SPARK User’s Guide
Release 15.0

AdaCore and Capgemini Engineering

Jan 19, 2025

Copyright (C) 2011-2022, AdaCore and Capgemini Engineering

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with
no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is
included in the section entitled ’GNU Free Documentation License’.

CONTENTS

Getting Started with SPARK 11
Introduction 15
Installation of GNATprove 17
3.1 System Requirements e e e e e e e e e e e e e e e 17
3.2 Installation under Windowso 17
3.3 Installation under Linux/Mac oL e e e e e 18
3.4 [Installation of the FSF version of SPARK o 18
34.1 Manualinstall L e 18
342 Installusingalire e 18
3.4.3 The older GNAT Community VErsion o v v v v v v i v et i e oo 19
Identifying SPARK Code 21
4.1 Mixing SPARK Codeand AdaCode i ittt e e e e e 21
42 ProjectFile Setup L e e e e e e 22
4.2.1 Setting the Default SPARK Mode 22
4.2.2 Specifying Files To Analyze 23
4.2.3 Excluding Files From Analysis 23
4.2.4 Using Multiple Projects e 24
43 Using SPARK_ModeinCode o i i i i it i e e e e e e e 24
431 BasicUsage o v i e e e e e e e e e e e e e 24
432 Consistency Rules o e e e 26
433 Examplesof Use o e e e e 27
Overview of SPARK Language 33
5.1 Language Restrictions L e 33
5.1.1 Excluded AdaFeatures e e e 33
5.1.2 Sizesof Objects e e e e 34
5.1.3 DataValidity e e e e e e e e e e 35
5.1.4 DatalInitialization Policy e 37
5.1.5 Memory Ownership Policy 40
5.1.6 Absence of Interferences L 44
5.1.7 Analysisof Generics e e e 46
5.2 Subprogram CONtraCtS v v v v i v e 46
5.2.1 Preconditions e e e e 47
5.2.2 Postconditions e e e e e e e e e e e e 49
5.23 Contract CasesS v v it e 50
524 DataDependencies L e e e e e 51

53

54

5.5

5.6

5.7
5.8

59

5.2.5 FlowDependencies i e e e e e e e e e e e 52

5.2.6 Abstraction and Contracts oo e e e e e e e e 53
5.2.7 Exceptional Contracts e e e e e e e 56
528 EXItCases o o it e e e e e e 64
5.2.9 Contracts for Termination L 68
5.2.10 Subprogram Variantl e e e e e 69
Package Contracts o v i i e e e e e e e e e e e e e e e e e 72
5.3.1 State Abstraction e e e 73
5.3.2 Package Initialization L. 76
5.3.3 Package Initial Condition 77
5.3.4 Interfaces to the Physical World o 78
Type CONtIaCtS v v o o e 83
54.1 ScalarRanges L e e e e e e e 83
5.4.2 Record Discriminants L. e 84
543 Predicates e e e e e e e e e 85
544 Typelnvariants e e e e 88
5.4.5 Default Initial Condition L 91
Specification Features L e e e e e e e e e e e 93
5.5.1 Aspect Constant_After_Elaboration 93
5.5.2 AspectNo_Caching e 94
5.5.3 Aspect Relaxed_Initialization and Ghost Attribute Initialized 94
554 AspectSide_Effects 98
5.5.5 Attribute LOOp_ENtIY e e e e e e e 99
5.5.6 Attribute O1d L e 100
5.5.7 Attribute Result 102
5.5.8 AQEregates L. e e e 102
5.5.9 Conditional Expressions e 108
5.5.10 Declare EXpressions o v i it e e e e e e e e e e e e e 109
5.5.11 Expression Functions L e e e e e e 110
5.5.12 GhostCode e e e 112
5.5.13 Quantified Expressionso e e e 121
Assertion Pragmas L. L e e 122
5.6.1 Pragma Assert. e e e 123
5.6.2 Pragma Assertion_Policy. e e 123
5.63 LoopInvariants L e e e e e e e e e e 125
5.64 Loop Variants L. e e e e e e e e 127
5.6.5 PragmaAssume. e 129
5.6.6 PragmaAssert_And_Cut 129
Overflow Modes o e e e 132
Object Oriented Programming and Liskov Substitution Principle 133
5.8.1 Class-Wide Subprogram Contracts v it 133
5.8.2 Mixing Class-Wide and Specific Subprogram Contracts 135
5.8.3 Dispatching Calls and Controlling Operands 136
5.8.4 Dynamic Types and Invisible Components 137
Pointer Support and Dynamic Memory Management 138
5.9.1 AccesstoObjectsand Ownership 139
5.9.2 Attribute ACCESS L. e 140
5.9.3 Deallocation e e e e e e 141
594 ODbServing i e e e 143
5.9.5 BOIrowing e e e e e e e e e e e e e e 144
5.9.6 Traversal Functions L. e 146
5.9.7 Subprogram Pointers Lo 147
5.9.8 Contracts for Subprogram Pointers 0oL Lo oo 148

5.10 Concurrency and Ravenscar Profile 149

5.10.1 TasksandDataRaces. e
5.10.2 Task Contracts v i i e e e e e e e e e e
5.10.3 Protected Objects and Deadlocks e
5.10.4 Suspension Objects
5.10.5 State Abstraction and CONCUITENCY v b v v v v bt e e e e e e e e e e e
5.10.6 Project-wide Tasking Analysis L
5.10.7 Interrupt Handlers e e e e e e
SPARK Libraries o e e e
5.11.1 SPARK Library o e
5.11.2 BigNumbers Library 0 e e
5.11.3 Functional Containers Library
5.11.4 Formal Containers Library e e
5.11.5 Containers and Executablity e
5.11.6 SPARK Lemma Library e e
5.11.7 Higher Order Function Library
5.11.8 Input-Output Libraries o e
5.11.9 Strings Libraries o e e
S.A1.10C Strings Interface L L e e e e e e e e e e
5.11.11 Addresses to Access CONVersionso v v vt vttt e e
SALI2Cut Operationso o e e e e e e e

6 SPARK Tutorial

6.1

6.2
6.3

Writing SPARK Programs L
6.1.1 Checking SPARK Legality Rules
6.1.2 Checking SPARK Initialization Policy
6.1.3 Writing Functional Contracts i e e
Testing SPARK Programs o i e e e e e e e e e e
Proving SPARK Programs e e e e e e e

7 Formal Verification with GNATprove

7.1

7.2

7.3

How to Run GNATPIOVE o o et e
7.1.1 Setting UpaProjectFile e
7.1.2 Running GNATprove from the Command Line
7.1.3 Using the GNAT Target Runtime Directory
7.1.4 Specifying the Target Architecture and Implementation-Defined Behavior
7.1.5 Running GNATprove from GNAT Studio
7.1.6 Running GNATprove from Visual StudioCode
7.1.7 Running GNATprove from GNATbench
7.1.8 Running GNATprove Without a ProjectFile
7.1.9 GNATprove and Manual Proof
7.1.10 How to Speed Up a Run of GNATprove it i i v it
7.1.11 GNATprove and Network File Systems or Shared Folders
How to View GNATprove Output o ettt e e
7.2.1 The Analysis Report Panel
7.2.2 The Analysis Results Summary File
7.2.3 Categories of MeSSaZes . . .« . ¢« v v v it e e e e e e e e e e e e e
7.2.4 Errors and Completeness of Analysis e
7.2.5 Effectof Mode on Output L e e e e e e
7.2.6 Description of Messages o
7.277 Understanding Counterexamples o e
How to Use GNATproveinaTeam 0ottt t ettt
7.3.1 Possible Workflows
7.3.2 Suppressing Warnings oo e e e e e e e e e e e e e e
7.3.3 Suppressing Information Messages Lo oo

154

183
183
185
188
190
191
194

205
205
205
206
209
210
211
213
214
214
215
215
216
217
217
217
219
220
220
220
227
230
230
231
233

7.3.4 Justifying Check Messages o v ittt e e e e e 233

7.3.5 Sharing Proof Results with Others 237
7.3.6 Sharing Proof Results ViaaCache 237
7.3.77 Managing Assumptions Lo e e 237
7.4 How to Write Subprogram Contracts ot vt e e e e e 244
7.4.1 Generation of Dependency Contracts oot e 245
7.4.2 Infeasible Subprogram Contracts v it e e e e e e e 255
7.4.3 Writing Contracts for Program Integrity 256
7.4.4 Writing Contracts for Functional Correctness 259
7.4.5 Writing Contracts on Main Subprograms 0oL 263
7.4.6 Writing Contracts on Imported Subprograms oL 263
7.4.7 Contextual Analysis of Subprograms Without Contracts 267
7.4.8 Subprogram Termination Lo e e e e 269
7.5 How to Write Object Oriented Contracts it i ... 272
7.5.1 Object Oriented Code Without Dispatching 272
7.5.2 Writing Contracts on Dispatching Subprograms 273
7.5.3 Writing Contracts on Subprograms with Class-wide Parameters 276
7.6 How to Write Package Contracts 0 0 v i i i i e e e e e e e e 277
7.7 How to Write Loop Invariants e e e e e e 278
7.7.1 Automatic Unrolling of Simple For-Loops 278
7.7.2 Automatically Generated Loop Invariants 0oL 280
7.7.3 The Four Properties of a Good Loop Invariant 283
7.7.4 Proving a Loop Invariant in the First Iteration 286
7.7.5 Completing a Loop Invariant to Prove Checks Inside the Loop 286
7.7.6 Completing a Loop Invariant to Prove Checks Afterthe Loop 287
7.71.77 Proving a Loop Invariant After the First Iteration 288
7.8 How to Investigate Unproved Checks 289
7.8.1 Investigating Incorrect Code or Assertion 289
7.8.2 Investigating Unprovable Properties e 289
7.8.3 Investigating Prover Shortcomings L o 291
7.8.4 Looking at Machine-Parsable GNATprove Output. 292
7.8.5 Understanding Proof Strategies o e 294
7.9 GNATprove by Example e 294
7.9.1 BasicExamples e e e e e e e 294
7.9.2 Loop Examples L e e e e e e e e e 303
7.9.3 Manual Proof Examples oL 342
Applying SPARK in Practice 361
8.1 Levels of Software Assurance L e e 361
8.1.1 Levelsof SPARK Use e 362
8.1.2 Stone Level - Valid SPARK 363
8.1.3 Bronze Level - Initialization and Correct DataFlow 364
8.1.4 Silver Level - Absence of Run-time Errors (AoRTE) 365
8.1.5 Gold Level - Proof of Key Integrity Properties 366
8.1.6 Platinum Level - Full Functional Correctness 367
8.2 Objectives of Using SPARK e 368
8.2.1 Safe Coding Standard for Critical Software 368
8.2.2 Prove Absence of Run-Time Errors (AoRTE) 369
8.2.3 Prove Correct Integration Between Components oo v v 370
8.2.4 Prove Functional Correctness e 371
8.2.5 Ensure Correct Behavior of Parameterized Software 372
8.2.6 Safe Optimization of Run-Time Checks 373
8.2.7 Address Data and Control Coupling e 373

8.2.8 Ensure Portability of Programs e 374

8.3 Project Scenarios e e e e e

8.3.1
8.3.2
8.3.3
8.3.4
8.3.5

Maintenance and Evolution of Existing Ada Software
New Developments in SPARK
Conversion of Existing SPARK Software to SPARK 2014
Analysis of Frozen Ada Software L
Dealing with Storage_Error

Command Line Invocation

Alternative Provers

B.1 Installed with SPARK Pro
B.2 Installed with SPARK Discovery o e e
B.3 Installed with SPARK Community e

B.4 Other Automatic or Manual Provers L
B.4.1 Updating the Why3 ConfigurationFile
B.4.2 Sharing Libraries of Theorems e

B.5S Coq . . .o e e e

Project Attributes

Implementation Defined Aspects and Pragmas
D.1 Aspectand Pragma SPARK_Mode 0 i i e e e e e e e
D.2 Aspectand Pragma Iterable e e e

Implementation Defined Annotations
E.1 Annotation for Justifying Check Messages o v v i i i e e e
E.2 Annotation for Skipping Parts of the Analysis foranEntity
E.3 Annotation for Handling Modular Types as Integers in All Provers
E.4 Annotation for Overflow Checking on Modular Types
E.5 Annotation for Simplifying Iteration for Proofo oo
E.6 Annotation for Inlining Functions for Proof
E.7 Annotation for Referring to a Value at the End of a Local Borrow
E.8 Annotation for Accessing the Logical Equality foraType
E.9 Annotation for the Predefined Equality of Private Types
E.10 Annotation for Enforcing Ownership Checking on a Private Type
E.11 Annotation for Instantiating Lemma Procedures Automatically
E.12 Annotation for Managing the Proof Context,
E.12.1 Overriding the Default Handling of Visibility
E.12.2 Pruning the Proof Context on a Case by Case Basis
E.13 Annotation for Handling Specially Higher Order Functions
E.14 Annotation for Handlers
E.15 Annotation for Container AGEregates v v v i i e e e e e e e e e e e e e e
E.16 Annotation for Mutable IN Parameterso

Environment Variables Used by GNATprove

GNATDprove Limitations

G.1 Tool Limitations Leading to an Error Message
G.2 Other Tool Limitations i i et e e e e e e
G.3 Flow Analysis Limitations 0 0 e e e e e e e e e
G.4 Proof Limitations o L e e e e e e e e e e

Portability Issues
H.1 Compiling with a non-SPARK Aware Compiler
H.2 Implementation-specific Decisions o

385

389
389
389
389
389
389
390
390

391

393
393
396

399
399
399
400
400
401
403
404
411
415
417
420
420
420
425
426
429
429
437

439

441
441
444
444
445

447
447
448

SPARK User’s Guide, Release 15.0

H.2.1 Parenthesized Arithmetic Operations vttt 448

H.2.2 Base Type of User-Defined Integer Types o i v i .. 448

H.2.3 Size of ‘Image and ‘Img attributes L 448

I Semantics of Floating Point Operations 449
J SPARK Architecture, Quality Assurance and Maturity 451
J.1 Development Process and Quality Assurance e 451

J.2 Structure of the SPARK Software e e e 451
J.2.1 GNAT Front-end o o e e e e e 452

J2.2 0 GNAT2ZWhy . . .o e e e 452

J.2.3 0 Why3 . e 453

J24 AI-Ergo e 453

J2.5 23 453

J2.6 cVeS . 454

J2.7 COLIBRI . . . o e e 454

K GNU Free Documentation License 455
K1 PREAMBLE 455
K.2 APPLICABILITY AND DEFINITIONS ettt e 455
K.3 VERBATIM COPYING e s e e e e 456
K4 COPYINGIN QUANTITY o oot o e e e e e e e e e e e 456
K.5 MODIFICATIONS o e e e e e e e e e 457
K.6 COMBINING DOCUMENTS e et e e e e e e e e 458
K.7 COLLECTIONS OF DOCUMENTS e e e e e e et 458
K.8 AGGREGATION WITH INDEPENDENT WORKS 458
K.9 TRANSLATION e e e e e s e e s 458
K.10 TERMINATION . . . o e e e e e e e e e s e e s s e 459
K.11 FUTURE REVISIONS OF THISLICENSE e 459
K.12 ADDENDUM: How to use this License for your documents 459
Index 461
10 CONTENTS

CHAPTER
ONE

GETTING STARTED WITH SPARK

We begin with a very simple guide aimed at getting new users up and running with the SPARK tools. A small SPARK
example program will be used for illustration.

Note

The online version of this User’s Guide applies to the latest development version of the SPARK toolset. If you're
using an official release, some of the described features may not apply. Refer to the version of the SPARK User’s
Guide shipping with your release, available through Help — SPARK in GNAT Studio and GNATbench IDEs, or
under share/doc/spark in your SPARK installation.

As a prerequisite, it is assumed that the SPARK tools have already been installed. As a minimum you should install:
* SPARK Pro, SPARK Discovery or SPARK Community
* GNAT Studio or the GNATbench plug-in of Eclipse

SPARK Pro is the most complete toolset for SPARK. SPARK Discovery is a reduced toolset that still allows to perform
all analyses presented in this User’s Guide, but is less powerful than SPARK Pro. Compared to SPARK Pro, SPARK
Discovery:

* only comes with one automatic prover instead of three

* does not generate counterexamples for failed proofs

* has limited proof support for programs using modular arithmetic or floating-point arithmetic
* comes without a lemma library for more difficult proofs

SPARK Community is a version packaged for free software developers, hobbyists, and students, which retains most of
the capabilities of SPARK Pro.

Note that GNAT Studio is not strictly required for SPARK as all the commands can be invoked from the command line,
or from Eclipse using the GNATbench plug-in, but the instructions in this section assume that GNAT Studio is being
used. If you are a supported user, you can get more information on how to install the tools in “AdaCore Installation
Procedures” under the “Download” tab in GNAT Tracker, or by contacting AdaCore for further advice.

The key tools that we will use in this example are GNATprove and GNAT Studio. To begin with, launch GNAT Studio
with a new default project and check that the SPARK menu is present in the menu bar.

Note

For SPARK 2005 users, this menu will appear under the name SPARK 2014, to avoid any confusion with the existing
SPARK menu for SPARK 2005 toolset.

11

SPARK User’s Guide, Release 15.0

Now open a new file in GNAT Studio and type the following short program into it. Save this file as diff.adb.

procedure Diff (X, Y : in Natural; Z : out Natural) with

SPARK_Mode,
Depends => (Z => (X, Y))
is
begin
Z =X - X;
end Diff;

The program is intended to calculate the difference between X and Y and store the result in Z. This is reflected in the
aspect Depends which states that the output value of Z depends on the input values of X and Y, but, as you may have
noticed, there is a bug in the code. Note the use of aspect SPARK_Mode to identify this as SPARK code to be analysed
with the SPARK tools. To analyze this program, select SPARK — Examine File from the menu in GNAT Studio.
GNATDprove executes in flow analysis mode and reports:

diff.adb:1:20: warning: unused variable "Y"
1 |procedure Diff (X, Y : in Natural; Z : out Natural) with
| A here

diff.adb:3:03: medium: missing dependency "null => Y"
3 | Depends => (Z => (X, Y))

| A

diff.adb:3:24: medium: incorrect dependency "Z => Y"
3 | Depends => (Z == (X, Y))
| A here

These messages are informing us that there is a discrepancy between the program’s contract (which says that the value
of Z is obtained from the values of X and Y) and its implementation (in which the value of Z is derived only from the
value of X, and Y is unused). In this case the contract is correct and the code is wrong, so fix the code by changing the
assignment statementto Z := X - Y; and re-run the analysis. This time it should report no messages.

Having established that the program is free from flow errors, now let’s run the tools in proof mode to check for run-time
errors. Select SPARK — Prove File from the menu in GNAT Studio, and click on Execute in the resulting dialog box.
GNATprove now attempts to show, using formal verification, that the program is free from run-time errors. But it finds
a problem and highlights the assignment statement in red, reporting:

diff.adb:6:11: high: range check might fail, cannot prove lower bound for X - Y
6 | Z =X -Y;

A

e.g. when X = 0
and Y = 1
reason for check: result of subtraction must fit in the target type of the assignment
possible fix: add precondition (X >= Natural'First + Y) to subprogram at line 1
1 |procedure Diff (X, Y : in Natural; Z : out Natural) with
| A here

This means that the tools are unable to show that the result of subtracting one Natural number from another will be
within the range of the type Natural, which is hopefully not too surprising! There are various ways in which this
could be addressed depending on what the requirements are for this subprogram, but for now let’s change the type of
parameter Z from Natural to Integer. If the analysis is re-run with this change in place then GNATprove will report
no issues. All checks are proved so we can be confident that no exceptions will be raised by the execution of this code.

12 Chapter 1. Getting Started with SPARK

SPARK User’s Guide, Release 15.0

This short example was intended to give a flavor of the types of analysis that can be performed with the SPARK tools.
A more in-depth example is presented later in SPARK Tutorial.

13

SPARK User’s Guide, Release 15.0

14 Chapter 1. Getting Started with SPARK

CHAPTER
TWO

INTRODUCTION

SPARK is a programming language and a set of verification tools designed to meet the needs of high-assurance software
development. SPARK is based on Ada, both subsetting the language to remove features that defy verification, but also
extending the system of contracts and aspects to support modular, formal verification.

The new aspects support abstraction and refinement and facilitate deep static analysis to be performed including flow
analysis and formal verification of an implementation against a specification.

The current version of SPARK, sometimes referred to as SPARK 2014, is a much larger and more flexible language than
its predecessor SPARK 2005. The language can be configured to suit a number of application domains and standards,
from server-class high-assurance systems (such as air-traffic management applications), to embedded, hard real-time,
critical systems (such as avionic systems complying with DO-178C Level A).

A major feature of SPARK is the support for a mixture of proof and other verification methods such as testing, which
facilitates in particular the use of unit proof in place of unit testing; an approach now formalized in DO-178C and the
DO0-333 formal methods supplement. Certain units may be formally proven and other units validated through testing.

SPARK is supported by various tools in the GNAT toolsuite:
* the GNAT compiler
 the GNAT Studio integrated development environment
 the GNATtest tool for unit testing harness generation
* the GNATprove tool for formal program verification
The remainder of this document is structured as follows:
e Installation of GNATprove goes through the installation steps on different platforms.

e Identifying SPARK Code describes the various means to identify the part of the program in SPARK that should
be analyzed.

* Overview of SPARK Language provides an overview of the SPARK language.
* SPARK Tutorial gives an introduction to writing, testing and proving SPARK programs.
» Formal Verification with GNATprove describes the use of the GNATprove formal verification tool.

» Applying SPARK in Practice lists the main objectives and project scenarios for using SPARK.

15

SPARK User’s Guide, Release 15.0

16 Chapter 2. Introduction

CHAPTER
THREE

INSTALLATION OF GNATPROVE

In general, you will need to install a recent version of GNAT toolchain to compile SPARK programs. You will need to
install one toolchain for each platform that you target, for example one toolchain for native compilation on your machine
and one toolchain for cross compilation to an embedded platform.

For analyzing SPARK programs, we recommend to first install GNAT Studio and then install GNATprove under the
same location. Alternatively, you can install the GNATbench plug-in for Eclipse instead of GNAT Studio, using the
Eclipse installation mechanism. The same version of GNAT Studio or GNATbench can support both native and cross
compilations, as well as SPARK analysis.

If you choose to install GNATprove in a different location, you should also modify the environment variables
GPR_PROJECT_PATH (if you installed GNAT). On Windows, edit the value of GPR_PROJECT_PATH under the Envi-
ronment Variables panel, and add to it the value of <GNAT install dir>/lib/gnat and <GNAT install dir>/
share/gpr (so that SPARK can find library projects installed with GNAT) and <SPARK install dir>/lib/gnat
(so that GNAT can find the SPARK lemma library project installed with SPARK, for details see Manual Proof Using
SPARK Lemma Library). On Linux/Mac with Bourne shell, use:

export GPR_PROJECT_PATH=<GNAT install dir>/lib/gnat:<GNAT install dir>/share/gpr:<SPARK.,
—»install dir>/lib/gnat:$GPR_PROJECT_PATH

or on Linux/Mac with C shell:

setenv GPR_PROJECT_PATH <GNAT install dir>/lib/gnat:<GNAT install dir>/share/gpr:<SPARK.
—.install dir>/lib/gnat:$GPR_PROJECT_PATH

See below for detailed installation instructions of GNAT Studio and GNATprove.

3.1 System Requirements

Formal verification is complex and time consuming, so GNATprove will benefit from all the speed (CPU) and memory
(RAM) that can be made available. A minimum of 2 GB of RAM per core is recommended. More complex analyses
will require more memory. A recommended configuration for running GNATprove on large systems is an x86-64
machine running Linux 64bits or Windows 64bits with at least 8 cores and 16 GB of RAM. Slower machines can be
used to analyze small subsystems, but a minimum of 2.8Ghz CPU and 2 GB of RAM is required.

3.2 Installation under Windows

If not already done, first run the GNAT Studio installer by e.g. double clicking on gnatstudio-<version>-i686-pc-
mingw32.exe and follow the instructions.

17

SPARK User’s Guide, Release 15.0

Note

If you’re using GNAT Community instead of GNAT Pro, you should run instead the GNAT Community installer,
which installs GNAT Studio and SPARK.

Then similarly run the GNATprove installer, by e.g. double clicking on spark-<version>-x86-windows-bin.exe. If you
intend to install GNATprove in a location where a previous installation of GNATprove exists, we recommend that you
uninstall the previous installation first.

You should have sufficient rights for installing the package (administrator or normal rights depending on whether it is
installed for all users or a single user).

3.3 Installation under Linux/Mac

If not already done, you need to extract and install the GNAT Studio compressed tarball and then run the install, e.g.:

$ gzip -dc gnatstudio-<version>-<platform>-bin.tar.gz | tar xf -
$ cd gnatstudio-<version>-<platform>-bin
$./doinstall

Then follow the instructions displayed.

Note

If you’re using GNAT Community instead of GNAT Pro, you should install instead the GNAT Community package,
which installs GNAT Studio and SPARK.

Then do the same with the SPARK tarball, e.g.:

$ gzip -dc spark-<version>-<platform>-bin.tar.gz | tar xf -
$ cd spark-<version>-<platform>-bin
$./doinstall

Note that you need to have sufficient rights for installing the package at the chosen location (e.g. root rights for installing
under /opt/spark).

3.4 Installation of the FSF version of SPARK

A so-called FSF version of SPARK is freely available.

3.4.1 Manual install

You can download a “gnatprove” package from this github project. Extracting the package and adding the bin directory
to your PATH is enough. You can get the GNAT compiler from the same link, and there is a different project for
GNATStudio, the IDE.

3.4.2 Install using alire

You can obtain SPARK via Alire. To do this, follow the installation instructions of Alire, then you can add the
gnatprove dependency to an alire project using:

18 Chapter 3. Installation of GNATprove

https://github.com/alire-project/GNAT-FSF-builds/releases
https://github.com/AdaCore/gnatstudio/releases
https://alire.ada.dev/crates/gnatprove

SPARK User’s Guide, Release 15.0

alr with gnatprove

Alire will download gnatprove if necessary. You can then call gnatprove from the command line or in your editor

after setting the environment for your Alire project using:

eval “alr printenv’

3.4.3 The older GNAT Community version

There is an older community version of the tools, packaged with GNAT and GNATStudio. You can download it from

AdaCore’s website.

3.4. Installation of the FSF version of SPARK

19

https://www.adacore.com/download

SPARK User’s Guide, Release 15.0

20 Chapter 3. Installation of GNATprove

CHAPTER
FOUR

IDENTIFYING SPARK CODE

In general a program can have some parts that are in SPARK (and follow all the rules in the SPARK Reference Manual),
and some parts that are full Ada. Pragma or aspect SPARK_Mode is used to identify which parts are in SPARK (by default
programs are in full Ada).

This section contains a simple description of pragma and aspect SPARK_Mode. See Aspect and Pragma SPARK_Mode
for the complete description.

Note that GNATprove only analyzes parts of the code that are identified as being in SPARK using pragma or aspect
SPARK_Mode.

4.1 Mixing SPARK Code and Ada Code

An Ada program unit or other construct is said to be “in SPARK” if it complies with the restrictions required to permit
formal verification given in the SPARK Reference Manual. Conversely, an Ada program unit or other construct is “not
in SPARK” if it does not meet these requirements, and so is not amenable to formal verification.

Within a single Ada unit, constructs which are “in” and “not in” SPARK may be mixed at a fine level in accordance
with the following two general principles:

* SPARK code shall only reference SPARK declarations, but a SPARK declaration which requires a completion
may have a non-SPARK completion.

* SPARK code may enclose non-SPARK code.

* non-SPARK code may enclose SPARK code only at library level. A subprogram body which is not in SPARK
cannot contain SPARK code.

More specifically, non-SPARK completions of SPARK declarations are allowed for subprogram declarations, package
declarations, task type declarations, protected type declarations, private type declarations, private extension declara-
tions, and deferred constant declarations. [Strictly speaking, the private part of a package, a task type or a protected
type is considered to be part of its completion for purposes of the above rules; this is described in more detail below].

When a non-SPARK completion is provided for a SPARK declaration, the user has an obligation to ensure that the non-
SPARK completion is consistent (with respect to the semantics of SPARK) with its SPARK declaration. For example,
SPARK requires that a function call has no side effects. If the body of a given function is in SPARK, then this rule
is enforced via various language rules; otherwise, it is the responsibility of the user to ensure that the function body
does not violate this rule. As with other such constructs (notably pragma Assume), failure to meet this obligation can
invalidate any or all analysis (proofs and/or flow analysis) associated with the SPARK portion of a program. A non-
SPARK completion meets this obligation if it is semantically equivalent (with respect to dynamic semantics) to some
notional completion that could have been written in SPARK.

When a non-SPARK package declaration or body is included in a SPARK subprogram or package, the user has an
obligation to ensure that the non-SPARK declaration is consistent (with respect to the semantics of SPARK) with
a hypothetical equivalent SPARK declaration. For example, SPARK requires that package elaboration code cannot
modify variables defined outside of the package.

21

SPARK User’s Guide, Release 15.0

The SPARK semantics (specifically including flow analysis and proof) of a “mixed” program which meets the afore-
mentioned requirement are well defined - they are the semantics of the equivalent 100% SPARK program. For the
semantics of other “mixed” programs refer to the Ada Reference Manual.

In the case of a package, a task type, or a protected type, the specification/completion division described above is a
simplification of the true situation. For instance, a package is divided into 4 sections, not just 2: its visible part, its
private part, the declarations of its body, and the statement list of its body. For a given package and any number N in
the range O .. 4, the first N sections of the package might be in SPARK while the remainder is not.

For example, the following combinations may be typical:
 Package specification in SPARK. Package body not in SPARK.
* Visible part of package specification in SPARK. Private part and body not in SPARK.

» Package specification in SPARK. Package body almost entirely in SPARK, with a small number of subprogram
bodies not in SPARK.

 Package specification in SPARK, with all subprogram bodies imported from another language.

» Package specification contains a mixture of declarations which are in SPARK and not in SPARK. The latter
declarations are only visible and usable from client units which are not in SPARK.

Task types and protected types are similar to packages but only have 3 sections instead of 4. The statement list section
of the body is missing.

Another typical use is to exempt part of a subprogram from analysis by isolating it in a local subprogram whose body
is not in SPARK.

Such patterns are intended to allow for application of formal verification to a subset of a program, and the combination
of formal verification with more traditional testing (see Applying SPARK in Practice).

4.2 Project File Setup

The project file is used to identify coarsely which parts of a program are in SPARK. To get more details on project file
setup, see section Setting Up a Project File.

4.2.1 Setting the Default SPARK_Mode

There are two possible defaults:

1. No value of SPARK_Mode is specified as a configuration pragma. In that case, only the parts of the program
explicitly marked with SPARK_Mode => On are in SPARK. This default is recommended if only a small number
of units or subprograms are in SPARK.

2. A value of SPARK_Mode => On is specified as a configuration pragma. In that case, all the program should be in
SPARK, except for those parts explicitly marked with SPARK_Mode => Off or a configuration pragma of Auto
inside files. This mode is recommended if most of the program is in SPARK.

Here is how to specify a value of SPARK_Mode => On as a configuration pragma:

project My_Project is
package Compiler is
for Local_Configuration_Pragmas use "spark.adc";
end Compiler;
end My_Project;

where spark.adc is a configuration file containing at least the following line:

22 Chapter 4. Identifying SPARK Code

SPARK User’s Guide, Release 15.0

pragma SPARK_Mode (On);

4.2.2 Specifying Files To Analyze

By default, all files from a project are analyzed by GNATprove. It may be useful to restrict the set of files to analyze to
speedup analysis if only a subset of the files contain SPARK code.

