARK_Node of On. Note also that a SPARK_Mode configuration pragma which applies only to the specification
(not the body) of a child unit is always ineffective; this is a consequence of the rules given above for determining the
SPARK_Mode of the first section of a child unit.]

The rules for a protected unit follow from the rules given for other constructs after notionally rewriting the protected
unit as a package.

D.1. Aspect and Pragma SPARK_Mode 395



SPARK User’s Guide, Release 15.0

A protected unit declaration such as

protected type Prot
with SPARK_Mode => On

is
procedure Op1 (X : in out Integer);
procedure Op2;
function Non_SPARK_Profile (X : in out Integer) return Boolean
with SPARK_Mode => Off;

private
Aaa, Bbb : Integer := 0;

end Prot;

can be thought of, for purposes of SPARK_Mode rules, as being a lot like

package Pkg
with SPARK_Mode => On

is
type Prot is limited private;
procedure Op1 (Obj : in out Prot; X : in out Integer);
procedure Op2 (Obj : in out Prot);
function Non_SPARK_Profile (Obj : Prot; Ptr : in out Integer) return Boolean
with SPARK_Mode => Off;

private
type Prot is
limited record

Aaa, Bbb : Integer := 0;
end record;

end Pkg;

which is legal. The point is that a protected type which is in SPARK can have protected operation whose declaration
is not in SPARK.

SPARK_Mode is an implementation-defined Ada aspect; it is not (strictly speaking) part of the SPARK language. It is
used to notionally transform programs which would otherwise not be in SPARK so that they can be viewed (at least in
part) as SPARK programs.

Note that if you would like to mark all your code in SPARK_Mode, the simplest solution is to specify in your project
file:

package Compiler is
for Local_Configuration_Pragmas use "spark.adc";

end Compiler;

and provide a file spark.adc which contains:

pragma SPARK_Mode;

D.2 Aspect and Pragma Iterable
In SPARK, it is possible to allow quantification over any container type using the Iterable aspect. This aspect provides
the primitives of a container type that will be used to iterate over its content. For example, if we write:
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type Container is private with
Iterable => (First => First,

Next => Next,
Has_Element => Has_Element);

where

function First (S : Set) return Cursor;
function Has_Element (S : Set; C : Cursor) return Boolean;
function Next (S : Set; C : Cursor) return Cursor;

then quantification over containers can be done using the type Cursor. For example, we could state:

(for all C in S => P (Element (S, C)))

to say that S only contains elements for which a property P holds. For execution, this expression is translated as a loop
using the provided First, Has_Element, and Next primitives. For proof, it is translated as a logic quantification over
every element of type Cursor. To restrict the property to cursors that are actually valid in the container, the provided
function Has_Element is used. For example, the property stated above becomes:

(for all C : Cursor => (if Has_Element (S, C) then P (Element (S, C))))

Like for the standard Ada iteration mechanism, it is possible to allow quantification directly over the elements of the
container by providing in addition an Element primitive to the Iterable aspect. For example, if we write:

type Container is private with
Iterable => (First => First,

Next => Next,
Has_Element => Has_Element
Element => Element);

where

function Element (S : Set; C : Cursor) return Element_Type;

then quantification over containers can be done directly on its elements. For example, we could rewrite the above
property into:

(for all E of S => P (E))

For execution, quantification over elements of a container is translated as a loop over its cursors. In the same way, for
proof, quantification over elements of a container is no more than syntactic sugar for quantification over its cursors.
For example, the above property is translated using quantification over cursors :

(for all C : Cursor => (if Has_Element (S, C) then P (Element (S, C))))

Depending on the application, this translation may be too low-level and introduce an unnecessary burden on the auto-
matic provers. As an example, let us consider a package for functional sets:

package Sets with SPARK_Mode is

type Cursor is private;
type Set (<>) is private with
Iterable => (First => First,

(continues on next page)
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Next => Next,
Has_Element => Has_Element,
Element => Element);

function Mem (S : Set; E : Element_Type) return Boolean with
Post => Mem'Result = (for some F of S => F = E);

function Intersection (S1, S2 : Set) return Set with
Post => (for all E of Intersection'Result => Mem (S1, E) and Mem (S2, E))
and (for all E of S1 =>

(if Mem (S2, E) then Mem (Intersection'Result, E)));

Sets contain elements of type Element_Type. The most basic operation on sets is membership test, here provided by
the Mem subprogram. Every other operation, such as intersection here, is then specified in terms of members. Iteration
primitives First, Next, Has_Element, and Element, that take elements of a private type Cursor as an argument,
are only provided for the sake of quantification.

Following the scheme described previously, the postcondition of Intersection is translated for proof as:

(for all C : Cursor =>
(if Has_Element (Intersection'Result, C) then

Mem (S1, Element (Intersection'Result, C))
and Mem (S2, Element (Intersection'Result, C))))

and
(for all C1 : Cursor =>

(if Has_Element (S1, C1) then
(if Mem (S2, Element (S1, C1)) then

Mem (Intersection'Result, Element (S1, C1)))))

Using the postcondition of Mem, this can be refined further into:

(for all C : Cursor =>
(if Has_Element (Intersection'Result, C) then

(for some C1 : Cursor =>
Has_Element (S1, C1) and Element (Intersection'Result, C) = Element (S1,␣

↪→C1))
and (for some C2 : Cursor =>

Has_Element (S2, C2) and Element (Intersection'Result, C) = Element (S2,␣
↪→C2))))
and
(for all C1 : Cursor =>

(if Has_Element (S1, C1) then
(if (for some C2 : Cursor =>

Has_Element (S2, C2) and Element (S1, C1) = Element (S2, C2)))
then (for some C : Cursor => Has_Element (Intersection'Result, C)

and Element (Intersection'Result, C) = Element (S1, C1))))
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IMPLEMENTATION DEFINED ANNOTATIONS

This appendix lists all the uses of aspect or pragma Annotate for GNATprove. Aspect or pragma Annotate can also
be used to control other AdaCore tools. The uses of such annotations are explained in the User’s Guide of each tool.

Annotations in GNATprove are useful in two cases:

1. for justifying check messages using Direct Justification with Pragma Annotate, typically using a pragma rather
than an aspect, as the justification is generally associated to a statement or declaration.

2. for influencing the generation of proof obligations, typically using an aspect rather than a pragma, as the anno-
tation is generally associated to an entity in that case. Some of these uses can be seen in SPARK Libraries for
example. Some of these annotations introduce additional assumptions which are not verified by the GNATprove
tool, and thus should be used with care.

When the annotation is associated to an entity, both the pragma and aspect form can be used and are equivalent, for
example on a subprogram:

function Func (X : T) return T
with Annotate => (GNATprove, <annotation name>);

or

function Func (X : T) return T;
pragma Annotate (GNATprove, <annotation name>, Entity => Func);

In the following, we use the aspect form whenever possible.

E.1 Annotation for Justifying Check Messages
You can use annotations of the form

pragma Annotate (GNATprove, False_Positive,
"message to be justified", "reason");

to justify an unproved check message that cannot be proved by other means. See the section Direct Justification with
Pragma Annotate for more details about this use of pragma Annotate.

E.2 Annotation for Skipping Parts of the Analysis for an Entity
Subprograms, packages, tasks, entries and protected subprograms can be annotated to skip flow analysis, and to skip
generating proof obligations for their implementation, and the implementations of all such entities defined inside.

399



SPARK User’s Guide, Release 15.0

procedure P
with Annotate => (GNATprove, Skip_Proof);

procedure P
with Annotate => (GNATprove, Skip_Flow_And_Proof);

If an entity is annotated with Skip_Proof, no messages related to possible run-time errors and functional contracts
are issued for this entity and any contained entities. This is similar to specifying --mode=flow on the command line
(see Effect of Mode on Output), except that the effect is limited to this entity (and enclosed entities).

If an entity is annotated with Skip_Flow_And_Proof, in addition, no messages related to global contracts, initial-
ization and dependency relations are issues for this entity and any contained entities. This is similar to specifying
--mode=check-all on the command line, expect that the effect is limited to this entity (and enclosed entities).

Note that the Skip_Proof annotation cannot be used if an enclosing subprogram already has the
Skip_Flow_And_Proof annotation.

E.3 Annotation for Handling Modular Types as Integers in All Provers
Modular types are handled as a special bitvector type in some provers, which may lead to more difficult automatic
proofs when such values are combined with integers that come from signed integers in SPARK or Big_Integers
from the SPARK Library.

In such a case, it is possible to request that a modular type is handled like an integer in all provers, by using annotations
of the form:

type T is mod 2**32
with Annotate => (GNATprove, No_Bitwise_Operations);

or on a derived type:

type T is new U
with Annotate => (GNATprove, No_Bitwise_Operations);

This annotation is inherited by derived types. It must be specified on a type declaration (and cannot be specified on a
subtype declaration). The following bitwise operations are not allowed on such a type: or, and, xor, not, Shift_Left,
Shift_Right, Shift_Right_Arithmetic, Rotate_Left, Rotate_Right.

E.4 Annotation for Overflow Checking on Modular Types
The standard semantics of arithmetic on modular types is that operations wrap around, hence GNATprove issues no
overflow checks on such operations. You can instruct it to issue such checks (hence detecting possible wrap-around)
using annotations of the form:

type T is mod 2**32
with Annotate => (GNATprove, No_Wrap_Around);

or on a derived type:

type T is new U
with Annotate => (GNATprove, No_Wrap_Around);

This annotation is inherited by derived types. It must be specified on a type declaration (and cannot be specified on
a subtype declaration). All four binary arithmetic operations + - * ** are checked for possible overflows. Division
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cannot lead to overflow. Unary negation is checked for possible non-nullity of its argument, which leads to overflow.
The predecessor attribute 'Pred and successor attribute 'Succ are also checked for possible overflows.

E.5 Annotation for Simplifying Iteration for Proof
The translation presented in Aspect and Pragma Iterable may produce complicated proofs, especially when verifying
complex properties over sets. The GNATprove annotation Iterable_For_Proof can be used to change the way for
... of quantification is translated. More precisely, it allows to provide GNATprove with a Contains function, that
will be used for quantification. For example, on our sets, we could write:

function Mem (S : Set; E : Element_Type) return Boolean with
Annotate => (GNATprove, Iterable_For_Proof, "Contains");

With this annotation, the postcondition of Intersection is translated in a simpler way, using logic quantification
directly over elements (not valid Ada syntax):

(for all E : Element_Type =>
(if Mem (Intersection'Result, E) then Mem (S1, E) and Mem (S2, E)))

and (for all E : Element_Type =>
(if Mem (S1, E) then

(if Mem (S2, E) then Mem (Intersection'Result, E))))

Note that care should be taken to provide an appropriate function contains, which returns true if and only if the element
E is present in S. This assumption will not be verified by GNATprove.

The annotation Iterable_For_Proof can also be used in another case. Operations over complex data structures are
sometimes specified using operations over a simpler model type. In this case, it may be more appropriate to translate
for ... of quantification as quantification over the model’s cursors. As an example, let us consider a package of
linked lists that is specified using a sequence that allows accessing the element stored at each position:

package Lists with SPARK_Mode is

type Sequence is private with
Ghost,
Iterable => (...,

Element => Get);
function Length (M : Sequence) return Natural with Ghost;
function Get (M : Sequence; P : Positive) return Element_Type with

Ghost,
Pre => P <= Length (M);

type Cursor is private;
type List is private with
Iterable => (...,

Element => Element);

function Position (L : List; C : Cursor) return Positive with Ghost;
function Model (L : List) return Sequence with
Ghost,
Post => (for all I in 1 .. Length (Model'Result) =>

(for some C in L => Position (L, C) = I));

function Element (L : List; C : Cursor) return Element_Type with
Pre => Has_Element (L, C),

(continues on next page)
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Post => Element'Result = Get (Model (L), Position (L, C));

function Has_Element (L : List; C : Cursor) return Boolean with
Post => Has_Element'Result = (Position (L, C) in 1 .. Length (Model (L)));

procedure Append (L : in out List; E : Element_Type) with
Post => length (Model (L)) = Length (Model (L))'Old + 1
and Get (Model (L), Length (Model (L))) = E
and (for all I in 1 .. Length (Model (L))'Old =>

Get (Model (L), I) = Get (Model (L'Old), I));

function Init (N : Natural; E : Element_Type) return List with
Post => length (Model (Init'Result)) = N
and (for all F of Init'Result => F = E);

Elements of lists can only be accessed through cursors. To specify easily the effects of position-based operations such
as Append, we introduce a ghost type Sequence, that is used to represent logically the content of the linked list in
specifications. The sequence associated to a list can be constructed using the Model function. Following the usual
translation scheme for quantified expressions, the last line of the postcondition of Init is translated for proof as (not
Ada syntax):

(for all C : Cursor =>
(if Has_Element (Init'Result, C) then Element (Init'Result, C) = E));

Using the definition of Element and Has_Element, it can then be refined further into:

(for all C : Cursor =>
(if Position (Init'Result, C) in 1 .. Length (Model (Init'Result))
then Get (Model (Init'Result), Position (Init'Result, C)) = E));

To be able to link this property with other properties specified directly on models, like the postcondition of Append, it
needs to be lifted to iterate over positions instead of cursors. This can be done using the postcondition of Model that
states that there is a valid cursor in L for each position of its model. This lifting requires a lot of quantifier reasoning
from the prover, thus making proofs more difficult.

The GNATprove Iterable_For_Proof annotation can be used to provide GNATprove with a Model function, that
will be to translate quantification on complex containers toward quantification on their model. For example, on our
lists, we could write:

function Model (L : List) return Sequence with
Annotate => (GNATprove, Iterable_For_Proof, "Model");

With this annotation, the postcondition of Init is translated directly as a quantification on the elements of the result’s
model (not Ada syntax):

(for all I : Positive =>
(if I in 1 .. Length (Model (Init'Result)) then

Get (Model (Init'Result), I) = E));

Like with the previous annotation, care should be taken to define the model function such that it always return a model
containing exactly the same elements as L.
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Note

It is not possible to specify more than one Iterable_For_Proof annotation per container type with an Iterable
aspect.

E.6 Annotation for Inlining Functions for Proof
Contracts for functions are generally translated by GNATprove as axioms on otherwise undefined functions. As an
example, consider the following function:

function Increment (X : Integer) return Integer with
Post => Increment'Result >= X;

It will be translated by GNATprove as follows (not Ada syntax):

function Increment (X : Integer) return Integer;

axiom : (for all X : Integer. Increment (X) >= X);

For internal reasons due to ordering issues, expression functions are also defined using axioms. For example:

function Is_Positive (X : Integer) return Boolean is (X > 0);

will be translated exactly as if its definition was given through a postcondition, namely:

function Is_Positive (X : Integer) return Boolean;

axiom : (for all X : Integer. Is_Positive (X) = (X > 0));

This encoding may sometimes cause difficulties to the underlying solvers, especially for quantifier instantiation heuris-
tics. This can cause strange behaviors, where an assertion is proven when some calls to expression functions are
manually inlined but not without this inlining.

If such a case occurs, it is sometimes possible to instruct the tool to inline the definition of expression functions using
pragma or aspect Annotate Inline_For_Proof. When such a pragma is provided for an expression function, a direct
definition will be used for the function instead of an axiom:

function Is_Positive (X : Integer) return Boolean is (X > 0) with
Annotate => (GNATprove, Inline_For_Proof);

The same annotation will also allow to inline a regular function, if its postcondition is simply an equality between its
result and an expression:

function Is_Positive (X : Integer) return Boolean with
Post => Is_Positive'Result = (X > 0)
Annotate => (GNATprove, Inline_For_Proof);

In this case, GNATprove will introduce a check when verifying the body of Is_Positive to make sure that the inline
annotation is correct, namely, that Is_Positive (X) and X > 0 always yield the same result. This check may not be
redundant with the verification of the postcondition of Is_Positive if the = symbol on booleans has been overridden.

Note that, since the translation through axioms is necessary for ordering issues, this annotation can sometimes lead to a
crash in GNATprove. It is the case for example when the definition of the function uses quantification over a container
using the Iterable aspect.
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E.7 Annotation for Referring to a Value at the End of a Local Borrow
Local borrowers are objects of an anonymous access-to-variable type. At their declaration, the ownership of (a part
of) an existing data-structure is temporarily transferred to the new object. The borrowed data-structure will regain
ownership afterward. During the lifetime of the borrower, the borrowed object can be accessed indirectly through the
borrower. It is forbidden to modify or even read the borrowed object during the borrow. As an example, let us consider
a recursive type of singly-linked lists:

type List;
type List_Acc is access List;
type List is record

Val : Integer;
Next : List_Acc;

end record;

Using this type, let us construct a list X which stores the numbers from 1 to 5:

X := new List'(1, null);
X.Next := new List'(2, null);
X.Next.Next := new List'(3, null);
X.Next.Next.Next := new List'(4, null);
X.Next.Next.Next.Next := new List'(5, null);

We can borrow the structure designated by X in a local borrower Y:

declare
Y : access List := X;

begin
V := Y.Val; -- OK, ownership has been transferred to Y temporarily
V := X.Val; -- Illegal, X does not have ownership during the scope of Y

end;

While in the scope of Y, the ownership of the list designated by X is transferred to Y, so that it is not allowed to access
it from X anymore. After the end of the declare block, ownership is restored to X, which can again be accessed or
modified directly.

During the lifetime of the borrower, the borrowed object can be modified indirectly through the borrower. Therefore,
when the borrower goes out of scope and ownership is transferred back to the borrowed object, GNATprove needs to
reconstruct the new value of the borrowed object from the value of the borrower at the end of the borrow. In general, it
can be done entirely automatically. However, it can happen that the exact relation between the values of the borrowed
object and the borrower at the end of the borrow is lost by the tool. In particular, it is the case when the borrower is
created inside a (traversal) function, as proof is modular on a per subprogram basis. It also happens when the borrower
is modified inside a loop, as analysing loops involves cutpoints. In this case, GNATprove relies on the user to adequately
describe the link between the values of the borrowed object and the borrower at the end of the borrow inside annotations
- postconditions of traversal functions or loop invariants.

To this effect, it is possible to refer to the value of a local borrower or a borrowed expression at the end of the borrow
using a ghost identity function annotated with At_End_Borrow. Calls to these functions are interpreted by the tool as
markers of references to values at the end of the borrow:

function At_End_Borrow (E : access constant List_Acc) return access constant List_Acc is
(E)

with Ghost,
Annotate => (GNATprove, At_End_Borrow);
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Note that the name of the function could be something other than At_End_Borrow. GNATprove will check that a
function associated with the At_End_Borrow annotation is a ghost expression function which takes a single parameter
of an access-to-constant type and returns it. At_End_Borrow functions can only be called inside regular assertions
or contracts, within a parameter of a call to a lemma subprogram, or within the initialization of a (ghost) constant of
anonymous access-to-constant type.

When GNATprove encounters a call to such a function, it checks that the actual parameter of the call is either a local
borrower or an expression which is borrowed in the current scope. It does not interpret it as the current value of
the expression, but rather as what is usually called a prophecy variable in the literature, namely, an imprecise value
representing the value that the expression will have at the end of the borrow. As GNATprove does not do any look-
ahead, nothing will be known about the actual value of a local borrower at the end of the borrow. However, the tool will
still be aware of the relation between this final value and the final value of the expression it borrows. As an example,
consider a local borrower Y of the list X as defined above. The At_End_Borrow function can be used to give properties
that are known to hold during the scope of Y. For example, since Y and X designate the same value, GNATprove can
verify that no matter what happens during the scope of Y, at the end of the borrow, the Val component of X will be the
Val component of Y:

pragma Assert (At_End_Borrow (X).Val = At_End_Borrow (Y).Val);

However, even though at the beginning of the declare block, the first value of X is 1, it is not correct to assert that it will
necessarily be so at the end of the borrow:

pragma Assert (Y.Val = 1); -- proved
pragma Assert (At_End_Borrow (X).Val = 1); -- incorrect

Indeed, Y could be modified later so that X.Val is not 1 anymore:

declare
Y : access List := X;

begin
Y.Val := 2;

end;
pragma Assert (X.Val = 2);

Note that the assertion above is invalid even if Y.Val is not modified in the following statements. It needs to be provable
only from the information available at the assertion point, not knowing what will actually happen later in the scope of
the borrow. The analysis performed by GNATprove only considers those statements that occur before the assertion to
be proved; GNATprove does not consider statements that occur later in the control flow. In other words, there is no
lookahead when an assertion is to be proved.

Note

Since At_End_Borrow functions are identity functions, the current values of the borrower and borrowed expression
are used when executing assertions containing prophecy variables. This is sound. Indeed, GNATprove will show
that the assertion holds for all possible modifications of the borrower. As not modifying the borrower is a valid
senario, this is enough to ensure that the assertion necessarily evaluates to True at runtime.

Let us now consider a case where X is not borrowed completely. In the declaration of Y, we can decide to borrow only
the last three elements of the list:

declare
Y : access List := X.Next.Next;

begin
pragma Assert (At_End_Borrow (X.Next.Next).Val = At_End_Borrow (Y).Val);

(continues on next page)

E.7. Annotation for Referring to a Value at the End of a Local Borrow 405



SPARK User’s Guide, Release 15.0

(continued from previous page)

pragma Assert (At_End_Borrow (X.Next.Next) /= null);
-- Proved, this follows from the relationship between X and Y

pragma Assert (At_End_Borrow (X.Next.Next.Val) = 3);
-- Incorrect, X could be modified through Y

X.Val := 42;
end;

Here, like in the previous example, we can state that, at the end of the borrow, X.Next.Next.Val is Y.Val, and then
X.Next.Next cannot be set to null. We cannot assume anything about the part of X designated by Y, so we won’t be
able to prove that X.Next.Next.Val will remain 3. Note that we cannot get the value at the end of the borrow of an
expression which is not borrowed in the current scope. Here, even if X.Next.Next is borrowed, X and X.Next are
not. As a result, calls to At_End_Borrow on them will be rejected by the tool.

Inside the scope of Y, it is possible to modify the variable Y itself, as opposed to modifying the structure it designates,
so that it gives access to a subcomponent of the borrowed structure. It is called a reborrow. During a reborrow, the
part of the structure designated by the borrower is reduced, so the prophecy variable giving the value of the borrower
at the end of the borrow is reduced as well. The part of the borrowed expression which is no longer accessible through
the borrower cannot be modified anymore for the rest of the borrow. It is said to be frozen and its final value is known.
For example, let’s use Y to borrow X entirely and then modify it to only designate X.Next.Next:

declare
Y : access List := X;

begin
Y := Y.Next.Next; -- reborrow

pragma Assert (At_End_Borrow (X).Next.Next /= null);
pragma Assert (At_End_Borrow (X).Val = 1);
pragma Assert (At_End_Borrow (X).Next.Val = 2);
pragma Assert (At_End_Borrow (X).Next.Next.Val = 3); -- incorrect
pragma Assert (At_End_Borrow (X).Next.Next.Next /= null); -- incorrect

end;

After the reborrow, the part of X still accessible from the borrower is reduced, but since X was borrowed entirely to
begin with, the ownership policy of SPARK still forbids direct access to any components of X while in the scope of Y.
As a result, we have more information about the final value of X than in the previous case. We still know that X will
hold at least three elements, that is X.Next.Next /= null. Additionally, the first and second components of X are
no longer accessible from Y, and since they cannot be accessed directly through X, we know that they will keep their
current values. This is why we can now assert that, at the end of the borrow, X.Val is 1 and X.Next.Val is 2. However,
we still cannot know anything about the part of X still accessible from Y as these properties could be modified later in
the borrow:

Y.Val := 42;
Y.Next := null;

During sequences of re-borrows, it is additionally possible to use constants of anonymous access-to-constant type in
order to save prophecy variables for intermediate values of an access variable, as in the following example:

declare
Y : access List := X;

begin
Y := Y.Next; -- first reborrow

(continues on next page)

406 Appendix E. Implementation Defined Annotations



SPARK User’s Guide, Release 15.0

(continued from previous page)

declare
Z : constant access constant List := At_End_Borrow (Y) with Ghost;
-- At_End_Borrow is Ghost, so Z too.

begin
Y := Y.Next; -- second reborrow
pragma Assert (At_End_Borrow (X).Next.Val = Z.Val);
-- Z match prophecy of first reborrow of Y
pragma Assert (Z.Next.Val = At_End_Borrow (Y).Val);

end
end

As Z serves to save a prophecy variable, it is subject to the same usage restrictions as the corresponding At_End_Borrow
(Y) call, in place of the usual rules for local observers.

As said earlier, in general, GNATprove can handle local borrows without any additional user written annotations.
Therefore, At_End_Borrow functions are mostly useful at places where information is lost by the tool: in postconditions
of borrowing traversal functions (which return a local borrower of their first parameter) and in loop invariants if the
loop involves a reborrow (in this case the value of the borrower at the end of the borrow is modified inside the loop and
needs to be described in the invariant). Let us consider the following example:

1 with SPARK.Big_Integers; use SPARK.Big_Integers;
2 with SPARK.Big_Intervals; use SPARK.Big_Intervals;
3 with Lists; use Lists;
4

5 procedure List_Borrows with SPARK_Mode is
6

7 function Length (L : access constant List) return Big_Natural is
8 (if L = null then 0 else Length (L.Next) + 1)
9 with Subprogram_Variant => (Structural => L);

10

11 function Get (L : access constant List; P : Big_Positive) return Integer is
12 (if P = Length (L) then L.Val else Get (L.Next, P))
13 with Subprogram_Variant => (Structural => L),
14 Pre => P <= Length (L);
15

16 function Eq (L, R : access constant List) return Boolean is
17 (Length (L) = Length (R)
18 and then (for all P in Interval'(1, Length (L)) => Get (L, P) = Get (R, P)))
19 with Annotate => (GNATprove, Inline_For_Proof);
20

21 function Tail (L : access List) return access List with
22 Contract_Cases =>
23 (L = null =>
24 Tail'Result = null and At_End_Borrow (L) = null,
25 others => At_End_Borrow (L).Val = L.Val
26 and Eq (L.Next, Tail'Result)
27 and Eq (At_End_Borrow (L).Next, At_End_Borrow (Tail'Result)));
28 -- No matter what is done later with the result of Tail, at the end of the
29 -- borrow L.Val will be the current value of L.Val and the remainder of the
30 -- list will be the (updated) value of Tail'Result.
31

32 function Tail (L : access List) return access List is
33 begin

(continues on next page)
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34 if L = null then
35 return null;
36 else
37 return L.Next;
38 end if;
39 end Tail;
40

41 procedure Set_All_To_Zero (L : access List) with
42 Post => Length (L) = Length (L)'Old
43 and then (for all P in Interval'(1, Length (L)) => Get (L, P) = 0);
44

45 procedure Set_All_To_Zero (L : access List) is
46 X : access List := L;
47 C : Big_Natural := 0 with Ghost;
48 -- Number of traversed elements
49

50 begin
51 while X /= null loop
52 pragma Loop_Invariant (C = Length (X)'Loop_Entry - Length (X));
53 -- C is the number of traversed elements
54 pragma Loop_Invariant
55 (Length (At_End_Borrow (L)) = C + Length (At_End_Borrow (X)));
56 -- At the end of the borrow, L will have C more elements than X
57 pragma Loop_Invariant
58 (for all P in Interval'(1, Length (At_End_Borrow (L))) =>
59 (if P <= Length (At_End_Borrow (X))
60 then Get (At_End_Borrow (L), P) = Get (At_End_Borrow (X), P)
61 else Get (At_End_Borrow (L), P) = 0));
62 -- At the end of the borrow, the tail of L will be X and the rest
63 -- will contain zeros.
64

65 X.Val := 0;
66 X := X.Next; -- Reborrow
67 C := C + 1;
68 end loop;
69 end Set_All_To_Zero;
70

71 X : List_Acc :=
72 new List'(1, new List'(2, new List'(3, new List'(4, new List'(5, null)))));
73 begin
74 declare
75 Y : access List := Tail (X.Next);
76 begin
77 Y.Val := 42;
78 end;
79

80 pragma Assert (X.Val = 1);
81 pragma Assert (X.Next.Val = 2);
82 pragma Assert (X.Next.Next.Val = 42);
83 pragma Assert (X.Next.Next.Next.Val = 4);
84 end List_Borrows;

The function Tail is a borrowing traversal function. It returns a local borrower of its parameter L. As GNATprove

408 Appendix E. Implementation Defined Annotations



SPARK User’s Guide, Release 15.0

works modularly on a per subprogram basis, it is necessary to specify in its postcondition how the value of the borrowed
parameter L can be reconstructed from the value of the borrower Tail'Result at the end of the borrow. Otherwise,
GNATprove would not be able to recompute the value of the borrowed parameter after the returned borrower goes out
of scope in the caller.

The Tail function returns the Next component of a list if there is one, and null otherwise. As pointer equality is not
allowed in SPARK, we define our own equality function Eq which compares the elements of the list one by one. Note
that the Get function indexes the list from the end (the first element of the list is accessed by Get (L, Length (L))).
This is done to avoid arithmetic in the recursive definition of Get as it slows the proofs down. In the postcondition
of Tail, we consider the two cases, and, in each case, specify both the value returned by the function and how the
parameter L is related to the returned borrower:

• If L is null then Tail returns null and L will stay null for the duration of the borrow.

• Otherwise, Tail returns L.Next, the first element of L will stay as it was at the time of call, and the rest of L
stays equal to the object returned by Tail.

Thanks to this postcondition, GNATprove can verify a program which borrows a part of L using the Tail function and
modifies L through this borrower, as can be seen in the body of List_Borrows.

Postconditions of borrowing traversal functions systematically need to provide two properties: one specifying the result,
and another specifying how the parameter is related to the borrower. This is generally redundant, as by nature the
parameter/borrower relation always holds at the point of return of the function. For example, on the post of Tail, Eq
(L.Next, Tail'Result) repeats Eq (At_End_Borrow (L).Next, At_End_Borrow (Tail'Result)).

The tool limits that redundancy by letting the user write only the parameter/borrower relation. Properties of the result
are automatically derived by duplicating the postcondition, with calls to At_End_Borrow replaced by their arguments.
This covers most (if not all) properties of the result, and additional properties of the result can be explicitly written if
needed. This means we get equivalent behavior for function Tail by removing the second conjunct of the postcondition.

At_End_Borrow functions are also useful to write loop invariants in loops involving reborrows. This is exemplified in
the Set_All_To_Zero procedure which traverses a list and sets all its elements to 0. The variable X borrows the whole
input list L at the beginning of the function. Inside the loop, X is used to modify the structure designated by L. At the end
of the procedure, ownership is transferred back to L automatically. To prove the postcondition of Set_All_To_Zero,
GNATprove needs to know precisely how to reconstruct the value of L at this point. As X is reborrowed in the loop,
the relation between its value and the value of L at the end of the borrow (the end of the scope of X) changes at each
iteration. At the beginning of the loop, X is an alias of L, so the value designated by L is equal to the value designated
by X at the end of the borrow. At each iteration, an element is dropped from X, so the value designated by the current
value of X at the end of the borrow shrinks. At the same time, we get more information about the value designated by
L at the end of the borrow as more and more elements are frozen and therefore definitely set to their current value, that
is, 0.

Because proof uses cutpoints to reason about loops, it is necessary to supply all this information in a loop invariant.
This is what is done in the body of Set_All_To_Zero. To help readability, a ghost variable C is introduced to count
the number of iterations in the loop. The first invariant is a regular invariant, it maintains the value of C at each iteration.
The two following ones are used to describe how L can be reconstructed from X at the end of the borrow: L will be
made of C zeros followed by the final value of X. Note that, in the invariant, no assumption is made about the changes
that can be made to X during the rest of the borrow, there is no look ahead. Both Tail and Set_All_To_Zero can be
entirely verified by GNATprove:

1 list_borrows.adb:7:13: info: implicit aspect Always_Terminates on "Length" has been␣
↪→proved, subprogram will terminate

2 list_borrows.adb:8:24: info: predicate check proved
3 list_borrows.adb:8:31: info: subprogram variant proved
4 list_borrows.adb:8:31: info: predicate check proved
5 list_borrows.adb:8:40: info: pointer dereference check proved
6 list_borrows.adb:8:47: info: predicate check proved

(continues on next page)
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7 list_borrows.adb:8:49: info: predicate check proved
8 list_borrows.adb:11:13: info: implicit aspect Always_Terminates on "Get" has been proved,

↪→ subprogram will terminate
9 list_borrows.adb:12:10: info: predicate check proved

10 list_borrows.adb:12:14: info: predicate check proved
11 list_borrows.adb:12:31: info: pointer dereference check proved
12 list_borrows.adb:12:41: info: subprogram variant proved
13 list_borrows.adb:12:41: info: precondition proved
14 list_borrows.adb:12:47: info: pointer dereference check proved
15 list_borrows.adb:14:13: info: predicate check proved
16 list_borrows.adb:14:18: info: predicate check proved
17 list_borrows.adb:16:13: info: implicit aspect Always_Terminates on "Eq" has been proved,␣

↪→subprogram will terminate
18 list_borrows.adb:17:07: info: predicate check proved
19 list_borrows.adb:17:20: info: predicate check proved
20 list_borrows.adb:18:58: info: precondition proved
21 list_borrows.adb:18:66: info: predicate check proved
22 list_borrows.adb:18:71: info: precondition proved
23 list_borrows.adb:18:79: info: predicate check proved
24 list_borrows.adb:21:13: info: implicit aspect Always_Terminates on "Tail" has been␣