The set of files to analyze can be identified by specifying a different value of various project attributes in the mode used
for formal verification:

* Source_Dirs: list of source directory names
* Source_Files: list of source file names
* Source_List_File: name of a file listing source file names

For example:

project My_Project is
Mode := External ("GPR_TOOL", "");

case Mode is
when "gnatprove" =>
for Source_Dirs use ("dirl", "dir2");
for Source_Files use ("filel.ads", "file2.ads", "filel.adb", "file2.adb");
when others =>
for Source_Dirs use (...);
end case;

package Compiler is
case Mode is
when "gnatprove" =>
for Switches ("Ada") use ...
when others =>
for Switches ("Ada") use ...
end case;
end Compiler;

end My_Project;

4.2.3 Excluding Files From Analysis

When choosing a default value of SPARK_Mode => On, it may be needed to exclude some files from analysis (for
example, because they contain non-SPARK code, or code that does not need to be formally analyzed).

The set of files to exclude can be identified by specifying a different value of various project attributes in the mode used
for formal verification:

* Excluded_Source_Dirs: list of excluded source directory names
e Excluded_Source_Files: list of excluded source file names
* Excluded_Source_List_File: name of a file listing excluded source file names

For example:

4.2. Project File Setup 23

SPARK User’s Guide, Release 15.0

project My_Project is
package Compiler is
for Local_Configuration_Pragmas use "spark.adc";
end Compiler;

Mode := External ("GPR_TOOL", "");

case Mode is
when "gnatprove" =>
for Excluded_Source_Files use ("filel.ads", "filel.adb", "file2.adb");
when others =>
null;
end case;

end My_Project;

4.2.4 Using Multiple Projects

Sometimes, it is more convenient to analyze a subset of the source files with the default SPARK_Mode => On and the
rest of the source files with no setting for SPARK_Mode. In that case, one can use two project files with different defaults,
with each source file in one of the projects only. Files in one project can still refer to files in the other project by using
a limited with clause between projects, as follows:

limited with "project_b"
project My_Project_A is
package Compiler is
for Local_Configuration_Pragmas use "spark.adc";
end Compiler;
for Source_Files use ("filel.ads", "file2.ads", "filel.adb", "file2.adb");
end My_Project_A;

limited with "project_a"
project My_Project_B is

for Source_Files use ("file3.ads", "file4.ads", "file3.adb", "file4.adb");
end My_Project_B;

where spark.adc is a configuration file containing at least the following line:

pragma SPARK_Mode (On);

4.3 Using SPARK_Mode in Code

The pragma or aspect SPARK_Mode can be used in the code to identify precisely which parts of a program are in SPARK.

4.3.1 Basic Usage
The form of a pragma SPARK_Mode is as follows:

pragma SPARK _Mode [(Auto | On | 0ff)]

For example:

24 Chapter 4. Identifying SPARK Code

SPARK User’s Guide, Release 15.0

pragma SPARK_Mode (On);
package P is

The value Auto is only allowed in configuration pragmas, either in a configuration pragma file, or inside a source file.
Thus, value Auto is not allowed in aspect SPARK_Mode. Having a value Auto means that the file is analyzed as if no
value of SPARK_Mode was specified, which is useful in cases where SPARK_Mode => On s specified in a configuration
pragma file for the complete project, but a file contains both entities compatible with SPARK and entities not in SPARK.

The form of an aspect SPARK_Mode is as follows:

with SPARK Mode => [On | Off]

For example:

package P with
SPARK_Mode => On
is

A default argument of On is assumed for any SPARK_Mode pragma or aspect for which no argument is explicitly
specified.

For example:

package P is
pragma SPARK Mode; -- On is implicit here

or

package P with
SPARK_Mode -- On is implicit here
is

We say that a package or a subprogram is library-level if it is either top-level (i.e. it is a library unit; its declaration is
the outermost program unit declared in a given compilation unit) or declared immediately within another library-level
package (which excludes, for example, declarations inside subprogram bodies). For example, all the packages in the
following code snippet are library-level packages:

package P is
package Q is
package R is

package body P is
package S is
package T is

The SPARK_Mode pragma can be used in the following places in the code:
* as aconfiguration pragma at unit level (even before with-clauses) in particular for unit-level generic instantiations
» immediately within a library-level package spec
* immediately within a library-level package body
» immediately following the private keyword of a library-level package spec
» immediately following the begin keyword of a library-level package body

* immediately following a library-level subprogram spec

4.3. Using SPARK_Mode in Code 25

SPARK User’s Guide, Release 15.0

* immediately within a library-level subprogram body

* immediately within a library-level task spec

* immediately within a library-level task body

» immediately following the private keyword of a library-level task spec

» immediately within a library-level protected spec

* immediately within a library-level protected body

» immediately following the private keyword of a library-level protected spec
The SPARK_Mode aspect can be used in the following places in the code:

* on a library-level package spec or body

* on a library-level subprogram spec or body

* on a library-level task spec or body

* on a library-level protected spec or body

If a SPARK_Mode pragma or aspect is not specified for a subprogram, package, task or protected spec/body, then its
value is inherited from the current mode that is active at the point where the declaration occurs.

Note that a generic package instance is considered to be declared at its instantiation point. For example, a generic
package cannot be both marked SPARK_Mode and instantiated in a subprogram body.

4.3.2 Consistency Rules

The basic rule is that you cannot turn SPARK_Mode back On, once you have explicitly turned if Off. So the following
rules apply:

If a subprogram spec has SPARK_Mode Off, then the body cannot have SPARK_Mode On.
For a package, we have four parts:

1. the package public declarations

2. the package private part

3. the body of the package

4. the elaboration code after begin

For a package, the rule is that if you explicitly turn SPARK_Mode Off for any part, then all the following parts cannot
have SPARK_Mode On. Note that this may require repeating a pragma SPARK_Mode (0ff) in the body. For example, if
we have a configuration pragma SPARK_Mode (On) that turns the mode On by default everywhere, and one particular
package spec has pragma SPARK_Mode (0£ff), then that pragma will need to be repeated in the package body.

Task types and protected types are handled similarly. If SPARK_Mode is set to Off on one part, it cannot be set to On
on the following parts, among the three parts:

1. the spec
2. the private part
3. the body

There is an exception to this rule, when SPARK_Mode occurs in the code of a generic instantiated in code where
SPARK_Mode is Off. In that case, occurrences of SPARK_Mode in the generic are ignored for this instance.

26 Chapter 4. Identifying SPARK Code

20

21

22

23

24

25

SPARK User’s Guide, Release 15.0

4.3.3 Examples of Use
Verifying Selected Subprograms

If only a few selected subprograms are in SPARK, then it makes sense to set no default for SPARK_Mode, and instead
set SPARK_Mode => On directly on the subprograms of interest. For example:

package Selected_Subprograms is

procedure Critical_Action with
SPARK_Mode => On;

procedure Sub_Action (X : out Boolean) with
Post => X = True;

procedure Non_Critical_Action;

end Selected_Subprograms;

Note that, although the bodies of procedures Sub_Action and Non_Critical_Action are not analyzed, it is valid to
call Sub_Action in the body of procedure Critical_Action, even without specifying SPARK_Mode => On on the
spec of Sub_Action. Indeed, GNATprove checks in that case that the spec of Sub_Action is in SPARK.

package body Selected_Subprograms is

procedure Critical_Action with
SPARK_Mode => On
is
-- this procedure body is analyzed
X : Boolean;
begin
Sub_Action (X);
pragma Assert (X = True);
end Critical_Action;

procedure Sub_Action (X : out Boolean) is
begin
-- this procedure body is not analyzed
X := True;
end Sub_Action;

procedure Non_Critical_Action is

begin
-- this procedure body is not analyzed
null;

end Non_Critical_Action;

end Selected_Subprograms;

Verifying Selected Units

If only a few selected units are in SPARK, then it makes sense to set no default for SPARK_Mode, and instead set
SPARK_Mode => On directly on the units of interest. For example:

4.3. Using SPARK_Mode in Code 27

20

21

22

23

24

25

26

27

28

29

SPARK User’s Guide, Release 15.0

package Selected_Units with
SPARK_Mode => On
is

procedure Critical_Action;

procedure Sub_Action (X : out Boolean) with
Post => X = True;

procedure Non_Critical_Action with
SPARK_Mode => 0Off;

end Selected_Units;

Note that procedure Sub_Action can be called inside SPARK code, because its spec is in SPARK, even though its
body is marked SPARK_Mode => Off. On the contrary, procedure Non_Critical_Action whose spec is marked
SPARK_Mode => Off cannot be called inside SPARK code.

package body Selected_Units with
SPARK_Mode => On
is

procedure Critical_Action is
-- this procedure body is analyzed
X : Boolean;
begin
Sub_Action (X);
pragma Assert (X = True);
end Critical_Action;

procedure Sub_Action (X : out Boolean) with
SPARK_Mode => Off
is
begin
-- this procedure body is not analyzed
X := True;
end Sub_Action;

procedure Non_Critical_Action with
SPARK_Mode => Off
is
begin
-- this procedure body is not analyzed
null;
end Non_Critical_Action;

end Selected_Units;

28 Chapter 4. Identifying SPARK Code

SPARK User’s Guide, Release 15.0

Excluding Selected Unit Bodies

If a unit spec is in SPARK, but its body is not in SPARK, the spec can be marked with SPARK_Mode => On and the
body with SPARK_Mode => Off. This allows client code in SPARK to use this unit. If SPARK_Mode is On by default,
then it need not be repeated on the unit spec.

package body Exclude_Unit_Body with
SPARK_Mode => Off
is
-- this package body is not analyzed

Value : T := new Integer;

function Get_Value return Integer is
begin

return Value.all;
end Get_Value;

procedure Set_Value (V : Integer) is
begin

Value.all := V;
end Set_Value;

end Exclude_Unit_Body;

Note that the private part of the spec (which is physically in the spec file, but is logically part of the implementation)
can be excluded as well, by using a pragma SPARK_Mode (0£ff) at the start of the private part.

package Exclude_Unit_Body with
SPARK_Mode => On

is
type T is private;

function Get_Value return Integer;

procedure Set_Value (V : Integer) with
Post => Get_Value = V;

private
pragma SPARK_Mode (0ff);

-- the private part of the package spec is not analyzed

type T is access Integer;
end Exclude_Unit_Body;

This scheme also works on generic units, which can then be instantiated both in code where SPARK_Mode is On, in
which case only the body of the instantiated generic is excluded, or in code where SPARK_Mode is Off, in which case
both the spec and the body of the instantiated generic are excluded.

generic
type T is private;
package Exclude_Generic_Unit_Body with
(continues on next page)

4.3. Using SPARK_Mode in Code 29

SPARK User’s Guide, Release 15.0

(continued from previous page)

SPARK_Mode => On
is

procedure Process (X : in out T);
end Exclude_Generic_Unit_Body;

package body Exclude_Generic_Unit_Body with
SPARK_Mode => Off
is
-- this package body is not analyzed
procedure Process (X : in out T) is
begin
null;
end Process;
end Exclude_Generic_Unit_Body;

with Exclude_Generic_Unit_Body;
pragma Elaborate_All (Exclude_Generic_Unit_Body);

package Use_Generic with
SPARK_Mode => On
is
-- the spec of this generic instance is analyzed
package Gl is new Exclude_Generic_Unit_Body (Integer);

procedure Do_Nothing;

end Use_Generic;

package body Use_Generic with
SPARK_Mode => Off

is
type T is access Integer;

-- this generic instance is not analyzed
package G2 is new Exclude_Generic_Unit_Body (T);

procedure Do_Nothing is
begin

null;
end Do_Nothing;

end Use_Generic;

Excluding Selected Parts of a Unit

If most units are in SPARK except from some subprograms and packages, it makes sense to set the default to
SPARK_Mode (On), and set SPARK_Mode => Off on non-SPARK declarations. We assume here that a value of
SPARK_Mode => On is specified as a configuration pragma.

package Exclude_Selected_Parts is

(continues on next page)

30 Chapter 4. Identifying SPARK Code

SPARK User’s Guide, Release 15.0

(continued from previous page)

procedure Critical_Action;
procedure Non_Critical_Action;

package Non_Critical_Data with
SPARK_Mode => Off
is
type T is access Integer;
X : T;
function Get_X return Integer;
end Non_Critical_Data;

end Exclude_Selected_Parts;

Note that procedure Non_Critical_Action can be called inside SPARK code, because its spec is in SPARK, even
though its body is marked SPARK_Mode => Off.

Note also that the local package Non_Critical_Data can contain any non-SPARK types, variables and subprograms,
as it is marked SPARK_Mode => Off. It may be convenient to define such a local package to gather non-SPARK
declarations, which allows to mark globally the unit Exclude_Selected_Parts with SPARK_Mode => On.

package body Exclude_Selected_Parts is

procedure Critical_Action is

begin
-- this procedure body is analyzed
Non_Critical_Action;

end Critical_Action;

procedure Non_Critical_Action with
SPARK_Mode => Off
is
begin
-- this procedure body is not analyzed
null;
end Non_Critical_Action;

package body Non_Critical_Data with
SPARK_Mode => Off
is
-- this package body is not analyzed
function Get_X return Integer is
begin
return X.all;
end Get_X;
end Non_Critical_Data;

end Exclude_Selected_Parts;

4.3. Using SPARK_Mode in Code 31

SPARK User’s Guide, Release 15.0

32 Chapter 4. Identifying SPARK Code

CHAPTER
FIVE

OVERVIEW OF SPARK LANGUAGE

This chapter provides an overview of the SPARK language, detailing for each feature its consequences in terms of
execution and formal verification. This is not a reference manual for the SPARK language, which can be found in:

¢ the Ada Reference Manual (for Ada features), and
* the SPARK Reference Manual (for SPARK-specific features)
More details on how GNAT compiles SPARK code can be found in the GNAT Reference Manual.
SPARK can be seen as a large subset of Ada with additional aspects/pragmas/attributes. It includes in particular:
* rich types (subtypes with bounds not known statically, discriminant records, subtype predicates, access types)

» flexible features to structure programs (function and operator overloading, early returns and exits, raise state-
ments)

* code sharing features (generics, expression functions)
* object oriented features (tagged types, dispatching)
* concurrency features (tasks, protected objects)

In the rest of this chapter, the marker Supported in Ada 2005 (resp. Supported in Ada 2012 or Supported in Ada 2022)
is used to denote that a feature defined in Ada 2005 (resp. Ada 2012 or Ada 2022) is supported in SPARK, and the
marker Requires Ravenscar/Jorvik profile is used to denote that a concurrency feature from Ada which belongs to the
Ravenscar or Jorvik profiles is supported in SPARK. The marker Specific to SPARK is used to denote that a feature is
specific to SPARK. Both the GNAT compiler and GNATprove analyzer support all features listed here.

Some code snippets presented in this section are available in the example called gnatprove_by_example distributed
with the SPARK toolset. It can be found in the share/examples/spark directory below the directory where the
toolset is installed, and can be accessed from the IDE (either GNAT Studio or GNATBench) via the Help — SPARK
— Examples menu item.

5.1 Language Restrictions

5.1.1 Excluded Ada Features

To facilitate formal verification, SPARK enforces a number of global simplifications to Ada. The most notable simpli-
fications are:

» Uses of access types and allocators must follow an ownership policy, so that only one access object has read-write
permission to some allocated memory at any given time, or only read-only permission for that allocated memory
is granted to possibly multiple access objects. See Memory Ownership Policy.

» All expressions (including function calls) are free of side effects, at the exception of calls to so-called functions
with side effects (see Aspect Side_Effects) which can only appear as the right-hand side of assignments. Allowing
functions with side effects everywhere could lead to non-deterministic evaluation due to conflicting side effects

33

SPARK User’s Guide, Release 15.0

in sub-expressions of an enclosing expression. Allowing all functions to have side effects would conflict with
the need to treat functions mathematically in specifications.

 Aliasing of names is not permitted. Aliasing may lead to unexpected interferences, in which the value denoted
locally by a given name changes as the result of an update to another locally named variable. Formal verification
of programs with aliasing is less precise and requires more manual work. See Absence of Interferences.

* The backward goto statement is not permitted. Backward gotos can be used to create loops, which require a
specific treatment in formal verification, and thus should be precisely identified. See Loop Invariants and Loop
Variants.

* The use of controlled types is not permitted. Controlled types lead to the insertion of implicit calls by the
compiler. Formal verification of implicit calls makes it harder for users to interact with formal verification tools,
as there is no source code on which information can be reported.

* Functions should always terminate when called on inputs satisfying the precondition, at the exception of so-called
functions with side effects (see Aspect Side_Effects). While care is taken in GNATprove to detect possibilities of
unsoundness resulting from nonterminating functions, it is possible that axioms generated for infeasible contracts
may lead to unsoundness. See Infeasible Subprogram Contracts.

* Generic code is not analyzed directly. Doing so would require lengthy contracts on generic parameters, and would
restrict the kind of code that can be analyzed, e.g. by forcing the variables read/written by a generic subprogram
parameter. Instead, instantiations of generic code are analyzed in SPARK. See Analysis of Generics.

As formal verification technology advances the list will be revisited and it may be possible to relax some of these
restrictions.

Uses of these features in SPARK code are detected by GNATprove and reported as errors. Formal verification is not
possible on subprograms using these features. But these features can be used in subprograms in Ada not identified as
SPARK code, see Identifying SPARK Code.

5.1.2 Sizes of Objects

GNATDprove generally only knows the values of the Size and Object_Size attributes in simple cases such as scalar
objects. For any more complex types such as arrays and records, the value of these attributes is unknown, and e.g.
assertions referring to them remain unproved. The user can indicate the values of these attributes to SPARK via
confirming representation clauses, using for Type'Size use ... or the aspect syntax with Size => Only
static values can be used in these representation aspects or clauses, which can only be used on type declarations and
not on subtype declarations.

Note that for an object X of type T, the value of X'Size is not necessarily equal to T'Size, but equal to
T'Object_Size. So it is generally more useful to specify Object_Size on types to be able to know the value the
Size attribute of the type’s objects. However, to compute the size of T'Object_Size for composite types, the value
of C'Size is generally used, C being the type of a component. The value of Object_Size must be 8, 16, 32 or a
multiple of 64, while the Size of a type can be any value.

Attributes Size and Object_Size are specific to a subtype. As such, it is not known if a subtype has the same value
for these attributes as its base type, including when the subtype does not introduce any constraint as in subtype S is
T.

The following code example shows some simple representation clauses using the aspect syntax:

-- SPARK knows the 'Size and 'Object_Size of scalar types
type Short_Short is range -128 .. 127;
type U8 is mod 2 ** 8§;

-- The following representation clauses are not needed, but serve to
-- illustrate that in the record type declaration below, U7'Size (and not

(continues on next page)

34 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)

-- U7Object_Size) is used to check the Object_Size of the record type.
type U7 is mod 2 ** 7
with Size => 7,

Object_Size => 8;

-- Without the packing instruction, the compiler would complain that
-- objects of type R do not fit into 8 bits.
type R is record

A : U7;
B : Boolean;
end record

with Pack, Object_Size => 8;

5.1.3 Data Validity

SPARK reinforces the strong typing of Ada with a stricter initialization policy (see Data Initialization Policy), and thus
provides no means of specifying that some input data may be invalid. This has some impact on language features that
process or potentially produce invalid values. SPARK issues checks specific to data validity on two language constructs:

¢ Calls to instances of Unchecked_Conversion

* Objects with a supported address clause (so-called overlays). An address clause is supported if it is of the form
with Address => Y'Address, where Y is another object, and Y is part of a statically known object.

For occurences of these patterns, SPARK checks that no invalid values can be produced. Given that no invalid values
can be constructed in SPARK, the evaluation of the attribute Valid is assumed to always return True.

These validity checks are illustrated in the following example:

package Validity with
SPARK_Mode
is

procedure Convert (X : Integer; Y : out Float);

end Validity;

with Ada.Unchecked_Conversion;

package body Validity with
SPARK_Mode
is

function Int_To_Float is new Ada.Unchecked_Conversion (Integer, Float);

procedure Convert (X : Integer; Y : out Float) is
begin

pragma Assert (X'Valid);

Y := Int_To_Float (X);

pragma Assert (Y'Valid);
end Convert;

end Validity;

5.1. Language Restrictions 35

SPARK User’s Guide, Release 15.0

GNATDprove proves both assertions, but issues warnings about its assumptions that the evaluation of attribute Valid
on both input parameter X and the result of the call to Unchecked_Conversion return True. It also issues a “high”
unproved check that the unchecked conversion to Float may produce invalid values (for example, if an Integer is
converted whose bit representation corresponds to a NaN float, which is not allowed in SPARK).

validity.adb:7:13: info: types in unchecked conversion have the same size
validity.adb:7:59: info: type is suitable as source for unchecked conversion

validity.adb:7:68: high: type is unsuitable as a target for unchecked conversion
7 | function Int_To_Float is new Ada.Unchecked_Conversion (Integer, Float);

| Arcmon

possible explanation: floating-point types have invalid bit patterns for SPARK

validity.adb:11:22: warning: attribute Valid is assumed to return True [attribute-valid-
—always-true]
11 | pragma Assert (X'Valid);

| AESEEEE

validity.adb:11:22: info: assertion proved

validity.adb:13:22: warning: attribute Valid is assumed to return True [attribute-valid-
—.always-true]
13 | pragma Assert (Y'Valid);
| Ao
validity.adb:13:22: info: assertion proved
validity.ads:5:36: info: initialization of "Y" proved

When checking an instance of Unchecked_Conversion, GNATprove also checks that both types have the same
Object_Size. For non-scalar types, GNATprove doesn’t know the Object_Size of the types, so representation
clauses that specify Object_Size are required to prove such checks (see also Sizes of Objects). Similarly, for object
declarations with an Address clause or aspect that refers to the 'Address of another object, SPARK checks that both
objects have the same known Object_Size.

SPARK allows conversions from (suitable) integer types or System.Address_Type to general access-to-object types.
When calling such instances of Unchecked_Conversion, GNATprove makes some assumptions about the result of
the call:

* The designated data has no aliases if it is an access-to-variable type and no mutable aliases otherwise.
* The returned object is a valid access and it designates a valid value of its type.

At each call to such Unchecked_Conversion, GNATprove raises warnings to notify the user that these assumptions
need to be ascertained by other means.

Conversions from integer types or System.Address_Type to pool-specific access-to-object types are still forbidden, as
these pointers should not be deallocated nor considered when checking for memory leaks. Conversions from access-to-
object types to integer types or System.Address_Type are still forbidden, because SPARK does not handle addresses.

with Ada.Unchecked_Conversion;
with Interfaces; use Interfaces;
with System; use System;

package UC_To_Access with SPARK_Mode => On is
type Int_Access is access all Integer;

function Uns_To_Int_Access is new Ada.Unchecked_Conversion (Unsigned_64, Int_Access);
-- Accepted with warnings

(continues on next page)

36 Chapter 5. Overview of SPARK Language

22

23

24

25

26

SPARK User’s Guide, Release 15.0

(continued from previous page)
function Uns_From_Int_Access is new Ada.Unchecked_Conversion (Int_Access, Unsigned_

—~64);
-- Rejected

Cl : constant Int_Access := Uns_To_Int_Access (30);

function Addr_To_Int_Access is new Ada.Unchecked_Conversion (Address, Int_Access);
-- Accepted with warnings

function Addr_From_Int_Access is new Ada.Unchecked_Conversion (Int_Access, Address);
-- Rejected

Addr : Address with Import;
C2 : constant Int_Access := Addr_To_Int_Access (Addr);

type PS_Access is access Integer;
function Uns_To_PS_Access is new Ada.Unchecked_Conversion (Unsigned_64, PS_Access);

-- Rejected
end UC_To_Access;

uc_to_access.ads:10:13: error: unchecked conversion instance from a type with access.
—subcomponents is not allowed in SPARK

uc_to_access.ads:10:13: error: violation of aspect SPARK_Mode at line 5
uc_to_access.ads:13:32: warning: call to "Uns_To_Int_Access" is assumed to return a.
—valid access designating a valid value [address-to-access-conversion]
uc_to_access.ads:13:32: warning: the value returned by a call to "Uns_To_Int_Access" is..
—assumed to have no aliases

uc_to_access.ads:17:13: error: unchecked conversion instance from a type with access.
-»subcomponents is not allowed in SPARK

uc_to_access.ads:17:13: error: violation of aspect SPARK_Mode at line 5
uc_to_access.ads:21:32: warning: call to "Addr_To_Int_Access" is assumed to return a.
—valid access designating a valid value [address-to-access-conversion]
uc_to_access.ads:21:32: warning: the value returned by a call to "Addr_To_Int_Access" is..
—assumed to have no aliases

uc_to_access.ads:25:13: error: unchecked conversion instance to a pool-specific access.,
—type is not allowed in SPARK

uc_to_access.ads:25:13: error: violation of aspect SPARK_Mode at line 5

gnatprove: error during flow analysis and proof

5.1.4 Data Initialization Policy

Modes on parameters and data dependency contracts (see Data Dependencies) in SPARK have a stricter meaning than
in Ada:

e Parameter mode in (resp. global mode Input) indicates that the object denoted in the parameter (resp. data
dependencies) should be completely initialized before calling the subprogram. It should not be written in the
subprogram.

* Parameter mode out (resp. global mode Output) indicates that the object denoted in the parameter (resp. data
dependencies) should be completely initialized before returning from the subprogram. It should not be read in
the program prior to initialization.

e Parameter mode in out (resp. global mode In_Out) indicates that the object denoted in the parameter (resp.
data dependencies) should be completely initialized before calling the subprogram. It can be written in the

5.1. Language Restrictions 37

20

21

22

23

SPARK User’s Guide, Release 15.0

subprogram.

* Global mode Proof_In indicates that the object denoted in the data dependencies should be completely initial-
ized before calling the subprogram. It should not be written in the subprogram, and only read in contracts and
assertions.

Hence, all inputs should be completely initialized at subprogram entry, and all outputs should be completely initialized
at subprogram output. Similarly, all objects should be completely initialized when read (e.g. inside subprograms), at
the exception of record subcomponents (but not array subcomponents) provided the subcomponents that are read are
initialized.

A consequence of the rules above is that a parameter (resp. global variable) that is partially written in a subprogram
should be marked as in out (resp. In_Out), because the input value of the parameter (resp. global variable) is read
when returning from the subprogram.

GNATprove will issue check messages if a subprogram does not respect the aforementioned data initialization policy.
For example, consider a procedure Proc which has a parameter and a global item of each mode:

package Data_Initialization with
SPARK_Mode
is
type Data is record
Val : Float;
Num : Natural;
end record;

Gl, G2, G3 : Data;

procedure Proc

(P1 : in Data;
P2 : out Data;
P3 : in out Data)
with
Global => (Input => GI1,
Output => G2,

In_Out => G3);

procedure Call_Proc with
Global => (Output => (Gl, G2, G3));

end Data_Initialization;

Procedure Proc should completely initialize its outputs P2 and G2, but it only initalizes them partially. Similarly,
procedure Call_Proc which calls Proc should completely initalize all of Proc’s inputs prior to the call, but it only
initalizes G1 completely.

package body Data_Initialization with
SPARK_Mode
is

procedure Proc

(P1 : in Data;

P2 : out Data;

P3 : in out Data) is
begin

P2.Val := 0.0;

(continues on next page)

38 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)

G2.Num := O;
-- fail to completely initialize P2 and G2 before exit
end Proc;

procedure Call_Proc is
X1, X2, X3 : Data;

begin
X1.val := 0.0;
X3.Num := 0;
Gl.Val := 0.0;
Gl.Num := 0;

-- fail to completely initialize X1, X3 and G3 before call
Proc (X1, X2, X3);
end Call_Proc;

end Data_Initialization;

On this program, GNATprove issues 6 high check messages, corresponding to the violations of the data initialization
policy:

data_initialization.adb:23:07: high: "G3" is not an input in the Global contract of.
—subprogram "Call_Proc" at data_initialization.ads:20
23 | Proc (X1, X2, X3);

| A

either make "G3" an input in the Global contract or initialize it before use

data_initialization.adb:23:13: high: "X1.Num" is not initialized
23 | Proc (X1, X2, X3);

| B

data_initialization.adb:23:17: warning: "X2" is set by "Proc" but not used after the call
23 | Proc (X1, X2, X3);

| b

data_initialization.adb:23:21: warning: "X3" is set by "Proc" but not used after the call
23 | Proc (X1, X2, X3);

| A~

data_initialization.adb:23:21: high: "X3.Val" is not initialized
23 | Proc (X1, X2, X3);

| A~

data_initialization.ads:12:07: warning: unused variable "P1"
12 | (P1 : in Data;

| A~

data_initialization.ads:13:07: high: "P2.Num" is not initialized in "Proc"
13 | P2 : out Data;
| A
reason for check: OUT parameter should be fully initialized on return
possible fix: initialize "P2.Num" on all paths, make "P2" an IN OUT parameter or.

(continues on next page)

5.1. Language Restrictions 39

S

SPARK User’s Guide, Release 15.0

(continued from previous page)

—,annotate it with aspect Relaxed_Initialization

data_initialization.ads:14:07: warning: "P3" is not modified, could be IN
14 | P3 : in out Data)

| A~

data_initialization.ads:14:07: warning: unused variable "P3"
14 | P3 : in out Data)

| A~

data_initialization.ads:16:27: low: unused global "G1"
16 | Global => (Input => GI1,

| A~

data_initialization.ads:17:27: high: "G2.Val" is not initialized
17 | Output => G2,

| s

data_initialization.ads:18:27: warning: "G3" is not modified, could be INPUT
18 | In_Out => G3);

| A~

data_initialization.ads:18:27: low: unused global "G3"
18 | In_Out => G3);

| A~

While a user can justify individually such messages with pragma Annotate (see section Justifying Check Messages),
it is under her responsibility to then ensure correct initialization of subcomponents that are read, as GNATprove relies
during proof on the property that data is properly initialized before being read.

Note also the various low check messages and warnings that GNATprove issues on unused parameters, global items
and assignments, also based on the stricter SPARK interpretation of parameter and global modes.

It is possible to opt out of the strong data initialization policy of SPARK on a case by case basis using the aspect
Relaxed_Initialization (see section Aspect Relaxed_Initialization and Ghost Attribute Initialized). Parts of ob-
jects subject to this aspect only need to be initialized when actually read. Using Relaxed_Initialization re-
quires specifying data initialization through contracts that are verified by proof (as opposed to flow analysis). Thus,
Relaxed_Initialization should only be used when needed as it requires more effort to verify data initialization
from both the user and the tool.

5.1.5 Memory Ownership Policy

In SPARK, access values (a.k.a. pointers) are only allowed to alias in known ways, so that formal verification can be
applied as if allocated memory pointed to by access values was a component of the access value seen as a record object.

In particular, assignment between access objects operates a transfer of ownership, where the source object loses its
permission to read or write the underlying allocated memory.

For example, in the following example:

procedure Ownership_Transfer with
SPARK_Mode
is
type Int_Ptr is access Integer;
(continues on next page)

40 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

X : Int_Ptr;

Y : Int_Ptr;

Tmp : Integer;
begin

X := new Integer'(1l);

X.all := X.all + 1;

Y := X;

Y.all := Y.all + 1;

X.all := X.all + 1; -- illegal
X.all := 1; -- 1illegal
Tmp := X.all; -- 1illegal

end Ownership_Transfer;

(continued from previous page)

GNATDprove correctly detects that X.all can neither be read nor written after the assignment of X to Y and issues

corresponding messages:

ownership_transfer.adb:13:06: error: dereference from "X"
13 | X.all := X.all + 1; -- illegal
| mhn
object was moved at line 11 [E0010]
11 | Y := X;
| A here
launch "gnatprove --explain=E0010" for more information

ownership_transfer.adb:13:15: error: dereference from "X"
13 | X.all := X.all + 1; -- illegal

A

object was moved at line 11 [E0010]
11 | Y = X¢
| A here
launch "gnatprove --explain=EQ010" for more information

ownership_transfer.adb:14:06: error: dereference from "X"
14 | X.all := 1; -- illegal
| e
object was moved at line 11 [E0010]
11 | Y := X;
| A here
launch "gnatprove --explain=E0010" for more information

ownership_transfer.adb:15:15: error: dereference from "X"
15 | Tmp := X.all; -- illegal

A

object was moved at line 11 [E0010]
11 | Y = X¢
| A here
launch "gnatprove --explain=EQ010" for more information
gnatprove: error during flow analysis and proof

is not writable

is not readable

is not writable

is not readable

At call site, ownership is similarly transferred to the callee’s parameters for the duration of the call, and returned to the

actual parameters (a.k.a. arguments) when returning from the call.