↪→proved, subprogram will terminate
25 list_borrows.adb:23:09: info: contract case proved
26 list_borrows.adb:25:09: info: contract case proved
27 list_borrows.adb:25:38: info: pointer dereference check proved
28 list_borrows.adb:25:46: info: pointer dereference check proved
29 list_borrows.adb:26:20: info: pointer dereference check proved
30 list_borrows.adb:27:36: info: pointer dereference check proved
31 list_borrows.adb:37:18: info: dynamic accessibility check proved
32 list_borrows.adb:37:18: info: pointer dereference check proved
33 list_borrows.adb:42:14: info: predicate check proved
34 list_borrows.adb:42:14: info: postcondition proved
35 list_borrows.adb:42:37: info: predicate check proved
36 list_borrows.adb:43:57: info: precondition proved
37 list_borrows.adb:43:65: info: predicate check proved
38 list_borrows.adb:47:26: info: predicate check proved
39 list_borrows.adb:52:33: info: predicate check proved
40 list_borrows.adb:52:33: info: loop invariant initialization proved
41 list_borrows.adb:52:33: info: loop invariant preservation proved
42 list_borrows.adb:52:47: info: predicate check proved
43 list_borrows.adb:52:61: info: predicate check proved
44 list_borrows.adb:55:13: info: predicate check proved
45 list_borrows.adb:55:13: info: loop invariant initialization proved
46 list_borrows.adb:55:13: info: loop invariant preservation proved
47 list_borrows.adb:55:42: info: predicate check proved
48 list_borrows.adb:55:46: info: predicate check proved
49 list_borrows.adb:58:13: info: loop invariant preservation proved
50 list_borrows.adb:58:13: info: loop invariant initialization proved
51 list_borrows.adb:59:21: info: predicate check proved
52 list_borrows.adb:59:26: info: predicate check proved
53 list_borrows.adb:60:23: info: precondition proved
54 list_borrows.adb:60:47: info: predicate check proved
55 list_borrows.adb:60:52: info: precondition proved

(continues on next page)
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56 list_borrows.adb:60:76: info: predicate check proved
57 list_borrows.adb:61:23: info: precondition proved
58 list_borrows.adb:61:47: info: predicate check proved
59 list_borrows.adb:65:11: info: pointer dereference check proved
60 list_borrows.adb:66:16: info: pointer dereference check proved
61 list_borrows.adb:67:15: info: predicate check proved
62 list_borrows.adb:67:17: info: predicate check proved
63 list_borrows.adb:67:19: info: predicate check proved
64

65 list_borrows.adb:71:04: medium: resource or memory leak might occur at end of scope
66 71>| X : List_Acc :=
67 72 | new List'(1, new List'(2, new List'(3, new List'(4, new List'(5, null)))));
68 list_borrows.adb:75:33: info: pointer dereference check proved
69 in reconstructed value at the end of the borrow at list_borrows.adb:75
70 list_borrows.adb:77:08: info: pointer dereference check proved
71 list_borrows.adb:80:19: info: assertion proved
72 list_borrows.adb:80:20: info: pointer dereference check proved
73 list_borrows.adb:81:19: info: assertion proved
74 list_borrows.adb:81:20: info: pointer dereference check proved
75 list_borrows.adb:81:25: info: pointer dereference check proved
76 list_borrows.adb:82:19: info: assertion proved
77 list_borrows.adb:82:20: info: pointer dereference check proved
78 list_borrows.adb:82:25: info: pointer dereference check proved
79 list_borrows.adb:82:30: info: pointer dereference check proved
80 list_borrows.adb:83:19: info: assertion proved
81 list_borrows.adb:83:20: info: pointer dereference check proved
82 list_borrows.adb:83:25: info: pointer dereference check proved
83 list_borrows.adb:83:30: info: pointer dereference check proved
84 list_borrows.adb:83:35: info: pointer dereference check proved

E.8 Annotation for Accessing the Logical Equality for a Type
In Ada, the equality is not the logical equality in general. In particular, arrays are considered to be equal if they contain
the same elements, even with different bounds, +0.0 and -0.0 are considered equal. . .

It is possible to use a pragma or aspect Annotate to ask GNATprove to interpret a function with an equality profile
as the logical equality for the type. If the function body is visible in SPARK, a check will be emitted to ensure that it
indeed checks for logical equality as understood by the proof engine (which depends on the underlying model used by
the tool, see below). It comes in handy for example to express that a (part of a) data-structure is left unchanged by a
procedure, as is done in the example below:

subtype Length is Natural range 0 .. 100;
type Word (L : Length := 0) is record

Value : String (1 .. L);
end record;
function Real_Eq (W1, W2 : String) return Boolean with
Ghost,
Import,
Annotate => (GNATprove, Logical_Equal);

type Dictionary is array (Positive range <>) of Word;

procedure Set (D : in out Dictionary; I : Positive; W : String) with
(continues on next page)
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Pre => I in D'Range and W'Length <= 100,
Post => D (I).Value = W
and then (for all J in D'Range =>

(if I /= J then Real_Eq (D (J).Value, D'Old (J).Value)))
is
begin

D (I) := (L => W'Length, Value => W);
end Set;

The actual interpretation of logical equality is highly dependent on the underlying model used for formal verification.
However, the following properties are always valid, no matter the actual type on which a logical equality function
applies:

• Logical equality functions are equivalence relations, that is, they are reflexive, symmetric, and transitive. This
implies that such functions can always be used to express that something is preserved as done above.

• There is no way to tell the difference between between two values which are logically equal. Said otherwise,
all SPARK compatible functions will return the same result on logically equal inputs. Note that Ada functions
which do not follow SPARK assumptions may not, for example, if they compare the address of pointers which
are not modelled by GNATprove. Such functions should never be used inside SPARK code as they can introduce
soundness issues.

• Logical equality is handled efficiently, in a builtin way, by the underlying solvers. This is different from the
regular Ada equality which is basically handled as a function call, using potentially complex defining axioms (in
particular Ada equality over arrays involves quantifiers).

Note

In Ada, copying an expression might not necessarily return a logically equal value. This happens for example when
a value is assigned into a variable or returned by a function. Indeed, such copies might involve for example sliding
(for arrays) or a partial copy (for view conversions of tagged types).

For most types, it is possible to provide a SPARK body for a logical equality function. More precisely, logical equality
can be implemented using the regular Ada equality for discrete types and fixed point types. For floating point types,
both the value and the sign need to be compared (to tell the difference between +0.0 and -0.0). Logical equality on
constrained arrays and untagged records can be achieved by comparing the components. In addition, it is necessary to
compare the bounds of unconstrained arrays. Since the address of access-to-object types is not modeled in SPARK,
logical equality should return true if either both pointers are null or they designate logically equal values. This is
examplified below:

1 package Logical_Equality_Implementation with SPARK_Mode is
2

3 -- Scalar types
4

5 type My_Bool is new Boolean;
6 function Eq (X, Y : My_Bool) return Boolean is
7 (X = Y)
8 with Annotate => (GNATprove, Logical_Equal);
9

10 type My_Int is range 1 .. 100;
11 function Eq (X, Y : My_Int) return Boolean is
12 (X = Y)
13 with Annotate => (GNATprove, Logical_Equal);

(continues on next page)
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14

15 type My_Mod is mod 42;
16 function Eq (X, Y : My_Mod) return Boolean is
17 (X = Y)
18 with Annotate => (GNATprove, Logical_Equal);
19

20 type My_Float is digits 4;
21 function Eq (X, Y : My_Float) return Boolean is
22 (X = Y and then My_Float'Copy_Sign (1.0, X) = My_Float'Copy_Sign (1.0, Y))
23 with Annotate => (GNATprove, Logical_Equal);
24

25 -- Composite types
26

27 type Constr_Arr is array (Positive range 1 .. 100) of My_Float;
28 function Eq (X, Y : Constr_Arr) return Boolean is
29 (for all I in 1 .. 100 => Eq (X (I), Y (I)))
30 with Annotate => (GNATprove, Logical_Equal);
31

32 type Unconstr_Arr is array (Positive range <>) of My_Int;
33 function Eq (X, Y : Unconstr_Arr) return Boolean is
34 (X = Y and then X'First = Y'First and then X'Last = Y'Last)
35 with Annotate => (GNATprove, Logical_Equal);
36

37 type My_Rec (D : My_Bool) is record
38 case D is
39 when True =>
40 F : My_Int;
41 G : My_Mod;
42 when False =>
43 H : My_Float;
44 A : Constr_Arr;
45 end case;
46 end record;
47 function Eq (X, Y : My_Rec) return Boolean is
48 (Eq (X.D, Y.D) and then
49 (if X.D then Eq (X.F, Y.F) and then Eq (X.G, Y.G)
50 else Eq (X.H, Y.H) and then Eq (X.A, Y.A)))
51 with Annotate => (GNATprove, Logical_Equal);
52

53 -- Access types
54

55 type My_Float_Acc is access My_Float;
56 function Eq (X, Y : My_Float_Acc) return Boolean is
57 ((X = null) = (Y = null)
58 and then (if X /= null then Eq (X.all, Y.all)))
59 with Annotate => (GNATprove, Logical_Equal);
60

61 type My_Float_List_Cell;
62 type My_Float_List is access My_Float_List_Cell;
63 type My_Float_List_Cell is record
64 V : My_Float;
65 N : My_Float_List;

(continues on next page)
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66 end record;
67 function Eq (X, Y : My_Float_List) return Boolean is
68 ((X = null) = (Y = null)
69 and then (if X /= null then Eq (X.V, Y.V) and then Eq (X.N, Y.N)))
70 with Subprogram_Variant => (Structural => X),
71 Annotate => (GNATprove, Logical_Equal);
72

73 end Logical_Equality_Implementation;

All logical equality annotations are proved on this example:

1 logical_equality_implementation.ads:6:13: info: implicit aspect Always_Terminates on "Eq
↪→" has been proved, subprogram will terminate

2 logical_equality_implementation.ads:8:09: info: Inline_For_Proof or Logical_Equal␣
↪→annotation proved

3 logical_equality_implementation.ads:11:13: info: implicit aspect Always_Terminates on "Eq
↪→" has been proved, subprogram will terminate

4 logical_equality_implementation.ads:13:09: info: Inline_For_Proof or Logical_Equal␣
↪→annotation proved

5 logical_equality_implementation.ads:16:13: info: implicit aspect Always_Terminates on "Eq
↪→" has been proved, subprogram will terminate

6 logical_equality_implementation.ads:18:09: info: Inline_For_Proof or Logical_Equal␣
↪→annotation proved

7 logical_equality_implementation.ads:21:13: info: implicit aspect Always_Terminates on "Eq
↪→" has been proved, subprogram will terminate

8 logical_equality_implementation.ads:23:09: info: Inline_For_Proof or Logical_Equal␣
↪→annotation proved

9 logical_equality_implementation.ads:28:13: info: implicit aspect Always_Terminates on "Eq
↪→" has been proved, subprogram will terminate

10 logical_equality_implementation.ads:30:09: info: Inline_For_Proof or Logical_Equal␣
↪→annotation proved

11 logical_equality_implementation.ads:33:13: info: implicit aspect Always_Terminates on "Eq
↪→" has been proved, subprogram will terminate

12 logical_equality_implementation.ads:35:09: info: Inline_For_Proof or Logical_Equal␣
↪→annotation proved

13 logical_equality_implementation.ads:47:13: info: implicit aspect Always_Terminates on "Eq
↪→" has been proved, subprogram will terminate

14 logical_equality_implementation.ads:49:26: info: discriminant check proved
15 logical_equality_implementation.ads:49:31: info: discriminant check proved
16 logical_equality_implementation.ads:49:49: info: discriminant check proved
17 logical_equality_implementation.ads:49:54: info: discriminant check proved
18 logical_equality_implementation.ads:50:19: info: discriminant check proved
19 logical_equality_implementation.ads:50:24: info: discriminant check proved
20 logical_equality_implementation.ads:50:42: info: discriminant check proved
21 logical_equality_implementation.ads:50:47: info: discriminant check proved
22 logical_equality_implementation.ads:51:09: info: Inline_For_Proof or Logical_Equal␣

↪→annotation proved
23 logical_equality_implementation.ads:56:13: info: implicit aspect Always_Terminates on "Eq

↪→" has been proved, subprogram will terminate
24 logical_equality_implementation.ads:58:41: info: pointer dereference check proved
25 logical_equality_implementation.ads:58:48: info: pointer dereference check proved
26 logical_equality_implementation.ads:59:09: info: Inline_For_Proof or Logical_Equal␣

(continues on next page)
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↪→annotation proved
27 logical_equality_implementation.ads:67:13: info: implicit aspect Always_Terminates on "Eq

↪→" has been proved, subprogram will terminate
28 logical_equality_implementation.ads:69:40: info: pointer dereference check proved
29 logical_equality_implementation.ads:69:45: info: pointer dereference check proved
30 logical_equality_implementation.ads:69:58: info: subprogram variant proved
31 logical_equality_implementation.ads:69:63: info: pointer dereference check proved
32 logical_equality_implementation.ads:69:68: info: pointer dereference check proved
33 logical_equality_implementation.ads:71:08: info: Inline_For_Proof or Logical_Equal␣

↪→annotation proved

For tagged records, the fact that functions of a specific tagged types might be used on any descendent make it impossible
to implement the logical equality in SPARK in general. However, it can be done if the tag is specifically known by
comparing the components like for untagged records. In a similar way, logical equality cannot be implemented for
partially intialized data-structures annotated with Relaxed_Initialization.

Additionally, a user can safely annotate a comparison function on private types whose full view is not in SPARK using
the Logical_Equal annotation if it behaves as expected, namely, it is an equivalence relation, and there is no way,
using the API provided in the public part of the enclosing package, to tell the difference between two values on which
this function returns True.

Note

For private types whose full view is not in SPARK, GNATprove will peek inside the full view to try and determine
whether or not to interpret the primitive equality on such types as the logical equality.

E.9 Annotation for the Predefined Equality of Private Types
In Ada, an equality operator is predefined for almost all types (except limited types). This predefined equality depends
on the shape of the type. It is also possible to override the equality operator for a given type. This overriding is called
the primitive equality of the type. Depending on the context, the predefined or the primitive equality of a type might be
used. In particular, implicit equality operations on types which are not record types - in membership tests or predefined
equality of composite types typically - uses the predefined equality, even if a primitive equality is supplied for the type.

In general, predefined equality operators are handled precisely by GNATprove following the semantics of Ada. How-
ever, when the full view of a private type is not visible in SPARK, it might not be possible to do so. In this case,
GNATprove approximates the behavior of the predefined equality by peeking beyond SPARK_Mode boundaries into the
full view of the type. If it can determine that it is safe to do so, it will handle the predefined equality of a private type as
the logical equality (see Annotation for Accessing the Logical Equality for a Type). Otherwise, the predefined equality
of the private type will be left unspecified and nothing will be provable about it.

It is possible for a user to short-circuit this mechanism and instead specify directly on a private type whose full view
is not in SPARK how the predefined equality should be handled using the Predefined_Equality annotation. If this
annotation is provided on a type, it will be trusted and GNATprove will not peek into the full view. For now, the
following profiles are supported:

• No_Equality: GNATprove will make sure that the predefined equality of the private type is never used. It can
be a good way to ensure that users of a library use the primitive equality instead. This is the default handling of
GNATprove for visible composite types containing a component of an access-to-object type.

• Only_Null: GNATprove will make sure that the predefined equality of the private type is only used when one
of the operands is a specific constant annotated as the Null_Value. This is the default handling of GNATprove
for visible access-to-object types.
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As an example consider the following package. An appropriate equality for the Unbounded_String type is provided
as a primitive equality in Unbounded_Strings. The Predefined_Equality annotation is used to make sure that
its predefined equality will never be called by programs using this library. It is necessary in particular so that the
To_Unbounded_String function can be used safely even though it will produce different pointers each time it is
called.

package Unbounded_Strings is

type Unbounded_String is private with
Default_Initial_Condition => False,
Annotate => (GNATprove, Predefined_Equality, "No_Equality");

function "=" (X, Y : Unbounded_String) return Boolean;

function To_Unbounded_String (S : String) return Unbounded_String;

function To_String (S : Unbounded_String) return String;

private
pragma SPARK_Mode (Off);

type Unbounded_String is not null access constant String;

function "=" (X, Y : Unbounded_String) return Boolean is (X.all = Y.all);

function To_Unbounded_String (S : String) return Unbounded_String is
(new String'(S));

function To_String (S : Unbounded_String) return String is
(S.all);

end Unbounded_Strings;

It would be possible instead to provide a specific Null_String value on which the predefined equality is allowed:

package Unbounded_Strings is

type Unbounded_String is private with
Default_Initial_Condition => Unbounded_String = Null_String,
Annotate => (GNATprove, Predefined_Equality, "Only_Null");

Null_String : constant Unbounded_String with
Annotate => (GNATprove, Predefined_Equality, "Null_Value");

function To_Unbounded_String (S : String) return Unbounded_String;

function To_String (S : Unbounded_String) return String with
Pre => S /= Null_String;

private
pragma SPARK_Mode (Off);

type Unbounded_String is access constant String;

(continues on next page)
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Null_String : constant Unbounded_String := null;

function To_Unbounded_String (S : String) return Unbounded_String is
(new String'(S));

function To_String (S : Unbounded_String) return String is
(S.all);

end Unbounded_Strings;

E.10 Annotation for Enforcing Ownership Checking on a Private Type
Private types whose full view is not in SPARK can be annotated with a pragma or aspect Annotate for ownership.
Such a type is handled by GNATprove in accordance to the Memory Ownership Policy of SPARK. For example, the
type T declared in the procedure Simple_Ownership below has an ownership annotation. As a result, GNATprove
will reject the second call to Read in the body of Simple_Ownership, because the value designated by X has been
moved by the assignment to Y.

1 procedure Simple_Ownership with SPARK_Mode is
2 package Nested is
3 type T is private with
4 Default_Initial_Condition,
5 Annotate => (GNATprove, Ownership);
6

7 function Read (X : T) return Boolean;
8 private
9 pragma SPARK_Mode (Off);

10 type T is null record;
11 function Read (X : T) return Boolean is (True);
12 end Nested;
13 use Nested;
14

15 X : T;
16 Y : T;
17

18 begin
19 pragma Assert (Read (X)); -- OK
20

21 Y := X;
22

23 pragma Assert (Read (X)); -- Error, X has been moved
24 end Simple_Ownership;

In addition, it is possible to state that a such type needs reclamation by supplying the "Needs_Reclamation" string
literal as a third parameter to the aspect or pragma Annotate for ownership. In this case, GNATprove emits checks
to ensure that the resource is not leaked. For these checks to be handled precisely, the user should provide a way
for the tool to check that an object has been reclaimed. This can be done by annotating a function which takes a
value of this type as a parameter and returns a boolean with a pragma or aspect Annotate for ownership whose third
parameter is either "Needs_Reclamation" or "Is_Reclaimed". This function is used to check that the resource
cannot be leaked. A function annotated with "Needs_Reclamation" shall return True when its input holds some
resource while a function annotated with "Is_Reclaimed" shall return True when its input has already been reclaimed.
Another possibility is to annotate a constant of the type with a pragma or aspect Annotate for ownership whose third
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parameter is "Reclaimed_Value". Objects are considered to be reclaimed if they are equal to the provided constant.
Note that constants annotated with "Reclaimed_Value" are not considered to hold resources themselves, so they can
be duplicated. Only one such function or constant shall be provided for a given type. Three examples of use are given
below.

1 package Hidden_Pointers with
2 SPARK_Mode,
3 Always_Terminates
4 is
5 type Pool_Specific_Access is private with
6 Default_Initial_Condition => Is_Null (Pool_Specific_Access),
7 Annotate => (GNATprove, Ownership, "Needs_Reclamation");
8

9 function Is_Null (A : Pool_Specific_Access) return Boolean with
10 Global => null,
11 Annotate => (GNATprove, Ownership, "Is_Reclaimed");
12 function Deref (A : Pool_Specific_Access) return Integer with
13 Global => null,
14 Pre => not Is_Null (A);
15

16 function Allocate (X : Integer) return Pool_Specific_Access with
17 Global => null,
18 Post => not Is_Null (Allocate'Result) and then Deref (Allocate'Result) = X;
19 procedure Deallocate (A : in out Pool_Specific_Access) with
20 Global => null,
21 Post => Is_Null (A);
22

23 private
24 pragma SPARK_Mode (Off);
25 type Pool_Specific_Access is access Integer;
26 end Hidden_Pointers;

The package Hidden_Pointers defines a type Pool_Specific_Access which is really a pool specific access type.
The ownership annotation on Pool_Specific_Access instructs GNATprove that objects of this type should abide
by the Memory Ownership Policy of SPARK. It also states that the type needs reclamation when a value is finalized.
Because of the annotation on the Is_Null function, GNATprove will attempt to prove that Is_Null returns True when
an object of type Pool_Specific_Access is finalized unless it was moved.

The mechanism can also be used for resources which are not linked to memory management. For example, the package
Text_IO defines a limited type File_Descriptor and uses ownership annotations to force GNATprove to verify that
all file descriptors are closed before being finalized.

1 package Text_IO with
2 SPARK_Mode,
3 Always_Terminates
4 is
5 type File_Descriptor is limited private with
6 Default_Initial_Condition => not Is_Open (File_Descriptor),
7 Annotate => (GNATprove, Ownership, "Needs_Reclamation");
8

9 function Is_Open (F : File_Descriptor) return Boolean with
10 Global => null,
11 Annotate => (GNATprove, Ownership, "Needs_Reclamation");
12 function Read_Line (F : File_Descriptor) return String with

(continues on next page)
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13 Global => null,
14 Pre => Is_Open (F);
15

16 function Open (N : String) return File_Descriptor with
17 Global => null,
18 Post => Is_Open (Open'Result);
19 procedure Close (F : in out File_Descriptor) with
20 Global => null,
21 Post => not Is_Open (F);
22

23 private
24 pragma SPARK_Mode (Off);
25 type Text;
26 type File_Descriptor is access all Text;
27 end Text_IO;

In our last example, the ownership annotation is used to enforce the Memory Ownership Policy of SPARK on pointers
used to represent strings compatible with C. Note that the New_String function has to be volatile as the predefined
equality can be used on Chars_Ptr (it is not visibly a pointer), so New_String will return visibly different values each
time it is called.

1 package C_Strings with
2 SPARK_Mode,
3 Always_Terminates
4 is
5 type Chars_Ptr is private with
6 Annotate => (GNATprove, Ownership, "Needs_Reclamation");
7

8 Null_Ptr : constant Chars_Ptr with
9 Annotate => (GNATprove, Ownership, "Reclaimed_Value");

10

11 function New_String (Str : String) return Chars_Ptr with
12 Global => null,
13 Volatile_Function,
14 Post => New_String'Result /= Null_Ptr;
15

16 procedure Free (Item : in out Chars_Ptr) with
17 Global => null,
18 Post => Item = Null_Ptr;
19 private
20 pragma SPARK_Mode (Off);
21 type Chars_Ptr is access all Character;
22

23 Null_Ptr : constant Chars_Ptr := null;
24 end C_Strings;

Note

The equality used to check whether an object is equal to a reclaimed value is the same as the equality used by
membership tests and equality of composite types: it uses the predefined equality even if it has been redefined by
the user, unless the type of the operands is ultimately a record type in which case it uses the primitive equality.
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E.11 Annotation for Instantiating Lemma Procedures Automatically
As featured in Manual Proof Using User Lemmas, it is possible to write lemmas in SPARK as ghost procedures.
However, actual calls to the procedure need to be manually inserted in the program whenever an instance of the
lemma is necessary. It is possible to use an aspect or pragma Annotate to instruct GNATprove that an axiom should
be introduced for a lemma procedure so manual instantiations are no longer necessary. This annotation is called
Automatic_Instantiation. As an example, the Equivalent function below is an equivalence relation. This is
expressed using three lemma procedures which should be instantiated automatically:

function Equivalent (X, Y : Integer) return Boolean with
Global => null;

procedure Lemma_Reflexive (X : Integer) with
Ghost,
Global => null,
Annotate => (GNATprove, Automatic_Instantiation),
Post => Equivalent (X, X);

procedure Lemma_Symmetric (X, Y : Integer) with
Ghost,
Global => null,
Annotate => (GNATprove, Automatic_Instantiation),
Pre => Equivalent (X, Y),
Post => Equivalent (Y, X);

procedure Lemma_Transitive (X, Y, Z : Integer) with
Ghost,
Global => null,
Annotate => (GNATprove, Automatic_Instantiation),
Pre => Equivalent (X, Y) and Equivalent (Y, Z),
Post => Equivalent (X, Z);

Such lemmas should be declared directly after a function declaration, here the Equivalent function. The axiom will
only be available when the associated function is used in the proof context.

E.12 Annotation for Managing the Proof Context
By default, when verifying a part of a program, GNATprove chooses which information is available for proof based
on a liberal notion of visibility: everything is visible except if it is declared in the body of another (possibly nested)
unit. It assumes values of global constants, postconditions of called subprograms, bodies of expression functions. . .
This behavior can be tuned either globally or, in some cases, specificaly for the analysis of a given unit, using the dual
annotations Hide_Info and Unhide_Info.

E.12.1 Overriding the Default Handling of Visibility
The private part of withed units is visible by GNATprove by default if it is in SPARK. This is useful in particular for
units which declare private types as it makes it optional for users to introduce a proper abstraction for these types. As
an example, consider the following package:

1 package Geometry with SPARK_Mode is
2 type Rectangle is private;
3

4 function Perimeter (X : Rectangle) return Positive;
(continues on next page)
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5

6 function Area (X : Rectangle) return Positive;
7

8 function Is_Square (X : Rectangle) return Boolean;
9 private

10 subtype Small_Positive is Positive range 1 .. 100;
11

12 type Rectangle is record
13 Height : Small_Positive;
14 Width : Small_Positive;
15 end record with Predicate => Width <= Height;
16

17 function Perimeter (X : Rectangle) return Positive is
18 (2 * (X.Height + X.Width));
19

20 function Area (X : Rectangle) return Positive is
21 (X.Height * X.Width);
22

23 function Is_Square (X : Rectangle) return Boolean is
24 (X.Height = X.Width);
25 end Geometry;

The package Geometry is not annotated with any contract. However, as its private part is visible, it is still possible to
prove programs using this library:

1 with Geometry; use Geometry;
2

3 procedure Use_Geometry (X, Y : Rectangle) with
4 SPARK_Mode,
5 Global => null
6 is
7 begin
8 pragma Assert ((Area (X) >= 3) = (Perimeter (X) >= 8));
9 pragma Assert

10 (if Area (X) = Area (Y) and then Is_Square (X) and then Is_Square (Y)
11 then X = Y);
12 end Use_Geometry;

1 use_geometry.adb:5:03: info: data dependencies proved
2 use_geometry.adb:8:19: info: assertion proved
3 use_geometry.adb:10:07: info: assertion proved

This behavior is useful in general. However, when designing complex libraries, it might be interesting to enforce
abstraction in order to reduce the proof context in user code. It can be done by using a Hide_Info annotation at the
top of the private part of a package:

1 package Geometry with SPARK_Mode is
2 type Rectangle is private;
3

4 function Perimeter (X : Rectangle) return Positive;
5

6 function Area (X : Rectangle) return Positive;
(continues on next page)
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7

8 function Is_Square (X : Rectangle) return Boolean;
9 private

10 pragma Annotate (GNATprove, Hide_Info, "Private_Part");
11

12 subtype Small_Positive is Positive range 1 .. 100;
13

14 type Rectangle is record
15 Height : Small_Positive;
16 Width : Small_Positive;
17 end record with Predicate => Width <= Height;
18

19 function Perimeter (X : Rectangle) return Positive is
20 (2 * (X.Height + X.Width));
21

22 function Area (X : Rectangle) return Positive is
23 (X.Height * X.Width);
24

25 function Is_Square (X : Rectangle) return Boolean is
26 (X.Height = X.Width);
27 end Geometry;

Such an annotation is only allowed on library-level packages that are visible from outside the library unit. This excludes
in particular nested packages in a package body or in a private child package. They cause the private parts of annotated
packages to no longer be visible when verifying user code. However, they remain visible when analysing enclosing units
and child packages. Note that using this annotation generally requires users to write additional contracts for user code to
remain provable. In particular, this might include getter or model functions as well as a user-defined primitive equality
with a contract. As an example, with this annotation and no other changes, Use_Geometry becomes impossible to
prove:

1

2 use_geometry.adb:8:19: medium: assertion might fail
3 8 | pragma Assert ((Area (X) >= 3) = (Perimeter (X) >= 8));
4 | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5 possible fix: subprogram at line 3 should mention X in a precondition
6 3 |procedure Use_Geometry (X, Y : Rectangle) with
7 |^ here
8

9 use_geometry.adb:11:12: medium: assertion might fail, cannot prove X = Y
10 11 | then X = Y);
11 | ^~~~~
12 possible fix: subprogram at line 3 should mention X and Y in a precondition
13 3 |procedure Use_Geometry (X, Y : Rectangle) with
14 |^ here

Retaining provability can be done for example by introducing ghost functions returning the width and the heigth of a
rectangle and using them in the contracts of other functions. The obvious duplication here is the reason why abstraction
is not enforced on private parts by default:

1 package Geometry with SPARK_Mode is
2 type Rectangle is private;
3

(continues on next page)
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4 function Get_Height (X : Rectangle) return Positive with
5 Ghost,
6 Post => Get_Height'Result <= 100;
7

8 function Get_Width (X : Rectangle) return Positive with
9 Ghost,

10 Post => Get_Width'Result <= Get_Height (X);
11

12 function Perimeter (X : Rectangle) return Positive with
13 Post => Perimeter'Result = 2 * (Get_Height (X) + Get_Width (X));
14

15 function Area (X : Rectangle) return Positive with
16 Post => Area'Result = Get_Height (X) * Get_Width (X);
17

18 function Is_Square (X : Rectangle) return Boolean with
19 Post => Is_Square'Result = (Get_Height (X) = Get_Width (X));
20

21 function "=" (X, Y : Rectangle) return Boolean with
22 Post => "="'Result =
23 (Get_Height (X) = Get_Height (Y) and Get_Width (X) = Get_Width (Y));
24 private
25 pragma Annotate (GNATprove, Hide_Info, "Private_Part");
26

27 subtype Small_Positive is Positive range 1 .. 100;
28

29 type Rectangle_Base is record
30 Height : Small_Positive;
31 Width : Small_Positive;
32 end record with Predicate => Width <= Height;
33

34 function My_Eq (X, Y : Rectangle_Base) return Boolean renames "=";
35 -- Introduce another name to refer to the predefined equality
36

37 type Rectangle is new Rectangle_Base;
38

39 function Get_Height (X : Rectangle) return Positive is (X.Height);
40

41 function Get_Width (X : Rectangle) return Positive is (X.Width);
42

43 function Perimeter (X : Rectangle) return Positive is
44 (2 * (X.Height + X.Width));
45

46 function Area (X : Rectangle) return Positive is
47 (X.Height * X.Width);
48

49 function Is_Square (X : Rectangle) return Boolean is
50 (X.Height = X.Width);
51

52 function "=" (X, Y : Rectangle) return Boolean renames My_Eq;
53 -- "=" really is the predefined equality on rectangle
54 end Geometry;
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1 use_geometry.adb:5:03: info: data dependencies proved
2 use_geometry.adb:8:19: info: assertion proved
3 use_geometry.adb:10:07: info: assertion proved

Note

Private types declared in packages with hidden private parts should be annotated with Ownership and
Predefined_Equality annotations if their full view is subject to ownership or if its predefined equality is re-
stricted (in particular if they have access parts). Otherwise, GNATprove rejects the code with an error. See Anno-
tation for Enforcing Ownership Checking on a Private Type and Annotation for the Predefined Equality of Private
Types for more information.

By default, refined postconditions and bodies of expression functions declared in the body of a package are not visible
from outside of this package. This enforces abstraction and prevents the proof context from growing too much, in
particular with generic instantiations. However, it can be the case that the information hidden in the body of a nested
package is in fact necessary to prove its enclosing unit. In particular, it happens when all entities introduced for the
specification of a library are grouped together in a ghost nested package:

package My_Lib is

type T is private;

package Formal_Model with Ghost is

type Model_T is ...;

function Model (X : T) return Model_T;

end Formal_Model;

...

end My_Lib;

It is possible to disclose the content of the body of a nested package using an Unhide_Info annotation. In this case,
the body of expression functions and potential refined postconditions specified in this body are visible as if they were
declared directly in the enclosing unit.

package body My_Lib is

package body Formal_Model with
Annotate => (GNATprove, Unhide_Info, "Package_Body")

is

function Model (X : T) return Model_T is (...);

end Formal_Model;

...

end My_Lib;
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E.12.2 Pruning the Proof Context on a Case by Case Basis
While, in general, having information about all used entities is desirable, it might result in untractable proof contexts
on large programs. It is possible to use an annotation to manually add or remove information from the proof context.
For the time being, only bodies of expression functions can be handled in this way.