5.1. Language Restrictions

41

SPARK User’s Guide, Release 15.0

For example, in the following example:

procedure Ownership_Transfer_At_Call with
SPARK_Mode

is
type Int_Ptr is access Integer;
X : Int_Ptr;

procedure Proc (Y : in out Int_Ptr)
with Global => (In_Out => X)

is
begin
Y.all := Y.all + 1;
X.all := X.all + 1;
end Proc;
begin

X := new Integer'(1l);
X.all := X.all + 1;
Proc (X); -- 1illegal
end Ownership_Transfer_At_Call;

GNATDprove correctly detects that the call to Proc cannot take X in argument as X is already accessed as a global variable
by Proc.

possible fix: subprogram at line 7 should mention X in a precondition
7 | procedure Proc (Y : in out Int_Ptr)
| A here

It is also possible to transfer the ownership of an object temporarily, for the duration of the lifetime of a local object.
This can be achieved by declaring a local object of an anonymous access type and initializing it with a part of an existing
object. In the following example, B temporarily borrows the ownership of X:

procedure Ownership_Borrowing with

SPARK_Mode
is
type Int_Ptr is access Integer;
X : Int_Ptr := new Integer'(l);
Tmp : Integer;
begin
declare
B : access Integer := X;
begin
B.all := B.all + 1;
X.all := X.all + 1; -- 1illegal
X.all := 1; -- 1illegal
Tmp := X.all; -- 1illegal
end;
X.all := X.all + 1;
X.all := 1;
Tmp := X.all;

end Ownership_Borrowing;

During the lifetime of B, it is incorrect to either read or modify X, but complete ownership is restored to X when B goes
out of scope. GNATprove correctly detects that reading or assigning to X in the scope of B is incorrect.

42 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

ownership_borrowing.adb:12:09: error: object was borrowed at line 9
12 | X.all := X.all + 1; -- illegal

| oA s

ownership_borrowing.adb:12:18: error: object was borrowed at line 9
12 | X.all := X.all + 1; -- illegal

A

ownership_borrowing.adb:13:09: error: object was borrowed at line 9
13 | X.all := 1; -- illegal

A

ownership_borrowing.adb:14:18: error: object was borrowed at line 9
14 | Tmp := X.all; -- 1illegal
| A

gnatprove: error during flow analysis and proof

It is also possible to only transfer read access to a local variable. This happens when the variable has an anonymous
access-to-constant type, as in the following example:

procedure Ownership_Observing with

SPARK_Mode
is
type Int_Ptr is access Integer;
X : Int_Ptr := new Integer'(l);
Tmp : Integer;
begin
declare
B : access constant Integer := X;
begin
Tmp = B.all;
Tmp = X.all;
X.all := X.all + 1; -- illegal
X.all := 1; -- 1illegal
end;
X.all := X.all + 1;
X.all := 1;
Tmp = X.all;

end Ownership_Observing;

In this case, we say that B observes the value of X. During the lifetime of an observer, it is illegal to move or modify
the observed object. GNATprove correctly flags the write inside X in the scope of B as illegal. Note that reading X is
still possible in the scope of B:

ownership_observing.adb:13:09: error: object was observed at line 9
13 | X.all := X.all + 1; -- illegal

| A

ownership_observing.adb:14:09: error: object was observed at line 9
14 | X.all := 1; -- illegal
| N

(continues on next page)

5.1. Language Restrictions 43

SPARK User’s Guide, Release 15.0

(continued from previous page)

gnatprove: error during flow analysis and proof

5.1.6 Absence of Interferences

In SPARK, an assignment to a variable cannot change the value of another variable. This is enforced by restricting the
use of access types (pointers) in SPARK, and by restricting aliasing between parameters and global variables so that
only benign aliasing is accepted (i.e. aliasing that does not cause interference).

The precise rules detailed in SPARK RM 6.4.2 can be summarized as follows:
* Two mutable parameters should never be aliased.

* An immutable and a mutable parameters should not be aliased, unless the immutable parameter is always passed
by copy.
* A mutable parameter should never be aliased with a global variable referenced by the subprogram.

¢ An immutable parameter should not be aliased with a global variable referenced by the subprogram, unless the
immutable parameter is always passed by copy.

An immutable parameter is either an input parameter that is not of an access type, or an anonymous access-to-constant
parameter. Except for parameters of access types, the immutable/mutable distinction is the same as the input/output
one.

These rules extend the existing rules in Ada RM 6.4.1 for restricting aliasing, which already make it illegal to call a
procedure with problematic (non-benign) aliasing between parameters of scalar type that are known to denote the same
object (a notion formally defined in Ada RM).

For example, in the following example:

package Aliasing with
SPARK_Mode

is
Glob : Integer;

procedure Whatever (In_1, In_2 : Integer; Out_1l, Out_2 : out Integer) with
Global => Glob;

end Aliasing;

Procedure Whatever can only be called on arguments that satisfy the following constraints:
1. Arguments for Out_1 and Out_2 should not be aliased.
2. Variable Glob should not be passed in argument for Out_1 and Out_2.

Note that there are no constraints on input parameters In_1 and In_2, as these are always passed by copy (being of a
scalar type). This would not be the case if these input parameters were of a record or array type.

For example, here are examples of correct and illegal (according to Ada and SPARK rules) calls to procedure Whatever:

with Aliasing; use Aliasing;

procedure Check_Param_Aliasing with

SPARK_Mode
is

X, Y, Z : Integer := 0;
begin

(continues on next page)

44 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)

Whatever (In_1 => X, In_2 => X, Out_1 => X, Out_2 => X); -- 1illegal
Whatever (In_1 => X, In_2 => X, Out_1 => X, Out_2 => Y); -- correct
Whatever (In_1 => X, In_2 => X, Out_1 => Y, Out_2 => X); -- correct
Whatever (In_1 => Y, In_2 => Z, Out_1 => X, Out_2 => X); -- 1illegal

end Check_Param_Aliasing;

GNATprove (like GNAT compiler, since these are also Ada rules) correctly detects the two illegal calls and issues
eITors:

check_param_aliasing.adb:8:45: error: writable actual for "Out_1" overlaps with actual.
—for "Out_2"
8 | Whatever (In_1 => X, In_2 => X, Out_1 => X, Out_2 => X); -- illegal
| A here

check_param_aliasing.adb:11:45: error: writable actual for "Out_1" overlaps with actual.
—for "Out_2"
11 | Whatever (In_1 => Y, In_. 2 => Z, Out_1 => X, Out_2 => X); -- illegal
| A here
gnatprove: error during generation of Global contracts

Here are other examples of correct and incorrect calls (according to SPARK rules) to procedure Whatever:

with Aliasing; use Aliasing;

procedure Check_Aliasing with

SPARK_Mode

is
X, Y, Z : Integer := 0;

begin
Whatever (In_1 => X, In_2 => X, Out_1 => X, Out_2 => Glob); -- 1incorrect
Whatever (In_1 => X, In_2 => Y, Out_1 => Z, Out_2 => Glob); -- incorrect
Whatever (In_1 => Glob, In_2 => Glob, Out_1 => X, Out_2 =>Y); -- correct

end Check_Aliasing;

GNATDprove correctly detects the two incorrect calls and issues high check messages:

check_aliasing.adb:8:57: high: formal parameter "Out_2" and global "Glob" are aliased.
<> (SPARK RM 6.4.2)
8 | Whatever (In_1 => X, In_2 => X, Out_1 => X, Out_2 => Glob); -- incorrect
| Ao
check_aliasing.adb:9:57: high: formal parameter "Out_2" and global "Glob" are aliased.
—(SPARK RM 6.4.2)
9 | Whatever (In_1 => X, In_2 => Y, Out_1 => Z, Out_2 => Glob); -- incorrect

| Ao

Note that SPARK currently does not detect aliasing between objects that arises due to the use of Address clauses or
aspects.

5.1. Language Restrictions 45

S

SPARK User’s Guide, Release 15.0

5.1.7 Analysis of Generics

GNATprove does not directly analyze the code of generics. The following message is issued if you call GNATprove
on a generic unit:

warning: no bodies have been analyzed by GNATprove
enable analysis of a non-generic body using SPARK_Mode

The advice given is to use SPARK_Mode on non-generic code, for example an instantiation of the generic unit. As
SPARK_Mode aspect cannot be attached to a generic instantiation, it should be specified on the enclosing context, either
through a pragma or aspect.

For example, consider the following generic increment procedure:

generic
type T is range <>;
procedure Generic_Increment (X : in out T) with
SPARK_Mode,
Pre => X < T'Last,
Post => X = X'01d + 1;

procedure Generic_Increment (X : in out T) with

SPARK_Mode
is
begin

X =X + 1;

end Generic_Increment;

Procedure Instance_Increment is a specific instance of Generic_Increment for the type Integer:

pragma SPARK_Mode;
with Generic_Increment;

procedure Instance_Increment is new Generic_Increment (Integer);

GNATDprove analyzes this instantiation and reports messages on the generic code, always stating to which instantiation
the messages correspond to:

generic_increment.ads:6:11: info: postcondition proved, in instantiation at instance_
—.increment.ads:4
generic_increment.ads:6:21: info: overflow check proved, in instantiation at instance_
—increment.ads:4
generic_increment.adb:5:11: info: overflow check proved, in instantiation at instance_
—increment.ads:4

Thus, it is possible that some checks are proved on an instance and not on another one. In that case, the chained
locations in the messages issued by GNATprove allow you to locate the problematic instantiation. In order to prove a
generic library for all possible uses, you should choose extreme values for the generic parameters such that, if these
instantiations are proved, any other choice of parameters will be provable as well.

5.2 Subprogram Contracts

The most important feature to specify the intended behavior of a SPARK program is the ability to attach a contract
to subprograms. In this document, a subprogram can be a procedure, a function or a protected entry. This contract is
made up of various optional parts:

46 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

* The precondition introduced by aspect Pre specifies constraints on callers of the subprogram.

» The postcondition introduced by aspect Post specifies (partly or completely) the functional behavior of the
subprogram.

* The contract cases introduced by aspect Contract_Cases is a way to partition the behavior of a subprogram.
It can replace or complement a postcondition.

* The data dependencies introduced by aspect Global specify the global data read and written by the subprogram.

* The flow dependencies introduced by aspect Depends specify how subprogram outputs depend on subprogram
inputs.

* The exceptional contract introduced by aspect Exceptional_Cases specifies the exceptions that might be prop-
agated by a procedure, along with exceptional postconditions.

» The exit cases introduced by aspect Exit_Cases is a way to specify how a subprogram is allowed to exit by
partioning the input domain. It can replace or complement a postcondition or an exceptional contract.

* The termination contract introduced by aspect Always_Terminates requires procedures and entries to termi-
nate, possibly under a particular condition.

* The subprogram variant introduced by aspect Subprogram_Variant is used to ensure termination of recursive
subprograms.

Which contracts to write for a given verification objective, and how GNATprove generates default contracts, is detailed
in How to Write Subprogram Contracts.

GNATprove formally verifies that each execution of each SPARK subprogram it analyzes will either:
* return normally in a state that respects the subprogram’s postcondition,
* raise an exception in a state that respects the subprogram’s exceptional contract,
* terminate abnormally as a result of a primary stack, secondary stack, or heap memory allocation failure, or
* not terminate at all when it is allowed by its termination contract.

GNATprove also checks that procedures that are marked with aspect or pragma No_Return do not return: they should
either raise an exception, call a non-returning subprogram, or loop forever on any input.

5.2.1 Preconditions
Supported in Ada 2012

The precondition of a subprogram specifies constraints on callers of the subprogram. Typically, preconditions are
written as conjunctions of constraints that fall in one of the following categories:

¢ exclusion of forbidden values of parameter, for example X /= Q@ or Y not in Active_States

* specification of allowed parameter values, for example X in 1 .. 10orY in Idle_States

relations that should hold between parameter values, for example (if Y in Active_State then Z /=
Null_State)

expected values of global variables denoting the state of the computation, for example Current_State in
Active_States

invariants about the global state that should hold when calling this subprogram, for example Is_Complete
(State_Mapping)

relations involving the global state and input parameters that should hold when calling this subprogram, for
example X in Next_States (Global_Map, Y)

5.2. Subprogram Contracts 47

SPARK User’s Guide, Release 15.0

When the program is compiled with assertions (for example with switch -gnata in GNAT), the precondition of a
subprogram is checked at run time every time the subprogram is called. An exception is raised if the precondition fails.
Not all assertions need to be enabled though. For example, a common idiom is to enable only preconditions (and not
other assertions) in the production binary, by setting pragma Assertion_Policy as follows:

pragma Assertion_Policy (Pre => Check);

When a subprogram is analyzed with GNATprove, its precondition is used to restrict the contexts in which it may be
executed, which is required in general to prove that the subprogram’s implementation:

¢ is free from run-time errors (see Writing Contracts for Program Integrity); and

* ensures that the postcondition of the subprogram always holds (see Writing Contracts for Functional Correct-
ness).

In particular, the default precondition of True used by GNATprove when no explicit one is given may not be precise
enough, unless it can be analyzed in the context of its callers by GNATprove (see Contextual Analysis of Subprograms
Without Contracts). When a caller is analyzed with GNATprove, it checks that the precondition of the called subpro-
gram holds at the point of call. And even when the implementation of the subprogram is not analyzed with GNATprove,
it may be necessary to add a precondition to the subprogram for analyzing its callers (see Writing Contracts on Imported
Subprograms).

For example, consider the procedure Add_To_Total which increments global counter Total by the value given in
parameter Incr. To ensure that there are no integer overflows in the implementation, Incr should not be too large,
which a user can express with the following precondition:

procedure Add_To_Total (Incr : in Integer) with
Pre => Incr >= 0 and then Total <= Integer'Last - Incr;

To ensure that the value of Total remains non-negative, one should also add the condition Total >= 0 to the pre-
condition:

procedure Add_To_Total (Incr : in Integer) with
Pre => Incr >= 0 and then Total in 0 .. Integer'lLast - Incr;

Finally, GNATprove also analyzes preconditions to ensure that they are free from run-time errors in all contexts. This
may require writing the precondition in a special way. For example, the precondition of Add_To_Total above uses the
shortcut boolean operator and then instead of and, so that calling the procedure in a context where Incr is negative
does not result in an overflow when evaluating Integer'Last - Incr. Instead, the use of and then ensures that a
precondition failure will occur before the expression Integer'Last - Incr is evaluated.

Note

It is good practice to use the shortcut boolean operator and then instead of and in preconditions. This is required
in some cases by GNATprove to prove absence of run-time errors inside preconditions.

Raise expressions occuring in preconditions are handled in a special way. Indeed, it is a common pattern to use a raise
expression to change the exception raised by a failed precondition. To support this use case, raising an expression in a
precondition is considered in SPARK to be a failure of the precondition, as opposed to a runtime failure, which would
not be allowed in SPARK. As an example, we may want to introduce specific exceptions for the the failure of each
part of the precondition of Add_To_Total, so as to debug them more easily. This can be done by using two raise
expressions as in the following snippet:

Negative_Increment : exception;
Total_Out_Of_Bounds : exception;
(continues on next page)

48 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)

procedure Add_To_Total (Incr : in Integer) with
Pre => (Incr >= 0 or else raise Negative_Increment)
and then (Total in ® .. Integer'lLast - Incr
or else raise Total_Out_Of_Bounds);

The raise expressions are associated to each conjunct using an or else short circuit operator, so that they will be
evaluated when the conjunct evaluates to False and the exception will be raised.

On this code, GNATprove will not attempt to verify that the exceptions can never be raised when evaluating the precon-
dition in any context, like it does for other runtime exceptions. Instead, it will consider them being raised as a failure
of the precondition. So, for GNATprove, the precondition with the raise expressions above is effectively equivalent to
the precondition of the previous example.

5.2.2 Postconditions
Supported in Ada 2012

The postcondition of a subprogram specifies partly or completely the functional behavior of the subprogram. Typically,
postconditions are written as conjunctions of properties that fall in one of the following categories:

¢ possible values returned by a function, using the special attribute Result (see Attribute Result), for example
Get'Result in Active_States

* possible values of output parameters, for example Y in Active_States
* expected relations between output parameter values, for example if Success then Y /= Null_State

 expected relations between input and output parameter values, possibly using the special attribute 01d (see Az-
tribute Old), for example if Success then Y /= Y'0ld

» expected values of global variables denoting updates to the state of the computation, for example
Current_State in Active_States

e invariants about the global state that should hold when returning from this subprogram, for example
Is_Complete (State_Mapping)

* relations involving the global state and output parameters that should hold when returning from this subprogram,
for example X in Next_States (Global_Map, Y)

When the program is compiled with assertions (for example with switch -gnata in GNAT), the postcondition of a
subprogram is checked at run time every time the subprogram returns. An exception is raised if the postcondition
fails. Usually, postconditions are enabled during tests, as they provide dynamically checkable oracles of the intended
behavior of the program, and disabled in the production binary for efficiency.

When a subprogram is analyzed with GNATprove, it checks that the postcondition of a subprogram cannot fail. This
verification is modular: GNATprove considers all calling contexts in which the precondition of the subprogram holds
for the analysis of a subprogram. GNATprove also analyzes postconditions to ensure that they are free from run-time
errors, like any other assertion.

For example, consider the procedure Add_To_Total which increments global counter Total with the value given in
parameter Incr. This intended behavior can be expressed in its postcondition:

procedure Add_To_Total (Incr : in Integer) with
Post => Total = Total'Old + Incr;

The postcondition of a subprogram is used to analyze calls to the subprograms. In particular, the default postcondition
of True used by GNATprove when no explicit one is given may not be precise enough to prove properties of its callers,

5.2. Subprogram Contracts 49

SPARK User’s Guide, Release 15.0

unless it analyzes the subprogam’s implementation in the context of its callers (see Contextual Analysis of Subprograms
Without Contracts).

Recursive subprograms and mutually recursive subprograms are treated in this respect exactly like non-recursive ones.
Provided the execution of these subprograms always terminates (a property that is not verified by GNATprove), then
GNATDprove correctly checks that their postcondition is respected by using this postcondition for recursive calls.

Special care should be exercized for functions that return a boolean, as a common mistake is to write the expected
boolean result as the postcondition:

function Total_Above_Threshold (Threshold : in Integer) return Boolean with
Post => Total > Threshold;

while the correct postcondition uses Attribute Result:

function Total_Above_Threshold (Threshold : in Integer) return Boolean with
Post => Total_Above_Threshold'Result = Total > Threshold;

Both GNAT compiler and GNATprove issue a warning on the semantically correct but likely functionally wrong post-
condition.

5.2.3 Contract Cases
Specific to SPARK

When a subprogram has a fixed set of different functional behaviors, it may be more convenient to specify these behav-
iors as contract cases rather than a postcondition. For example, consider a variant of procedure Add_To_Total which
either increments global counter Total by the given parameter value when possible, or saturates at a given threshold.
Each of these behaviors can be defined in a contract case as follows:

procedure Add_To_Total (Incr : in Integer) with
Contract_Cases => (Total + Incr < Threshold => Total Total'0ld + Incr,
Total + Incr >= Threshold => Total = Threshold);

Each contract case consists in a guard and a consequence separated by the symbol =>. When the guard evaluates to
True on subprogram entry, the corresponding consequence should also evaluate to True on subprogram exit. We say
that this contract case was enabled for the call. Exactly one contract case should be enabled for each call, or said
equivalently, the contract cases should be disjoint and complete.

For example, the contract cases of Add_To_Total express that the subprogram should be called in two distinct cases
only:

* on inputs that can be added to Total to obtain a value strictly less than a given threshold, in which case
Add_To_Total adds the input to Total.

* on inputs whose addition to Total exceeds the given threshold, in which case Add_To_Total sets Total to the
threshold value.

When the program is compiled with assertions (for example with switch -gnata in GNAT), all guards are evaluated on
entry to the subprogram, and there is a run-time check that exactly one of them is True. For this enabled contract case,
there is another run-time check when returning from the subprogram that the corresponding consequence evaluates to
True.

When a subprogram is analyzed with GNATprove, it checks that there is always exactly one contract case enabled, and
that the consequence of the contract case enabled cannot fail. If the subprogram also has a precondition, GNATprove
performs these checks only for inputs that satisfy the precondition, otherwise for all inputs.

In the simple example presented above, there are various ways to express an equivalent postcondition, in particular
using Conditional Expressions:

50 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

procedure Add_To_Total (Incr : in Integer) with
Post => (if Total'Old + Incr < Threshold then
Total = Total'0Old + Incr
else
Total = Threshold);

procedure Add_To_Total (Incr : in Integer) with
Post => Total = (if Total'Old + Incr < Threshold then Total'0ld + Incr else Threshold);

procedure Add_To_Total (Incr : in Integer) with
Post => Total = Integer'lMin (Total'Old + Incr, Threshold);

In general, an equivalent postcondition may be cumbersome to write and less readable. Contract cases also provide a
way to automatically verify that the input space is partitioned in the specified cases, which may not be obvious with a
single expression in a postcondition when there are many cases.

The guard of the last case may be others, to denote all cases not captured by previous contract cases. For example,
the contract of Add_To_Total may be written:

procedure Add_To_Total (Incr : in Integer) with
Contract_Cases => (Total + Incr < Threshold => Total = Total'Old + Incr,
others => Total Threshold) ;

When others is used as a guard, there is no need for verification (both at run-time and using GNATprove) that the set
of contract cases covers all possible inputs. Only disjointness of contract cases is checked in that case.

5.2.4 Data Dependencies
Specific to SPARK

The data dependencies of a subprogram specify the global data that a subprogram is allowed to read and write. Together
with the parameters, they completely specify the inputs and outputs of a subprogram. Like parameters, the global
variables mentioned in data dependencies have a mode: Input for inputs, Output for outputs and In_Out for global
variables that are both inputs and outputs. A last mode of Proof_In is defined for inputs that are only read in contracts
and assertions. For example, data dependencies can be specified for procedure Add_To_Total which increments global
counter Total as follows:

procedure Add_To_Total (Incr : in Integer) with
Global => (In_Out => Total);

For protected subprograms, the protected object is considered as an implicit parameter of the subprogram:
* it is an implicit parameter of mode in of a protected function; and
* it is an implicit parameter of mode in out of a protected procedure or a protected entry.

Data dependencies have no impact on compilation and the run-time behavior of a program. When a subprogram is
analyzed with GNATprove, it checks that the implementation of the subprogram:

* only reads global inputs mentioned in its data dependencies,
* only writes global outputs mentioned in its data dependencies, and
 always completely initializes global outputs that are not also inputs.

See Data Initialization Policy for more details on this analysis of GNATprove. During its analysis, GNATprove uses
the specified data dependencies of callees to analyze callers, if present, otherwise a default data dependency contract
is generated (see Generation of Dependency Contracts) for callees.

5.2. Subprogram Contracts 51

SPARK User’s Guide, Release 15.0

There are various benefits when specifying data dependencies on a subprogram, which gives various reasons for users
to add such contracts:

* GNATDprove verifies automatically that the subprogram implementation respects the specified accesses to global
data.

* GNATDprove uses the specified contract during flow analysis, to analyze the data and flow dependencies of the
subprogram’s callers, which may result in a more precise analysis (less false alarms) than with the generated data
dependencies.

* GNATprove uses the specified contract during proof, to check absence of run-time errors and the functional
contract of the subprogram’s callers, which may also result in a more precise analysis (less false alarms) than
with the generated data dependencies.

When data dependencies are specified on a subprogram, they should mention all global data read and written in the
subprogram. When a subprogram has neither global inputs nor global outputs, it can be specified using the null data
dependencies:

function Get (X : T) return Integer with
Global => null;

When a subprogram has only global inputs but no global outputs, it can be specified either using the Input mode:

function Get_Sum return Integer with
Global => (Input => X, Y, Z));

or equivalently without any mode:

function Get_Sum return Integer with
Global => X, Y, 2);

Note the use of parentheses around a list of global inputs or outputs for a given mode.

Global data that is both read and written should be mentioned with the In_Out mode, and not as both input and output.
For example, the following data dependencies on Add_To_Total are illegal and rejected by GNATprove:

procedure Add_To_Total (Incr : in Integer) with
Global => (Input => Total,
Output => Total); -- INCORRECT

Global data that is partially written in the subprogram should also be mentioned with the In_Out mode, and not as an
output. See Data Initialization Policy.

5.2.5 Flow Dependencies
Specific to SPARK

The flow dependencies of a subprogram specify how its outputs (both output parameters and global outputs) depend
on its inputs (both input parameters and global inputs). For example, flow dependencies can be specified for procedure
Add_To_Total which increments global counter Total as follows:

procedure Add_To_Total (Incr : in Integer) with
Depends => (Total => (Total, Incr));

The above flow dependencies can be read as “the output value of global variable Total depends on the input values of
global variable Total and parameter Incr”.

Outputs (both parameters and global variables) may have an implicit input part depending on their type:

52 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

* an unconstrained array A has implicit input bounds A'First and A'Last
* adiscriminated record R has implicit input discriminants, for example R.Discr

Thus, an output array A and an output discriminated record R may appear in input position inside a flow-dependency
contract, to denote the input value of the bounds (for the array) or the discriminants (for the record).

For protected subprograms, the protected object is considered as an implicit parameter of the subprogram which may
be mentioned in the flow dependencies, under the name of the protected unit (type or object) being declared:

* as an implicit parameter of mode in of a protected function, it can be mentioned on the right-hand side of flow
dependencies; and

* as an implicit parameter of mode in out of a protected procedure or a protected entry, it can be mentioned on
both sides of flow dependencies.

Flow dependencies have no impact on compilation and the run-time behavior of a program. When a subprogram
is analyzed with GNATprove, it checks that, in the implementation of the subprogram, outputs depend on inputs as
specified in the flow dependencies. During its analysis, GNATprove uses the specified flow dependencies of callees
to analyze callers, if present, otherwise a default flow dependency contract is generated for callees (see Generation of
Dependency Contracts).

When flow dependencies are specified on a subprogram, they should mention all flows from inputs to outputs. In
particular, the output value of a parameter or global variable that is partially written by a subprogram depends on its
input value (see Data Initialization Policy).

When the output value of a parameter or global variable depends on its input value, the corresponding flow dependency
can use the shorthand symbol + to denote that a variable’s output value depends on the variable’s input value plus any
other input listed. For example, the flow dependencies of Add_To_Total above can be specified equivalently:

procedure Add_To_Total (Incr : in Integer) with
Depends => (Total =>+ Incr);

When an output value depends on no input value, meaning that it is completely (re)initialized with constants that do
not depend on variables, the corresponding flow dependency should use the null input list:

procedure Init_Total with
Depends => (Total => null);

5.2.6 Abstraction and Contracts

Just like for programming, abstraction is a key concept for the scalability of formal verification. In Ada, it is usually
provided through packages and privacy. A package is composed of (at most) three parts, the public part of the speci-
fication, its private part, and the package body. Entities defined in the private part of the specification or the package
body cannot be used in the public part of the specification nor in other units.

State Abstraction and Dependencies
Specific to SPARK

The subprogram contracts mentioned so far always used directly global variables. In many cases, this is not possible
because the global variables are defined in another unit and not directly visible (because they are defined in the private
part of a package specification, or in a package implementation). The notion of abstract state in SPARK can be used in
that case (see State Abstraction) to name in contracts global data that is not visible.

Suppose the global variable Total incremented by procedure Add_To_Total is defined in the package implemen-
tation, and a procedure Cash_Tickets in a client package calls Add_To_Total. Package Account which defines
Total can define an abstract state State that represents Total, as seen in State Abstraction, which allows using it in
Cash_Tickets’s data and flow dependencies:

5.2. Subprogram Contracts 53

SPARK User’s Guide, Release 15.0

procedure Cash_Tickets (Tickets : Ticket_Array) with
Global => (Output => Account.State),
Depends => (Account.State => Tickets);

As global variable Total is not visible from clients of unit Account, it is not visible either in the visible part of
Account’s specification. Hence, externally visible subprograms in Account must also use abstract state State in
their data and flow dependencies, for example:

procedure Init_Total with
Global => (Output => State),
Depends => (State => null);

procedure Add_To_Total (Incr : in Integer) with
Global => (In_Out => State),
Depends => (State =>+ Incr);

Then, the implementations of Init_Total and Add_To_Total can define refined data and flow dependencies in-
troduced respectively by Refined_Global and Refined_Depends, which give the precise dependencies for these
subprograms in terms of concrete variables:

procedure Init_Total with
Refined_Global => (Output => Total),
Refined_Depends => (Total => null)
is
begin
Total := 0;
end Init_Total;

procedure Add_To_Total (Incr : in Integer) with
Refined_Global => (In_Out => Total),
Refined_Depends => (Total =>+ Incr)
is
begin
Total := Total + Incr;
end Add_To_Total;

Here, the refined dependencies are the same as the abstract ones where State has been replaced by Total, but that’s not
always the case, in particular when the abstract state is refined into multiple concrete variables (see State Abstraction).
GNATDprove checks that:

* each abstract global input has at least one of its constituents mentioned by the concrete global inputs

« each abstract global in_out has at least one of its constituents mentioned with mode input and one with mode
output (or at least one constituent with mode in_out)

* each abstract global output has to have all its constituents mentioned by the concrete global outputs
* the concrete flow dependencies are a subset of the abstract flow dependencies

GNATDprove uses the abstract contract (data and flow dependencies) of Init_Total and Add_To_Total when ana-
lyzing calls outside package Account and the more precise refined contract (refined data and flow dependencies) of
Init_Total and Add_To_Total when analyzing calls inside package Account.

Refined dependencies can be specified on both subprograms and tasks for which data and/or flow dependencies that
are specified include abstract states which are refined in the current unit.

54 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

Abstraction and Functional Contracts

Abstraction affects how functional contracts are written. First, if global variables are not visible for data dependencies,
they are not visible either for functional contracts. For example, in the case of procedure Add_To_Total, if global
variable Total is not visible, we cannot express anymore the precondition and postcondition of Add_To_Total as in
Preconditions and Postconditions. In this case, it is necessary to define accessor functions to retrieve properties of the
state that are needed to express contracts. For example here:

function Get_Total return Integer;

procedure Add_To_Total (Incr : in Integer) with
Pre => Incr >= 0 and then Get_Total in 0 .. Integer'Last - Incr,
Post => Get_Total = Get_Total'Old + Incr;

The body of the function Get_Total may be defined either in the private part of package Account or in its implemen-
tation. It may take the form of a regular function or an expression function (see Expression Functions):

Total : Integer;

function Get_Total return Integer is (Total);

Accessor functions can be annotated as Ghost Functions functions to prevent them from being available in the standard
API of the package.

Abstraction also affects the visibility of contracts by the verification tool. By default, the notion of visibility used by
GNATDprove is rather liberal: subprogram contracts and bodies of expression functions are visible except if they occur
in the body of another (possibly nested) unit. In particular, contracts of subprograms declared in the private part of other
units are visible. On our example, the precise definition of Get_Global is visible for the verification of Account no
matter whether it is declared in its private part or its implementation. However, it will only be available when verifying
units using the Account package if it is declared in its private part. To demonstrate this, we can introduce two distinct
functions to access the value of Total in the public part of the specification of Account:

function Get_Total_1 return Integer;

function Get_Total_2 return Integer;

They can be defined as expression functions as done previously, either in private part of Account or in its implemen-
tation:

function Get_Total_1 return Integer is (Total);

function Get_Total_2 return Integer is (Total);

In both cases, it will be possible to prove that Get_Total_1 and Get_Total_2 necessarily return the same value when
verifying Account and all subprograms declared within. However, in a Main procedure using the Account package,
this property would no longer be provable if the expression functions are supplied in the body of Account.