Information hiding is decided at the level of an entity for which checks are generated, namely, a subprogram or entry,
or the elaboration of a package. It cannot be refined in a smaller scope. To state that the body of an expression function
should be hidden when verifying an entity E, a pragma with the Hide_Info annotation should be used either at the
begining of the body of E or just after its specification or body. In the following example, the body of the expression
function F is hidden when verifying its callers, making it impossible to prove their postconditions:

function F (X, Y : Boolean) return Boolean is (X and Y);

function Call_F (X, Y : Boolean) return Boolean is
(F (X, Y))

with Post => Call_F'Result = (X and Y); -- Unprovable, F is hidden
pragma Annotate (GNATprove, Hide_Info, "Expression_Function_Body", F);

function Call_F_2 (X, Y : Boolean) return Boolean with
Post => Call_F_2'Result = (X and Y); -- Unprovable, F is hidden

function Call_F_2 (X, Y : Boolean) return Boolean is
begin
return F (X, Y);

end Call_F_2;
pragma Annotate (GNATprove, Hide_Info, "Expression_Function_Body", F);

function Call_F_3 (X, Y : Boolean) return Boolean with
Post => Call_F_3'Result = (X and Y); -- Unprovable, F is hidden

function Call_F_3 (X, Y : Boolean) return Boolean is
pragma Annotate (GNATprove, Hide_Info, "Expression_Function_Body", F);

begin
return F (X, Y);

end Call_F_3;

It is also possible to hide information by default and then use an annotation to disclose it when needed. A Hide_Info
annotation located on the entity which is hidden is considered to provide a default. For example, the body of the
expression function G is hidden by default. The postcondition of its caller Call_G cannot be proved.

function G (X, Y : Boolean) return Boolean is (X and Y) with
Annotate => (GNATprove, Hide_Info, "Expression_Function_Body");

-- G is hidden by default

function Call_G (X, Y : Boolean) return Boolean is
(G (X, Y))

with Post => Call_G'Result = (X and Y); -- Unprovable, G is hidden

When information is hidden by default, it is possible to disclose it while verifying an entity using the Unhide_Info
annotation. This allows proving the Call_G_2 function below:

function Call_G_2 (X, Y : Boolean) return Boolean is
(G (X, Y))

with Post => Call_G_2'Result = (X and Y); -- Provable, G is no longer hidden
(continues on next page)
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pragma Annotate (GNATprove, Unhide_Info, "Expression_Function_Body", G);

Remark that, when information is hidden by default, it is even hidden during the verification of the entity whose
information we are hiding. For example, when verifying a recursive expression function whose body is hidden by
default, the body of recursive calls is not available. If necessary, it can be disclosed using an Unhide_Info annotation:

-- Rec_F is hidden for its recursive calls

function Rec_F (X, Y : Boolean) return Boolean is
(if not X then False elsif X = Y then True else Rec_F (Y, X))
with
Subprogram_Variant => (Decreases => X),
Post => (if X then Rec_F'Result = Y), -- Unprovable, Rec_F is hidden
Annotate => (GNATprove, Hide_Info, "Expression_Function_Body");

-- The second annotation overrides the default for recursive calls

function Rec_F_2 (X, Y : Boolean) return Boolean is
(if not X then False elsif X = Y then True else Rec_F_2 (Y, X))
with
Subprogram_Variant => (Decreases => X),
Post => (if X then Rec_F_2'Result = Y), -- Provable, Rec_F_2 is visible
Annotate => (GNATprove, Hide_Info, "Expression_Function_Body");

pragma Annotate (GNATprove, Unhide_Info, "Expression_Function_Body", Rec_F_2);

E.13 Annotation for Handling Specially Higher Order Functions
Functions for higher order programming can be expressed using parameters of an anonymous access-to-function type.
As an example, here is a function Map returning a new array whose elements are the result of the application a function
F to the elements of its input array parameter:

function Map
(A : Nat_Array;
F : not null access function (N : Natural) return Natural)
return Nat_Array

with
Post => Map'Result'First = A'First and Map'Result'Last = A'Last
and (for all I in A'Range => Map'Result (I) = F (A (I)));

In a functional programming style, these functions are often called with an access to a local function as a parameter.
Unfortunately, as GNATprove generally handles access-to-subprograms using refinement semantics, it is not possible
to use a function accessing global data as an actual for an anonymous access-to-function parameter (see Subprogram
Pointers). To workaround this limitation, it is possible to annotate the function Map with a pragma or aspect Annotate
=> (GNATprove, Higher_Order_Specialization). When such a function is called on a reference to the Access
attribute of a function, it will benefit from a partial exemption from the checks usually performed on the creation of such
an access. Namely, the function will be allowed to access data, and it might even have a precondition if it can be proved
to always hold at the point of call. We say that such a call is specialized for a particular value of its access-to-function
parameter. As an example, consider the function Divide_All defined below. As the function Map is annotated with
Higher_Order_Specialization, it can be called on the function Divide, even though it accesses some global data
(the parameter N) and has a precondition.
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function Map
(A : Nat_Array;
F : not null access function (N : Natural) return Natural)
return Nat_Array

with
Annotate => (GNATprove, Higher_Order_Specialization),
Post => Map'Result'First = A'First and Map'Result'Last = A'Last
and (for all I in A'Range => Map'Result (I) = F (A (I)));

function Divide_All (A : Nat_Array; N : Natural) return Nat_Array with
Pre => N /= 0,
Post => (for all I in A'Range => Divide_All'Result (I) = A (I) / N);

function Divide_All (A : Nat_Array; N : Natural) return Nat_Array is
function Divide (E : Natural) return Natural is
(E / N)

with Pre => N /= 0;
begin
return Map (A, Divide'Access);

end Divide_All;

Note

It might not be possible to annotate a function with Higher_Order_Specialization if the access value of its
parameter is used in the contract of the function, as opposed to only its dereference. This happens in particular if
the parameter is used in a call to a function which does not have the Higher_Order_Specialization annotation.

Because the analysis done by GNATprove stays modular, the precondition of the referenced function has to be provable
on all possible parameters (but the specialized access-to-function parameters) and not only on the ones on which it is
actually called. For example, even if we know that the precondition of Add holds for all the elements of the input array
A, there will still be a failed check on the call to Map in Add_All defined below. Indeed, GNATprove does not peek
into the body of Map and therefore has no way to know that its parameter F is only called on elements of A.

function Add_All (A : Nat_Array; N : Natural) return Nat_Array with
Pre => (for all E of A => E <= Natural'Last - N),
Post => (for all I in A'Range => Add_All'Result (I) = A (I) + N);

function Add_All (A : Nat_Array; N : Natural) return Nat_Array is
function Add (E : Natural) return Natural is
(E + N)

with Pre => E <= Natural'Last - N;
begin
return Map (A, Add'Access);

end Add_All;

To avoid this kind of issue, it is possible to write a function with no preconditions and a fallback value as done below.
Remark that this does not prevent the tool from proving the postcondition of Add_All.

function Add_All (A : Nat_Array; N : Natural) return Nat_Array is
function Add (E : Natural) return Natural is
(if E <= Natural'Last - N then E + N else 0);

begin
(continues on next page)
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return Map (A, Add'Access);
end Add_All;

Note

Only the regular contract of functions is available on specialized calls. Bodies of expression functions and refined
postconditions will be ignored.

The Higher_Order_Specialization annotation can also be supplied on a lemma procedure (see Manual Proof
Using User Lemmas). If this procedure has an Automatic_Instantiation annotation (see Annotation for Instan-
tiating Lemma Procedures Automatically) and its associated function also has an Higher_Order_Specialization
annotation, the lemma will generally be instantiated automatically on specialized calls to the function. As an example,
the function Count defined below returns the number of elements with a property in an array. The function Count is
specified in a recursive way in its postcondition. The two lemmas Lemma_Count_All and Lemma_Count_None give
the value of Count when all the elements of A or no elements of A fulfill the property. They will be automatically
instantiated on all specializations of Count.

function Count
(A : Nat_Array;
F : not null access function (N : Natural) return Boolean)
return Natural

with
Annotate => (GNATprove, Higher_Order_Specialization),
Subprogram_Variant => (Decreases => A'Length),
Post =>
(if A'Length = 0 then Count'Result = 0
else Count'Result =

(if F (A (A'Last)) then 1 else 0) +
Count (A (A'First .. A'Last - 1), F))

and Count'Result <= A'Length;

procedure Lemma_Count_All
(A : Nat_Array;
F : not null access function (N : Natural) return Boolean)

with
Ghost,
Annotate => (GNATprove, Automatic_Instantiation),
Annotate => (GNATprove, Higher_Order_Specialization),
Pre => (for all E of A => F (E)),
Post => Count (A, F) = A'Length;

procedure Lemma_Count_None
(A : Nat_Array;
F : not null access function (N : Natural) return Boolean)

with
Ghost,
Annotate => (GNATprove, Automatic_Instantiation),
Annotate => (GNATprove, Higher_Order_Specialization),
Pre => (for all E of A => not F (E)),
Post => Count (A, F) = 0;
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Note

It can happen that some lemmas cannot be specialized with their associated function. It is the case in particular if
the lemma contains several calls to the function with different access-to-function parameters. In this case, a warning
will be emitted on the lemma declaration.

E.14 Annotation for Handlers
Some programs define handlers, subprograms which might be called asynchronously to perform specific treatments, for
example when an interrupt occurs. These handlers are often registered using access-to-subprogram types. In general,
access-to-subprograms are not allowed to access or modify global data in SPARK. However, this is too constraining
for handlers which tend to work by side-effects. To alleviate this limitation, it is possible to annotate an access-to-
subprogram type with a pragma or aspect Annotate => (GNATprove, Handler). This instructs GNATprove that
these access-to-subprograms will be called asynchronously. It is possible to create a value of such a type using a
reference to the Access attribute on a subprogram accessing or modifying global data, but only when this global data
is synchronized (see SPARK RM 9.1). However, GNATprove will make sure that the subprograms designated by
objects of these types are never called from SPARK code, as it could result in a missing data dependency.

For example, consider the following procedure which resets to zero a global variable Counter:

Counter : Natural := 0 with Atomic;

procedure Reset is
begin

Counter := 0;
end Reset;

It is not possible to store an access to Reset in a regular access-to-procedure type, as it has a global effect. However,
it can be stored in a type annotated with an aspect Annotate => (GNATprove, Handler) like below:

type No_Param_Proc is access procedure with
Annotate => (GNATprove, Handler);

P : No_Param_Proc := Reset'Access;

However, it is not possible to call P from SPARK code as the effect to the Counter variable would be missed.

Note

As handlers are called asynchronously, GNATprove does not allow providing pre and postconditions for the access-
to-subprogram type. As a result, a check will be emitted to ensure that the precondition of each specific subprogram
designated by these handlers is provable in the empty context.

E.15 Annotation for Container Aggregates
The Container_Aggregates annotation allows specifying aggregates on types annotated with the Aspect Aggregate
either directly, using predefined aggregate patterns, or through a model. The second option is the easiest. It is enough to
provide a model function returning a type which supports compatible aggregates. When an aggregate is encountered,
GNATprove deduces the value of its model using the Container_Aggregates annotation on the model type. In
particular, functional containers from the SPARK Libraries are annotated with the Aggregate aspect. Other container
libraries can take advantage of this support to specify aggregates on their own library by providing a model function
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returning a functional container. As an example, sequences can be used as a model to provide aggregates for a linked
list of integers:

1 with SPARK.Containers.Functional.Infinite_Sequences;
2

3 package Through_Model with SPARK_Mode is
4 package My_Seqs is new SPARK.Containers.Functional.Infinite_Sequences (Integer);
5 use My_Seqs;
6

7 type List is private with
8 Aggregate => (Empty => Empty_List, Add_Unnamed => Add),
9 Annotate => (GNATprove, Container_Aggregates, "From_Model");

10

11 function Empty_List return List;
12

13 function Model (L : List) return Sequence with
14 Subprogram_Variant => (Structural => L),
15 Annotate => (GNATprove, Container_Aggregates, "Model");
16

17 procedure Add (L : in out List; E : Integer) with
18 Always_Terminates,
19 Post => Model (L) = Add (Model (L)'Old, E);
20

21 private
22

23 type List_Cell;
24 type List is access List_Cell;
25 type List_Cell is record
26 Data : Integer;
27 Next : List;
28 end record;
29

30 function Model (L : List) return Sequence is
31 (if L = null then Empty_Sequence
32 else Add (Model (L.Next), L.Data));
33

34 function Empty_List return List is (null);
35 end Through_Model;

The Container_Aggregates annotation on type List indicates that its aggregates are specified using a model func-
tion. The annotation on the Model function identifies it as the function that should be used to model aggregates of type
List. It is then possible to use aggregates of type List in SPARK as in the Main procedure below. GNATprove will
use the handling of aggregates on infinite sequences to determine the value of the model of the aggregate and use it to
prove the program.

1 with Through_Model; use Through_Model;
2

3 procedure Main with SPARK_Mode is
4 L : constant List := [1, 2, 3, 4, 5, 6];
5 begin
6 pragma Assert (My_Seqs.Get (Model (L), 4) = 4);
7 end Main;

It is also possible to specify directly how aggregates should be handled, without going through a model. To do this,
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GNATprove provides three different predefined patterns: one for vectors and sequences, one for sets, and one for maps.
The chosen pattern is specified inside the Container_Aggregates annotation on the type. Depending on this pattern,
different functions can be provided to describe it. As an example, aggregates on our linked list of integers can also be
described directly by supplying the three functions required for predefined sequence aggregates - First, Last, and
Get:

1 with SPARK.Big_Integers; use SPARK.Big_Integers;
2 with SPARK.Big_Intervals; use SPARK.Big_Intervals;
3

4 package Predefined with SPARK_Mode is
5 pragma Unevaluated_Use_Of_Old (Allow);
6 type List is private with
7 Aggregate => (Empty => Empty_List, Add_Unnamed => Add),
8 Annotate => (GNATprove, Container_Aggregates, "Predefined_Sequences");
9

10 function Empty_List return List;
11

12 function First return Big_Positive is (1) with
13 Annotate => (GNATprove, Container_Aggregates, "First");
14

15 function Length (L : List) return Big_Natural with
16 Subprogram_Variant => (Structural => L),
17 Annotate => (GNATprove, Container_Aggregates, "Last");
18

19 function Get (L : List; P : Big_Positive) return Integer with
20 Pre => P <= Length (L),
21 Subprogram_Variant => (Structural => L),
22 Annotate => (GNATprove, Container_Aggregates, "Get");
23

24 function Eq (L1, L2 : List) return Boolean is
25 (Length (L1) = Length (L2)
26 and then
27 (for all I in Interval'(1, Length (L1)) =>
28 Get (L1, I) = Get (L2, I)));
29

30 function Copy (L : List) return List with
31 Subprogram_Variant => (Structural => L),
32 Post => Eq (L, Copy'Result);
33

34 procedure Add (L : in out List; E : Integer) with
35 Always_Terminates,
36 Post => Length (L) = Length (L)'Old + 1
37 and then Get (L, Length (L)) = E
38 and then (for all I in Interval'(1, Length (L) - 1) =>
39 Get (L, I) = Get (Copy (L)'Old, I));
40

41 private
42 type List_Cell;
43 type List is access List_Cell;
44 type List_Cell is record
45 Data : Integer;
46 Next : List;
47 end record;

(continues on next page)
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48

49 function Length (L : List) return Big_Natural is
50 (if L = null then 0 else 1 + Length (L.Next));
51

52 function Get (L : List; P : Big_Positive) return Integer is
53 (if P = Length (L) then L.Data else Get (L.Next, P));
54

55 function Empty_List return List is (null);
56 end Predefined;

For all types annotated with Container_Aggregates, GNATprove performs consistency checks to make sure that
the description induced by the annotation is compatible with the subprograms supplied by its Aggregate aspect. For
example, on the List type defined above, GNATprove generates checks to ensure that Length returns First - 1 on
Empty_List. It also checks that calling Add increases the result of Length by one and that its parameter E is associated
to this last position. These checks succeed on our example thanks to the postcondition of Add as made explicit by the
info messages on line 8:

predefined.ads:8:06: info: Container_Aggregates annotation proved
when establishing invariant on Length at predefined.ads:15
after a call to Empty_List at predefined.ads:10

predefined.ads:8:06: info: Container_Aggregates annotation proved
when reestablishing invariant on Get at predefined.ads:19
after a call to Add at predefined.ads:34

predefined.ads:8:06: info: Container_Aggregates annotation proved
when reestablishing invariant on Length at predefined.ads:15
after a call to Add at predefined.ads:34

The Container_Aggregates annotation might also induce restrictions on aggregate usage. For example, if we had
chosen a signed integer type for the return type of Length in Predefined, GNATprove would have introduced checks
on all aggregates of type List to make sure that the number of elements doesn’t exceed the number of indexes.

When a model is used to specify aggregates, both the restrictions on aggregate usage and the consistency checks of
the model are inherited. For example, GNATprove attempts to prove the consistency of Empty_List and Add from
Through_Modelwith the functions supplied for the model. These checks are proved thanks to the precise postcondition
on Add. In the same way, if we had chosen to use a functional vector indexed by a signed integer type instead of an
infinite sequence as a model in Through_Model, we would have been limited by the size of the integer type for our
aggregates.

All types with a Container_Aggregates annotation can be supplied an additional Capacity function. In general,
this function does not have any parameters. It provides a constant bound on the number of elements allowed in the
container. If a Capacity function is supplied on a type using models for its aggregates, it overrides the Capacity
function of the model if any. If present, the Capacity function is used both as an additional restriction on aggregate
usage and as an additional assumption for the consistency checks: GNATprove assumes that the container holds strictly
less than Capacity elements before a call to Add and it makes sure that the number of elements in actual aggregates
never exceeds the capacity.

To accomodate containers which can have a different capacity depending on the object, Ada allows providing an Empty
function which takes an integer value for the capacity as a parameter in the Aggregate aspect. If a Capacity function
is specified for such a type, it shall take the container as a parameter since the capacity is specific to each container. In
this case, it is the upper bound of the parameter type of the Empty function which is used as a restriction on aggregate
usage. Examples of containers with a capacity function (both with and without parameters) can be found in formal
container packages in the SPARK Libraries.

There are three kinds of predefined aggregates patterns: Predefined_Sequences like in the Predefined pack-
age, Predefined_Sets, and Predefined_Maps. The selected pattern should be provided as a string to the
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Container_Aggregates annotation specified on the container type. Additional Container_Aggregates annota-
tions are necessary on each specific function supported by the pattern. They also require a string encoding its intended
use. This usage is examplified in the Predefined package.

The Predefined_Sequences pattern can be applied to containers with positional aggregates. It supports three kinds
of function annotations:

• The function First returns the index or position that should be used for the first element in a container.

• The function Last returns the index or position of the last element in a specific container.

• The function Get returns the element associated to a valid index or position in the container.

All three functions are mandatory. The return types of First and Last should be subtypes of the same signed integer
type, or possibly of Big_Integer.