Note that abstraction is an important concept for verification as it ensures scalability of complex proofs by enforcing
separation of concerns - i.e. only the information that is necessary for a given verification is available in the verification
tool. The default visibility rules for verification can be tuned in some cases using the annotations Hide_Info and
Unhide_Info, see Annotation for Managing the Proof Context, to achieve a fine-grained abstraction.

The examples presented so far take advantage of the specific handling of expression functions to provide different
contracts for a subprogram. Since the body of expression functions acts as an implicit postcondition, it directly provides
a refined version of the function’s contract possibly with a different visibility. Not all subprograms can be turned into
an expression function. As an alternative, the SPARK language provides the Refined_Post aspect or pragma that can
be used to provide an alternative postcondition on a subprogram body. For example, procedure Add_To_Total may

5.2. Subprogram Contracts 55

SPARK User’s Guide, Release 15.0

also increment the value of a counter Call_Count at each call. If this information is not relevant for the verification
of programs using the Account package, it can be expressed in a refined postcondition:

procedure Add_To_Total (Incr : in Integer) with
Refined_Post => Total = Total'Old + Incr and Call_Count = Call_Count'Old + 1
is

end Add_To_Total;

GNATDprove uses the abstract contract (precondition and postcondition) of Add_To_Total when analyzing calls outside
package Account and the more precise refined contract (precondition and refined postcondition) of Add_To_Total
when analyzing calls inside package Account. The verification of the subprogram itself ensures that the refined con-
tracts are a refinement of the abstract ones: the postcondition of Add_To_Total should be implied by its refined
postcondition only, without looking at its body. As an example, removing the first conjunct in the refined postcon-
dition of Add_To_Total would cause the verification of its postcondition to fail even though it is still implied by its
implementation:

procedure Add_To_Total (Incr : in Integer) with
Refined_Post => Call_Count = Call_Count'Old + 1 -- NOT PRECISE ENOUGH TO PROVE THE POST
is

end Add_To_Total;

5.2.7 Exceptional Contracts
Specific to SPARK

In SPARK, every subprogram with side effects which might propagate an exception should be annotated with an ex-
ceptional contract. This contract, introduced by the Exceptional_Cases aspect, lists all the exceptions which might
be propagated by a procedure, and associates them to an exceptional postcondition. This postcondition describes the
effect of the procedure when the exception is raised. As an example, consider the procedure Incr_All below. It goes
over an array to increment its elements. If an overflow would occur, the exception Overflow is raised and the traversal
is stopped. The global variable Index is used to store the current index at this point. The exceptional contract of
Incr_Al1 states both that it might propagate Overflow, and that it will only do so if it finds an offending index, using
the global variable Index. The fact that Overflow is necessarily raised when such an index exists follows from the
regular postcondition of Incr_All:

procedure Exceptions with SPARK_Mode is
type Nat_Array is array (Positive range <>) of Natural;

Overflow : exception;
Index : Positive;

procedure Incr_All (A : in out Nat_Array) with
Post =>
(for all I in A'Range => A'0Old (I) /= Natural'Last
and then A (I) = A'01d (I) + 1),
Exceptional_Cases =>
(Overflow => Index in A'Old'Range and then A'Old (Index) = Natural'lLast);

procedure Incr_All (A : in out Nat_Array) is
begin
for I in A'Range loop

(continues on next page)

56 Chapter 5. Overview of SPARK Language

40

41

42

43

44

45

46

47

48

49

50

51

52

54

55

56

57

59

SPARK User’s Guide, Release 15.0

(continued from previous page)

if A (I) = Natural'Last then

Index := I;
raise Overflow;
end if;

A (D :=A () + 1;
pragma Loop_Invariant
(for all J in A'First .. I => A'Loop_Entry (J) < Natural'Last);
pragma Loop_Invariant
(for all J in A'First .. I => A (J) = A'Loop_Entry (J) + 1);
end loop;
end Incr_All;

procedure Incr_All_Cond (A : in out Nat_Array; Success : out Boolean) with
Post => Success = (for all I in A'Range => A'Old (I) /= Natural'lLast)
and then
(if Success then (for all I in A'Range => A (I) = A'0ld (I) + 1));

procedure Incr_All_Cond (A : in out Nat_Array; Success : out Boolean) is

begin
Incr_All (A);
Success := True;
exception

when Overflow =>
A := (others => 0);
Success := False;
end Incr_All_Cond;

procedure Incr_All_With_Pre (A : in out Nat_Array) with
Pre => (for all I in A'Range => A (I) /= Natural'Last),
Post =>
(for all I in A'Range => A'0Old (I) /= Natural'Last
and then A (I) = A'01ld (I) + 1);

procedure Incr_All_With_Pre (A : in out Nat_Array) is
begin

Incr_All (A);
end Incr_All_With_Pre;

begin
null;
end Exceptions;

GNATprove can successfully verify both Incr_All above and its two callers: the exception is handled inside

Incr_All_Cond and the call to Incr_All never raises Overflow in Incr_All_With_Pre

exceptions.adb:10:08: info: postcondition proved
exceptions.adb:10:40: info: index check proved
exceptions.adb:11:23: info: index check proved
exceptions.adb:11:35: info: index check proved
exceptions.adb:11:38: info: overflow check proved
exceptions.adb:13:21: info: exceptional case proved

(continues on next page)

5.2. Subprogram Contracts

SPARK User’s Guide, Release 15.0

(continued from previous page)

exceptions.adb:13:58: info: index check proved
exceptions.adb:19:22: info: range check proved
exceptions.adb:23:25: info: overflow check proved
exceptions.adb:25:13: info: loop invariant initialization proved
exceptions.adb:25:13: info: loop invariant preservation proved
exceptions.adb:25:56: info: index check proved
exceptions.adb:27:13: info: loop invariant preservation proved
exceptions.adb:27:13: info: loop invariant initialization proved
exceptions.adb:27:45: info: index check proved
exceptions.adb:27:64: info: index check proved
exceptions.adb:27:67: info: overflow check proved
exceptions.adb:31:29: info: initialization of "A" proved
exceptions.adb:31:51: info: initialization of "Success" proved
exceptions.adb:32:14: info: postcondition proved
exceptions.adb:32:56: info: index check proved
exceptions.adb:34:55: info: index check proved
exceptions.adb:34:67: info: index check proved
exceptions.adb:34:70: info: overflow check proved
exceptions.adb:38:07: info: only expected exception raised
exceptions.adb:42:12: info: length check proved
exceptions.adb:47:42: info: index check proved
exceptions.adb:49:08: info: postcondition proved
exceptions.adb:49:40: info: index check proved
exceptions.adb:50:23: info: index check proved
exceptions.adb:50:35: info: index check proved
exceptions.adb:50:38: info: overflow check proved
exceptions.adb:54:07: info: only expected exception raised

The Data Initialization Policy of SPARK is mostly enforced on exceptional exit of subprograms. All global outputs
shall be initialized when an exception is propagated, like Index in the example above. It is the case too for parameters
which are necessarily passed by reference (tagged types, aliased parameters...). Other parameters, either necessarily
passed by copy or for which the parameter passing mode is unspecified by the language, do not need to be initialized.
As aresult, after a call which has propagated an exception:

* output parameters necessarily passed by reference are considered to have been initialized or updated by the call
as on a normal return,

* output parameters necessarily passed by copy are preserved, and

* output parameters for which the parameter passing mode is unspecified by the language are considered to not be
initialized anymore; they should not be read after the call.

As an example, the parameter A of Incr_A1l1l is a composite type containing only subcomponents of a by-copy type
(a scalar). As per the Ada reference manual, its parameter passing mode is unspecified. It means that its value will be
unspecified if the call to Incr_Al1l raises an exception, as can be seen on Incr_All_Bad_Init:

procedure Exceptions_Bad_Init with SPARK_Mode is
type Nat_Array is array (Positive range <>) of Natural;

Overflow : exception;
Index : Positive;

procedure Incr_All (A : in out Nat_Array) with

(continues on next page)

58 Chapter 5. Overview of SPARK Language

22

23

24

25

26

40

41

42

43

44

SPARK User’s Guide, Release 15.0

(continued from previous page)

Import,
Global => (In_Out => Index),
Always_Terminates,
Post =>

(for all I in A'Range => A'0Old (I) /= Natural'Last

and then A (I) = A'01d (I) + 1),

Exceptional_Cases =>

(Overflow => Index in A'Old'Range and then A'Old (Index) = Natural'Last);

procedure Incr_All_Bad_Init
(A : in out Nat_Array;
Success : out Boolean;
N : out Natural)
with
Post => Success = (for all I in A'Range => A'Old (I) /= Natural'Last)
and then
(if Success then (for all I in A'Range => A (I) = A'0ld (I) + 1));

procedure Incr_All_Bad_Init

(A : in out Nat_Array;
Success : out Boolean;
N : out Natural)
is
begin
Incr_All (A);
Success := True;
N := 0;
exception
when Overflow =>
Success := False;

N := A (Index);
end Incr_All_Bad_Init;

begin
null;
end Exceptions_Bad_Init;

exceptions_bad_init.adb:19:07: medium: "A" might not be initialized in "Incr_All_Bad_Init
19 | (A : in out Nat_Array;
| A here
reason for check: OUT parameter should be fully initialized on return
possible fix: initialize "A" on all paths, make "A" an IN OUT parameter or annotate it.

—with aspect Relaxed_Initialization

exceptions_bad_init.adb:23:49: medium: "A" might not be initialized
23 | Post => Success = (for all I in A'Range => A'Old (I) /= Natural'Last)
| A here

exceptions_bad_init.adb:39:15: high: "A" is not initialized
39 | N := A (Index);

(continues on next page)

5.2. Subprogram Contracts 59

SPARK User’s Guide, Release 15.0

(continued from previous page)

| A here

Note that, even though access types are passed by copy, in parameters of an access-to-variable part can be safely used
after an exceptional exit as only the designated value can be modified.

To make it easier for the user, it is not allowed to mention parameters which are not necessarily passed by reference in
an exceptional postcondition. An error is emitted if the exceptional postcondition of Incr_Al1l is modified to mention
A:

procedure Exceptions_Bad with SPARK_Mode is
type Nat_Array is array (Positive range <>) of Natural;

Overflow : exception;
Index : Positive;

procedure Incr_All_Bad (A : in out Nat_Array) with

Import,
Post =>

(for all T in A'Range => A'Old (I) /= Natural'Last

and then A (I) = A'0ld (I) + 1),

Exceptional_Cases =>

(Overflow => A'0Old (Index) = Natural'Last

and then (for all I in A'Range =>

A (I) = (if T < Index then A'0ld (I) + 1 else A'0ld (I))));

begin
null;
end Exceptions_Bad;

exceptions_bad.adb:16:25: error: formal parameter of mode "in out" in consequence of..
—Exceptional_Cases
16 | A (I) = (if I < Index then A'0Old (I) + 1 else A'0Old.
~(I))));
| A here
only parameters passed by reference are allowed
gnatprove: error during generation of Global contracts

The exceptional contract is allowed if the parameter A is marked as aliased however, as it is then necessarily passed
by reference:

procedure Exceptions_Post with SPARK_Mode is
type Nat_Array is array (Positive range <>) of Natural;

Overflow : exception;
Index : Positive;

procedure Incr_All_Post (A : aliased in out Nat_Array) with
Post =>
(for all T in A'Range => A'Old (I) /= Natural'Last
and then A (I) = A'0ld (I) + 1),

(continues on next page)

60 Chapter 5. Overview of SPARK Language

25

26

27

28

29

Exceptiona

1_Cases =>

(Overflow => A'0Old (Index) = Natural'Last
and then (for all I in A'Range =>

procedure In

A (I) = (Aif T < Index then A'0Old (I) + 1 else A'0ld (I))));

cr_All_Post (A :

aliased in out Nat_Array) is

begin
for I in A'Range loop
if A (I) = Natural'Last then
Index := I;
raise Overflow;
end if;
A (D :=A (D) + 1;
pragma Loop_Invariant
(for all J in A'First .. I => A'Loop_Entry (J) < Natural'Last);
pragma Loop_Invariant
(for all J in A'First .. I => A (J) = A'Loop_Entry (J) + 1);
end loop;
end Incr_All_Post;
begin
null;
end Exceptions_Post;
exceptions_post.adb:10:08: info: postcondition proved
exceptions_post.adb:10:40: info: index check proved
exceptions_post.adb:11:23: info: index check proved
exceptions_post.adb:11:35: info: index check proved
exceptions_post.adb:11:38: info: overflow check proved
exceptions_post.adb:13:21: info: exceptional case proved
exceptions_post.adb:13:28: info: index check proved
exceptions_post.adb:15:28: info: index check proved
exceptions_post.adb:15:59: info: index check proved
exceptions_post.adb:15:62: info: overflow check proved
exceptions_post.adb:15:78: info: index check proved
exceptions_post.adb:21:22: info: range check proved
exceptions_post.adb:25:25: info: overflow check proved
exceptions_post.adb:27:13: info: loop invariant initialization proved
exceptions_post.adb:27:13: info: loop invariant preservation proved
exceptions_post.adb:27:56: info: index check proved
exceptions_post.adb:29:13: info: loop invariant preservation proved
exceptions_post.adb:29:13: info: loop invariant initialization proved
exceptions_post.adb:29:45: info: index check proved
exceptions_post.adb:29:64: info: index check proved
exceptions_post.adb:29:67: info: overflow check proved

SPARK User’s Guide, Release 15.0

(continued from previous page)

Note that only exceptions which are raised explicitly in the code can be handled or propagated. For example, it would not
be possible to remove the defensive code raising the exception in the loop and instead propagate Constraint_Error
directly as in Incr_Al1l_CE. Indeed, GNATprove always attempts to prove that runtime checks never fail. It complains
on Incr_Al1_CE that the range check might fail, and flags the exceptional case as unreachable if proof warnings are
enabled:

5.2. Subprogram Contracts 61

SPARK User’s Guide, Release 15.0

procedure Exceptions_RTE with SPARK_Mode is
type Nat_Array is array (Positive range <>) of Natural;

procedure Incr_All _CE (A : in out Nat_Array) with
Post =>
(for all I in A'Range => A'Old (I) /= Natural'Last
and then A (I) = A'01d (I) + 1),
Exceptional_Cases => (Constraint_Error => True);

procedure Incr_All CE (A : in out Nat_Array) is
begin
for I in A'Range loop
A (I :=A (I) + 1;
pragma Loop_Invariant
(for all J in A'First .. I => A'Loop_Entry (J) < Natural'Last);
pragma Loop_Invariant
(for all J in A'First .. I => A (J) = A'Loop_Entry (J) + 1);
end loop;
end Incr_All_CE;

begin
null;
end Exceptions_RTE;

exceptions_rte.adb:9:48: warning: unreachable branch
9 | Exceptional_Cases => (Constraint_Error => True);

| I

exceptions_rte.adb:14:25: high: overflow check might fail, cannot prove upper bound for..
<A (D +1
14 | A (I) :=A (I + 1;
| e Ao
e.g. when A = (1 => Natural'Last)
and T =1
reason for check: result of addition must fit in a 32-bits machine integer

If the exception raised by a raise statement or procedure call is neither handled nor allowed by its exceptional contract
(that is, it has no associated exceptional postcondition or this postcondition is statically False), then it is unexpected and
GNATDprove will make sure that it never occurs. More precisely, GNATprove treats raising an unexpected exception in
the following way:

* in flow analysis, the program paths that lead to a statement raising an unexpected exception are not considered
when checking the contract of the subprogram; and

* in proof, a check is generated for these statements, to prove that no such program point is reachable.

Occurences of pragma Assert (X) where X is an expression statically equivalent to False are treated in the same
way.

As an example, consider the artificial subprogram Check_OK which raises an exception when parameter OK is False.
The Check_OK procedure does not have an exceptional contract so the exception is unexpected:

62 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

package Abnormal_Terminations with
SPARK_Mode
is
Gl, G2 : Integer := 0;
procedure Check_OK (OK : Boolean) with
Global => (Output => G1),
Pre => 0K;

end Abnormal_Terminations;

package body Abnormal_Terminations with
SPARK_Mode
is

procedure Check_OK (OK : Boolean) is
begin
if OK then
Gl :=1;
else
G2 := 1;
raise Program_Error;
end if;
end Check_OK;

end Abnormal_Terminations;

Note that, although G2 is assigned in Check_OK, its assignment is directly followed by a raise_statement, so G2 is
never assigned on an execution of Check_OK that terminates normally. As a result, G2 is not mentioned in the data
dependencies of Check_OK. During flow analysis, GNATprove verifies that the body of Check_OK implements its
declared data dependencies.

During proof, GNATprove generates a check that the raise_statement on line 11 is never reached. Here, it is proved
thanks to the precondition of Check_OK which states that parameter OK should always be True on entry:

abnormal_terminations.adb:10:10: high: "G2" must be listed in the Global aspect of
—"Check_OK" (SPARK RM 6.1.4(15))
10 | G2 := 1;
I An

abnormal_terminations.adb:11:10: info: only expected exception raised

Note

Raising an exception is a side-effect. As a consequence, the aspect Exceptional_Cases is not allowed on func-
tions which are not annotated with the Side_Effects aspect and exceptions raised by raise_expressions can-
not be handled or propagated. GNATprove makes sure that they never occur.

5.2. Subprogram Contracts 63

SPARK User’s Guide, Release 15.0

5.2.8 Exit Cases
Specific to SPARK

There are several ways for a subprogram to terminate: it can return normally or propagate an exception. If a subprogram
does not always terminate normally, then it is possible to annotate it with an Exit_Cases aspect. This aspect allows
partitioning the input state into cases, specifying for each case what the expected termination kind is. It can be either:

* Normal_Return, if the subprogram shall return normally,
* Exception_Raised, if it shall raise an (unspecified) exception, or
* (Exception_Raised => E), if it shall raise the exception E.

As an example, consider the procedure Might_Return_Abnormally below:

package Exit_Cases with SPARK_ Mode is
El, E2 : exception;

procedure Might_Return_Abnormally (X : in out Integer) with
Exit_Cases =>
(X =1 => Normal_Return,
X = 2 => (Exception_Raised => El),
others => Exception_Raised),
Exceptional_Cases => (El1 | E2 => True);

end Exit_Cases;

package body Exit_Cases with SPARK_Mode is

procedure Might_Return_Abnormally (X : in out Integer) is
begin
case X is
when 1 =>
X := 3;
when 2 =>
raise El;
when others =>
raise E2;
end case;
end Might_Return_Abnormally;

end Exit_Cases;

Its contract states that, if it terminates, it shall return normally if X is 1, raise the exception E1 is X is 2, and raise
either E1 or E2, that is, any exception allowed by its exceptional contract, otherwise. The GNATprove tool generates
verification conditions to make sure that these restrictions hold. As can be seen below, in this example, they are all
proved. Note that there are sometimes several checks for a single exit case. For example here, two verifications are
associated to the second case: one to make sure that the subprogram does not return normally, and one to check that
the expected exception is propagated on exceptional exit:

exit_cases.ads:6:06: info: disjoint contract or exit cases proved
exit_cases.ads:7:19: info: exit case proved
on exceptional exit from Might_Return_Abnormally at exit_cases.ads:5
exit_cases.ads:8:19: info: exit case proved
(continues on next page)

64 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)

on normal return from Might_Return_Abnormally at exit_cases.ads:5
exit_cases.ads:8:19: info: exit case proved

on exceptional exit from Might_Return_Abnormally at exit_cases.ads:5
exit_cases.ads:9:19: info: exit case proved

on normal return from Might_Return_Abnormally at exit_cases.ads:5
exit_cases.ads:10:39: info: exceptional case proved

While a check is emitted by GNATprove to make sure that the different cases of an exit cases are disjoint (there shall
be no inputs satisfying the guard of several cases at the same time), it does not ensure that they are complete (there can
be inputs which are not satisfying any guards). In this case, there are no constraints on how the subprogram is allowed
to terminate. As an example, the contract of Might_Return_Abnormally would still be proved if the first and last
cases where removed:

package Exit_Cases_Incomplete with SPARK_Mode is
El, E2 : exception;
procedure Might_Return_Abnormally (X : in out Integer) with
Exit_Cases =>
(X = 2 => (Exception_Raised => El1)),

Exceptional_Cases => (El1 | E2 => True);

end Exit_Cases_Incomplete;

package body Exit_Cases_Incomplete with SPARK_Mode is

procedure Might_Return_Abnormally (X : in out Integer) is
begin
case X is
when 1 =>
X := 3;
when 2 =>
raise El;
when others =>
raise E2;
end case;
end Might_Return_Abnormally;

end Exit_Cases_Incomplete;

exit_cases_incomplete.ads:7:18: info: exit case proved

on normal return from Might_Return_Abnormally at exit_cases_incomplete.ads:5
exit_cases_incomplete.ads:7:18: info: exit case proved

on exceptional exit from Might_Return_Abnormally at exit_cases_incomplete.ads:5
exit_cases_incomplete.ads:8:39: info: exceptional case proved

In SPARK, as a general rule, postconditions, be they standard or exceptional postconditions, are only enforced if the
subprogram terminates. EXit cases are similar, they do not force the program to terminate but only ensure that it
terminates in the correct way if it does. As an example, the exit cases contract of Might_Return_Abnormally is still
verified if its body is replaced by an infinite loop. To enforce termination, Contracts for Termination should be used in
addition to the exit cases.

5.2. Subprogram Contracts 65

SPARK User’s Guide, Release 15.0

package Exit_Cases_Non_Terminating with SPARK_Mode is
El, E2 : exception;

procedure Might_Return_Abnormally (X : in out Integer) with
Exit_Cases =>
(X =1 => Normal_Return,
X = 2 => (Exception_Raised => El1),
others => Exception_Raised),
Exceptional_Cases => (E1 | E2 => True);

end Exit_Cases_Non_Terminating;

package body Exit_Cases_Non_Terminating with SPARK_Mode is

procedure Might_Return_Abnormally (X : in out Integer) is
begin
loop
null;
end loop;
end Might_Return_Abnormally;

end Exit_Cases_Non_Terminating;

exit_cases_non_terminating.ads:6:06: info: disjoint contract or exit cases proved
exit_cases_non_terminating.ads:7:19: info: exit case proved

on exceptional exit from Might_Return_Abnormally at exit_cases_non_terminating.ads:5
exit_cases_non_terminating.ads:8:19: info: exit case proved

on normal return from Might_Return_Abnormally at exit_cases_non_terminating.ads:5
exit_cases_non_terminating.ads:8:19: info: exit case proved

on exceptional exit from Might_Return_Abnormally at exit_cases_non_terminating.ads:5
exit_cases_non_terminating.ads:9:19: info: exit case proved

on normal return from Might_Return_Abnormally at exit_cases_non_terminating.ads:5
exit_cases_non_terminating.ads:10:39: info: exceptional case proved

If an exit cases mentioning exceptions is supplied on a subprogram which does not have an exceptional contract, then
by default, GNATprove will assume that it is allowed to propagate the exceptions listed in its exit cases. If some of
these exceptions are unspecified, then it is allowed to propagate any exception. As an example, GNATprove will accept
raise statements inside Might_Return_Abnormally even if we remove its exceptional contract. However, the default
exceptional contract is imprecise in this case, as the propagated exception is not specified in the last exit case. As
a result, when analyzing a caller like Call_Might_Return_Abnormally below, the analysis tool won’t know that
Might_Return_Abnormally only propagates E1 or E2:

package Exit_Cases_Default_Contract with SPARK_ Mode is
El, E2 : exception;

procedure Might_Return_Abnormally (X : in out Integer) with
Exit_Cases =>
(X =1 => Normal_Return,
X = 2 => (Exception_Raised => El),
others => Exception_Raised);
(continues on next page)

66 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)

procedure Call_Might_Return_Abnormally (X : in out Integer) with
Exceptional_Cases => (E1 | E2 => True);

end Exit_Cases_Default_Contract;

package body Exit_Cases_Default_Contract with SPARK_Mode is

procedure Might_Return_Abnormally (X : in out Integer) is
begin
case X is
when 1 =>
X := 3;
when 2 =>
raise El1;
when others =>
raise E2;
end case;
end Might_Return_Abnormally;

procedure Call_Might_Return_Abnormally (X : in out Integer) is
begin

Might_Return_Abnormally (X);
end Call_Might_Return_Abnormally;

end Exit_Cases_Default_Contract;

exit_cases_default_contract.adb:17:07: medium: unexpected exception might be raised
17 | Might_Return_Abnormally (X);

| A

Note

Remark that exit cases are always equivalent to a conjunction of standard and exceptional postconditions, pos-
sibly with a number of duplicates. As an example, the exit cases of Might_Return_Abnormally is ac-
tually equivalent to the combination of normal and exceptional cases below. The postcondition states that
Might_Return_Abnormally might only return normally if X was equal to 1 before the call, while the excep-
tional contract ensures both that neither E1 nor E2 can be propagates if X was 1 before the call, and that only E1
might be propagated if it was 2:

procedure Might_Return_Abnormally (X : in out Integer) with
Post => X'01ld = 1,
Exceptional_Cases =>
(E1 => Xx'01d /=1,
E2 => X'0Old not in 1 | 2);

These alternative contracts are often harder to read though as they involve references to the 01d attribute, negations,
and duplications.

5.2. Subprogram Contracts 67

SPARK User’s Guide, Release 15.0

5.2.9 Contracts for Termination
Specific to SPARK

By default, GNATprove verifies termination of all functions and automatically instantiated lemmas (procedures anno-
tated with Automatic_Instantiation). For procedures or entries, GNATprove does not attempt to verify termina-
tion and is only concerned with their partial correctness. This means that GNATprove only verifies that the contract
of each procedure or entry holds whenever it terminates (i.e., returns or raises an exception). It is still possible that the
subprogram does not terminate in some or all cases (it can for example loop forever or exit the whole program using
GNAT.O0S_Lib.OS_Exit).

The Always_Terminates GNAT specific aspect allows users to request that GNATprove also verifies that a procedure
or entry terminates. It is the case for example of the procedures Ok_Terminating and Bad_Terminating below. The
aspect can also be used to provide a boolean condition like for the Conditionally_Loop procedure. If this condition
is present, then the proof of termination is only attempted when the condition evaluates to True on subprogram entry.
As an example, the procedure Conditionally_Loop might not terminate if its Cond parameter evaluates to True, and
Loop_Forever never needs to terminate (but it might):

package Possibly_Nonterminating with
SPARK_Mode
is

procedure Loop_Forever with
No_Return,
Always_Terminates => False,
Exceptional_Cases => (others => False);

procedure Conditionally_Loop (Cond : Boolean) with
Always_Terminates => not Cond;

procedure OK_Terminating with
Always_Terminates;

procedure Bad_Terminating with
Always_Terminates;

end Possibly_Nonterminating;

package body Possibly_Nonterminating with
SPARK_Mode
is
procedure Loop_Forever is
begin
loop
null;
end loop;
end Loop_Forever;

procedure Conditionally_Loop (Cond : Boolean) is
begin
if Cond then
Loop_Forever;
end if;
end Conditionally_Loop;

(continues on next page)

68 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)

procedure Ok_Terminating is
begin

Conditionally_Loop (False);
end Ok_Terminating;

procedure Bad_Terminating is
begin

Conditionally_Loop (True);
end Bad_Terminating;

end Possibly_Nonterminating;

GNATDprove verifies the termination of OK_Terminating and the conditional termination of Conditionally_Loop
but a failed check is emitted for Bad_Terminating as it does not terminate.

possibly_nonterminating.adb:14:10: info: conditional call termination proved
possibly_nonterminating.adb:20:07: info: conditional call termination proved

possibly_nonterminating.adb:25:07: medium: call might not terminate
25 | Conditionally_Loop (True);

| A

reason for check: procedure "Bad_Terminating" has an Always_Terminates aspect
possibly_nonterminating.ads:13:14: info: aspect Always_Terminates on "OK_Terminating".
—has been proved, subprogram will terminate
possibly_nonterminating.ads:16:14: info: aspect Always_Terminates on "Bad_Terminating".
—has been proved, subprogram will terminate

A package can also be annotated with the Always_Terminates aspect. It does not apply to the elaboration of the
package, which should always terminate in SPARK, but serves as a default for all the procedures located inside: un-
less specified otherwise, a procedure declared inside a package annotated with Always_Terminates should always
terminate.

5.2.10 Subprogram Variant
Specific to SPARK

To ensure termination of recursive subprograms, it is possible to annotate them using the aspect Subprogram_Variant.
This aspect provides a value which should progress in some sense between the beginning of the subprogram and each
recursive call. The value is associated to a direction, which can be either Increases or Decreases for numeric
variants, or Structural for structural variants.

Numeric variants can take a discrete value or, in the case of the direction Decreases, a big natural (see Ada . Numerics.
Big_Integers). On every recursive call, a check is generated to ensure that the value progresses (decreases or in-
creases) with respect to its value at the beginning of the subprogram. Since a discrete value is necessarily bounded by
its Ada type, and a big natural is always greater than 0, it is enough to ensure that there will be no infinite chain of
recursive calls.

In the following example, we can verify that the Fibonacci function terminates stating that its parameter N decreases
at each recursive call:

with SPARK.Big_Integers; use SPARK.Big_Integers;
package Recursive_Subprograms with SPARK_Mode is

(continues on next page)

5.2. Subprogram Contracts 69

SPARK User’s Guide, Release 15.0

(continued from previous page)

function Fibonacci (N : Big_Natural) return Big_Natural is
(if N = 0 then 0
elsif N = 1 then 1
else Fibonacci (N - 1) + Fibonacci (N - 2))
with Subprogram_Variant => (Decreases => N);
end Recursive_Subprograms;

GNATDprove generates one verification condition per recursive call to make sure that the value given for N is smaller
than the value of N on entry of Fibonacci:

recursive_subprograms.ads:5:13: info: implicit aspect Always_Terminates on "Fibonacci".
—has been proved, subprogram will terminate
recursive_subprograms.ads:6:10: info: predicate check proved
recursive_subprograms.ads:6:14: info: predicate check proved
recursive_subprograms.ads:6:21: info: predicate check proved
recursive_subprograms.ads:7:13: info: predicate check proved
recursive_subprograms.ads:7:17: info: predicate check proved
recursive_subprograms.ads:7:24: info: predicate check proved
recursive_subprograms.ads:8:12: info: subprogram variant proved
recursive_subprograms.ads:8:12: info: predicate check proved
recursive_subprograms.ads:8:23: info: predicate check proved
recursive_subprograms.ads:8:25: info: predicate check proved
recursive_subprograms.ads:8:27: info: predicate check proved
recursive_subprograms.ads:8:30: info: predicate check proved
recursive_subprograms.ads:8:32: info: subprogram variant proved
recursive_subprograms.ads:8:32: info: predicate check proved
recursive_subprograms.ads:8:43: info: predicate check proved
recursive_subprograms.ads:8:45: info: predicate check proved
recursive_subprograms.ads:8:47: info: predicate check proved
recursive_subprograms.ads:9:45: info: range check proved

O 00 00 00 00 00 00 00 00 00 0 0 N N N OO

It is possible to give more than one numeric value in a subprogram variant. In this case, values are checked in the
order in which they appear. If a value progresses (increases or decreases as specified) then it is enough to ensure the
progression of the whole variant and the subsequent values are not considered. In the same way, if a value annotated
with Increases actually decreases strictly (or the other way around) then the evaluation terminates and the verification
of the variant fails. It is only if the values of all the preceding expressions have been found to be preserved that the
subsequent value is considered. The function Max computes the index of the maximal value in a slice of an array. At
each recursive call, it shifts the bound containing the smallest value:

package Recursive_Subprograms.Multiple with SPARK_Mode is
type Nat_Array is array (Positive range <>) of Natural;

function Max (A : Nat_Array; F, L : Positive) return Positive is
(if F =1L then F
elsif A (F) > A (L) then Max (A, F, L - 1)
else Max (A, F + 1, L))
with Pre => L in A'Range and F in A'Range and F <= L,
Post => Max'Result in F .. L
and then (for all I in F .. L => A (I) <= A (Max'Result)),
Subprogram_Variant => (Increases => F, Decreases => L);
end Recursive_Subprograms.Multiple;

The variant specifies that, for each recursive call, either F increases, or F stays the same and L decreases. The order is

70 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

not important here, as L and F are never modified at the same time. This variant can be verified by GNATprove.

recursive_subprograms-multiple.ads:4:13: info: implicit aspect Always_Terminates on "Max
—" has been proved, subprogram will terminate
recursive_subprograms-multiple.ads:6:16: info: index check proved
recursive_subprograms-multiple.ads:6:24: info: index check proved
recursive_subprograms-multiple.ads:6:32: info: precondition proved
recursive_subprograms-multiple.ads:6:32: info: subprogram variant proved
recursive_subprograms-multiple.ads:6:45: info: range check proved
recursive_subprograms-multiple.ads:7:12: info: precondition proved
recursive_subprograms-multiple.ads:7:12: info: subprogram variant proved
recursive_subprograms-multiple.ads:7:22: info: overflow check proved
recursive_subprograms-multiple.ads:9:17: info: postcondition proved
recursive_subprograms-multiple.ads:10:46: info: index check proved
recursive_subprograms-multiple.ads:10:58: info: index check proved

O N NNO O OO

Structural variants are generally used on recursive data-structures. The value associated to such a variant is necessarily
a formal parameter of the subprogram. On every recursive call, a check is generated to ensure that the actual parameter
denoted by the variant designates a strict subcomponent of the formal parameter denoted the variant at the beggining of
the call. Since, due to the Memory Ownership Policy of SPARK, the data-structures cannot contain cycles, it is enough
to ensure that there will be no infinite chain of recursive calls.