The consistency checks ensure that:

• Empty returns a container C such that Last (C) = First - 1,

• Add can be called on a container C such that Last (C) < Index_Type'Last, and

• after a call to Add, the result of Last (C) has been incremented by one, the result of calling Get on all previous
indexes is unchanged, and calling Get on the last index returns the added element.

The contracts of Empty and Append below ensure conformance to these consistency checks:

type T is private with
Aggregate => (Empty => Empty,

Add_Unnamed => Append),
Annotate => (GNATprove, Container_Aggregates, "Predefined_Sequences");

function Empty return T with
Post => Last (Empty'Result) = First - 1;

procedure Append (X : in out T; E : Element_Type) with
Always_Terminates,
Pre => Last (X) < Index_Type'Last,
Post => Last (X) = Last (X)'Old + 1 and Get (X, Last (X)) = E
and (for all I in First .. Last (X) - 1 => Get (X, I) = Get (X'Old, I));

function Last (X : T) return Ext_Index with
Annotate => (GNATprove, Container_Aggregates, "Last");

function First return Index_Type with
Annotate => (GNATprove, Container_Aggregates, "First");

function Get (X : T; I : Index_Type) return Element_Type with
Annotate => (GNATprove, Container_Aggregates, "Get"),
Pre => I <= Last (X);

If Last returns a signed integer type, there is a restriction on predefined sequence aggregates usage: GNATprove will
make sure that the number of elements in an aggregate never exceeds the maximum value of the return type of Last.

When an aggregate C is encountered, GNATprove automatically infers that:

• Last (C) - First + 1 is the number of elements in the aggregate and

• Get (First + N - 1) returns a copy of the N’th element.

The Predefined_Sets pattern can be applied to containers with positional aggregates. It supports three kinds of
function annotations:
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• The Contains function returns True if and only if its element parameter is in the container.

• Equivalent_Elements is an equivalence relation such that Contains always returns the same value on two
equivalent elements.

• The Length function returns the number of elements in the set.

Contains and Equivalent_Elements are mandatory, Length is optional. If it is supplied, the Length function
should return a signed integer type or a subtype of Big_Integer.

The consistency checks ensure that:

• Contains returns False for all elements on the result of Empty and Length, if specified, returns 0,

• Add can be called on a container C and an element E such that Contains (C, E) returns False,

• after a call to Add on a container C and an element E, Contains returns True on E and on all elements which
were in C before the call, plus potential additional elements equivalent to E,

• after a call to Add, the result of the Length function if any is incremented by one.

The contracts of Empty and Insert below ensure conformance to these consistency checks:

type T is private with
Aggregate => (Empty => Empty,

Add_Unnamed => Insert),
Annotate => (GNATprove, Container_Aggregates, "Predefined_Sets");

function Empty return T with
Post => Length (Empty'Result) = 0
and then (for all E in Element_Type => not Contains (Empty'Result, E));

procedure Insert (X : in out T; E : Element_Type) with
Always_Terminates,
Pre => not Contains (X, E),
Post => Length (X) = Length (X'Old) + 1 and Contains (X, E)
and (for all F in Element_Type =>

(if Contains (X'Old, F) then Contains (X, F)))
and (for all F in Element_Type =>

(if Contains (X, F) then Contains (X'Old, F) or Eq_Elem (F, E)));

function Eq_Elem (X, Y : Element_Type) return Boolean with
Annotate => (GNATprove, Container_Aggregates, "Equivalent_Elements");

function Contains (X : T; E : Element_Type) return Boolean with
Annotate => (GNATprove, Container_Aggregates, "Contains");

function Length (X : T) return Natural with
Annotate => (GNATprove, Container_Aggregates, "Length");

Aggregates of types annotated with Predefined_Sets cannot contain duplicates, that is, two elements on which
Equivalent_Elements returns True. This restriction on aggregate usage is enforced by GNATprove. It allows the
tool to properly assess the cardinality of the resulting set. If a Length function is supplied and returns a signed integer
type, and no Capacity function applies to the type, GNATprove also makes sure that the number of elements in the
aggregate does not exceed the upper bound of the return type of Length. This last check is replaced by a check on the
capacity if there is one.

When an aggregate C is encountered, GNATprove automatically infers that:

• Contains (C, E) returns True for every element E of the aggregate,
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• Contains (C, E) returns False for every element E which is not equivalent to any element in the aggregate,
and

• Length (C), if supplied, is the number of elements in the aggregate.

The Predefined_Maps pattern can be applied to containers with named aggregates. It supports five kinds of function
annotations:

• The Default_Item function returns the element associated by default to keys of total maps.

• The Has_Key function returns True if and only if its key parameter has an association in a partial map.

• The Get function returns the element associated to a key in the container.

• Equivalent_Keys is an equivalence relation such that Has_Key and Get return the same value on two equivalent
keys.

• The Length function returns the number of associations in a partial map.

Get and Equivalent_Keys are mandatory, exactly one of Default_Item and Has_Key should be supplied (depend-
ing on whether the map is total - it associates a value to all keys - or partial) , and Length is optional and can only
be supplied for partial maps. If it is supplied, the Length function should return a signed integer type or a subtype of
Big_Integer.

The consistency checks ensure that:

• if Default_Item is supplied, Get returns Default_Item for all keys on the result of Empty,

• if Has_Key is supplied, it returns False for all keys on the result of Empty, and Length, if specified, returns 0,

• Add can be called on a container C and a key K such that Has_Key (C, K) returns False (for patial maps) or Get
(C, K) = Default_Item (for total maps),

• after a call to Add on a container C, a key K, and an element E, Has_Key, if any, returns True on K and on all keys
which were in C before the call, plus potential additional keys equivalent to K,

• after a call to Add on a container C, a key K, and an element E, Get returns a copy of E on K and its association
in C before the call on keys which are not equivalent to K, and

• after a call to Add, the result of the Length function if any is incremented by one.

The contracts of Empty and Insert below ensure conformance to these consistency checks for total maps:

type T is private with
Aggregate => (Empty => Empty,

Add_Named => Insert),
Annotate => (GNATprove, Container_Aggregates, "Predefined_Maps");

function Empty return T with
Post => (for all K in Key_Type => Get (Empty'Result, K) = Default_Value);

procedure Insert (X : in out T; K : Key_Type; E : Element_Type) with
Always_Terminates,
Pre => Get (X, K) = Default_Value,
Post => Get (X, K) = E
and (for all F in Key_Type =>

(if not Eq_Key (F, K) then Get (X, F) = Get (X'Old, F)));

function Eq_Key (X, Y : Key_Type) return Boolean with
Annotate => (GNATprove, Container_Aggregates, "Equivalent_Keys");

function Default_Value return Element_Type with
(continues on next page)
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Annotate => (GNATprove, Container_Aggregates, "Default_Item");

function Get (X : T; K : Key_Type) return Element_Type with
Annotate => (GNATprove, Container_Aggregates, "Get";

And here is a version for partial maps:

type T is private with
Aggregate => (Empty => Empty,

Add_Named => Insert),
Annotate => (GNATprove, Container_Aggregates, "Predefined_Maps");

function Empty return T with
Post => Length (Empty'Result) = 0
and (for all K in Key_Type => not Has_Key (Empty'Result, K));

procedure Insert (X : in out T; K : Key_Type; E : Element_Type) with
Always_Terminates,
Pre => not Has_Key (X, K),
Post => Length (X) - 1 = Length (X)'Old
and Has_Key (X, K)
and (for all F in Key_Type =>

(if Has_Key (X'Old, F) then Has_Key (X, F)))
and (for all L in Key_Type =>

(if Has_Key (X, L) then Has_Key (X'Old, L) or Eq_Key (L, K)))
and Get (X, K) = E
and (for all F in Key_Type =>

(if Has_Key (X'Old, F) then Get (X, F) = Get (X'Old, F)));

function Eq_Key (X, Y : Key_Type) return Boolean with
Annotate => (GNATprove, Container_Aggregates, "Equivalent_Keys");

function Has_Key (X : T; K : Key_Type) return Boolean with
Annotate => (GNATprove, Container_Aggregates, "Has_Key");

function Get (X : T; K : Key_Type) return Element_Type with
Pre => Has_Key (X, K),
Annotate => (GNATprove, Container_Aggregates, "Get");

function Length (X : T) return Natural with
Annotate => (GNATprove, Container_Aggregates, "Length");

Aggregates of types annotated with Predefined_Maps cannot contain duplicates, that is, two keys on which
Equivalent_Keys returns True. This restriction on aggregate usage is enforced by GNATprove. It allows the tool to
determine the associated element uniquely and to assess the cardinality of the resulting map. If a Length function is
supplied and returns a signed integer type, and no Capacity function applies to the type, GNATprove also makes sure
that the number of elements in the aggregate does not exceed the upper bound of the return type of Length. This last
check is replaced by a check on the capacity if there is one.

When an aggregate C is encountered, GNATprove automatically infers that:

• if Has_Key is supplied, Has_Key (C, K) returns True for every association K => _ in the aggregate,

• Get (C, K) returns a copy of E for every association K => E in the aggregate,

• for every key K which is not equivalent to any key in the aggregate either Has_Key (C, K) returns False (for
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patial maps) or Get (C, K) returns Default_Item (for total maps), and

• Length (C), if supplied, is the number of elements in the aggregate.

E.16 Annotation for Mutable IN Parameters
In SPARK, parameters of mode in - and every object they designate, see Memory Ownership Policy - are considered
to be preserved by subprogram calls unless the parameters are of an access-to-variable type. Ada, however, does not
enforce the same restriction. In particular, if a parameter of mode in is of a private type which is ultimately an access-
to-variable type, then the subprogram might modify the value it designates. The Mutable_In_Parameter annotation
is designed to make it possible to interact with existing Ada libraries from SPARK code, even if the libraries are not
abiding by the language restrictions. It allows annotating an entry, procedure, or function with side effects so that all
its parameters of mode in of a given type are considered to be potentially modified by the subprogram. This is only
supported for parameters of a private type whose ultimate full view is either not visible from SPARK or an access-to-
variable type.

As an example, consider an Ada library for strings with the following signature:

package My_Unbounded_Strings is

type My_String is private;

Null_String : constant My_String;

function Get (S : My_String) return String with
Pre => S /= Null_String;

procedure Update
(S : My_String;
Index : Positive;
Char : Character)

with Pre =>
S /= Null_String and then Index in Get (S)'Range;

private

type My_String is access String;

Null_String : constant My_String := null;

end My_Unbounded_Strings;

To be able to designate strings of any size, the type My_String is in fact a pointer to an Ada string that can be retrieved
through the Get function. The Update procedure writes a character Char at position Index in the value designated by
S. Since the value of the pointer S is not modified by Update, Ada allows it to be a parameter of mode in. However,
this procedure is not compatible with SPARK, as it modifies the value designated by Item which is considered to be
part of Item as per the Memory Ownership Policy. To make it possible to use this procedure from SPARK code, a
pragma Annotate is supplied directly after Update:

pragma Annotate (GNATprove, Mutable_In_Parameters, My_String);

Thanks to this annotation, GNATprove considers that a call to Update can modify its parameter Item, even if it has
mode in.
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Note

This pragma Annotate does not designate a parameter by name but the parameter type (because the scope of the
parameter entity is limited to the declaration of the enclosing subprogram). It can happen that the same type is used
for more than one parameter of mode in in the subprogram. If it is the case, all such parameters will be considered
to be potentially mutated by the call. If some are in fact preserved, it will need to be stated as a postcondition of
the subprogram.
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ENVIRONMENT VARIABLES USED BY GNATPROVE

This section describes the environment variables that affect how GNATprove operates.

• GPR_TOOL - This environment variable is intended to be used in GPR project files, to specify project settings that
depend on the tool. Leaving this variable unset when invoking GNATprove sets the value to gnatprove. See
also Having Different Switches for Compilation and Verification.

• TMPDIR - This variable should contain a path. It controls the place of storage for certain internal artifacts. See
also GNATprove and Network File Systems or Shared Folders.

The following environment variables are for internal use, or use by developers, and shouldn’t be set when GNATprove
is run:

• GNSA_ROOT, GNAT2WHY_RAC_INFO, GNAT2WHY_RAC_TRACE, GNATPROVE_SOCKET, GNATPROVE_SEMAPHORE
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GNATPROVE LIMITATIONS

G.1 Tool Limitations Leading to an Error Message
The following unsupported constructs are detected by GNATprove and reported through an error message:

• an abstract state marked as Part_Of a concurrent object,

• a reference to the “Access” attribute of an ownership type which does not occur directly inside an assignment
statement, an object declaration, or a simple return statement,

• a conversion between access types with different designated types,

• a formal parameter of an access-to-subprogram type which is annotated with a type invariant,

• an access-to-subprogram type designating a protected subprogram,

• an access-to-subprogram type whose return type is annotated with a type invariant,

• an access-to-subprogram type designating a borrowing traversal function,

• an access-to-subprogram type designating a dispatching operation,

• an access-to-subprogram type designating a No_Return procedure,

• an access-to-subprogram type designating a subprogram annotated with Relaxed_Initialization,

• access attribute on a procedure which might raise exceptions,

• a reference to the “Address” attribute occuring within a subtype indication, a range constraint, or a quantified
expression,

• an uninitialized allocator whose subtype indication has a type constraint,

• a conversion between array types if some matching index types are modular types of different sizes,

• a conversion between array types if some matching index types are not both signed or both modular,

• a pragma Assert_And_Cut occurring immediately within a sequence of statements containing a Loop_Invariant,

• a borrowing traversal function whose first formal parameter does not have an anonymous access-to-variable type,

• a borrowing traversal function marked as a volatile function,

• a reference to the “Class” attribute on a constrained type,

• a representation attribute on an object of classwide type,

• a subtype predicate on a classwide type,

• a raise expression occurring in a precondition, unless it is only used to change the reported error and can safely
be interpreted as False,

• a type constraint on a classwide subtype declaration,
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• a type contract (subtype predicate, default initial condition, or type invariant) on a private type whose full view
is another private type,

• a conversion between a fixed-point type and a floating-point type,

• a conversion between a fixed-point type and an integer type when the small of the fixed-point type is neither an
integer nor the reciprocal of an integer,

• a conversion between a floating point type and a modular type of size 128,

• a conversion between fixed point types whose smalls are not “compatible” according to Ada RM G.2.3(21-24):
the division of smalls is not an integer or the reciprocal of an integer,

• an object with subcomponents of an access-to-variable type annotated with an address clause whose value is the
address of another object,

• delta aggregate with possible aliasing of component associations of an ownership type,

• interface derived from other interfaces,

• entry families,

• aspect “Exceptional_Cases” on dispatching operations,

• procedure which might propagate exceptions with parameters of mode “in out” or “out” subjected to ownership
which might not be passed by reference,

• aspect “Exit_Cases” on dispatching operations,

• an extension aggregate whose ancestor part is a subtype mark,

• GNAT extension for case pattern matching,

• GNAT extension for embedded binary resources,

• GNAT extension for finally statements,

• instance of a generic unit declared in a package whose private part is hidden outside of this package,

• instance of a generic unit declared in a package containing a type with an invariant outside of this package,

• a goto statement occuring in a loop before the invariant which refers to a label occuring inside the loop but after
the invariant,

• private type whose full view contains only subcomponents whose type is annotated with Relaxed_Initialization
in a package whose private part is hidden for proof,

• a reference to the “Image” or “Img” attribute on a type or an object of a type which is not a scalar type,

• usage of incomplete type completed in package body outside of an access type declaration,

• a subprogram with dispatching result which is inherited, not overriden, by a private extension completed in a
hidden private part,

• a subprogram with dispatching result which is inherited, not overriden, by a private extension completed in a
private part with SPARK_Mode Off,

• a subprogram which is inherited, not overriden, from an ancestor declared in a hidden private part,

• a subprogram which is inherited, not overriden, from an ancestor declared in the private part of a package with
SPARK_Mode Off,

• GNAT extension for interpolated string literals,

• container aggregates,

• an iterated component associations with an iterator specification (“for . . . of”) in an array aggregate,
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• the use of an incomplete view of a type coming from a limited with,

• a loop invariant in a list of statements with an exception handler,

• a loop with an iterator filter in its parameter specification,

• an array type with more than 4 dimensions,

• a modular type with a modulus greater than 2 ** 128,

• a move operation occuring as part of a conversion to an access-to-constant type,

• a function annotated as No_Return,

• a reference to a non-static attribute,

• a primitive operation which is inherited from several interfaces in a tagged derivation,

• a primitive operation which is implicitly inherited from several progenitor types in a tagged derivation, and for
which two of these progenitors provide incompatible values for the SPARK mode of the inherited subprogram,

• a primitive operation which is inherited both from the parent type and from an interface in a tagged derivation,

• an iterator specification on a multidimensional array,

• a delta aggregate on a multidimensional array,

• a null aggregate which is a subaggregate of a multidimensional array aggregate with multiple associations,

• a non-scalar object declared in a loop before the loop invariant,

• a multiplication or division between a fixed-point and a floating-point value,

• a multiplication or division between different fixed-point types if the result is not in the “perfect result set”
according to Ada RM G.2.3(21),

• a reference to the “Address” attribute in an address clause whose prefix has subcomponents of an access-to-
variable type,

• a dispatching primitive subprogram overriding with class-wide precondition inherited from a potentially hidden
ancestor,

• a dispatching primitive subprogram overriding declared for a private untagged type with no specific precondition
and a class-wide precondition inherited from ancestor,

• a declaration of an object of an ownership type outside a block for declarations,

• a package declaration occurring in a loop before the loop invariant,

• a private type whose full view is not in SPARK annotated with two subtype predicates, one on the full view and
one on the private view,

• a private type declared in a package whose private part is hidden for proof annotated with two subtype predicates,
one on the full view and one on the private view,

• a call to a primitive operation of a tagged type T occurring in the default initial condition of T with the type
instance as a parameter,

• a call to a protected operation of a protected component inside a protected object,

• a call to a protected operation of the formal parameter of a subprogram,

• a protected entry annotated with a Refined_Post,

• an access-to-subprogram type used as a subcomponent of a type or an object annotated with Re-
laxed_Initialization,

• an object annotated with Relaxed_Initialization is part of an overlay,
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• a concurrent type used as a subcomponent of a type or an object annotated with Relaxed_Initialization,

• a type annotated with an invariant used as a subcomponent of a type or an object annotated with Re-
laxed_Initialization,

• a variable annotated both with Relaxed_Initialization and as Part_Of a concurrent object,

• a protected component annotated with Relaxed_Initialization,

• a tagged type used as a subcomponent of a type or an object annotated with Relaxed_Initialization,

• a subtype with a discriminant constraint containing only subcomponents whose type is annotated with Re-
laxed_Initialization,

• a subprogram declaration occurring in a loop before the loop invariant,

• a call to a suspend operation on a suspension formal parameter,

• an occurrence of the target name @ in an assignment to an object of an anonymous access-to-variable type,

• an occurrence of the target name @ in an assignment to an object containing subcomponents of a named access-
to-variable type,

• an access type designating an incomplete or private type with a subcomponent annotated with a type invariant,

• a protected type annotated with a type invariant,

• a tagged type with a subcomponent annotated with a type invariant,

• a tagged type annotated with a type invariant,

• a volatile object with asynchronous writers or readers and a type invariant,

• an uninitialized allocator inside an expression function,

• a reference to the “Alignment” attribute on a prefix which is not a type with an alignment clause,

• a component of an unconstrained unchecked union type in a tagged extension.