In the following example, we can verify that the Length function on singly-linked lists terminates stating that the
structure designated by its parameter L structurally decreases between two recursive calls:

with Ada.Numerics.Big_Numbers.Big_Integers;
use Ada.Numerics.Big_Numbers.Big_Integers;

package Recursive_Subprograms with SPARK_Mode is
type Cell;
type List is access Cell;
type Cell is record
Value : Integer;
Next : List;
end record;

function Length (L : List) return Big_Natural is
(if L = null then Big_Natural'(0) else Length (L.Next) + 1)
with Subprogram_Variant => (Structural => L);
end Recursive_Subprograms;

The fact that the actual parameter for L on the recursive call designates a strict subcomponent of the structure designated
by formal parameter L can be verified by GNATprove:

recursive_subprograms.ads:12:13: info: implicit aspect Always_Terminates on "Length" has..
—been proved, subprogram will terminate

recursive_subprograms.ads:13:37: info: predicate check proved
recursive_subprograms.ads:13:45: info: subprogram variant proved
recursive_subprograms.ads:13:45: info: predicate check proved
recursive_subprograms.ads:13:54: info: pointer dereference check proved
recursive_subprograms.ads:13:61: info: predicate check proved
recursive_subprograms.ads:13:63: info: predicate check proved

Structural variants are subjects to a number of restrictions. They cannot be combined with other variants, and are
checked according to a mostly syntactic criterion. When these restrictions cannot be followed, structural variants can

5.2. Subprogram Contracts 71

SPARK User’s Guide, Release 15.0

be systematically replaced by a decreasing numeric variant providing the depth (or size) of the data structure, like
function Length above. Strictly speaking, structural variants are only required to define the function returning that
metric.

To verify the termination of mutually recursive subprograms, all subprograms should be annotated with compatible
variants. We say that two variants are compatible if they have the same number of expressions, and matching values
in the list have the same direction and the same base type. For example, the variants of Is_Even and Is_0dd are
compatible, because both are of type Integer and both decrease.

package Recursive_Subprograms.Mutually with SPARK_ Mode is
function Is_Odd (X : Natural) return Boolean with
Subprogram_Variant => (Decreases => X);
function Is_Even (X : Natural) return Boolean with
Subprogram_Variant => (Decreases => X);

function Is_Odd (X : Natural) return Boolean is
(if X = 0 then False else not Is_Even (X - 1));
function Is_Even (X : Natural) return Boolean is
(if X = 0 then True else not Is_0dd (X - 1));
end Recursive_Subprograms.Mutually;

GNATDprove introduces a check to make sure that the variant progresses at each mutually recursive call.

recursive_subprograms-mutually.ads:2:13: info: implicit aspect Always_Terminates on "Is_
—,0dd" has been proved, subprogram will terminate
recursive_subprograms-mutually.ads:4:13: info: implicit aspect Always_Terminates on "Is_
—Even" has been proved, subprogram will terminate
recursive_subprograms-mutually.ads:8:36: info: subprogram variant proved
recursive_subprograms-mutually.ads:8:47: info: range check proved
recursive_subprograms-mutually.ads:10:35: info: subprogram variant proved
recursive_subprograms-mutually.ads:10:45: info: range check proved

5.3 Package Contracts

Subprograms are not the only entities to bear contracts in SPARK. Package contracts are made up of various optional
parts:

 The state abstraction specifies how global variables defined in the package are referred to abstractly where they
are not visible. Aspect Abstract_State introduces abstract names and aspect Refined_State specifies the
mapping between these names and global variables.

* The package initialization introduced by aspect Initializes specifies which global data (global variables and
abstract state) defined in the package is initialized at package startup.

* The package initial condition introduced by aspect Initial_Condition specifies the properties holding after
package startup.

Package startup (a.k.a. package elaboration in Ada RM) consists in the evaluation of all declarations in the package
specification and implementation, in particular the evaluation of constant declarations and those variable declarations
which contain an initialization expression, as well as the statements sometimes given at the end of a package body that
are precisely executed at package startup.

72 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

5.3.1 State Abstraction
Specific to SPARK

The state abstraction of a package specifies a mapping between abstract names and concrete global variables defined
in the package. State abstraction allows to define Subprogram Contracts at an abstract level that does not depend on a
particular choice of implementation (see Abstraction and Contracts), which is better both for maintenance (no need to
change contracts) and scalability of analysis (contracts can be much smaller).

Basic State Abstraction

One abstract name may be mapped to more than one concrete variable, but no two abstract names can be mapped to
the same concrete variable. When state abstraction is specified on a package, all non-visible global variables defined
in the private part of the package specification and in its implementation should be mapped to abstract names. Thus,
abstract names correspond to a partitioning of the non-visible global variables defined in the package.

The simplest use of state abstraction is to define a single abstract name (conventionally called State) to denote all
non-visible global variables defined in the package. For example, consider package Account defining a global variable
Total in its implementation, which is abstracted as State:

package Account with
Abstract_State => State

is

end Account;

package body Account with
Refined_State => (State => Total)

is

Total : Integer;

end Account;

The aspect Refined_State maps each abstract name to a list of concrete global variables defined in the package. The
list can be simply null to serve as placeholder for future definitions of global variables. Instead of concrete global
variables, one can also use abstract names for the state of nested packages and private child packages, whose state is
considered to be also defined in the parent package.

If global variable Total is defined in the private part of Account’s package specification, then the declaration of
Total must use the special aspect Part_Of to declare its membership in abstract state State:

package Account with
Abstract_State => State
is
private
Total : Integer with Part_Of => State;

end Account;

This ensures that Account’s package specification can be checked by GNATprove even if its implementation is not in
SPARK, or not available for analysis, or not yet developed.

A package with state abstraction must have a package body that states how abstract states are refined in aspect
Refined_State, unless the package body is not in SPARK. If there is no other reason for the package to have a
body, then one should use pragma Elaborate_Body in the package spec to make it legal for the package to have a
body on which to express state refinement.

5.3. Package Contracts 73

SPARK User’s Guide, Release 15.0

In general, an abstract name corresponds to multiple global variables defined in the package. For example, we can
imagine adding global variables to log values passed in argument to procedure Add_To_Total, that are also mapped
to abstract name State:

package Account with
Abstract_State => State
is

end Account;

package body Account with
Refined_State => (State => (Total, Log, Log_Size))
is
Total : Integer;
Log : Integer_Array;
Log_Size : Natural;

end Account;

We can also imagine defining different abstract names for the total and the log:

package Account with
Abstract_State => (State, Internal_State)
is

end Account;

package body Account with
Refined_State => (State => Total,
Internal_State => (Log, Log_Size))
is
Total : Integer;
Log : Integer_Array;
Log_Size : Natural;

end Account;

The abstract names defined in a package are visible everywhere the package name itself is visible:
* in the scope where the package is declared, for a locally defined package
e in units that have a clause with <package>;
e in units that have a clause limited with <package>;

The last case allows subprograms in two packages to mutually reference the abstract state of the other package in their
data and flow dependencies.

Special Cases of State Abstraction

Global constants with a statically known value are not part of a package’s state. On the contrary, constant with variable
inputs are constants whose value depends on the value of either a variable or a subprogram parameter. Since they
participate in the flow of information between variables, constants with variable inputs are treated like variables: they
are part of a package’s state, and they must be listed in its state refinement whenever they are not visible. For example,
constant Total_Min is not part of the state refinement of package Account below, while constant with variable inputs
Total_Max is part of it:

74 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

package body Account with
Refined_State => (State => (Total, Total_Max))

is
Total : Integer;
Total_Min : constant Integer := 0;
Total_Max : constant Integer := Compute_Total Max(...);

end Account;

Global variables are not always the only constituents of a package’s state. For example, if a package P contains a nested
package N, then N’s state is part of P’s state. As a consequence, if N is hidden, then its state must be listed in P’s
refinement. For example, we can nest Account in the body of the Account_Manager package as follows:

package Account_Manager with
Abstract_State => State

is

end Account_Manager;

package body Account_Manager with
Refined_State => (State => Account.State)

is
package Account with

Abstract_State => State
is

end Account;

end Account_Manager;

State In The Private Part

Global variables and nested packages which themselves contain state may be declared in the private part of a package.
For each such global variable and nested package state, it is mandatory to identify, using aspect Part_Of, the abstract
state of the enclosing package of which it is a constituent:

package Account_Manager with
Abstract_State => (Totals, Details)
is
private
Total_Accounts : Integer with Part_Of => Totals;
package Account with
Abstract_State => (State with Part_Of => Details)
is
Total : Integer with Part_Of => Totals;

end Account;

end Account_Manager;

The purpose of using Part_Of is to enforce that each constituent of an abstract state is known at the declaration of
the constituent (not having to look at the package body), which is useful for both code understanding and tool analysis

5.3. Package Contracts 75

SPARK User’s Guide, Release 15.0

(including compilation).

As the state of a private child package is logically part of its parent package, aspect Part_Of must also be specified in
that case:

private package Account_Manager.Account with
Abstract_State => (State with Part_Of => Details)
is
Total : Integer with Part_Of => Totals;

end Account_Manager.Account;

Aspect Part_0f can also be specified on a generic package instantiation inside a private part, to specify that all the
state (visible global variables and abstract states) of the package instantiation is a constituent of an abstract state of the
enclosing package:

package Account_Manager with
Abstract_State => (Totals, Details)
is
private
package Account is new Generic_Account (Max_Total) with Part_Of => Details;

end Account_Manager;

5.3.2 Package Initialization
Specific to SPARK

The package initialization specifies which global data (global variables, constant with variable inputs, and abstract state)
defined in the package is initialized at package startup. The corresponding global variables may either be initialized at
declaration, or by the package body statements. Thus, package initialization can be seen as the output data dependencies
of the package elaboration procedure generated by the compiler.

For example, we can specify that the state of package Account is initialized at package startup as follows:

package Account with
Abstract_State => State,
Initializes => State
is

end Account;

Then, unless Account’s implementation is not in SPARK, it should initialize the corresponding global variable Total
either at declaration:

package body Account with
Refined_State => (State => Total)
is
Total : Integer := 0;

end Account;

or in the package body statements:

76 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

package body Account with
Refined_State => (State => Total)
is
Total : Integer;
begin

Total := 0;
end Account;

These initializations need not correspond to direct assignments, but may be performed in a call, for example here to
procedure Init_Total as seen in State Abstraction and Dependencies. A mix of initializations at declaration and in
package body statements is also possible.

Package initializations also serve as dependency contracts for global variables’ initial values. That is, if the initial value
of a global variable, state abstraction, or constant with variable inputs listed in a package initialization depends on the
value of a variable defined outside the package, then this dependency must be listed in the package’s initialization. For
example, we can initialize Total by reading the value of an external variable:

package Account with

Abstract_State => State,

Initializes => (State => External_Variable)
is
end Account;
package body Account with

Refined_State => (State => Total)
is

Total : Integer := External_Variable;

end Account;

5.3.3 Package Initial Condition
Specific to SPARK

The package initial condition specifies the properties holding after package startup. Thus, package initial condition
can be seen as the postcondition of the package elaboration procedure generated by the compiler. For example, we can
specify that the value of Total defined in package Account’s implementation is initially zero:

package Account with
Abstract_State => State,
Initial_Condition => Get_Total = 0
is
function Get_Total return Integer;

end Account;

This is ensured either by initializing Total with value zero at declaration, or by assigning the value zero to Total in
the package body statements, as seen in Package Initialization.

When the program is compiled with assertions (for example with switch -gnata in GNAT), the initial condition of a
package is checked at run time after package startup. An exception is raised if the initial condition fails.

When a package is analyzed with GNATprove, it checks that the initial condition of a package cannot fail. GNATprove
also analyzes the initial condition expression to ensure that it is free from run-time errors, like any other assertion.

5.3. Package Contracts 77

SPARK User’s Guide, Release 15.0

5.3.4 Interfaces to the Physical World
Specific to SPARK

Volatile Variables

Most embedded programs interact with the physical world or other programs through so-called volatile variables, which
are identified as volatile to protect them from the usual compiler optimizations. In SPARK, volatile variables are
also analyzed specially, so that possible changes to their value from outside the program are taken into account, and
so that changes to their value from inside the program are also interpreted correctly (in particular for checking flow
dependencies).

For example, consider package Volatile_Or_Not which defines a volatile variable V and a non-volatile variable N,
and procedure Swap_Then_Zero which starts by swapping the values of V and N before zeroing them out:

package Volatile_Or_Not with
SPARK_Mode,
Initializes => V

is
V : Integer with Volatile;
N : Integer;

procedure Swap_Then_Zero with
Global => (In_Out => (N, V)),
Depends => (V => N, N => null, null => V);

end Volatile_Or_Not;

package body Volatile_Or_Not with

SPARK_Mode
is

procedure Swap_Then_Zero is
Tmp : constant Integer := V;

begin
-- Swap values of V and N
V := N;
N := Tmp;
-- Zero out values of V and N
V :=0;
N := 0;

end Swap_Then_Zero;

end Volatile_Or_Not;

Compare the difference in contracts between volatile variable V and non-volatile variable N:

» The Package Initialization of package Volatile_Or_Not mentions V although this variable is not initialized at
declaration or in the package body statements. This is because a volatile variable is assumed to be initialized.

* The Flow Dependencies of procedure Swap_Then_Zero are very different for V and N. If both variables were
not volatile, the correct contract would state that both input values are not used with null => (V, N) and that
both output values depend on no inputs with (V, N) => null. The difference lies with the special treatment
of volatile variable V: as its value may be read at any time, the intermediate value N assigned to V on line 8 of
volatile_or_not.adb needs to be mentioned in the flow dependencies for output V.

GNATprove checks that Volatile_Or_Not and Swap_Then_Zero implement their contract, and it issues a warning
on the first assignment to N:

78 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

volatile_or_not.adb:9:09: warning: unused assignment
9 | N := Tmp;

| A i

This warning points to a real issue, as the intermediate value of N is not used before N is zeroed out on line 12. But note
that no warning is issued on the similar first assignment to V, because the intermediate value of V may be read outside
the program before V is zeroed out on line 11.

Note that in real code, the memory address of the volatile variable is set through aspect Address or the corresponding
representation clause, so that it can be read or written outside the program.

Properties of Volatile Variables

Not all volatile variables are read and written outside the program, sometimes they are only read or only written outside
the program. For example, the log introduced in State Abstraction could be implemented as an output port for the
program logging the information, and as an input port for the program performing the logging. Two aspects are defined
in SPARK to distinguish these different properties of volatile variables:

* Aspect Async_Writers indicates that the value of the variable may be changed at any time (asynchronously)
by hardware or software outside the program.

* Aspect Async_Readers indicates that the value of the variable may be read at any time (asynchronously) by
hardware or software outside the program.

Aspect Async_liriters has an effect on GNATprove’s proof: two successive reads of such a variable may return
different results. Aspect Async_Readers has an effect on GNATprove’s flow analysis: an assignment to such a variable
always has a potential effect, even if the value is never read in the program, since an external reader might actually read
the value assigned.

These aspects are well suited to model respectively a sensor and a display, but not an input stream or an actuator, for
which the act of reading or writing has an effect that should be reflected in the flow dependencies. Two more aspects
are defined in SPARK to further refine the previous properties of volatile variables:

* Aspect Effective_Reads indicates that reading the value of the variable has an effect (for example, removing
a value from an input stream). It can only be specified on a variable that also has Async_Writers set.

e Aspect Effective_Writes indicates that writing the value of the variable has an effect (for example, sending
a command to an actuator). It can only be specified on a variable that also has Async_Readers set.

Both aspects Effective_Reads and Effective_Writes have an effect on GNATprove’s flow analysis: reading the
former or writing the latter is modelled as having an effect on the value of the variable, which needs to be reflected in
flow dependencies. Because reading a variable with Effective_Reads set has an effect on its value, such a variable
cannot be only a subprogram input, it must be also an output.

For example, the program writing in a log each value passed as argument to procedure Add_To_Total may model the
output port Log_Out as a volatile variable with Async_Readers and Effective_lWrites set:

package Logging_Out with
SPARK_Mode
is
Total : Integer;
Log_Out : Integer with Volatile, Async_Readers, Effective_Writes;

procedure Add_To_Total (Incr : in Integer) with
Global => (In_Out => Total, Output => Log_Out),
Depends => (Total =>+ Incr, Log_Out => Incr);

(continues on next page)

5.3. Package Contracts 79

SPARK User’s Guide, Release 15.0

(continued from previous page)

end Logging_Out;

package body Logging Out with
SPARK_Mode
is
procedure Add_To_Total (Incr : in Integer) is
begin
Total := Total + Incr;
Log_Out := Incr;
end Add_To_Total;

end Logging_Out;

while the logging program may model the input port Log_In as a volatile variable with Async_lWriters
Effective_Reads set:

and

package Logging_In with
SPARK_Mode

is
Log_In : Integer with Volatile, Async_Writers, Effective_Reads;
type Integer_Array is array (Positive range 1 .. 100) of Integer;

Log : Integer_Array;
Log_Size : Natural;

procedure Get with
Global => (In_Out => (Log, Log_Size, Log_In)),
Depends => ((Log_Size, Log_In) =>+ null, Log =>+ (Log_Size, Log_In));

end Logging_In;

package body Logging_In with
SPARK_Mode
is
procedure Get is
begin
Log_Size := Log_Size + 1;
Log (Log_Size) := Log_In;
end Get;

end Logging_In;

GNATprove checks the specified data and flow dependencies on both programs.

A volatile variable on which none of the four aspects Async_Writers, Async_Readers, Effective_Reads or
Effective_Writes is set is assumed to have all four aspects set to True. A volatile variable on which some of
the four aspects are set to True is assumed to have the remaining ones set to False. See SPARK RM 7.1.3 for details.

80 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

Properties of Volatile Types

The four aspects Async_Writers, Async_Readers, Effective_Reads and Effective_Writes can be specified
for a volatile type as well as a volatile variable. The rules stated for variables apply also to types for deciding on the
value of the four aspects, when none, one or more values are specified explicitly. These aspects can only be specified
on a type declaration, not on a subtype declaration.

Thus the declaration:

type T is new Integer;
Log_In : T with Volatile, Async_Writers, Effective_Reads;

can be written equivalently:

type T is new Integer with Volatile, Async_Writers, Effective_Reads;
Log_In : T;

Initialization of Volatile Variables and Variables with Address Clauses

For volatile variables and imported variables with address clauses, GNATprove assumes that the object is initialized.
The following code does not raise errors about access to uninitialized data, and is proved. It does, however, raise several
warnings on the object Y with an address clause, as it is not a precisely supported address clause.

X : Natural with Volatile;
subtype Even is Natural with Predicate => Even mod 2 = 0;

procedure Volatile_Init is
Y : Even with Address => System'To_Address (16#DEADBEAF#), Import;
Tmp : Integer := X;

begin
pragma Assert (Y mod 2 = 0);

end P;

External State Abstraction

Volatile variables may be part of State Abstraction, in which case the volatility of the abstract name must be specified
by using aspect External on the abstract name, as follows:

package Account with
Abstract_State => (State with External)
is

end Account;

An external state may represent both volatile variables and non-volatile ones, for example:

package body Account with

Refined_State => (State => (Total, Log, Log_Size))
is

Total : Integer;

Log : Integer_Array with Volatile;

Log_Size : Natural with Volatile;

end Account;

5.3. Package Contracts 81

SPARK User’s Guide, Release 15.0

The different Properties of Volatile Variables may also be specified in the state abstraction, which is then used by
GNATprove to refine the analysis. For example, the program writing in a log seen in the previous section can be
rewritten to abstract global variables as follows:

package Logging_Out_Abstract with
SPARK_Mode,
Abstract_State => (State with External => (Async_Readers, Effective_Writes)),
Initializes => State
is
procedure Add_To_Total (Incr : in Integer) with
Global => (In_Out => State),
Depends => (State =>+ Incr);

end Logging_Out_Abstract;

package body Logging_Out_Abstract with

SPARK_Mode,
Refined_State => (State => (Log_Out, Total))
is
Total : Integer := 0;

Log_Out : Integer := 0 with Volatile, Async_Readers, Effective_Writes;

procedure Add_To_Total (Incr : in Integer) with
Refined_Global => (In_Out => Total, Output => Log_Out),
Refined_Depends => (Total =>+ Incr, Log_Out => Incr)

is

begin
Total := Total + Incr;
Log_Out := Incr;

end Add_To_Total;

end Logging_Out_Abstract;

while the logging program seen in the previous section may be rewritten to abstract global variables as follows:

package Logging_In_Abstract with
SPARK_Mode,
Abstract_State => (State with External => (Async_Writers, Effective_Reads))
is
procedure Get with
Global => (In_Out => State),
Depends => (State =>+ null);

end Logging_In_Abstract;

package body Logging_In_Abstract with
SPARK_Mode,
Refined_State => (State => (Log_In, Log, Log_Size))
is
Log_In : Integer with Volatile, Async_Writers, Effective_Reads;
type Integer_Array is array (Positive range 1 .. 100) of Integer;

Log : Integer_Array := (others => 0);
(continues on next page)

82 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)

Log_Size : Natural := 0;

procedure Get with
Refined_Global => (In_Out => (Log, Log_Size, Log_In)),
Refined_Depends => ((Log_Size, Log_In) =>+ null, Log =>+ (Log_Size, Log_In))
is
begin
Log_Size := Log_Size + 1;
Log (Log_Size) := Log_In;
end Get;

end Logging_In_Abstract;

GNATDprove checks the specified data and flow dependencies on both programs.

An external abstract state on which none of the four aspects Async_Writers, Async_Readers, Effective_Reads or
Effective_Writes is setis assumed to have all four aspects set to True. An external abstract state on which some of
the four aspects are set to True is assumed to have the remaining ones set to False. See SPARK RM 7.1.2 for details.

5.4 Type Contracts

SPARK contains various features to constrain the values of a given type:
* A scalar range may be specified on a scalar type or subtype to bound its values.
* A record discriminant may be specified on a record type to distinguish between variants of the same record.

* A predicate introduced by aspect Static_Predicate, Dynamic_Predicate, Ghost_Predicate or
Predicate may be specified on a type or subtype to express a property verified by objects of the (sub)type.

* A type invariant introduced by aspect Type_Invariant or Invariant may be specified on the completion of
a private type to express a property that is only guaranteed outside of the type scope.

* A default initial condition introduced by aspect Default_Initial_Condition on a private type specifies the
initialization status and possibly properties of the default initialization for a type.

5.4.1 Scalar Ranges
Supported in Ada 83

Scalar types (signed integer types, modulo types, fixed-point types, floating-point types) can be given a low bound
and a high bound to specify that values of the type must remain within these bounds. For example, the global counter
Total can never be negative, which can be expressed in its type:

Total : Integer range 0O .. Integer'lLast;

Any attempt to assign a negative value to variable Total results in raising an exception at run time. During analysis,
GNATDprove checks that all values assigned to Total are positive or null. The anonymous subtype above can also be
given an explicit name:

subtype Nat is Integer range 0 .. Integer'Last;
Total : Nat;

or we can use the equivalent standard subtype Natural:

5.4. Type Contracts 83

20

21

22

23

24

25

26

SPARK User’s Guide, Release 15.0

Total : Natural;

or Nat can be defined as a derived type instead of a subtype:

type Nat is new Integer range 0 .. Integer'lLast;
Total : Nat;

or as a new signed integer type:

type Nat is range 0O .. Integer'Last;
Total : Nat;

All the variants above result in the same range checks both at run-time and in GNATprove. GNATprove also uses the
range information for proving properties about the program (for example, the absence of overflows in computations).

5.4.2 Record Discriminants

Supported in Ada 83

Record types can use discriminants to:
* define multiple variants and associate each component with a specific variant
* bound the size of array components

For example, the log introduced in State Abstraction could be implemented as a discriminated record with a discriminant
Kind selecting between two variants of the record for logging either only the minimum and maximum entries or the
last entries, and a discriminant Capacity specifying the maximum number of entries logged:

package Logging Discr with
SPARK_Mode
is
type Log_Kind is (Min_Max_Values, Last_Values);
type Integer_Array is array (Positive range <>) of Integer;

type Log_Type (Kind : Log_Kind; Capacity : Natural) is record
case Kind is
when Min_Max_Values =>
Min_Entry : Integer;
Max_Entry : Integer;
when Last_Values =>
Log_Data : Integer_Array (1 .. Capacity);
Log_Size : Natural;
end case;
end record;

subtype Min_Max_lLog is Log_Type (Min_Max_Values, 0);
subtype Ten_Values_Log is Log_Type (Last_Values, 10);

function Log_Size (Log : Log_Type) return Natural;

function Last_Entry (Log : Log_Type) return Integer with
Pre => Log.Kind = Last_Values and then Log.Log_Size in 1 .. Log.Capacity;

end Logging_Discr;

84 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

Subtypes of Log_Type can specify fixed values for Kind and Capacity, like in Min_Max_Log and Ten_Values_Log.
The discriminants Kind and Capacity are accessed like regular components, for example:

package body Logging Discr with
SPARK_Mode
is
function Log_Size (Log : Log_Type) return Natural is
begin
case Log.Kind is
when Min_Max_Values =>
return 2;
when Last_Values =>
return Log.Log_Size;
end case;
end Log_Size;

function Last_Entry (Log : Log_Type) return Integer is
begin

return Log.Log Data (Log.Log_Size);
end Last_Entry;

end Logging_Discr;

Any attempt to access a component not present in a variable (because it is of a different variant), or to access an array
component outside its bounds, results in raising an exception at run time. During analysis, GNATprove checks that
components accessed are present, and that array components are accessed within bounds:

logging_discr.adb:10:23: info: discriminant check proved

logging_discr.adb:16:17: info: discriminant check proved

logging_discr.adb:16:31: info: discriminant check proved

logging_discr.adb:16:31: info: index check proved

logging_discr.ads:13:13: info: range check proved

logging_discr.ads:18:37: info: range check proved

logging_discr.ads:18:53: info: range check proved

logging_discr.ads:19:40: info: range check proved

logging_discr.ads:19:53: info: range check proved

logging_discr.ads:21:13: info: implicit aspect Always_Terminates on "Log_Size" has been..
—proved, subprogram will terminate

logging_discr.ads:23:13: info: implicit aspect Always_Terminates on "Last_Entry" has.
—been proved, subprogram will terminate

logging_discr.ads:24:48: info: discriminant check proved

5.4.3 Predicates
Supported in Ada 2012

Predicates can be used on any subtype to express a property verified by objects of the subtype at all times. Aspects
Static_Predicate and Dynamic_Predicate are defined in Ada to associate a predicate with a subtype. Aspect
Dynamic_Predicate allows to express more general predicates than aspect Static_Predicate, at the cost of re-
stricting the use of variables of the subtype. The following table summarizes the main similarities and differences
between both aspects:

5.4. Type Contracts 85

SPARK User’s Guide, Release 15.0

Feature Static_Predicate Dynamic_Predicate
Applicable to scalar subtype Yes Yes
Applicable to array/record subtype No Yes
Allows simple comparisons with static values Yes Yes
Allows conjunctions/disjunctions Yes Yes
Allows function calls No Yes
Allows general Boolean properties No Yes
Can be used in membership test Yes Yes
Can be used as range in for-loop Yes No
Can be used as choice in case-statement Yes No
Can be used as prefix with attributes First, Last or Range No No
Can be used as index subtype in array No No

Aspect Predicate is specific to GNAT and can be used instead of Static_Predicate or Dynamic_Predicate.
GNAT treats it as a Static_Predicate whenever possible and as a Dynamic_Predicate in the remaining cases,
thus not restricting uses of variables of the subtype more than necessary.

Aspect Ghost_Predicate is also specific to GNAT and can be used instead of Dynamic_Predicate when the predi-
cate expression needs to reference ghost entities or ghost attributes like Initialized. In that case, the subtype cannot
be used as subtype_mark in a membership test.

Predicates are inherited by subtypes and derived types. If a subtype or a derived type inherits a predicate and defines its
own predicate, both predicates are checked on values of the new (sub)type. Predicates are restricted in SPARK so that
they cannot depend on variable input. In particular, a predicate cannot mention a global variable in SPARK, although
it can mention a global constant.

GNATDprove checks that all values assigned to a subtype with a predicate are allowed by its predicate (for all forms of
predicate: Predicate, Static_Predicate, Dynamic_Predicate and Ghost_Predicate). GNATprove generates
a predicate check even in cases where there is no corresponding run-time check, for example when assigning to a
component of a record with a predicate. GNATprove also uses the predicate information for proving properties about
the program.

Static Predicates

A static predicate allows specifying which values are allowed or forbidden in a scalar subtype, when this specification
cannot be expressed with Scalar Ranges (because it has holes). For example, we can express that the global counter
Total cannot be equal to 10 or 100 with the following static predicate:

subtype Count is Integer with
Static_Predicate => Count /= 10 and Count /= 100;
Total : Count;

or equivalently:

subtype Count is Integer with
Static_Predicate => Count in Integer'First .. 9 | 11 .. 99 | 101 .. Integer'Last;
Total : Count;

Uses of the name of the subtype Count in the predicate refer to variables of this subtype. Scalar ranges and static
predicates can also be combined, and static predicates can be specified on subtypes, derived types and new signed
integer types. For example, we may define Count as follows:

type Count is new Natural with
Static_Predicate => Count /= 10 and Count /= 100;

86 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

Any attempt to assign a forbidden value to variable Total results in raising an exception at run time. During analysis,
GNATDprove checks that all values assigned to Total are allowed.

Similarly, we can express that values of subtype Normal_Float are the normal 32-bits floating-point values (thus
excluding subnormal values), assuming here that Float is the 32-bits floating-point type on the target:

subtype Normal_Float is Float with
Static_Predicate => Normal_Float <= -2.0%*(-126) or Normal_Float = 0.0 or Normal_Float..
o>= 2.0%%(-126);

Any attempt to assign a subnormal value to a variable of subtype Normal_Float results in raising an exception at run
time. During analysis, GNATprove checks that only normal values are assigned to such variables.
Dynamic Predicates

A dynamic predicate allows specifying properties of scalar subtypes that cannot be expressed as static predicates. For
example, we can express that values of subtype 0dd and Even are distributed according to their name as follows:

subtype 0dd is Natural with
Dynamic_Predicate => 0dd mod 2 = 1;

subtype Even is Natural with
Dynamic_Predicate => Even mod 2 = 0;

or that values of type Prime are prime numbers as follows:

type Prime is new Positive with
Dynamic_Predicate => (for all Divisor in 2 .. Prime / 2 => Prime mod Divisor /= 0);

A dynamic predicate also allows specifying relations between components of a record. For example, we can express
that the values paired together in a record are always distinct as follows:

type Distinct_Pair is record
Vall, Val2 : Integer;
end record
with Dynamic_Predicate => Distinct_Pair.Vall /= Distinct_Pair.Val2;

or that a record stores pairs of values with their greatest common divisor as follows:

type Bundle_Values is record

X, Y : Integer;

GCD : Natural;
end record

with Dynamic_Predicate => Bundle_Values.GCD = Get_GCD (Bundle_Values.X, Bundle_Values.
=Y);

or that the number of elements Count in a resizable table is always less than or equal to its maximal number of elements
Max as follows:

type Resizable_Table (Max : Natural) is record
Count : Natural;
Data : Data_Array(l .. Max);
end record
with Dynamic_Predicate => Resizable_Table.Count <= Resizable_Table.Max;

5.4. Type Contracts 87

SPARK User’s Guide, Release 15.0

A dynamic predicate also allows specifying global properties over the content of an array. For example, we can express
that elements of an array are stored in increasing order as follows:

type Ordered_Array is array (Index) of Integer
with Dynamic_Predicate =>
(for all I in Index => (if I < Index'Last then Ordered_Array(I) < Ordered_
—Array(I+1)));

or that a special end marker is always present in the array as follows:

type Ended_Array is array (Index) of Integer
with Dynamic_Predicate =>
(for some I in Index => Ended_Array(I) = End_Marker);

Dynamic predicates are checked only at specific places at run time, as mandated by the Ada Reference Manual:
* when converting a value to the subtype with the predicate
* when returning from a call, for each in-out and out parameter passed by reference

» when declaring an object, except when there is no initialization expression and no subcomponent has a default
expression

Thus, not all violations of the dynamic predicate are caught at run time. On the contrary, during analysis, GNATprove
checks that initialized variables whose subtype has a predicate always contain a value allowed by the predicate.

5.4.4 Type Invariants
Supported in Ada 2012

In SPARK, type invariants can only be specified on completions of private types (and not directly on private type
declarations). They express a property that is only guaranteed outside of the immediate scope of the type bearing the
invariant. Aspect Type_Invariant is defined in Ada to associate an invariant with a type. Aspect Invariant is
specific to GNAT and can be used instead of Type_Invariant.

GNATprove checks that, outside of the immediate scope of a type with an invariant, all values of this type are allowed
by its invariant. In order to provide such a strong guarantee, GNATprove generates an invariant check even in cases
where there is no corresponding run-time check, for example on global variables that are modified by a subprogram.
GNATDprove also uses the invariant information for proving properties about the program.

As an example, let us consider a stack, which can be queried for the maximum of the elements stored in it:

package P is
type Stack is private;
function Max (S : Stack) return Element;

private

In the implementation, an additional component is allocated for the maximum, which is kept up to date by the imple-
mentation of the stack. This information is a type invariant, which can be specified using a Type_Invariant aspect:

private

type Stack is record
Content : Element_Array := (others => 0);
Size : My_Length := 0;

(continues on next page)

88 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)
Max : Element := 0;
end record with
Type_Invariant => Is_Valid (Stack);

function Is_Valid (S : Stack) return Boolean is
((for all I in 1 .. S.Size => S.Content (I) <= S.Max)
and (if S.Max > 0O then
(for some I in 1 .. S.Size => S.Content (I) = S.Max)));

function Max (S : Stack) return Element is (S.Max);

end P;

Like for subtype predicates, the name of the type can be used inside the invariant expression to refer to the current
instance of the type. Here the subtype predicate of Stack expresses that the Max field of a valid stack is the maximum
of the elements stored in the stack.

To make sure that the invariant holds for every value of type Stack outside of the package P, GNATprove introduces
invariant checks in several places. First, at the type declaration, it will make sure that the invariant holds every time
an object of type Stack is default initialized. Here, as the stack is empty by default and the default value of Max is 0,
the check will succeed. It is also possible to forbid default initialization of objects of type Stack altogether by using a
Default Initial Condition of False:

type Stack is private with Default_Initial_Condition => False;

type Stack is record
Content : Element_Array;
Size : My_Length;
Max : Element;
end record with Type_Invariant => Is_Valid (Stack);

A check is also introduced to make sure the invariant holds for every global object declared in the scope of Stack after
it has been initialized:

package body P is
The_Stack : Stack := (Content => (others => 1),

Size = 5,
Max = 0);
begin
The_Stack.Max := 1;
end P;

Here the global variable The_Stack is allowed to break its invariant during the elaboration of P. The invariant check
will only be done at the end of the elaboration of P, and will succeed.

In the same way, variables and parameters of a subprogram are allowed to break their invariants in the subprogram
body. Verification conditions are generated to ensure that no invariant breaking value can leak outside of P. More
precisely, invariant checks on subprogram parameters are performed:

* when calling a subprogram visible outside of P from inside of P. Such a subprogram can be either declared in
the visible part of P or in another unit,

* when returning from a subprogram declared in the visible part of P.

For example, let us consider the implementation of a procedure Push that pushes an element of top of a stack. It is
declared in the visible part of the specification of P:

5.4. Type Contracts 89

SPARK User’s Guide, Release 15.0

function Size (S : Stack) return My_Length;

procedure Push (S : in out Stack; E : Element) with
Pre => Size (S) < My_Length'Last;

procedure Push_Zero (S : in out Stack) with
Pre => Size (S) < My_Length'Last;

It is then implemented using an internal procedure Push_Internal declared in the body of P:

procedure Push_Internal (S : in out Stack; E : Element) with
Pre => S.Size < My_Length'Last,
Post => S.Size = S.Size'Old + 1 and S.Content (S.Size) = E
and S.Content (1 .. S.Size)'0ld = S.Content (1 .. S.Size - 1)
and S.Max = S.Max'Old
is
begin
S.Size := S.Size + 1;
S.Content (S.Size) := E;
end Push_Internal;

procedure Push (S : in out Stack; E : Element) is
begin
Push_Internal (S, E);
if S.Max < E then
S.Max := E;
end if;
end Push;

procedure Push_Zero (S : in out Stack) is
begin

Push (S, 0);
end Push_Zero;

On exit of Push_Internal, the invariant of Stack is broken. It is OK since Push_Internal is not visible from
outside of P. Invariant checks are performed when exiting Push and when calling it from inside Push_Zero. They
both succeed. Note that, because of invariant checks on parameters, it is not allowed in SPARK to call a function that
is visible from outside P in the invariant of Stack otherwise this would lead to a recursive proof. In particular, it is
not allowed to make Is_Valid visible in the public declarations of P. In the same way, the function Size cannot be
used in the invariant of Stack. We also avoid using Size in the contract of Push_Internal as it would have enforced
additional invariant checks on its parameter.

Checks are also performed for global variables accessed by subprograms inside P. Even if it is allowed to break the
invariant of a global variable when inside the body of a subprogram declared in P, invariant checks are performed
when calling and returning from every subprogram inside P. For example, if Push and Push_Internal are accessing
directly the global stack The_Stack instead of taking it as a parameter, there will be a failed invariant check on exit of
Push_Internal:

procedure Push_Internal (E : Element) with
Pre => The_Stack.Size < My_Length'Last
is
begin
The_Stack.Size := The_Stack.Size + 1;

The_Stack.Content (The_Stack.Size) := E;
(continues on next page)

90 Chapter 5. Overview of SPARK Language

20

21

22

23

24

SPARK User’s Guide, Release 15.0

(continued from previous page)

end Push_Internal;

procedure Push (E : Element) is
begin
Push_Internal (E);
if The_Stack.Max < E then
The_Stack.Max := E;
end if;
end Push;

In this way, users will never have to use contracts to ensure that the invariant holds on global variable The_Stack
through local subprogram calls.

5.4.5 Default Initial Condition
Specific to SPARK

Private types in a package define an encapsulation mechanism that prevents client units from accessing the implemen-
tation of the type. That boundary may also be used to specify properties that hold for default initialized values of that
type in client units. For example, the log introduced in State Abstraction could be implemented as a private type with
a default initial condition specifying that the size of the log is initially zero, where uses of the name of the private type
Log_Type in the argument refer to variables of this type:

package Logging Priv with
SPARK_Mode

is
Max_Count : constant := 100;

type Log_Type is private with
Default_Initial_Condition => Log_Size (Log_Type) = 0;

function Log_Size (Log : Log_Type) return Natural;

procedure Append_To_Log (Log : in out Log_Type; Incr : in Integer) with
Pre => Log_Size (Log) < Max_Count;

private
type Integer_Array is array (1 .. Max_Count) of Integer;
type Log_Type is record
Log_Data : Integer_Array;
Log_Size : Natural := 0;
end record;

function Log_Size (Log : Log_Type) return Natural is (Log.Log_Size);

end Logging_Priv;

This may be useful to analyze with GNATprove client code that defines a variable of type Log_Type with default
initialization, and then proceeds to append values to this log, as procedure Append_To_Log’s precondition requires
that the log size is not maximal:

5.4. Type Contracts 91

SPARK User’s Guide, Release 15.0

The_Log : Log_Type;

Append_To_Log (The_Log, X);

GNATDprove’s flow analysis also uses the presence of a default initial condition as an indication that default initialized
variables of that type are considered as fully initialized. So the code snippet above would pass flow analysis without
messages being issued on the read of The_Log. If the full definition of the private type is in SPARK, GNATprove also
checks that the type is indeed fully default initialized, and if not issues a message like here:

logging_priv.ads:18:04: medium: type "Log_Type" is not fully initialized
18> type Log_Type is record
I

21 | end record;

If partial default initialization of the type is intended, in general for efficiency like here, then the corresponding message
can be justified with pragma Annotate, see section Justifying Check Messages.

Aspect Default_Initial_Condition can also be specified without argument to only indicate that default initialized
variables of that type are considered as fully initialized. This is equivalent to Default_Initial_Condition =>
True:

type Log_Type is private with
Default_Initial_Condition;

The argument can also be null to specify that default initialized variables of that type are not considered as fully
initialized:

type Log_Type is private with
Default_Initial_Condition => null;

This is different from an argument of False which can be used to indicate that variables of that type should always be
explicitly initialized (otherwise GNATprove will not be able to prove the condition False on the default initialization
and will issue a message during proof).

In general, GNATprove generates checks for the default value of a type when a variable of this type is default initialized.
This is not the case for private types, as the default value of a private type declared in a library unit is really the
responsibility of the implementer of the library, not the user. If the private type has a known discriminant part, then
default checks are done for any values of the discriminants.

If a private type has a Default_Initial_Condition, then this condition can act either as a precondition or as a
postcondition of the default value computation. If the Default_Initial_Condition does not refer to the current
type instance, or if it only refers to its discriminants, then it is considered to be a precondition: it is the user of the
private type who is responsible for ensuring its validity. As such, the condition is assumed when checking the default
value of the private type, and it is checked each time a variable of the type is default initialized. For example, in the
following example, we must have First < Last to be allowed to safely default initialize our stack type:

type Stack (First, Last : Positive) is private with
Default_Initial_Condition => First < Last;

GNATDprove will take advantage of this information when checking the default value of Stack for run-time exceptions.
For example, it will be able to ensure that the predicate will hold if Stack is defined as follows:

type Stack (First, Last : Positive) is record
Content : Nat_Arr (First .. Last) := 0;

(continues on next page)

92 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)
Top : Positive := First;
end record with
Predicate => Top in Content'Range;

Otherwise, the Default_Initial_Condition is handled as a postcondition of the default value computation. It is
checked once and for all when the definition of the type is analyzed.

5.5 Specification Features

SPARK contains many features for specifying the intended behavior of programs. Some of these features come from
Ada 2012 (Artribute Old and Expression Functions for example). Other features are specific to SPARK (Attribute
Loop_Entry and Ghost Code for example). In this section, we describe these features and their impact on execution
and formal verification.

5.5.1 Aspect Constant_After_Elaboration
Specific to SPARK

Aspect Constant_After_Elaboration can be specified on a library level variable that has an initialization expres-
sion. When specified, the corresponding variable can only be changed during the elaboration of its enclosing package.
SPARK ensures that users of the package do not change the variable. This feature can be particularly useful in tasking
code since variables that are Constant_After_Elaboration are guaranteed to prevent unsynchronized modifications (see
Tasks and Data Races).

package CAE is
Var : Integer := 0 with
Constant_After_Elaboration;

-- The following is illegal because users of CAE could call Illegal
-- and that would cause an update of Var after CAE has been
-- elaborated.
procedure Illegal with
Global => (Output => Var);
end CAE;

package body CAE is
procedure Illegal is
begin
Var := 10;
end Illegal;

-- The following subprogram is legal because it is declared inside
-- the body of CAE and therefore it cannot be directly called
-- from a user of CAE.
procedure Legal is
begin
Var := Var + 2;
end Legal;

begin
-- The following statements are legal since they take place during
-- the elaboration of CAE.

(continues on next page)

5.5. Specification Features 93

SPARK User’s Guide, Release 15.0

(continued from previous page)
Var := Var + 1;
Legal;
end CAE;

5.5.2 Aspect No_Caching
Specific to SPARK

Aspect No_Caching can be specified for a volatile type or a volatile variable to indicate that this type or variable can
be analyzed as non-volatile by GNATprove. This is typically used to hold the value of local variables guarding the
access to some critical section of the code. To defend against fault injection attacks, a common practice is to duplicate
the test guarding the critical section, and the variable is marked as volatile to prevent the compiler from optimizing out
the duplicate tests. For example:

Cond : Boolean with Volatile, No_Caching := Some_Computation;

if not Cond then
return;
end if;

if not Cond then
return;
end if;

if Cond then
-- here do some critical work
end if;

Without No_Caching, the volatile variable is assumed to be used for Interfaces to the Physical World, GNATprove
analyses it specially and one cannot declare it inside a subprogram.

5.5.3 Aspect Relaxed_Initialization and Ghost Attribute Initialized
Specific to SPARK

Modes on parameters and data dependency contracts in SPARK have a stricter meaning than in Ada (see Data Initial-
ization Policy). In general, this allows GNATprove to ensure correct initialization of data in a quick and scalable way
through flow analysis, without the need for user-supplied annotations. However, in some cases, the initialization policy
may be considered too constraining. In particular, it does not permit initializing composite objects by part through
different subprograms, or leaving data uninitialized on return if an error occurred.

Aspect Relaxed_Initialization

To handle these cases, it is possible to relax the standard data initialization policy of SPARK using the
Relaxed_Initialization aspect. This aspect can be used:

* on objects, to state that the object should not be subject to the initialization policy of SPARK,
* on types, so that it applies to every object or component of the type, or
* on subprograms, to annotate the parameters or result.

Here are some examples:

94 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

type My_Rec is record
F, G : Positive;
end record;

G : My_Rec with Relaxed_Initialization;

procedure Init_G_If No_Errors (Error : out Boolean) with
Global => (Output => G);

-- G is only initialized if the Error flag is False

In the snippet above, the aspect Relaxed_Initialization is used to annotate the object G so that SPARK will allow
returning from Init_G_If_No_Errors with an uninitialized value in G in case of errors in the initialization routine.

On a subprogram, the Relaxed_Initialization aspect expects some parameters to specify to which objects it
applies. For example, the parameter X of the procedures below is concerned by the aspect:

procedure Init_Only_F (X : out My_Rec) with
Relaxed_Initialization => X;

-- Initialize the F component of X,

-- X.G should not be read after the call.

procedure Init_Only_G (X : in out My_Rec) with
Relaxed_Initialization => X;

-- Initialize the G component of X,

-- X.F can be read after the call if it was already initialized.

The procedures Init_Only_F and Init_Only_G above differ only by the mode of parameter X. Just like for
Init_G_If No_Errors, the mode out in Init_Only_F does not mean that X should be entirely initialized by the call.
Its purpose is mostly for data dependencies (see Data Dependencies). It states that the value on entry of the procedure
call should not leak into the parts of the output value which are read after the call. To ensure that, GNATprove considers
that out parameters may not be copied when entering a procedure call, and so, even for parameters which are in fact
passed by reference.

To exempt the value returned by a function from the data initialization policy of SPARK, the result attribute can be
specified as a parameter of the Relaxed_Initialization aspect, as in Read_G below. It is also possible to give
several objects to the aspect using an aggregate notation:

procedure Copy (Source : My_Rec; Target : out My_Rec) with
Relaxed_Initialization => (Source, Target);
-- Can copy a partially initialized record

function Read_G return My_Rec with
Relaxed_Initialization => Read_G'Result;
-- The result of Read_G might not be initialized

Note

The Relaxed_Initialization aspect has no effect on subprogram parameters or function results of a scalar
type with relaxed initialization. Indeed, the Ada semantics mandates a copy of scalars on entry and return of
subprograms, which is considered to be an error if the object was not initialized.

Finally, if we want to exempt all objects of a type from the data initialization policy of SPARK, it is possible to specify
the Relaxed_Initialization aspect on a type. This also allows to exempt a single component of a record, like in
the following example:

5.5. Specification Features 95

SPARK User’s Guide, Release 15.0

type Content_Type is array (Positive range 1 .. 100) of Integer with
Relaxed_Initialization;
type Stack is record

Top : Natural := 0;
Content : Content_Type;
end record

with Predicate => Top in 0 .. 100;
-- Elements located after Top in Content do not need to be initialized

A stack is made of two components: an array Content storing the actual content of the stack, and the index Top of
the topmost element currently allocated on the stack. If the stack is initialized, the Top component necessarily holds
a meaningful value. However, because of the API of the stack, it is not possible to read a value stored above the Top
index in Content without writing it first. For this reason, it is not necessary to initialize all elements of the stack at
creation. To express that, we use in the type Stack, which itself is subject to the standard initialization policy, an array
with the Relaxed_Initialization aspect for the Content field.

Note

The Relaxed_Initialization aspect is not allowed on subtypes, so a derived type is necessary to add the aspect
to an existing type.

Ghost Attribute Initialized

As explained above, the standard data initialization policy does not apply to objects annotated with the
Relaxed_Initialization aspect. As a result, it becomes necessary to annotate which parts of accessed objects
are initialized on entry and exit of subprograms in contracts. This can be done using the Initialized ghost at-
tribute. This attribute can be applied to (parts of) objects annotated with the Relaxed_Initialization aspect. If
the object is completely initialized, except possibly for subcomponents of the object whose type is annotated with the
Relaxed_Initialization aspect, this attribute evaluates to True.

Note

It is not true that the Initialized aspect necessarily evaluates to False on uninitialized data. This is to comply
with execution, where some values may happen to be valid even if they have not been initialized. However, it is not
possible to prove that the Initialized aspect evaluates to True if the object has not been entirely initialized.

As an example, let’s add some contracts to the subprograms presented in the previous example to replace the comments.
The case of Init_G_If No_Errors is straightforward:

procedure Init_G_If No_Errors (Error : out Boolean) with
Post => (if not Error then G'Initialized);

It states that if no errors have occurred (Error is False on exit), G has been initialized by the call.

The postcondition of Read_G is a bit more complicated. We want to state that the function returns the value stored in
G. However, we cannot use equality, as it would evaluate the components of both operands and fail if G is not entirely
initialized. What we really want to say is that each component of the result of Read_G will be initialized if and only
if the corresponding component in G is initialized, and then that the values of the components necessarily match in
this case. To express that, we introduce safe accessors for the record components, which check whether the field is
initialized before returning it. If the component is not initialized, they return ® which is an invalid value since both
components of My_Rec are of type Positive. This allows to encode both the initialization status and the value of the
field in one go:

96 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

function Get_F (X : My_Rec) return Integer is
(if X.F'Initialized then X.F else 0)
with Ghost,
Relaxed_Initialization => X;

function Get_G (X : My_Rec) return Integer is
(if X.G'Initialized then X.G else 0)
with Ghost,
Relaxed_Initialization => X;

Using these accessors, we can define an equality which can safely be called on uninitialized data, and use it in the
postcondition of Read_G:

function Safe_Eq (X, Y : My_Rec) return Boolean is
(Get_F (X) = Get_F (Y) and Get_G (X) = Get_G (Y))
with Ghost,
Relaxed_Initialization => (X, Y);

function Read_G return My_Rec with
Relaxed_Initialization => Read_G'Result,
Post => Safe_Eq (Read_G'Result, G);

The same safe equality function can be used for the postcondition of Copy:

procedure Copy (Source : My_Rec; Target : out My_Rec) with
Relaxed_Initialization => (Source, Target),
Post => Safe_Eq (Source, Target);

Remain the procedures Init_Only_F and Init_Only_G. We reflect the asymmetry of their parameter modes in their
postconditions:

procedure Init_Only_F (X : out My_Rec) with
Relaxed_Initialization => X,
Post => X.F'Initialized;

procedure Init_Only_G (X : in out My_Rec) with
Relaxed_Initialization => X,
Post => X.G'Initialized and Get_F (X) = Get_F (X)'0ld;

The procedure Init_Only_G preserves the value of X.F whereas Init_Only_F does not preserve X.G. Note that a
postcondition similar to the one of Init_Only_G would be proved on Init_Only_F, but it will be of no use as out
parameters are considered to be havocked at the beginning of procedure calls, so Get_G (X) '01d wouldn’t actually
refer to the value of G before the call.

Finally, let’s consider the type Stack defined above. We have annotated the array type used for its content with the
Relaxed_Initialization aspect, so that we do not need to initialize all of its components at declaration. However,
we still need to know that elements up to Top have been initialized to ensure that poping an element returns an initialized
value. This can be stated by extending the subtype predicate of Stack in the following way:

type Stack is record
Top : Natural := 0;
Content : Content_Type;
end record

(continues on next page)

5.5. Specification Features 97

SPARK User’s Guide, Release 15.0

(continued from previous page)

with Ghost_Predicate => Top in 0 .. 100
and then (for all T in 1 .. Top => Content (I)'Initialized);

Since Content_Type is annotated with the Relaxed_Initialization aspect, references to the attribute
Initialized on an object of type Stack will not consider the elements of Content, so S'Initialized can evaluate
to True even if the stack S contains uninitialized elements.

Note

The predicate of type Stack is now introduced by aspect Ghost_Predicate to allow the use of ghost attribute
Initialized.

Note

When the Relaxed_Initialization aspect is used, correct initialization is verified by proof (--mode=all or
--mode=silver), and not flow analysis (--mode=flow or --mode=bronze).

It is possible to annotate an object with the Relaxed_Initialization aspect to use proof to verify its initial-
ization. For example, it allows to workaround limitations in flow analysis with respect to initialization of arrays.
However, if this initialization goes through a loop, using the Initialized attribute in a loop invariant might be
required for proof to verify the program.

5.5.4 Aspect Side_Effects
Specific to SPARK
Unless stated otherwise, functions in SPARK cannot have side effects:
* A function must not have an out or in out parameter.
* A function must not write a global variable.
* A function must not raise exceptions.
* A function must always terminate.

The aspect Side_Effects can be used to indicate that a function may in fact have side effects, among the four possible
side effects listed above. A function with side effects can be called only as the right-hand side of an assignment, as part
of a list of statements where a procedure could be called:

function Increment_And_Return (X : in out Integer) return Integer
with Side_Effects;

procedure Call is
X : Integer := 5;

Y : Integer;
begin
Y := Increment_And_Return (X);
-- The value of X is 6 here
end Call;

Note that a function with side effects could in general be converted into a procedure with an additional out parameter
for the function’s result. However, it can be more convenient to use a function with side effects when binding SPARK
code with C code where functions have very often side effects.

98 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

5.5.5 Attribute Loop_Entry
Specific to SPARK

It is sometimes convenient to refer to the value of variables at loop entry. In many cases, the variable has not been
modified between the subprogram entry and the start of the loop, so this value is the same as the value at subprogram
entry. But Artribute Old cannot be used in that case. Instead, we can use attribute Loop_Entry. For example, we can
express that after J iterations of the loop, the value of parameter array X at index J is equal to its value at loop entry
plus one:

procedure Increment_Array (X : in out Integer_Array) is
begin
for J in X'Range loop
X(2) = X() + 1;
pragma Assert (X(J) = X'Loop_Entry(J) + 1);
end loop
end Increment_Array;

At run time, a copy of the variable X is made when entering the loop. This copy is then read when evaluating the
expression X'Loop_Entry. No copy is made if the loop is never entered. Because it requires copying the value of X,
the type of X cannot be limited.

Attribute Loop_Entry can only be used in top-level Assertion Pragmas inside a loop. It is mostly useful for expressing
complex Loop Invariants which relate the value of a variable at a given iteration of the loop and its value at loop entry.
For example, we can express that after J iterations of the loop, the value of parameter array X at all indexes already seen
is equal to its value at loop entry plus one, and that its value at all indexes not yet seen is unchanged, using Quantified
Expressions:

procedure Increment_Array (X : in out Integer_Array) is
begin
for J in X'Range loop
X(1) = X)) + 1;
pragma Loop_Invariant (for all K in X'First .. J => X(K) = X'Loop_Entry(K) + 1);
pragma Loop_Invariant (for all K in J + 1 .. X'Last => X(K) = X'Loop_Entry(K));
end loop;
end Increment_Array;

Attribute Loop_Entry may be indexed by the name of the loop to which it applies, which is useful to refer to the value
of a variable on entry to an outter loop. When used without loop name, the attribute applies to the closest enclosing
loop. For examples, X'Loop_Entry is the same as X'Loop_Entry(Inner) in the loop below, which is not the same
as X'Loop_Entry(Outter) (although all three assertions are true):

procedure Increment_Matrix (X : in out Integer_Matrix) is
begin
Outter: for J in X'Range(1l) loop
Inner: for K in X'Range(2) loop
X(J,K) := X(J,K) + 1;
pragma Assert (X(J,K) = X'Loop_Entry(J,K) + 1);
pragma Assert (X(J,K) X'Loop_Entry(Inner) (J,K) + 1);
pragma Assert (X(J,K) X'Loop_Entry(Outter) (J,K) + 1);
end loop Inner;
end loop Outter;
end Increment_Matrix;

By default, similar restrictions exist for the use of attribute Loop_Entry and the use of attribute 01d In «a
Potentially Unevaluated Expression. The same solutions apply here, in particular the use of GNAT pragma

5.5. Specification Features 99

SPARK User’s Guide, Release 15.0

Unevaluated_Use_0f_01d.

5.5.6 Attribute 01d
Supported in Ada 2012

In a Postcondition

Inside Postconditions, attribute 01d refers to the values that expressions had at subprogram entry. For example, the
postcondition of procedure Increment might specify that the value of parameter X upon returning from the procedure
has been incremented:

procedure Increment (X : in out Integer) with
Post => X = X'01ld + 1;

At run time, a copy of the variable X is made when entering the subprogram. This copy is then read when evaluating
the expression X'01d in the postcondition. Because it requires copying the value of X, the type of X cannot be limited.

Strictly speaking, attribute 01d must apply to a name in Ada syntax, for example a variable, a component selection, a
call, but not an addition like X + Y. For expressions that are not names, attribute 01d can be applied to their qualified
version, for example:

procedure Increment_One_Of (X, Y : in out Integer) with
Post => X + Y = Integer'(X + Y)'0Old + 1;

Because the compiler unconditionally creates a copy of the expression to which attribute 01d is applied at subprogram
entry, there is a risk that this feature might confuse users in more complex postconditions. Take the example of a
procedure Extract, which copies the value of array A at index J into parameter V, and zeroes out this value in the
array, but only if J is in the bounds of A:

procedure Extract (A : in out My_Array; J : Integer; V : out Value) with
Post => (if J in A'Range then V = A(J)'0ld); -- INCORRECT

Clearly, the value of A(J) at subprogram entry is only meaningful if J is in the bounds of A. If the code above was
allowed, then a copy of A(J) would be made on entry to subprogram Extract, even when J is out of bounds, which
would raise a run-time error. To avoid this common pitfall, use of attribute 01d in expressions that are potentially
unevaluated (like the then-part in an if-expression, or the right argument of a shortcut boolean expression - See Ada
RM 6.1.1) is restricted to plain variables: A is allowed, but not A(J). The GNAT compiler issues the following error
on the code above:

prefix of attribute "0ld" that is potentially unevaluated must denote an entity

The correct way to specify the postcondition in the case above is to apply attribute 01d to the entity prefix A:

procedure Extract (A : in out My_Array; J : Integer; V : out Value) with
Post => (if J in A'Range then V = A'01d(J));

In Contract Cases

The rule for attribute 01d inside Contract Cases is more permissive. Take for example the same contract as above for
procedure Extract, expressed with contract cases:

procedure Extract (A : in out My_Array;] : Integer; V : out Value) with
Contract_Cases => ((J in A'Range) => V = A(J)'01d,
others => True);

100 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

Only the expressions used as prefixes of attribute 01d in the currently enabled case are copied on entry to the subpro-
gram. So if Extract is called with J out of the range of A, then the second case is enabled, so A(J) is not copied when
entering procedure Extract. Hence, the above code is allowed.

It may still be the case that some contracts refer to the value of objects at subprogram entry inside potentially unevaluated
expressions. For example, an incorrect variation of the above contract would be:

procedure Extract (A : in out My_Array; J : Integer; V : out Value) with
Contract_Cases => (J >= A'First => (if J <= A'Last then V = A(J)'01d), -- INCORRECT
others => True);

For the same reason that such uses are forbidden by Ada RM inside postconditions, the SPARK RM forbids these uses
inside contract cases (see SPARK RM 6.1.3(2)). The GNAT compiler issues the following error on the code above:

prefix of attribute "0ld" that is potentially unevaluated must denote an entity

The correct way to specify the consequence expression in the case above is to apply attribute 01d to the entity prefix A:

procedure Extract (A : in out My_Array; J : Integer; V : out Value) with
Contract_Cases => (J >= A'First => (if J <= A'Last then V = A'01d(1)),
others => True);

In a Potentially Unevaluated Expression

In some cases, the compiler issues the error discussed above (on attribute 01d applied to a non-entity in a potentially
unevaluated context) on an expression that can safely be evaluated on subprogram entry, for example:

procedure Extract (A : in out My_Array; J : Integer; V : out Value) with
Post => (if] in A'Range then V = Get_If_In_Range(A,J])'0l1d); -- ERROR

where function Get_If_In_Range returns the value A(J) when J is in the bounds of A, and a default value otherwise.

In that case, the solution is either to rewrite the postcondition using non-shortcut boolean operators, so that the expres-
sion is not potentially evaluated anymore, for example:

procedure Extract (A : in out My_Array; J : Integer; V : out Value) with
Post =>] not in A'Range or V = Get_If_In_Range(A,J)'0ld;

or to rewrite the postcondition using an intermediate expression function, so that the expression is not potentially
evaluated anymore, for example:

function Extract_Post (A : My_Array;] : Integer; V, Get_V : Value) return Boolean is
(if J in A'Range then V = Get_V);

procedure Extract (A : in out My_Array;] : Integer; V : out Value) with
Post => Extract_Post (A, J, V, Get_If_In_Range(A,])'01d);

or to use the GNAT pragma Unevaluated_Use_0f_01d to allow such uses of attribute 01d in potentially unevaluated
expressions:

pragma Unevaluated_Use_0f_01d (Allow);

procedure Extract (A : in out My_Array; J : Integer; V : out Value) with
Post => (if J in A'Range then V = Get_If_In_Range(A,])'01d);

5.5. Specification Features 101

SPARK User’s Guide, Release 15.0

GNAT does not issue an error on the code above, and always evaluates the call to Get_If_In_Range on entry to pro-
cedure Extract, even if this value may not be used when executing the postcondition. Note that the formal verification
tool GNATprove correctly generates all required checks to prove that this evaluation on subprogram entry does not fail
a run-time check or a contract (like the precondition of Get_If_In_Range if any).