G.2 Other Tool Limitations
The generation of Global contracts by GNATprove has limitations. When this capability is used in a certification
context, the generated contracts should be verified by the user. In particular:

• The Global contracts generated automatically by GNATprove for subprograms without an explicit one, whose
body is not in SPARK, do not take into account indirect calls (through access-to-subprogram and dynamic bind-
ing) and indirect reads/writes to global variables (through access variables). See Coarse Generation for non-
SPARK Subprograms.

Some features defined in the reference manual have not been implemented in the tool. It is the case of:

• classwide Global and Depends contracts as defined in SPARK RM 6.1.6, and

• the use of Ada.Synchronous_Barriers.Synchronous_Barrier type.

G.3 Flow Analysis Limitations
These limitations in the flow analysis part of GNATprove may result in a less precise (but sound) analysis.

• Flow dependencies caused by record assignments is not captured with perfect accuracy. This means that the
value of one field might incorrectly be considered to participate in the derivation of another field that it does not
really participate in.
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• Initialization of multi-dimensional arrays with nested FOR loops can be only detected if the array bounds are
given by static expressions. A possible solution is to use Aspect Relaxed_Initialization and Ghost Attribute
Initialized instead in such a case and to prove that only initialized data is read.

G.4 Proof Limitations
These limitations in the proof part of GNATprove may result in a less precise (but sound) analysis.

• The following attributes are not yet supported in proof: Adjacent, Aft, Bit_Order, Body_Version, Copy_Sign,
Definite, Denorm, First_Valid, Fore, Last_Valid, Machine, all Machine_* attributes, Model, all Model_* at-
tributes, Partition_Id, Remainder, Round, Safe_First, Safe_Last, Scale, Scaling, Small, Unbiased_Rounding,
Version, Wide_Image, Wide_Value, Wide_Width, Wide_Wide_Image, Wide_Wide_Value, Wide_Wide_Width,
Width.

The attributes First_Bit, Last_Bit and Position are supported but if there is no record representation clause then
we assume that their value is nonnegative.

• Constants declared in loops before the loop invariant are handled as variables by the tool. This means in partic-
ular that any information about their values needed after the loop invariant must be stated explicitly in the loop
invariant.
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PORTABILITY ISSUES

H.1 Compiling with a non-SPARK Aware Compiler
To execute a SPARK program, it is expected that users will compile the program (as an Ada program) using an Ada
compiler. The SPARK language definition defines a number of implementation-defined (with respect to the Ada lan-
guage definition) aspects, attributes, pragmas, and conventions. Ideally a SPARK program will be compiled using an
Ada compiler that supports all of these constructs. Portability problems may arise if this is not the case.

This section is a discussion of the strategies available for coping with this situation.

Probably the most important rule is that pragmas should be used instead of aspect_specification syntax wherever this
option is available. For example, use pragma Abstract_State rather than specifying the Abstract_State aspect of a
package using aspect_specification syntax. Ada specifies that unrecognized pragmas shall be ignored, as opposed to
being rejected. This is not the case for (syntactic) aspect specifications (this terminology is a bit confusing because a
pragma can be used to specify an aspect; such a pragma is semantically, but not syntactically, an aspect specification).
Furthermore, aspect specification syntax was introduced in Ada 2012 and will be rejected if the program is compiled
as, for example, an Ada 95 program.

Many SPARK-defined constructs have no dynamic semantics (e.g., the Global, Depends, and Abstract_State aspects),
so the run-time behavior of a program is unaffected if they are ignored by a compiler. Thus, there is no problem if these
constructs are expressed as pragmas which are then ignored by the Ada compiler.

Of those constructs which do have dynamic semantics, most are run-time assertions. These include Loop_Variant,
Loop_Invariant, Assert_And_Cut, Contract_Cases, Initial_Condition, and Refined_Postcondition. Because SPARK
requires that the success of these assertions must be statically proven (and that the evaluation of the asserted condition
can have no side effects), the run-time behavior of a program is unaffected if they are ignored by a compiler.

The situation with pragma Assume is slightly different because the success of the given condition is not statically
proven. If ignoring an Assume pragma at run time is deemed to be unacceptable, then it can be replaced with an Assert
pragma (at the cost of introducing a source code difference between the SPARK program that is analyzed statically and
the Ada program that is executed). An ignored Assume pragma is the only case where the use of a SPARK-specific
construct can lead to a portability problem which is not detected at compile time. In all other cases, either the Ada
compiler will reject (as opposed to ignore) an unrecognized construct or the construct can safely be ignored.

An Ada compiler which does not support convention Ghost will reject any use of this convention. Two safe trans-
formations are available for dealing with this situation - either replace uses of convention Ghost with convention Ada
or delete the entities declared with a convention of Ghost. Just as was mentioned above in the case of modifying an
Assume pragma, either choice introduces an analyzed/executed source code difference.

There are two SPARK attributes which cannot be used if they are not supported by the Ada compiler in question: the
Update and Loop_Entry attributes.

SPARK includes a rule that a package which declares a state abstraction requires a body. In the case of a library unit
package (or generic package) which requires a body only because of this rule, an Ada compiler that knows nothing
about state abstractions would reject the body of the package because of the rule (introduced in Ada 95) that a library
unit package (or generic package) body is never optional; if it is not required then it is forbidden. In the unlikely event
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that this scenario arises in practice, the solution is to force the library unit package to require a body for some other
reason, typically by adding an Elaborate_Body pragma.

If a SPARK program is to be compiled and executed as an Ada 95 program (or any other pre-2012 version of Ada), then
of course any construct introduced in a later version of Ada must be avoided (unless it is expressed as a safely-ignored
pragma). This seems worth mentioning because Ada 2012 constructs such as quantified expressions and conditional
expressions are often heavily used in SPARK programs.

H.2 Implementation-specific Decisions
To make analysis as precise as possible and avoid producing too many false alarms, GNATprove makes some assump-
tions about the behavior of constructs which are listed in the reference manual of Ada as implementation specific. Note
that GNATprove always adopts the same choices as the GNAT compiler, so these assumptions should be adequate
when compiling with GNAT. However, when another compiler is used, it may be better to avoid these implementation
specific constructs (see Benefits of Using SPARK for Portability for more details on how this can be achieved).

H.2.1 Parenthesized Arithmetic Operations
In Ada, non-parenthesized arithmetic operations could be re-ordered by the compiler, which may result in a failing
computation (due to overflow checking) becoming a successful one, and vice-versa. By default, GNATprove evaluates
all expressions left-to-right, like GNAT. When the switch --pedantic is used, a warning is emitted for every operation
that could be re-ordered:

• any operand of a binary adding operation (+,-) that is itself a binary adding operation;

• any operand of a binary multiplying operation (*,/,mod,rem) that is itself a binary multiplying operation.

H.2.2 Base Type of User-Defined Integer Types
GNATprove follows GNAT in choosing as base type the smallest multiple-words-size integer type that contains the
type bounds. For example, a user-defined type ranging from 1 to 100 will be given a base type ranging from -128 to
127 by both GNAT and GNATprove. The choice of base types influences in which cases intermediate overflows may
be raised during computation. The choice made in GNATprove is the strictest one among existing compilers, as far as
we know, which ensures that GNATprove’s analysis detects a superset of the overflows that may occur at run time.

H.2.3 Size of ‘Image and ‘Img attributes
To avoid spurious range checks on string operations involving occurrences of the 'Img, 'Image, 'Wide_Image, and
'Wide_Wide_Image attributes, GNATprove makes an assumption about the maximal length of the returned string. If
the attribute applies to an integer type, the bounds are the maximal size of the result of the attribute as specified in the
language depending of the type’s base type. Otherwise, GNATprove assumes that the length of such a string cannot
exceed 255 (the maximal number of characters in a line) times 8 (the maximal size of a Wide_Wide_Character).
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SEMANTICS OF FLOATING POINT OPERATIONS

SPARK assumes that floating point operations are carried out in single precision (binary32), double precision (bi-
nary64) or extended precision (binary80) as defined in the IEEE-754 standard for floating point arithmetic. You should
make sure that this is the case on your platform. For example, on x86 platforms, by default some intermediate com-
putations may be carried out in extended precision, even if the type of the operands is of single or double precision,
leading to unexpected results. With GNAT/GCC, you can specify the use of SSE arithmetic by using the compilation
switches -msse2 -mfpmath=sse which cause all arithmetic to be done using the SSE instruction set which only pro-
vides 32-bit and 64-bit IEEE types, and does not provide extended precision. SSE arithmetic is also more efficient.
Note that the ABI allows free mixing of units using the three types of floating-point, so it is not necessary to force all
units in a program to use SSE arithmetic.

Several architectures also have fused-multiple-add (FMA) instructions, either in the base set (PowerPC, Aarch64) or
in extensions (SPARC, x86). You should make sure that your compiler is instructed not to use such instructions,
whose effect on the program semantics cannot be taken into account by SPARK source code analysis. On x86, such
instructions are enabled in GNAT/GCC by means of an explicit switch like -fma/-fma4 or by architecture switches
like -msse4.1 or -mavx512f, so make sure you’re not using these. With GNAT/GCC, it is recommended to use switch
-ffp-contract=off to disable all floating-point expression contractions, including FMA.

SPARK considers the floating point values which represent positive, negative infinity or NaN as invalid. Proof obliga-
tions are generated that such values cannot occur.

SPARK considers rounding on floating point arithmetic operations to follow Round-Nearest-Even (RNE) mode, where
a real result is rounded to the nearest floating point value, and ties are resolved to the floating-point with a zero in the
last place. This mode of rounding (the default in GNAT) should be forced if needed on the hardware to be able to rely
on the results of GNATprove regarding floating point arithmetic (e.g. when using SSE arithmetic, the MXCSR register
should specify RNE mode, which it does by default).
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SPARK ARCHITECTURE, QUALITY ASSURANCE AND MATURITY

J.1 Development Process and Quality Assurance
The SPARK development process and quality assurance are following the Adacore Quality Procedures in place for all
development at AdaCore. This includes:

• The use of a report tracking system;

• Mechanisms for detecting and fixing defects;

• The usage of repositories and configuration management, the use of continuous integration technology, the strin-
gent requirements on check-ins of source changes;

• The process for implementing new functionality;

• The process for maintaining user documentation;

• Ensuring quality of sources and technical documentation;

• Preparation of releases.

As an extension to Chapter 2, section “AdaCore internal testsuite”, SPARK contains its own testsuites:

• The SPARK main testsuite: This testsuite contains 3600 tests. These tests are specifically targeted at the SPARK
software and cover typical use cases, often represented by code sent to us by customers, as well as specific features
of the SPARK software.

• The ACATS testsuite in SPARK mode: A selection of the ACATS testsuite mentioned in the AdaCore Quality
Procedures for the compiler is also used to test the SPARK tools.

These tests are run on various occasions (see also Chapter 2 of the Adacore Quality Procedures):

• During nightly testing, once with assertions enabled, once without (the actual SPARK product);

• After every check-in, during continuous integration;

• To test a patch before check-in using the Mailserver or continuous builder technologies.

The known-problems file associated with a specific release of SPARK specially identifies soundness bugs, whose
potential effect is to hide actual problems in the program, under the tags “missing-check” (when a check message could
be missing) and “missing-violation” (for any other soundness issue). Such entries always include a “detection” field
for detecting the possibility of triggering such a bug in the application of SPARK.

J.2 Structure of the SPARK Software
At a high level, the tool GNATprove reads source files in the Ada programming language, with some annotations
specific to SPARK, processes them, and in the end issues a report about errors found and proved or unproved properties.
Looking more closely at how this is achieved, one can see this high-level structure of SPARK:
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The development of the GNAT front-end and GNAT2Why components entirely follows the procedures outlined in
AdaCore Quality Procedures and the previous section. The other components, however, are mostly developed by third
parties. Their development process and the relationship to AdaCore and Capgemini Engineering will be outlined below.

For the nightly testing of SPARK, the GNAT and GNAT2Why components are updated every night according to the
changes made during the day by AdaCore and Capgemini Engineering developers. The other tools, however, contain
also check-ins by other persons. We update these tools in a controlled way, and after careful testing of the consequences.
In other words, a check-in made e.g. to Z3 at some specific date, will not be part of the SPARK package of the same
day, instead it will be integrated into SPARK after some time and after thorough testing in the SPARK environment.

J.2.1 GNAT Front-end
SPARK shares its front-end (parsing and semantic analysis) with the GNAT compiler technology, which is very mature
and has been used in countless projects for the last 20 years. The GNAT front-end is developed by AdaCore and follows
the AdaCore quality procedures.

J.2.2 GNAT2Why
This part of GNATprove serves two purposes:

• Implement Flow Analysis, the part of the SPARK analysis which detects uninitialized variables, and computes
and checks the use of global variables and parameters.

• Translate the SPARK source code to the Why language, for further processing by the Why3 tools. GNAT2Why
is developed by AdaCore and Capgemini Engineering and follows the AdaCore quality procedures.

Because of its central role in GNATprove, and because it performs the critical encoding of the verification rules of
SPARK when applied to a given program, this part of the tool receives special attention regarding soundness:

• Base Why3 theories used to encode Ada datatypes are realized in Coq, to rule out inconsistencies in the axiom-
atization (e.g. for bitvector or floating-point base theories).

• Unless the switch --function-sandboxing=off is used, the axioms generated by GNATprove to encode the
semantics of functions in Why3 are “sandboxed”, so that they are only applicable to contexts where the corre-
sponding function is called, on the same arguments as those used in the call. This reduces the risk that a wrong
contract could lead to an inconsistent axiom applicable everywhere.

• No axiom is generated for functions which might not return. This also reduces the risk that a wrong contract
could lead to an inconsistent axiom.

A special run of the SPARK main testsuite allows to monitor statement coverage of the testsuite over GNAT2Why
source code, which is maintained above 95%, and aiming at full statement coverage.

Addionally, through their use of the switch --proof-warnings=on aiming at detecting dead code at branching points
in the program and other inconsistencies, users can protect against unsound tool behavior which would result in similar
findings. This use is traditionally called a “smoke detector” in the scientific literature.
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J.2.3 Why3
This part of GNATprove takes the information in the Why language produced by GNAT2Why, translates it further into
a format suitable for SMT solvers such as Z3 and cvc5, and runs these tools. The results are reported back to gnat2why.

History: Started around the year 2000 by Jean-Christophe Filliâtre as “Why” (see Jean-Christophe Filliâtre. Why: a
multi-language multi-prover verification tool. Research Report 1366, LRI, Université Paris Sud, March 2003), it has
undergone a number of redevelopments until its current version Why3 (since 2010).

Track record: Apart from SPARK, it is used by Frama-C, Atelier B, and other program verification tools.

Relationship with AdaCore/Capgemini Engineering: The Inria team around Why3 has strong ties with AdaCore and
Capgemini Engineering. A number of research projects have been and are being carried out in collaboration with
this team. This includes the Hi-Lite project, which led to the current version of SPARK based on Why3, a follow-
up project SOPRANO, then a joint laboratory ProofInUse which evolved in the ProofInUse consortium. In addition,
while Why3 is mainly developed at Inria, AdaCore and Capgemini Engineering have made important contributions to
the technology, such as the so-called fast-WP, a more efficient implementation of the main algorithm of Why3, and the
why3server, a more scalable method of running external tools such as SMT solvers.