Pragma Unevaluated_Use_0£f_01d applies to uses of attribute 01d both inside postconditions and inside contract
cases. See GNAT RM for a detailed description of this pragma.

5.5.7 Attribute Result

Supported in Ada 2012

Inside Postconditions of functions, attribute Result refers to the value returned by the function. For example, the
postcondition of function Increment might specify that it returns the value of parameter X plus one:

function Increment (X : Integer) return Integer with
Post => Increment'Result = X + 1;

Contrary to Attribute 01d, attribute Result does not require copying the value, hence it can be applied to functions
that return a limited type. Attribute Result can also be used inside consequence expressions in Contract Cases.

5.5.8 Aggregates

Aggregates are expressions, and as such can appear in assertions and contracts to specify the value of a composite type
(record or array), without having to specify the value of each component of the object separately.

Record Aggregates

Supported in Ada 83

Since the first version, Ada has a compact syntax for expressing the value of a record type, optionally allowing to name
the components. Given the following declaration of type Point:

type Point is record
X, Y, Z : Float;
end record;

the value of the origin can be expressed with a named notation:

Origin : constant Point := (X => 0.0, Y => 0.0, Z => 0.0);

or with a positional notation, where the values for components are taken in the order in which they are declared in type
Point, so the following is equivalent to the above named notation:

Origin : constant Point := (0.0, 0.0, 0.0);

With named notation, components can be given in any order:

Origin : constant Point := (Z => 0.0, Y => 0.0, X => 0.0);

Positional notation and named notation can be mixed, but, in that case, named associations should always follow posi-
tional associations, so positional notation will refer to the first components of the record, and named notation will refer
to the last components of the record:

Origin : constant Point := (0.0, Y => 0.0, Z => 0.0);
Origin : constant Point := (0.0, 0.0, Z => 0.0);

102 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

Choices can be grouped with the bar symbol | to denote sets:

Origin : constant Point := X | Y | Z => 0.0);

The choice others can be used with a value to refer to all other components, provided these components have the same
type, and the others choice should come last:

(X => 0.0, others => 0.0);

(Z => 0.0, others => 0.0);

(0.0, others => 0.0); -- positional for X
(others => 0.0);

Origin : constant Point :
Origin : constant Point :
Origin : constant Point :
Origin : constant Point :

The box notation <> can be used instead of an explicit value to denote the default value of the corresponding type:

Origin : constant Point := (X => <>, Y => 0.0, Z => <>);

In SPARK, this is only allowed if the types of the corresponding components have a default value, for example here:

type Zero_Init_Float is new Float with Default_Value => 0.0;

type Point is record
X : Float := 0.0;

Y : Float;
Z : Zero_Init_Float;
end record;

Note that, when using box notation <> with an others choice, it is not required that these components have the same
type.

Array Aggregates

Supported in Ada 83

Since the first version, Ada has the same compact syntax for expressing the value of an array type as for record types,
optionally allowing to name the indexes. Given the following declaration of type Point:

type Dimension is (X, Y, Z);

type Point is array (Dimension) of Float;

the value of the origin can be expressed with a named notation:

Origin : constant Point := (X => 0.0, Y => 0.0, Z => 0.0);

or with a positional notation, where the values for components are taken in the order in which they are declared in type
Point, so the following is equivalent to the above named notation:

Origin : constant Point := (0.0, 0.0, 0.0);

With the difference that named notation and positional notation cannot be mixed in an array aggregate, all other expla-
nations presented for aggregates of record type Point in Record Aggregates are applicable to array aggregates here, so
all the following declarations are valid:

Origin : constant Point := (Z => 0.0, Y => 0.0, X => 0.0);
Origin : constant Point := X | Y | Z => 0.0);
Origin : constant Point := (X => 0.0, others => 0.0);
(continues on next page)

5.5. Specification Features 103

SPARK User’s Guide, Release 15.0

(continued from previous page)
Origin : constant Point := (Z => 0.0, others => 0.0);
Origin : constant Point := (0.0, others => 0.0); -- positional for X
Origin : constant Point := (others => 0.0);

while the use of box notation <> is only allowed in SPARK if array components have a default value, either through
their type, or through aspect Default_Component_Value on the array type:

type Point is array (Dimension) of Float
with Default_Component_Value => 0.0;

Note that in many cases, indexes take an integer value rather than an enumeration value:

type Dimension is range 1 .. 3;

type Point is array (Dimension) of Float;

In that case, choices will take an integer value too:

Origin : constant Point := (3 => 0.0, 2 => 0.0, 1 => 0.0);

Origin : constant Point := (1 | 2 | 3 => 0.0);

Origin : constant Point := (1 => 0.0, others => 0.0);

Origin : constant Point := (3 => 0.0, others => 0.0);

Origin : constant Point := (0.0, others => 0.0); -- positional for 1
Origin : constant Point := (others => 0.0);

Note that one can also use X, Y and Z in place of literals 1, 2 and 3 with the prior definition of suitable named numbers:

X : constant := 1;
Y : constant := 2;
Z : constant := 3;

Note that allocators are allowed inside expressions, and that values in aggregates are evaluated for each corresponding
choice, so it is possible to write the following without violating the Memory Ownership Policy of SPARK:

type Ptr is access Integer;
type Data is array (1 .. 10) of Ptr;

Database : Data := (others => new Integer'(0));

This would be also possible in a record aggregate, but it is more common in array aggregates.

Iterated Component Associations
Supported in Ada 2022

It is possible to have the value of an association depending on the choice, with the feature called iterated component
associations. Here is how we can express that Ident is the identity mapping from values in Index to themselves:

type Index is range 1 .. 100;
type Mapping is array (Index) of Index;

Ident : constant Mapping := (for] in Index => J);

104 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

Such an iterated component association can appear next to other associations in an array aggregate using named nota-
tion. Here is how we can express that Saturation is the identity mapping between 10 and 90, and saturates outside
of this range:

Saturation : constant Mapping :=
(1 .. 10 = 10, for J in 11 .. 89 => J, 90 .. 100 => 90);

Initialization Using Array Aggregates
Supported in Ada 83

Both flow analysis and proof can be used in GNATprove to verify that data is correctly initialized before being read,
following the Data Initialization Policy of SPARK. The decision to use one or the other is based on the presence or
not of aspect Relaxed_Initialization (see Aspect Relaxed Initialization and Ghost Attribute Initialized) on types
and variables.

When using flow analysis to analyze the initialization of an array object (variable or component), false alarms may be
emitted by GNATprove on code that initializes the array cell by cell, or groups of cells by groups of cells, even if the
array ends up completely initialized. This is because flow analysis is not value dependent, so it cannot track the value
of assigned array indexes. As a result, it cannot separate array cells in its analysis, hence it cannot deduce that such
a sequence of partial initializations result in the array being completely initialized. For example, GNATprove issues
false alarms on the code:

type Arr is array (1 .. 5) of Integer;
A : Arr;
ACl) :=
AC2) :=
A(3) :=
AC4) :=
A(5) :=

v D W N

A better way to initialize an array is to use an aggregate (possibly with iterated component associations, if the value of
the initialization element for a cell depends on the index of the cell). This makes it clear for both the human reviewer
and for GNATprove that the array is completely initialized. For example, the code above can be rewritten as follows
using an aggregate:

type Arr is array (1 .. 5) of Integer;
A : Arr;

A = (1, 2, 3, 4, 5);

or using an aggregate with an iterated component association:

type Arr is array (1 .. 5) of Integer;
A : Arr;

A := (for I in 1..5 => I);

In cases where initializing the array with an aggregate is not possible, the alternative is to mark the array object or
its type as having relaxed initialization using aspect Relaxed_Initialization and to use proof to verify its correct
initialization (see Aspect Relaxed_Initialization and Ghost Attribute Initialized). This should be reserved for cases
where using an aggregate is not possible, as it requires more work for the user to express which parts of variables are
initialized (in contracts and loop invariants typically), and it may be more difficult to prove.

5.5. Specification Features 105

SPARK User’s Guide, Release 15.0

Delta Aggregates
Supported in Ada 2022

It is quite common in Postconditions to relate the input and output values of parameters. While this can be as easy as
X = X'01d + 1 in the case of scalar parameters, it is more complex to express for array and record parameters. Delta
aggregates are useful in that case, to denote the updated value of a composite variable. For example, we can express
more clearly that procedure Zero_Range zeroes out the elements of its array parameter X between From and To by
using a delta aggregate:

procedure Zero_Range (X : in out Integer_Array; From, To : Positive) with
Post => X = (X'0ld with delta From .. To => 0);

than with an equivalent postcondition using Quantified Expressions and Conditional Expressions:

procedure Zero_Range (X : in out Integer_Array; From, To : Positive) with
Post => (for all] in X'Range =>
(if J in From .. To then X(J) = 0 else X(J) = X'01d(3)));

Delta aggregates allow to specify a list of associations between indexes (for arrays) or components (for records) and
values. Components can only be mentioned once, with the semantics that all values are evaluated before any update.
Array indexes may be mentioned more than once, with the semantics that updates are applied in left-to-right order.
For example, the postcondition of procedure Swap expresses that the values at indexes J and K in array X have been
swapped:

procedure Swap (X : in out Integer_Array; J, K : Positive) with
Post => X = (X'0ld with delta J => X'01ld(K), K => X'01d(J3));

and the postcondition of procedure Rotate_Clockwize_Z expresses that the point P given in parameter has been
rotated 90 degrees clockwise around the Z axis (thus component Z is preserved while components X and Y are modified):

procedure Rotate_Clockwize_Z (P : in out Point_3D) with
Post => P = (P'0ld with delta X => P.Y'0ld, Y => - P.X'01ld);

Similarly to their use in combination with attribute 01d in postconditions, delta aggregates are useful in combination
with Attribute Loop_Entry inside Loop Invariants. For example, we can express the property that, after iteration J in
the main loop in procedure Zero_Range, the value of parameter array X at all indexes already seen is equal to zero:

procedure Zero_Range (X : in out Integer_Array; From, To : Positive) is

begin
for J in From .. To loop
X(J) := 0;
pragma Loop_Invariant (X = (X'Loop_Entry with delta From .. J => 0));
end loop;

end Zero_Range;

Delta aggregates can also be used outside of assertions. They are particularly useful in expression functions. For exam-
ple, the functionality in procedure Rotate_Clockwize_Z could be expressed equivalently as an expression function:

function Rotate_Clockwize_Z (P : Point_3D) return Point_3D is
(P with delta X => P.Y, Y => - P.X);

Because it requires copying the value of P, the type of P cannot be limited.

106 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

Note

In SPARK versions up to SPARK 21, delta aggregates are not supported and an equivalent attribute named Update
can be used instead.

Specific to SPARK

As a GNAT-specific extension for SPARK (which requires the use of switch -gnatX® or pragma
Extensions_Allowed(All)), it is also possible to use subcomponents as choices in a delta aggregate. In the
following example, the postcondition of procedure Zero_Left_0f_Pair_At_Index uses a delta aggregate to specify
that parameter P is updated by setting the Left component of its element at index I to zero:

type Pair is record
Left, Right : Integer;
end record;

type Index is range 1 .. 10;
type Pairs is array (Index) of Pair;

procedure Zero_Left_Of_Pair_At_Index (P : in out Pairs; I : Index) with
Post => P = (P'0ld with delta (I).Left => 0);

The subcomponent should be designated by a chain of indexes in parentheses (for indexing into arrays) and component
names (for accessing into records, with a dot preceding the component name if this not the first subcomponent). Such
choices can be used together with the usual choices that designate a top-level component.

Aspect Aggregate
Supported in Ada 2022

The Aggregate aspect has been introduced in Ada 2022. It allows providing subprograms that can be used to create
aggregates of a particular container type. The required subprograms differ depending on the kind of aggregate being
defined - positional, named, or indexed. Only positional and named container aggregates are allowed in SPARK. They
require supplying an Empty function, to create the container, and an Add procedure to insert a new element (possibly
associated to a key) in the container:

-- IWe can use positional aggregates for sets
type Set_Type is private
with Aggregate => (Empty => Empty_Set,
Add_Unnamed => Include);
function Empty_Set return Set_Type;
procedure Include (S : in out Set_Type; E : Element_Type);

-- and named aggregates for maps
type Map_Type is private
with Aggregate => (Empty => Empty_Map,

Add_Named => Add_To_Map);

function Empty_Map return Map_Type;

procedure Add_To_Map (M : in out Map_Type;
Key : Key_Type;
Value : Element_Type);

For execution, container aggregates are expanded into a call to the Empty function, followed by a sequence of calls to
the Add procedure. However, for proof, this is not appropriate. Due to how VC generation works, instructions cannot be

5.5. Specification Features 107

http://www.ada-auth.org/standards/22rm/html/RM-4-3-5.html

SPARK User’s Guide, Release 15.0

used to expand expressions occurring in annotations in particular. In addition, such an expansion would be inefficient
in terms of provability, as it would introduce multiple intermediate values on which the provers need to reason.

To be able to use container aggregates in proof, additional annotations are necessary. They describe how the information
supplied by the aggregate - the elements, the keys, their order, the number of elements... - affects the value of the
container after the insertions. It works by supplying additional functions that should be used to describe the container.
These functions and their intended usage are recognized using an Annotation for Container Aggregates.

Container aggregates follow the Ada 2022 syntax for homogeous aggregates. The values, or associations for named ag-
gregates, are enclosed in square brackets. As an example, here are a few aggregates for functional and formal containers
from the SPARK Libraries.

package Integer_Sets is new SPARK.Containers.Formal.Ordered_Sets (Integer);
S : Integer_Sets.Set := [1, 2, 3, 4, 12, 42];

package String_Lists is new
SPARK.Containers.Formal.Unbounded_Doubly_Linked_Lists (String);
L : String_Lists.List := ["foo", "bar", "foobar"];

package Int_To_String Maps is new
SPARK.Containers.Functional .Maps (Integer, String);
M : Int_To_String Maps.Map := [1 => "one", 2 => "two", 3 => "three"];

Note

So the handling is as precisely as possible, SPARK only supports aggregates with distinct values or keys for sets
and maps.

5.5.9 Conditional Expressions
Supported in Ada 2012

A conditional expression is a way to express alternative possibilities in an expression. It is like the ternary condi-
tional expression cond ? exprl : expr2 in C or Java, except more powerful. There are two kinds of conditional
expressions in Ada:

* if-expressions are the counterpart of if-statements in expressions
* case-expressions are the counterpart of case-statements in expressions

For example, consider the variant of procedure Add_To_Total seen in Contract Cases, which saturates at a given
threshold. Its postcondition can be expressed with an if-expression as follows:

procedure Add_To_Total (Incr : in Integer) with
Post => (if Total'Old + Incr < Threshold then
Total = Total'Old + Incr
else
Total = Threshold);

Each branch of an if-expression (there may be one, two or more branches when elsif is used) can be seen as a logical
implication, which explains why the above postcondition can also be written:

procedure Add_To_Total (Incr : in Integer) with
Post => (if Total'0Old + Incr < Threshold then Total = Total'0ld + Incr) and
(if Total'Old + Incr >= Threshold then Total = Threshold);

108 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

or equivalently (as the absence of else branch above is implicitly the same as else True):

procedure Add_To_Total (Incr : in Integer) with
Post => (if Total'Old + Incr < Threshold then Total = Total'0Old + Incr else True) and
(if Total'Old + Incr >= Threshold then Total = Threshold else True);

If-expressions are not necessarily of boolean type, in which case they must have an else branch that gives the value
of the expression for cases not covered in previous conditions (as there is no implicit else True in such a case). For
example, here is a postcondition equivalent to the above, that uses an if-expression of Integer type:

procedure Add_To_Total (Incr : in Integer) with
Post => Total = (if Total'Old + Incr < Threshold then Total'0ld + Incr else Threshold);

Although case-expressions can be used to cover cases of any scalar type, they are mostly used with enumerations, and
the compiler checks that all cases are disjoint and that together they cover all possible cases. For example, consider
a variant of procedure Add_To_Total which takes an additional Mode global input of enumeration value Single,
Double, Negate or Ignore, with the intuitive corresponding leverage effect on the addition. The postcondition of this
variant can be expressed using a case-expression as follows:

procedure Add_To_Total (Incr : in Integer) with
Post => (case Mode is
when Single => Total Total'0ld + Incr,
when Double => Total = Total'0Old + 2 * Incr,
when Ignore => Total Total'0ld,
when Negate => Total Total'0ld - Incr);

Like if-expressions, case-expressions are not necessarily of boolean type. For example, here is a postcondition equiv-
alent to the above, that uses a case-expression of Integer type:

procedure Add_To_Total (Incr : in Integer) with
Post => Total = Total'Old + (case Mode is
when Single => Incr,
when Double => 2 * Incr,
when Ignore => 0,
when Negate => - Incr);

A last case of others can be used to denote all cases not covered by previous conditions. If-expressions and case-
expressions should always be parenthesized.

5.5.10 Declare Expressions
Supported in Ada 2022

Declare expressions are used to factorize parts of an expression. They allow to declare constants and renamings which
are local to the expression. A declare expression is made of two parts:

* A list of declarations of local constants and renamings
* An expression using the names introduced in these declarations.

To match the syntax of declare blocks, the first part is introduced by declare and the second by begin. The scope is
delimited by enclosing parentheses, without end to close the scope.

As an example, we introduce a Find_First_Zero function which finds the index of the first occurrence of 0 in an
array of integers and a procedure Set_Range_To_Zero which zeros out all elements located between the first and
second occurrence of 0 in the array:

5.5. Specification Features 109

SPARK User’s Guide, Release 15.0

function Has_Zero (A : My_Array) return Boolean is
(for some E of A => E = 0);

function Has_Two_Zeros (A : My_Array) return Boolean is
(for some I in A'Range => A (I) = 0 and
(for some J in A'Range => A (J) = 0 and I /= 1));

function Find_First_Zero (A : My_Array) return Natural with
Pre => Has_Zero (A),
Post => Find_First_Zero'Result in A'Range
and A (Find_First_Zero'Result) = 0
and not Has_Zero (A (A'First .. Find_First_Zero'Result - 1));

procedure Set_Range_To_Zero (A : in out My_Array) with
Pre => Has_Two_Zeros (A),
Post =>
A = (A'0ld with delta
Find_First_Zero (A'0Old)
Find_First_Zero
(A'0ld (Find_First_Zero (A'Old) + 1 .. A'Last)) => 0);

In the contract of Set_Range_To_Zero, we use Delfa Aggregates to state that elements of A located in the range
between the first and the second occurrence of 0 in A have been set to 8 by the procedure. The second occurrence is
found by calling Find_First_Zero on the slice of A starting just after the first occurrence of 0.

To make the contract of Set_Range_To_Zero more readable, we can use a declare expression to introduce constants
for the first and second occurrence of 0 in the array. The explicit names make it easier to understand what the bounds
of the updated slice are supposed to be. It also avoids repeating the call to Find_First_Zero on A in the computation
of the second bound:

procedure Set_Range_To_Zero (A : in out My_Array) with
Pre => Has_Two_Zeros (A),

Post =>
(declare
Fst_Zero : constant Positive := Find_First_Zero (A'0Old);
Snd_Zero : constant Positive := Find_First_Zero
(A'0ld (Fst_Zero + 1 .. A'Last));
begin

A = (A'0ld with delta Fst_Zero .. Snd_Zero => 0));

5.5.11 Expression Functions
Supported in Ada 2012

An expression function is a function whose implementation is given by a single expression. For example, the function
Increment can be defined as an expression function as follows:

function Increment (X : Integer) return Integer is (X + 1);

For compilation and execution, this definition is equivalent to:

function Increment (X : Integer) return Integer is
begin
(continues on next page)

110 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)

return X + 1;
end Increment;

For GNATDprove, this definition as expression function is equivalent to the same function body as above, plus a post-
condition:

function Increment (X : Integer) return Integer with
Post => Increment 'Result = X + 1

is

begin
return X + 1;

end Increment;

Thus, a user does not need in general to add a postcondition to an expression function, as the implicit postcondition
generated by GNATprove is the most precise one. If a user adds a postcondition to an expression function, GNATprove
uses this postcondition to analyze the function’s callers as well as the most precise implicit postcondition.

On the contrary, it may be useful in general to add a precondition to an expression function, to constrain the contexts in
which it can be called. For example, parameter X passed to function Increment should be less than the maximal integer
value, otherwise an overflow would occur. We can specify this property in Increment’s precondition as follows:

function Increment (X : Integer) return Integer is (X + 1) with
Pre => X < Integer'Last;

Note that the contract of an expression function follows its expression.

Expression functions can be defined in package declarations, hence they are well suited for factoring out common
properties that are referred to in contracts. For example, consider the procedure Increment_Array that increments
each element of its array parameter X by one. Its precondition can be expressed using expression functions as follows:

package Increment_Utils is
function Not_Max (X : Integer) return Boolean is (X < Integer'Last);

function None_Max (X : Integer_Array) return Boolean is
(for all] in X'Range => Not_Max (X(1)));

procedure Increment_Array (X : in out Integer_Array) with
Pre => None_Max (X);

end Increment_Utils;

Expression functions can be defined over private types, and still be used in the contracts of publicly visible subprograms
of the package, by declaring the function publicly and defining it in the private part. For example:

package Increment_Utils is
type Integer_Array is private;
function None_Max (X : Integer_Array) return Boolean;

procedure Increment_Array (X : in out Integer_Array) with
Pre => None_Max (X);

(continues on next page)

5.5. Specification Features 111

SPARK User’s Guide, Release 15.0

(continued from previous page)

private
type Integer_Array is array (Positive range <>) of Integer;
function Not_Max (X : Integer) return Boolean is (X < Integer'lLast);

function None_Max (X : Integer_Array) return Boolean is
(for all J in X'Range => Not_Max (X(1)));

end Increment_Utils;

If an expression function is defined in a unit spec, GNATprove can use its implicit postcondition at every call. If an
expression function is defined in a unit body, GNATprove can use its implicit postcondition at every call in the same
unit, but not at calls inside other units. This is true even if the expression function is declared in the unit spec and
defined in the unit body.

5.5.12 Ghost Code
Specific to SPARK

Sometimes, the variables and functions that are present in a program are not sufficient to specify intended properties and
to verify these properties with GNATprove. In such a case, it is possible in SPARK to insert in the program additional
code useful for specification and verification, specially identified with the aspect Ghost so that it can be discarded
during compilation. So-called ghost code in SPARK are these parts of the code that are only meant for specification
and verification, and have no effect on the functional behavior of the program.

Note that assertions (including contracts) are not necessarily ghost code. A contract on a ghost entity is considered as
ghost code, while a contract on a non-ghost entity is not. Depending on the corresponding value of Assertion_Policy
(of kind Ghost for ghost code, of kind Assertions for all assertions, or of more specific assertion kinds like Pre and
Post), ghost code and assertions are executed or ignored at runtime.

Various kinds of ghost code are useful in different situations:
* Ghost functions are typically used to express properties used in contracts.

* Global ghost variables are typically used to keep track of the current state of a program, or to maintain a log of
past events of some type. This information can then be referred to in contracts.

* Local ghost variables are typically used to hold intermediate values during computation, which can then be
referred to in assertion pragmas like loop invariants.

* Ghost types are those types only useful for defining ghost variables.

* Ghost procedures can be used to factor out common treatments on ghost variables. Ghost procedures should not
have non-ghost outputs, either output parameters or global outputs.

* Ghost packages provide a means to encapsulate all types and operations for a specific kind of ghost code.

 Imported ghost subprograms are used to provide placeholders for properties that are defined in a logical language,
when using manual proof.

* Ghost generic formal parameters are used to pass on ghost entities (types, objects, subprograms, packages) as
parameters in a generic instantiation.

When the program is compiled with assertions (for example with switch -gnata in GNAT), ghost code is executed
like normal code. Ghost code can also be selectively enabled by setting pragma Assertion_Policy as follows:

pragma Assertion_Policy (Ghost => Check);

112 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

GNATDprove checks that ghost code cannot have an effect on the behavior of the program. GNAT compiler also performs
some of these checks, although not all of them. Apart from these checks, GNATprove treats ghost code like normal
code during its analyses.

Ghost Functions

Ghost functions are useful to express properties only used in contracts, and to factor out common expressions used in
contracts. For example, function Get_Total introduced in Abstraction and Functional Contracts to retrieve the value
of variable Total in the contract of Add_To_Total could be marked as a ghost function as follows:

function Get_Total return Integer with Ghost;

and still be used exactly as seen in Abstraction and Functional Contracts:

procedure Add_To_Total (Incr : in Integer) with
Pre => Incr >= 0 and then Get_Total in 0O .. Integer'lLast - Incr,
Post => Get_Total = Get_Total'Old + Incr;

The definition of Get_Total would be also the same:

Total : Integer;

function Get_Total return Integer is (Total);

Although it is more common to define ghost functions as Expression Functions, a regular function might be used too:

function Get_Total return Integer is
begin

return Total;
end Get_Total;

In that case, GNATprove uses only the contract of Get_Total (either user-specified or the default one) when analyzing
its callers, like for a non-ghost regular function. (The same exception applies as for regular functions, when GNATprove
can analyze a subprogram in the context of its callers, as described in Contextual Analysis of Subprograms Without
Contracts.)

All functions which are only used in specification can be marked as ghost, but most don’t need to. However, there
are cases where marking a specification-only function as ghost really brings something. First, as ghost entities are
not allowed to interfere with normal code, marking a function as ghost avoids having to break state abstraction for the
purpose of specification. For example, marking Get_Total as ghost will prevent users of the package Account from
accessing the value of Total from non-ghost code.

Then, in the usual context where ghost code is not kept in the final executable, the user is given more freedom to use
in ghost code constructs that are less efficient than in normal code, which may be useful to express rich properties. For
example, the ghost functions defined in the Formal Containers Library in the SPARK library typically copy the entire
content of the argument container, which would not be acceptable for non-ghost functions.

Ghost Variables

Ghost variables are useful to keep track of local or global information during the computation, which can then be
referred to in contracts or assertion pragmas.

5.5. Specification Features 113

SPARK User’s Guide, Release 15.0

Case 1: Keeping Intermediate Values

Local ghost variables are commonly used to keep intermediate values. For example, we can define a local ghost
variable Init_Total to hold the initial value of variable Total in procedure Add_To_Total, which allows checking
the relation between the initial and final values of Total in an assertion:

procedure Add_To_Total (Incr : in Integer) is

Init_Total : Integer := Total with Ghost;
begin

Total := Total + Incr;

pragma Assert (Total = Init_Total + Incr);
end Add_To_Total;

Case 2: Keeping Memory of Previous State

Global ghost variables are commonly used to memorize the value of a previous state. For example, we can de-
fine a global ghost variable Last_Incr to hold the previous value passed in argument when calling procedure
Add_To_Total, which allows checking in its precondition that the sequence of values passed in argument is non-
decreasing:

Last_Incr : Integer := Integer'First with Ghost;

procedure Add_To_Total (Incr : in Integer) with
Pre => Incr >= Last_Incr;

procedure Add_To_Total (Incr : in Integer) is

begin
Total := Total + Incr;
Last_Incr := Incr;

end Add_To_Total;

Case 3: Logging Previous Events

Going beyond the previous case, global ghost variables can be used to store a complete log of events. For example, we
can define global ghost variables Log and Log_Size to hold the sequence of values passed in argument to procedure
Add_To_Total, as in State Abstraction:

Log : Integer_Array with Ghost;
Log_Size : Natural with Ghost;

procedure Add_To_Total (Incr : in Integer) with
Post => Log_Size = Log_Size'Old + 1 and Log = (Log'Old with delta Log_Size => Incr);

procedure Add_To_Total (Incr : in Integer) is
begin

Total := Total + Incr;

Log_Size := Log_Size + 1;

Log (Log_Size) := Incr;
end Add_To_Total;

The postcondition of Add_To_Total above expresses that Log_Size is incremented by one at each call, and that the
current value of parameter Incr is appended to Log at each call (using Attribute Old and Delta Aggregates).

114 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

Case 4: Expressing Existentially Quantified Properties

In SPARK, universal quantification is only allowed in restricted cases (over integer ranges and over the content of a
container). To express the existence of a particular object, it is sometimes easier to simply provide it. This can be
done using a global ghost variable. This can be used in particular to split the specification of a complex procedure into
smaller parts:

X_Interm : T with Ghost;

procedure Do_Two_Thing (X : in out T) with
Post => First_Thing_Done (X'0Old, X_Interm) and then
Second_Thing Done (X_Interm, X)
is
X_Init : constant T := X with Ghost;
begin
Do_Something (X);
pragma Assert (First_Thing Done (X_Init, X));
X_Interm := X;

Do_Something_Else (X);
pragma Assert (Second_Thing Done (X_Interm, X));
end Do_Two_Things;

More complicated uses can also be envisioned, up to constructing ghost data structures reflecting complex properties.
For example, we can express that two arrays are a permutation of each other by constructing a permutation from one
to the other:

Perm : Permutation with Ghost;

procedure Permutation_Sort (A : Nat_Array) with
Post => A = Apply_Perm (Perm, A'Old)

is

begin
-- Initalize Perm with the identity
Perm := Identity_Perm;
for Current in A'First .. A'Last - 1 loop

Smallest := Index_Of Minimum_Value (A, Current, A'Last);
if Smallest /= Current then
Swap (A, Current, Smallest);

-- Update Perm each time we permute two elements in A
Permute (Perm, Current, Smallest);
end if;
end loop;
end Permutation_Sort;

Ghost Types

Ghost types can only be used to define ghost variables. For example, we can define ghost types Log_Type and
Log_Size_Type that specialize the types Integer_Array and Natural for ghost variables:

subtype Log_Type is Integer_Array with Ghost;
subtype Log_Size_Type is Natural with Ghost;
(continues on next page)

5.5. Specification Features 115

SPARK User’s Guide, Release 15.0

(continued from previous page)

Log : Log_Type with Ghost;
Log_Size : Log_Size_Type with Ghost;

Ghost Procedures

Ghost procedures are useful to factor out common treatments on ghost variables. For example, we can define a ghost
procedure Append_To_Log to append a value to the log as seen previously.

Log : Integer_Array with Ghost;
Log_Size : Natural with Ghost;

procedure Append_To_Log (Incr : in Integer) with
Ghost,
Post => Log_Size = Log_Size'Old + 1 and Log = (Log'0Old with delta Log_Size => Incr);

procedure Append_To_Log (Incr : in Integer) is
begin

Log_Size := Log_Size + 1;

Log (Log_Size) := Incr;
end Append_To_Log;

Then, this procedure can be called in Add_To_Total as follows:

procedure Add_To_Total (Incr : in Integer) is
begin

Total := Total + Incr;

Append_To_Log (Incr);
end Add_To_Total;

Ghost Packages

Ghost packages are useful to encapsulate all types and operations for a specific kind of ghost code. For example, we
can define a ghost package Logging to deal with all logging operations on package Account:

package Logging with
Ghost
is
Log : Integer_Array;
Log_Size : Natural;

procedure Append_To_Log (Incr : in Integer) with
Post => Log_Size = Log_Size'Old + 1 and Log = (Log'Old with delta Log_Size => Incr);

end Logging;

The implementation of package Logging is the same as if it was not a ghost package. In particular, a Ghost aspect is
implicitly added to all declarations in Logging, so it is not necessary to specify it explicitly. Logging can be defined
either as a local ghost package or as a separate unit. In the latter case, unit Account needs to reference unit Logging
in a with-clause like for a non-ghost unit:

116 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

with Logging;
package Account is

end Account;

Imported Ghost Subprograms

‘When using manual proof (see GNATprove and Manual Proof), it may be more convenient to define some properties in
the logical language of the prover rather than in SPARK. In that case, ghost functions might be marked as imported, so
that no implementation is needed. For example, the ghost procedure Append_To_Log seen previously may be defined
equivalently as a ghost imported function as follows:

function Append_To_Log (Log : Log_type; Incr : in Integer) return Log_Type with
Ghost,
Import;

where Log_Type is an Ada type used also as placeholder for a type in the logical language of the prover. To avoid any
inconsistency between the interpretations of Log_Type in GNATprove and in the manual prover, it is preferable in such
a case to mark the definition of Log_Type as not in SPARK, so that GNATprove does not make any assumptions on
its content. This can be achieved by defining Log_Type as a private type and marking the private part of the enclosing
package as not in SPARK:

package Logging with
SPARK_Mode,
Ghost

is
type Log_Type is private;

function Append_To_Log (Log : Log_type; Incr : in Integer) return Log_Type with
Import;

private
pragma SPARK_Mode (0ff);

type Log_Type is new Integer; -- Any definition is fine here
end Logging;

A ghost imported subprogram cannot be executed, so calls to Append_To_Log above should not be enabled during
compilation, otherwise a compilation error is issued. Note also that GNATprove will not attempt proving the contract
of a ghost imported subprogram, as it does not have its body.