• Main developers: Inria research institute

• Main website: http://why3.lri.fr

• Version Management: Git

• License: Open Source, LGPL 2.1

• Public mailing-list: why3-club@lists.gforge.inria.fr

• Bug tracking: https://gforge.inria.fr/tracker/?group_id=2990

J.2.4 Alt-Ergo
History: Started around the year 2005 at Inria by Sylvain Conchon and Evelyne Contejean as “Ergo” (see CC(X):
Efficiently combining equality and solvable theories without canonizers. Sylvain Conchon, Évelyne Contejean, and
Johannes Kanig. SMT Workshop, 2007). Starting from 2013, developed and distributed mainly by OCamlPro. Since
then, OCamlPro issues every year a private release and a public release (lagging one year behind the private release).
SPARK uses the public release of Alt-Ergo.

Track record: Apart from SPARK, it is used by Frama-C and Atelier B. In particular, used by Airbus for the qualification
DO-178C of an aircraft [10].

Relationship with AdaCore/Capgemini Engineering: AdaCore and OCamlPro have collaborated in the SOPRANO
project. AdaCore has contributed some minor changes to Alt-Ergo, including a deterministic resource limiting switch.

• Main developers: OCamlPro

• Main website: https://alt-ergo.ocamlpro.com/

• Version Management: Git

• License: CeCill-C (GPL compatible)

• Public mailing-list: alt-ergo-users@lists.gforge.inria.fr

• Bug tracking: https://github.com/OCamlPro/alt-ergo/issues

J.2.5 Z3
History: Started around the year 2007 at Microsoft Research by Leonardo de Moura and Nikolaj Bjørner (see Leonardo
de Moura and Nikolaj Bjørner. Efficient E-Matching for SMT solvers. In Automated Deduction - CADE-21, 21st
International Conference on Automated Deduction, Bremen, Germany, July 17-20, 2007, Proceedings, volume 4603 of
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Lecture Notes in Computer Science, pages 183-198. Springer, 2007). Released to open source under a very permissive
license in 2015.

Track record: Apart from SPARK, used by Dafny and PEX projects inside Microsoft. Has won the SMT competition
several times in several categories.

Relationship with AdaCore/Capgemini Engineering: AdaCore and Capgemini Engineering have provided bug reports,
feature requests and small fixes to the Z3 team, in particular related to a deterministic resource limiting switch.

• Main developers: Microsoft

• Main website: https://github.com/Z3Prover/z3

• Version Management: Git

• License: MIT License

• Stackoverflow community: http://stackoverflow.com/questions/tagged/z3

• Bug tracking: https://github.com/Z3Prover/z3/issues/

J.2.6 cvc5
History: cvc5 is the fifth version of the CVC prover family. It has evolved from the CVC4 prover, whose development
started in 2012.

Track record: Very good results in various SMT competitions. Used in TNO tool.

Relationship with AdaCore/Capgemini Engineering: AdaCore and Capgemini Engineering have provided bug reports,
feature requests and small fixes to the cvc5 team, in particular related to a deterministic resource limiting switch.
AdaCore is a founding member of Centaur (the Center for Automated Reasoning at Stanford University) which is a
main contributor to cvc5.

• Main developers: Stanford University and the University of Iowa

• Main website: https://cvc5.github.io/

• Version Management: Git

• License: Modified BSD License

• Discussions: https://github.com/cvc5/cvc5/discussions

• Bug tracking: https://github.com/cvc5/cvc5/issues

J.2.7 COLIBRI
History: COLIBRI is a library (COnstraint LIBrary for veRIfication) developed at CEA LIST and used for verification
or test data generation purposes since 2000, using the techniques of constraint programming. The variety of types and
constraints provided by COLIBRI makes it possible to use it in many testing and formal methods tools at CEA LIST.

Track record: Winner (2018) and Runner-up (2019) in the quantifier-free floating-point division of the SMT competi-
tion.

Relationship with AdaCore/Capgemini Engineering: AdaCore and CEA collaborate together to improve COLIBRI.

• Main developers: CEA

• Version Management: Git
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K

GNU FREE DOCUMENTATION LICENSE

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

K.1 PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document ‘free’ in the sense of freedom:
to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially
or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.

This License is a kind of ‘copyleft’, which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free doc-
umentation: a free program should come with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether
it is published as a printed book. We recommend this License principally for works whose purpose is instruction or
reference.

K.2 APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. The ‘Document’, below, refers to any such manual or work. Any member
of the public is a licensee, and is addressed as ‘you’.

A ‘Modified Version’ of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A ‘Secondary Section’ is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (For example, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The ‘Invariant Sections’ are certain Secondary Sections whose titles are designated, as being those of Invariant Sections,
in the notice that says that the Document is released under this License.
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The ‘Cover Texts’ are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License.

A ‘Transparent’ copy of the Document means a machine-readable copy, represented in a format whose specification is
available to the general public, whose contents can be viewed and edited directly and straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format whose markup has been designed to
thwart or discourage subsequent modification by readers is not Transparent. A copy that is not ‘Transparent’ is called
‘Opaque’.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX
input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML designed for
human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for output purposes only.

The ‘Title Page’ means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly,
the material this License requires to appear in the title page. For works in formats which do not have any title page as
such, ‘Title Page’ means the text near the most prominent appearance of the work’s title, preceding the beginning of
the body of the text.

K.3 VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

K.4 COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you
as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a publicly-
accessible computer-network location containing a complete Transparent copy of the Document, free of added mate-
rial, which the general network-using public has access to download anonymously at no charge using public-standard
network protocols. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
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It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

K.5 MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

• Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may
use the same title as a previous version if the original publisher of that version gives permission.

• List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has less than five).

• State on the Title page the name of the publisher of the Modified Version, as the publisher.

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

• Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in the Addendum below.

• Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s
license notice.

• Include an unaltered copy of this License.

• Preserve the section entitled ‘History’, and its title, and add to it an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on the Title Page. If there is no section entitled ‘History’ in the
Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the previous sentence.

• Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the ‘History’ section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

• In any section entitled ‘Acknowledgements’ or ‘Dedications’, preserve the section’s title, and preserve in the
section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

• Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

• Delete any section entitled ‘Endorsements’. Such a section may not be included in the Modified Version.

• Do not retitle any existing section as ‘Endorsements’ or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain
no material copied from the Document, you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section entitled ‘Endorsements’, provided it contains nothing but endorsements of your Modified Version
by various parties – for example, statements of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.
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You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of
Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

K.6 COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined in section
4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled ‘History’ in the various original documents, forming
one section entitled ‘History’; likewise combine any sections entitled ‘Acknowledgements’, and any sections entitled
‘Dedications’. You must delete all sections entitled ‘Endorsements.’

K.7 COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

K.8 AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on
a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a compilation is called an ‘aggregate’, and this
License does not apply to the other self-contained works thus compiled with the Document, on account of their being
thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on covers that surround only the
Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.

K.9 TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that you also include the original English version of
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this License. In case of a disagreement between the translation and the original English version of this License, the
original English version will prevail.

K.10 TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License.
Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full compliance.

K.11 FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License ‘or any later version’ applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

K.12 ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document and put the following
copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled 'GNU
Free Documentation License'.

If you have no Invariant Sections, write ‘with no Invariant Sections’ instead of saying which ones are invariant. If
you have no Front-Cover Texts, write ‘no Front-Cover Texts’ instead of ‘Front-Cover Texts being LIST’; likewise for
Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free software.
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Symbols
.spark files, 292
-U

all files in project, 206
analyze all instances, 207
speeding up, 208

--assumptions, 237
--ce-steps, 227
--check-counterexamples, 227
--checks-as-errors, 209
--counterexamples

speeding up, 216
understanding counterexamples, 227

--cwe, 221
--function-sandboxing

speeding up, 216
--info

investigate unproved checks, 290
--level, 208

investigate unproved checks, 290
speeding up, 216

--limit-line
calling an interactive prover, 215
command-line usage, 207

--limit-lines, 207
--limit-name, 207
--limit-region, 207
--limit-subp, 207
--memcached-server

speeding up, 237
--memlimit, 208
--mode, 207

effect on output, 220
--no-global-generation, 245
--no-inlining

forbid contextual analysis, 269
speeding up, 216

--no-loop-unrolling
speeding up, 216

--output-header, 217
--pedantic, 210
--proof, 208

proof strategies, 294
--proof-warnings, 233
--prover, 208

speeding up, 216
--replay, 209

sharing proofs, 236
speeding up, 216

--report, 220
example of use, 295

--steps, 208
max steps used, 219
speeding up, 216

--timeout, 208
speeding up, 216

--warnings
warnings as error, 209

-f, 209
-gnata switch (compiler), 366
-gnateT, 210
-gnato, 132
-gnatp switch (compiler), 365
-j, 208

speeding up, 215
-k, 209
-u, 206

A
Abstract_State, 73
access types

access to object, 139
access to subprogram, 147
deallocation, 140
excluded feature, 33
ownership policy, 40

Address, 35
address-to-access-conversion, 181
aggregate, 102
aliasing

absence of interference, 44
excluded feature, 34

Always_Terminates, 269
Annotate
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False_Positive, 399
for justifying check messages, 234
for subprogram termination, 269
Handler, 429
Inline_For_Proof, 403
Intentional, 399
Iterable; Iterable_For_Proof, 396
Iterable_For_Proof, 401
No_Bitwise_Operations, 400
No_Wrap_Around, 400
Prophecy Variable, 403
Skip_Proof; Skip_Flow_And_Proof, 399

Aspect Aggregate, 107
Assert, 123
Assert_And_Cut, 129
Assertion_Error, 365
Assertion_Policy, 123

for precondition, 47
Assume, 129

justifying check messages, 235
assumptions, 237
Async_Readers

state, 81
variables, 79

Async_Writers
state, 81
variables, 79

Attach_Handler, 162

B
Big_Numbers, 163

as alternative to overflow modes, 132
example of use, 301

bounded error, 375
Bronze level, see Global, see Depends, 364

command-line switch, 207
data and control coupling, 373
early detection of errors, 368
GNAT Studio integration, 212
tutorial, 188

C
C language, 365
c-strings, 180
case-expression, 108
CENELEC EN 50128, 365, 366
Check message (from GNATprove), 366
check messages, 219

categories of messages, 221
justification, 233

concurrency, 149
constant with variable inputs

in state abstraction, 74
Constant_After_Elaboration, 93

and data races, 151
Constraint_Error, 365
contextual analysis, 267

example of use, 297
Contract_Cases, 50

and Old, 100
and Result, 102
example of use, 302

Contract-based programming, 367
controlled types

excluded feature, 34
counterexample

GNAT Studio integration, 213
investigate unproved checks, 290
understanding counterexamples, 227

D
data race, 150
deallocation, 140
declare-expression, 109
Default_Initial_Condition, 91

with value False, 89
Defensive code, 365
delta aggregate, 105
Depends

automatic generation, 245
example of use, 295
in subprogram contract, 52
in task contract, 154
limitation, 444

discriminant, 84
DO-178C / ED-12C, 365, 366
Dynamic_Predicate, 85

E
ECSS-Q-ST-80C, 365
Effective_Reads

state, 81
variables, 79

Effective_Writes
state, 81
variables, 79

EN 50128, 365, 366
erroneous execution, 375
error messages, 219
exceptions

Exceptional_Cases, 56
in precondition, 47

executable contracts
combining proof and test, 369
investigate unproved checks, 289
tutorial, 191

Exit_Cases, 63
expression function, 110
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in refinement, 54
Extensions_Visible, 136
External

and concurrency, 160
in state abstraction, 81

F
False alarm, 365
formal containers, 167
functional containers, 165

G
generics

analysis of instances, 45
excluded feature, 34

Ghost, see ghost code
ghost code, 112

investigate unproved checks, 290
manual proof, 344
manual proof using lemmas, 343

Ghost_Predicate, 85
Global

automatic generation, 245
example of use, 295
for Bronze level, 364
in subprogram contract, 51
in task contract, 153

global variables
in Depends contract, 52
in Global contract, 51

GNAT Studio integration, 211
analysis report, 217
Bronze level, 212
counterexample, 213
Gold level, 212
log file, 217
manual proof, 215
Silver level, 212
Stone level, 212

GNATbench, 213
GNATmetric, 363
Gold level, see precondition, see postcondition, see

Contract_Cases, 366
command-line switch, 207
correct component integration, 370
expression function, 110
functional correctness, 371
ghost code, 112
GNAT Studio integration, 212
investigate unproved checks, 289
tutorial, 194
writing contracts for functional

correctness, 259
writing contracts for integrity, 256

goto
excluded feature, 34

GPR_PROJECT_PATH
at installation, 17
for SPARK library, 163

I
IEC 60880, 365
IEC 61508, 365, 366
IEC 62304, 365
if-expression, 108
imported subprograms

writing contracts, 263
Info message (from GNATprove), 366
info messages, 219

suppression, 233
Initial_Condition, 77
initialization, 37

limitation, 444
initialization (arrays), 105
Initialized, 96
Initializes, 76

automatic generation, 277
inlining for proof, 267

example of use, 297
input-output, 176
Integration testing, 366
interrupt handler, 162
Invariant, 88
ISO 26262, 365

L
lemma library, 173

example of use, 342
limitations, 439
Limitations of provers, 367
Liskov Substitution Principle, 275
loop

and Loop_Entry, 98
automatic unrolling, 278

Loop_Entry, 98
Loop_Invariant, 125

automatic generation, 280
counting loops, 322
for Gold level, 367
for Silver level, 365
guidelines, 283
initialization loops, 306
limitation, 445
mapping loops, 311
maximize loops, 327
rationale, 304
search loops, 323
tutorial, 196
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update loops, 333
validation loops, 317

Loop_Variant, 127

M
main subprograms

writing contracts, 262
manual proof, 214

GNAT Studio integration, 215
using Coq, 354
using ghost code, 344
using lemmas, 343
using the lemma library, 342

migration from Ada
project scenario, 379

migration from SPARK 2005
project scenario, 381
use of --no-global-generation, 245

N
No_Caching, 94

O
Object_Size, 34
Old, 100
Overflow_Mode, 132
overlay, 35
ownership, 40

analysis of, 139

P
Part_Of

for concurrency, 153
in state abstraction, 75

Platinum level, 367
ghost code, 112
manual proof, 214

portability, 373
possible fix

example of use, 295
Post, see postcondition
Post'Class, 133

how to use, 273
Postcondition, 365, 366
postcondition, 49

and Old, 100
and Result, 102
example of use, 295
for subprogram pointer, 148
on dispatching operation, 133

pragma Assertion_Policy, 366
Pre, see precondition
Pre'Class, 133

how to use, 273
Precondition, 365, 366
precondition, 47

example of use, 295
for subprogram pointer, 148
on dispatching operation, 133

predicate, 85
project file

and SPARK_Mode, 22
project attributes, 390
setting target and runtime, 209
setup, 205

Proof (as alternative to unit testing), 366
Proof mode (for GNATprove), 366
protected object

and data races, 151
and deadlock, 154

Q
Qualification (for GNATprove), 365
quantified-expression, 121

over container, 171

R
range, 83
Ravenscar, 149
recursion

limitation, 445
subprogram variant, 69

Refined_Depends, 53
Refined_Global, 53
Refined_Post, 54
Refined_State, 73
Relaxed_Initialization, 94

initialization policy, 37
Result, 102
run-time error, 375
Runtime, 209

S
side effects

excluded feature, 33
in functions, 98

Side_Effects, 98
Silver level, 365

absence of run-time errors, 368
command-line switch, 207
GNAT Studio integration, 212
investigate unproved checks, 289
optimize run-time checks, 372
tutorial, 194
writing contracts for integrity, 256

Size, 34
SPARK Library, 163
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SPARK_Mode, 363
rules, 393
usage, 19

speeding up
--counterexamples, 216
--function-sandboxing, 216
--level, 216
--no-inlining, 216
--no-loop-unrolling, 216
--prover, 216
--replay, 216
--steps, 216
--timeout, 216
-j, 215
explicit package contracts, 278

state abstraction
and concurrency, 160
in package contract, 72
in subprogram contract, 53

Static_Predicate, 85
Stone level, 363

command-line switch, 207
GNAT Studio integration, 212
safe coding standard, 368
tutorial, 184

strings, 178
Subprogram_Variant, 69
Suspension_Object, 159

and data races, 151
Synchronous_State, 160

T
Target, 209
tasking, 150
termination

Always_Terminates, 67
excluded feature, 34
loop variant, 127
proving termination, 269
subprogram variant, 69

tool interaction
possible fix, 290
prove line or subprogram, 291

traversal function, 145
Type predicate, 366
Type_Invariant, 88

U
Unchecked_Conversion, 35
Unchecked_Deallocation, 140
Unevaluated_Use_Of_Old, 101
Unit testing, 366

V
Valid, 35

limitation, 239
validity, 35

limitation, 239
Visual Studio Code, 213
volatile

state, 81
types, 80
variables, 78

W
warnings, 219

generated by proof, 233
suppression, 231

Warnings (pragma), 231
workflows, 230
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