Ghost Generic Formal Parameters

Non-ghost generic units may depend on ghost entities for the specification and proof of their instantiations. In such a
case, the ghost entities can be passed on as ghost generic formal parameters:

generic
type T is private with Ghost;
Var_Input : T with Ghost;
Var_Output : in out T with Ghost;

(continues on next page)

5.5. Specification Features 117

SPARK User’s Guide, Release 15.0

(continued from previous page)

with function F return T with Ghost;
with procedure P (X : in out T) with Ghost;
with package Pack is new Gen with Ghost;
package My_Generic with
SPARK_Mode
is

At the point of instantiation of My_Generic, actual parameters for ghost generic formal parameters may be ghost, and
in three cases, they must actually be ghost: the actual for a mutable ghost generic formal object, a ghost generic formal
procedure, or a ghost generic formal package, must be ghost. Otherwise, writing to a ghost variable or calling a ghost
procedure could have an effect on non-ghost variables.

package My_Instantiation is

new My_Generic (T => ... -- ghost or not
Var_Input => ... -- ghost or not
Var_Output => ... -- must be ghost
F => ... -- ghost or not
P => ... -- must be ghost
Pack => ... -- must be ghost

Ghost Models

When specifying a program, it is common to use a model, that is, an alternative, simpler view of a part of the program.
As they are only used in annotations, models can be computed using ghost code.

Models of Control Flow

Global variables can be used to enforce properties over call cahains in the program. For example, we may want
to express that Total cannot be incremented twice in a row without registering the transaction in between. This
can be done by introducing a ghost global variable Last_Transaction_Registered, used to encode whether
Register_Transaction was called since the last call to Add_To_Total:

Last_Transaction_Registered : Boolean := True with Ghost;

procedure Add_To_Total (Incr : Integer) with
Pre => Last_Transaction_Registered,
Post => not Last_Transaction_Registered;

procedure Register_Transaction with
Post => Last_Transaction_Registered;

The value of Last_Transaction_Registered should also be updated in the body of Add_To_Total and
Register_Transaction to reflect their contracts:

procedure Add_To_Total (Incr : in Integer) is

begin
Total := Total + Incr;
Last_Transaction_Registered := False;

end Add_To_Total;

More generally, the expected control flow of a program can be modeled using an automaton. We can take as an example
a mailbox containing only one message. The expected way Receive and Send should be interleaved can be expressed

118 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

as a two state automaton. The mailbox can either be full, in which case Receive can be called but not Send, or it can
be empty, in which case it is Send that can be called and not Receive. To express this property, we can define a ghost
global variable of a ghost enumeration type to hold the state of the automaton:

type Mailbox_Status_Kind is (Empty, Full) with Ghost;
Mailbox_Status : Mailbox_Status_Kind := Empty with Ghost;

procedure Receive (X : out Message) with
Pre => Mailbox_Status = Full,
Post => Mailbox_Status = Empty;

procedure Send (X : Message) with
Pre => Mailbox_Status = Empty,
Post => Mailbox_Status = Full;

Like before, Receive and Send should update Mailbox_Status in their bodies. Note that all the transitions of the
automaton need not be specified, only the part which are relevant to the properties we want to express.

If the program also has some regular state, an invariant can be used to link the value of this state to the value of
the ghost state of the automaton. For example, in our mailbox, we may have a regular variable Message_Content
holding the content of the current message, which is only known to be valid after a call to Send. We can introduce a
ghost function linking the value of Message_Content to the value of Mailbox_Status, so that we can ensure that
Message_Content is always valid when accessed from Receive:

function Invariant return Boolean is
(if Mailbox_Status = Full then Valid (Message_Content))
with Ghost;

procedure Receive (X : out Message) with
Pre => Invariant and then Mailbox_Status = Full,
Post => Invariant and then Mailbox_Status = Empty
and then Valid (X)
is
X := Message_Content;
end Receive;

Models of Data Structures

For specifying programs that use complex data structures (doubly-linked lists, maps...), it can be useful to supply
a model for the data structure. A model is an alternative, simpler view of the data-structure which allows to write
properties more easily. For example, a ring buffer, or a doubly-linked list, can be modeled using an array containing
the elements from the buffer or the list in the right order. Typically, though simpler to reason with, the model is less
efficient than the regular data structure. For example, inserting an element at the beginning of a doubly-linked list or at
the beginning of a ring buffer can be done in constant time whereas inserting an element at the beginning of an array
requires to slide all the elements to the right. As a result, models of data structures are usually supplied using ghost
code. As an example, the package Ring_Buffer offers an implementation of a single instance ring buffer. A ghost
variable Buffer_Model is used to write the specification of the Enqueue procedure:

package Ring_Buffer is
function Get_Model return Nat_Array with Ghost;

procedure Enqueue (E : Natural) with
Post => Get_Model = E & Get_Model'0Old (1 .. Max - 1);
private
(continues on next page)

5.5. Specification Features 119

SPARK User’s Guide, Release 15.0

(continued from previous page)
Buffer_Content : Nat_Array;

Buffer_Top : Natural;
Buffer_Model : Nat_Array with Ghost;

function Get_Model return Nat_Array is (Buffer_Model);
end Ring_Buffer;

Then, just like for models of control flow, an invariant should be supplied to link the regular data structure to its model:

package Ring_Buffer is
function Get_Model return Nat_Array with Ghost;
function Invariant return Boolean with Ghost;

procedure Enqueue (E : Natural) with
Pre => Invariant,
Post => Invariant and then Get_Model = E & Get_Model'0ld (1 .. Max - 1);

private
Buffer_Content : Nat_Array;
Buffer_Top : Natural;
Buffer_Model : Nat_Array with Ghost;

function Get_Model return Nat_Array is (Buffer_Model);
function Invariant return Boolean is
(Buffer_Model = Buffer_Content (Buffer_Top .. Max)
& Buffer_Content (1 .. Buffer_Top - 1));
end Ring_Buffer;

If a data structure type is defined, a ghost function can be provided to compute a model for objects of the data structure
type, and the invariant can be stated as a postcondition of this function:

package Ring_Buffer is
type Buffer_Type is private;
subtype Model_Type is Nat_Array with Ghost;

function Invariant (X : Buffer_Type; M : Model_Type) return Boolean with
Ghost;

function Get_Model (X : Buffer_Type) return Model_Type with
Ghost,
Post => Invariant (X, Get_Model'Result);

procedure Enqueue (X : in out Buffer_Type; E : Natural) with
Post => Get_Model (X) = E & Get_Model (X)'0Old (1 .. Max - 1);
private
type Buffer_Type is record
Content : Nat_Array;
Top : Natural;
end record;
end Ring_Buffer;

More complex examples of models of data structure can be found in the Formal Containers Library.

120 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

Removal of Ghost Code

By default, GNAT completely discards ghost code during compilation, so that no ghost code is present in the object
code or the executable. This ensures that, even if parts of the ghost could have side effects when executed (writing
to variables, performing system calls, raising exceptions, etc.), by default the compiler ensures that it cannot have any
effect on the behavior of the program.

This is also essential in domains submitted to certification where all instructions in the object code should be traceable
to source code and requirements, and where testing should ensure coverage of the object code. As ghost code is not
present in the object code, there is no additional cost for maintaining its traceability and ensuring its coverage by tests.

GNAT provides an easy means to check that no ignored ghost code is present in a given object code or executable,
which relies on the property that, by definition, each ghost declaration or ghost statement mentions at least one ghost
entity. GNAT prefixes all names of such ignored ghost entities in the object code with the string ___ghost_ (except
for names of ghost compilation units). The initial triple underscore ensures that this substring cannot appear anywhere
in the name of non-ghost entities or ghost entities that are not ignored. Thus, one only needs to check that the substring
___ghost_ does not appear in the list of names from the object code or executable.

On Unix-like platforms, this can done by checking that the following command does not output anything:

nm <object files or executable> | grep ___ghost_

The same can be done to check that a ghost compilation unit called my_unit (whatever the capitalization) is not
included at all (entities in that unit would have been detected by the previous check) in the object code or executable.
For example on Unix-like platforms:

nm <object files or executable> | grep my_unit

5.5.13 Quantified Expressions
Supported in Ada 2012

A quantified expression is a way to express a property over a collection, either an array or a container (see Formal
Containers Library):

* auniversally quantified expression using for all expresses a property that holds for all elements of a collection

* an existentially quantified expression using for some expresses a property that holds for at least one element of
a collection

Quantified expressions should always be parenthesized.

Iteration Over Content vs. Over Positions

Iteration can be expressed either directly over the content of the collection, or over the range of positions of elements
in the collection. The former is preferred when the property involved does not refer to the position of elements in
the collection or to the previous value of the element at the same position in the collection (e.g. in a postcondition).
Otherwise, the latter is needed. For example, consider the procedure Nullify_Array that sets each element of its
array parameter X to zero. Its postcondition can be expressed using a universally quantified expression iterating over
the content of the array as follows:

procedure Nullify Array (X : out Integer_Array) with
Post => (for all E in X => E = 0);

or using a universally quantified expression iterating over the range of the array as follows:

procedure Nullify Array (X : out Integer_Array) with
Post => (for all J in X'Range => X(J) = 0);

5.5. Specification Features 121

SPARK User’s Guide, Release 15.0

Quantification over formal containers can similarly iterate over their content, using the syntax for .. of, or their
positions, using the syntax for .. in, see examples in Loop Examples.

Iteration over positions is needed when the property refers to the position of elements in the collection. For exam-
ple, consider the procedure Initialize_Array that sets each element of its array parameter X to its position. Its
postcondition can be expressed using a universally quantified expression as follows:

procedure Initialize_Array (X : out Integer_Array) with
Post => (for all J in X'Range => X(J) = 1);

Iteration over positions is also needed when the property refers to the previous value of the element at the same position
in the collection. For example, consider the procedure Increment_Array that increments each element of its array
parameter X by one. Its postcondition can be expressed using a universally quantified expression as follows:

procedure Increment_Array (X : in out Integer_Array) with
Post => (for all J in X'Range => X(J) = X'01d(3) + 1);

The negation of a universal property being an existential property (the opposite is true too), the postcondition above
can be expressed also using an existentially quantified expression as follows:

procedure Increment_Array (X : in out Integer_Array) with
Post => not (for some J in X'Range => X(J) /= X'01d(J) + 1);

Execution vs. Proof

At run time, a quantified expression is executed like a loop, which exits as soon as the value of the expression is
known: if the property does not hold (resp. holds) for a given element of a universally (resp. existentially) quantified
expression, execution of the loop does not proceed with remaining elements and returns the value False (resp. True)
for the expression.

When a quantified expression is analyzed with GNATprove, it uses the logical counterpart of the quantified expression.
GNATDprove also checks that the expression is free from run-time errors. For this checking, GNATprove checks that
the enclosed expression is free from run-time errors over the entire range of the quantification, not only at points that
would actually be reached at run time. As an example, consider the following expression:

(for all ITin1 .. 10 =1/ (I - 3) > 0)

This quantified expression cannot raise a run-time error, because the enclosed expression 1 / (I - 3) > 0 is false
for the first value of the range I = 1, so the execution of the loop exits immediately with the value False for the
quantified expression. GNATprove is stricter and requires the enclosed expression 1 / (I - 3) > 0 to be free from
run-time errors over the entire range I in 1 .. 10 (including I = 3) so it issues a check message for a possible
division by zero in this case.

Iterator Filters

The set of values or positions over which iteration is performed can be filtered with an iterator filter introduced by the
keyword when. For example, we can express a property for all prime numbers in a given range as follows:

(for all N in 1 .. 1000 when Is_Prime (N) => ...)

5.6 Assertion Pragmas

SPARK contains features for directing formal verification with GNATprove. These features may also be used by other
tools, in particular the GNAT compiler. Assertion pragmas are refinements of pragma Assert defined in Ada. For
all assertion pragmas, an exception Assertion_Error is raised at run time when the property asserted does not hold,

122 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

if the program was compiled with assertions. The real difference between assertion pragmas is how they are used by
GNATDprove during proof.

5.6.1 Pragma Assert
Supported in Ada 2005

Pragma Assert is the simplest assertion pragma. GNATprove checks that the property asserted holds, and uses the
information that it holds for analyzing code that follows. For example, consider two assertions of the same property X
> 0 in procedure Assert_Twice:

procedure Assert_Twice (X : Integer) with
SPARK_Mode

is

begin
pragma Assert (X > 0);
pragma Assert (X > 0);

end Assert_Twice;

As expected, the first assertion on line 5 is not provable in absence of a suitable precondition for Assert_Twice, but
GNATprove proves that it holds the second time the property is asserted on line 6:

assert_twice.adb:5:19: high: assertion might fail
5 | pragma Assert (X > 0);
| A
e.g. when X = 0
possible fix: subprogram at line 1 should mention X in a precondition
1 |procedure Assert_Twice (X : Integer) with
| here
assert_twice.adb:6:19: info: assertion proved

GNATprove considers that an execution of Assert_Twice with X <= 0 stops at the first assertion that fails. Thus X >
0 when execution reaches the second assertion. This is true if assertions are executed at run time, but not if assertions
are discarded during compilation. In the latter case, unproved assertions should be inspected carefully to ensure that
the property asserted will indeed hold at run time. This is true of all assertion pragmas, which GNATprove analyzes
like pragma Assert in that respect.

5.6.2 Pragma Assertion_Policy
Supported in Ada 2005/Ada 2012

Assertions can be enabled either globally or locally. Here, assertions denote either Assertion Pragmas of all kinds
(among which Pragma Assert) or functional contracts of all kinds (among which Preconditions and Postconditions).

By default, assertions are ignored in compilation, and can be enabled globally by using the compilation switch -gnata.
They can be enabled locally by using pragma Assertion_Policy in the program, or globally if the pragma is put in a
configuration file. They can be enabled for all kinds of assertions or specific ones only by using the version of pragma
Assertion_Policy that takes named associations which was introduced in Ada 2012.

When used with the standard policies Check (for enabling assertions) or Ignore (for ignoring assertions), pragma
Assertion_Policy hasno effect on GNATprove. GNATprove takes all assertions into account, whatever the assertion
policy in effect at the point of the assertion. For example, consider a code with some assertions enabled and some
ignored:

5.6. Assertion Pragmas 123

SPARK User’s Guide, Release 15.0

pragma Assertion_Policy (Pre => Check, Post => Ignore);

procedure Assert_Enabled (X : in out Integer) with
SPARK_Mode,
Pre => X >0, -- executed at run time
Post => X > 2 -- 1ignored at run time
is
pragma Assertion_Policy (Assert => Check);
pragma Assert (X >= 0); -- executed at run time

pragma Assertion_Policy (Assert => Ignore);

pragma Assert (X >= 0); -- 1ignored at run time
begin
X =X - 1;

end Assert_Enabled;

Although the postcondition and the second assertion are not executed at run time, GNATprove analyzes them and issues
corresponding messages:

assert_enabled.adb:6:11: high: postcondition might fail

6 | Post ==X > 2 -- ignored at run time
| A

e.g. when X = 0
assert_enabled.adb:9:19: info: assertion proved
assert_enabled.adb:12:19: info: assertion proved
assert_enabled.adb:14:11: info: overflow check proved

On the contrary, when used with the GNAT-specific policy Disable, pragma Assertion_Policy causes the corre-
sponding assertions to be skipped both during execution and analysis with GNATprove. For example, consider the
same code as above where policy Ignore is replaced with policy Disable:

pragma Assertion_Policy (Pre => Check, Post => Disable);

procedure Assert_Disabled (X : in out Integer) with
SPARK_Mode,
Pre => X >0, -- executed at run time
Post => X > 2 -- ignored at compile time and in analysis
is
pragma Assertion_Policy (Assert => Check);
pragma Assert (X >= 0); -- executed at run time

pragma Assertion_Policy (Assert => Disable);

pragma Assert (X >= 0); -- 1ignored at compile time and in analysis
begin
X :=X - 1;

end Assert_Disabled;

On this program, GNATprove does not analyze the postcondition and the second assertion, and it does not issue corre-
sponding messages:

assert_disabled.adb:9:19: info: assertion proved
assert_disabled.adb:14:11: info: overflow check proved

124 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

The policy of Disable should thus be reserved for assertions that are not compilable, typically because a given build
environment does not define the necessary entities.

5.6.3 Loop Invariants
Specific to SPARK

Pragma Loop_Invariant is a special kind of assertion used in loops. GNATprove performs two checks that ensure
that the property asserted holds at each iteration of the loop:

1. loop invariant initialization: GNATprove checks that the property asserted holds during the first iteration of the
loop.

2. loop invariant preservation: GNATprove checks that the property asserted holds during an arbitrary iteration of
the loop, assuming that it held in the previous iteration.

Each of these properties can be independently true or false. For example, in the following loop, the loop invariant is
false during the first iteration and true in all remaining iterations:

Prop := False;

for J in 1 .. 10 loop
pragma Loop_Invariant (Prop);
Prop := True;

end loop;

Thus, GNATprove checks that property 2 holds but not property 1:

simple_loops.adb:8:30: high: loop invariant might fail in first iteration

8 | pragma Loop_Invariant (Prop);
| A

e.g. when Prop = False
simple_loops.adb:8:30: info: loop invariant preservation proved

Conversely, in the following loop, the loop invariant is true during the first iteration and false in all remaining iterations:

Prop := True;

for J in 1 .. 10 loop
pragma Loop_Invariant (Prop);
Prop := False;

end loop;

Thus, GNATprove checks that property 1 holds but not property 2:

simple_loops.adb:14:30: info: loop invariant initialization proved

simple_loops.adb:14:30: medium: loop invariant might not be preserved by an arbitrary.
—iteration
14 | pragma Loop_Invariant (Prop);

| A

The following loop shows a case where the loop invariant holds both during the first iteration and all remaining itera-
tions:

Prop := True;
for J in 1 .. 10 loop
pragma Loop_Invariant (Prop);
(continues on next page)

5.6. Assertion Pragmas 125

21

22

24

25

26

27

28

SPARK User’s Guide, Release 15.0

(continued from previous page)
Prop := Prop;
end loop;

GNATprove checks here that both properties 1 and 2 hold:

simple_loops.adb:20:30: info: loop invariant preservation proved
simple_loops.adb:20:30: info: loop invariant initialization proved

In general, it is not sufficient that a loop invariant is true for GNATprove to prove it. The loop invariant should also be
inductive: it should be precise enough that GNATprove can check loop invariant preservation by assuming only that
the loop invariant held during the last iteration. For example, the following loop is the same as the previous one, except
the loop invariant is true but not inductive:

Prop := True;

for J in 1 .. 10 loop
pragma Loop_Invariant (if J > 1 then Prop);
Prop := Prop;

end loop;

GNATprove cannot check property 2 on that loop:

simple_loops.adb:26:30: info: loop invariant initialization proved

simple_loops.adb:26:44: medium: loop invariant might not be preserved by an arbitrary.
—,iteration, cannot prove Prop
26 | pragma Loop_Invariant (if J > 1 then Prop);

| Ao

Note also that not using an assertion (Pragma Assert) instead of a loop invariant also allows here to fully prove the
corresponding property, by relying on Automatic Unrolling of Simple For-Loops:

simple_loops_unroll.adb:26:22: info: assertion proved

Returning to the case where automatic loop unrolling is not used, the reasoning of GNATprove for checking property
2 in that case can be summarized as follows:

» Let’s take iteration K of the loop, where K > 1 (not the first iteration).
* Let’s assume that the loop invariant held during iteration K-1, so we know that if K-1 > 1 then Prop holds.
* The previous assumption can be rewritten: if K > 2 then Prop.
* But all we know is that K > 1, so we cannot deduce Prop.
See How to Write Loop Invariants for further guidelines.

Pragma Loop_Invariant may appear anywhere at the top level of a loop: it is usually added at the start of the loop,
but it may be more convenient in some cases to add it at the end of the loop, or in the middle of the loop, in cases where
this simplifies the asserted property. In all cases, GNATprove checks loop invariant preservation by reasoning on the
virtual loop that starts and ends at the loop invariant.

It is possible to use multiple loop invariants, which should be grouped together without intervening statements, decla-
rations or pragmas, at the exception of pragma Loop_Variant and pragma Annotate (to justify check messages). The
resulting complete loop invariant is the conjunction of individual ones. The benefits of writing multiple loop invariants
instead of a conjunction can be improved readability and better provability (because GNATprove checks each pragma
Loop_Invariant separately).

Finally, Attribute Loop_Entry and Delta Aggregates can be very useful to express complex loop invariants.

126 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

Note

Users that are already familiar with the notion of loop invariant in other proof systems should be aware that loop
invariants in SPARK are slightly different from the usual ones. In SPARK, a loop invariant must hold when execu-
tion reaches the corresponding pragma inside the loop. Hence, it needs not hold when the loop is never entered, or
when exiting the loop.

5.6.4 Loop Variants
Specific to SPARK

Pragma Loop_Variant is a special kind of assertion used in loops. GNATprove checks that the given value progresses
in some sense at each iteration of the loop. The value is associated to a direction, which can be either Increases or
Decreases for numeric variants, or Structural for structural variants.

Numeric variants can take a discrete value or, in the case of the direction Decreases, a big natural (see SPARK.
Big_Integers). At each iteration, a check is generated to ensure that the value progresses (decreases or increases)
with respect to its value at the beginning of the loop. Because a discrete value is always bounded by its type in Ada,
and a big natural is never negative, it cannot decrease (or increase) at each iteration an infinite number of times, thus
one of two outcomes is possible:

1. the loop exits, or
2. arun-time error occurs.

Therefore, it is possible to prove the termination of loops in SPARK programs by proving both a loop variant for each
plain-loop or while-loop (for-loops always terminate in Ada) and the absence of run-time errors.

For example, the while-loops in procedure Terminating_Loops compute the value of X - X mod 3 (or equivalently
X / 3 * 3)invariable Y:

procedure Terminating_Loops (X : Natural) with
SPARK_Mode
is
Y : Natural;
begin
Y :=0;
while X - Y >= 3 loop
Y :=Y + 3;
pragma Loop_Variant (Increases => Y);
end loop;

Y :=0;
while X - Y >= 3 loop
Y :=Y + 3;
pragma Loop_Variant (Decreases => X - Y);
end loop;
end Terminating_Loops;

GNATDprove is able to prove both loop variants, as well as absence of run-time errors in the subprogram, hence that
loops terminate:

terminating_loops.adb:4:04: info: initialization of "Y" proved
terminating_loops.adb:7:12: info: overflow check proved
terminating_loops.adb:8:14: info: overflow check proved

(continues on next page)

5.6. Assertion Pragmas 127

SPARK User’s Guide, Release 15.0

(continued from previous page)

terminating_loops.adb:9:28: info: loop variant proved
terminating_loops.adb:13:12: info: overflow check proved
terminating_loops.adb:14:14: info: overflow check proved
terminating_loops.adb:15:28: info: loop variant proved
terminating_loops.adb:15:43: info: overflow check proved

A numeric loop variant may be more complex than a single decreasing (or increasing) value, and be given instead by
a list of either decreasing or increasing values (possibly a mix of both). In that case, the order of the list defines the
lexicographic order of progress. See SPARK RM 5.5.3 for details.

The expression of a structural loop variant can be either a local borrower or a local observer (see Observing and
Borrowing). A check is generated to ensure that, during each iteration of the loop, the object denoted by the variant is
updated to designate a strict subcomponent of the structure it used to designate. Since, due to the Memory Ownership
Policy of SPARK, the structure cannot contain cycles, it is enough to ensure that the loop cannot be executed an infinite
number of times.

In the following example, we can verify that the while loop in the Set_All_To_Zero procedure terminates by stating
that the local borrower X used to traverse the linked list structurally decreases at each iteration:

package Terminating_Loops with
SPARK_Mode
is
type Cell;
type List is access Cell;
type Cell is record
Value : Integer;
Next : List;
end record;

procedure Set_All_To_Zero (L : List);

end Terminating_Loops;

package body Terminating_Loops with
SPARK_Mode
is

procedure Set_All_To_Zero (L : List) is
X : access Cell :=L;
begin
while X /= null loop
pragma Loop_Variant (Structural => X);
X.Value := 0;
X := X.Next;
end loop;
end Set_All_To_Zero;

end Terminating_Loops;

Structural variants are subjects to a number of restrictions. They cannot be combined with other variants, and are
checked according to a mostly syntactic criterion. When these restrictions cannot be followed, structural variants can
be systematically replaced by a decreasing numeric variant providing the depth (or size) of the data structure, like
function Length in Subprogram Variant. Strictly speaking, structural variants are only required to define the function
returning that metric.

128 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

The fact that, at each iteration, the variable X is updated to designate a strict subcomponent of the structure it used to
designate can be verified by GNATprove:

terminating_loops.adb:9:10: info: loop variant proved
terminating_loops.adb:10:11: info: pointer dereference check proved
terminating_loops.adb:11:16: info: pointer dereference check proved

Pragma Loop_Variant may appear anywhere a loop invariant appears. It is also possible to use multiple loop variants,
which should be grouped together with loop invariants.

5.6.5 Pragma Assume
Specific to SPARK

Pragma Assume is a variant of Pragma Assert that does not require GNATprove to check that the property holds. This is
used to convey trustable information to GNATprove, in particular properties about external objects that GNATprove has
no control upon. GNATprove uses the information that the assumed property holds for analyzing code that follows. For
example, consider an assumption of the property X > 0 in procedure Assume_Then_Assert, followed by an assertion
of the same property:

procedure Assume_Then_Assert (X : Integer) with
SPARK_Mode

is

begin
pragma Assume (X > 0);
pragma Assert (X > 0);

end Assume_Then_Assert;

As expected, GNATprove does not check the property on line 5, but used it to prove that the assertion holds on line 6:

assume_then_assert.adb:6:19: info: assertion proved

GNATDprove considers that an execution of Assume_Then_Assert with X <= 0 stops at the assumption on line 5, and
it does not issue a message in that case because the user explicitly indicated that this case is not possible. Thus X > 0
when execution reaches the assertion on line 6. This is true if assertions (of which assumptions are a special kind) are
executed at run time, but not if assertions are discarded during compilation. In the latter case, assumptions should be
inspected carefully to ensure that the property assumed will indeed hold at run time. This inspection may be facilitated
by passing a justification string as the second argument to pragma Assume.

5.6.6 Pragma Assert_And_Cut
Specific to SPARK

Pragma Assert_And_Cut is a variant of Pragma Assert that allows hiding some information to GNATprove. GNAT-
prove checks that the property asserted holds, and uses only the information that it holds for analyzing code that follows.
For example, consider two assertions of the same property X = 1 in procedure Forgetful_Assert, separated by a
pragma Assert_And_Cut:

procedure Forgetful_Assert (X : out Integer) with

SPARK_Mode
is
begin

X := 1;

pragma Assert (X = 1);

(continues on next page)

5.6. Assertion Pragmas 129

1

2

SPARK User’s Guide, Release 15.0

(continued from previous page)

pragma Assert_And _Cut (X > 0);

pragma Assert (X > 0);
pragma Assert (X = 1);
end Forgetful_Assert;

GNATDprove proves that the assertion on line 7 holds, but it cannot prove that the same assertion on line 12 holds:

forgetful_assert.adb:1:29: info: initialization of "X" proved
forgetful_assert.adb:7:19: info: assertion proved
forgetful_assert.adb:9:27: info: assertion proved
forgetful_assert.adb:11:19: info: assertion proved

forgetful_assert.adb:12:19: medium: assertion might fail
12 | pragma Assert (X = 1);

| A

GNATDprove forgets the exact value of X after line 9. All it knows is the information given in pragma Assert_And_Cut,
here that X > 0. And indeed GNATprove proves that such an assertion holds on line 11. But it cannot prove the
assertion on line 12, showing indeed that GNATprove forgot its value of 1.

Pragma Assert_And_Cut may be useful in two cases:

1. When the automatic provers are overwhelmed with information from the context, pragma Assert_And_Cut may
be used to simplify this context, thus leading to more automatic proofs.

2. When GNATDprove is proving checks for each path through the subprogram (see switch --proof in Running
GNATprove from the Command Line), and the number of paths is very large, pragma Assert_And_Cut may be
used to reduce the number of paths, thus leading to faster automatic proofs.

For example, consider procedure P below, where all that is needed to prove that the code using X is free from run-
time errors is that X is positive. Let’s assume that we are running GNATprove with switch --proof=per_path
so that a formula is generated for each execution path. Without the pragma, GNATprove considers all execution
paths through P, which may be many. With the pragma, GNATprove only considers the paths from the start of
the procedure to the pragma, and the paths from the pragma to the end of the procedure, hence many fewer paths.

procedure P is
X : Integer;
begin
-- complex computation that sets X
pragma Assert_And_Cut (X > 0);
-- complex computation that uses X
end P;

GNATDprove only forgets information from inside the enclosing sequence of statements, meaning information about
1. variables modified since the start of the enclosing sequence of statements

2. Boolean tests (including checks) that must have evaluated to true for control to reach the pragma from the start
of the enclosing sequence of statements.

Procedure Partial_Knowledge below shows examples of informations that are remembered and forgotten.

procedure Partial Knowledge (X : Integer) is
Y : Integer;
(continues on next page)

130 Chapter 5. Overview of SPARK Language

20

21

22

23

SPARK User’s Guide, Release 15.0

(continued from previous page)

Z : Integer;

begin

Y :=0;

if (X <= 0) then
return;

end if;

begin
Z = 1;
begin

if (X >= 2) then
return;
end if;

end;
pragma Assert_And_Cut (Y < Z);
pragma Assert (Y = 0); -- Remembered
pragma Assert (X > 0); -- Remembered
pragma Assert (Y < Z); -- From cut
pragma Assert (Z = 1); -- Forgotten
pragma Assert (X < 2); -- Forgotten

end;

end;

Since variable Y is not modified in the inner block, the information that Y was zero is not forgotten, and the assertion at
line 17 is proved. Similarly, GNATprove does not forget that X must have been positive to reach the inner block in the
first place, and proves the assertion at line 18. However, it does not prove the following assertions at lines 20/21, and
displays counter-examples with values of 2 for X, Z, showing indeed that GNATprove forgot the value of Z, as well as

the fact that the program should have exited already when X is 2.

partial_knowledge.adb:2:04: info: initialization of "Y" proved
partial_knowledge.adb:3:04: info: initialization of "Z" proved
partial_knowledge.adb:16:30: info: assertion proved
partial_knowledge.adb:17:22: info: assertion proved
partial_knowledge.adb:18:22: info: assertion proved
partial_knowledge.adb:19:22: info: assertion proved

partial_knowledge.adb:20:22: medium: assertion might fail
20 | pragma Assert (Z = 1); -- Forgotten
| A
e.g. when Z = 2
possible fix: add or complete related loop invariants or postconditions

partial_knowledge.adb:21:22: medium: assertion might fail
21 | pragma Assert (X < 2); -- Forgotten
| A
e.g. when X = 2
possible fix: subprogram at line 1 should mention X in a precondition
1 |procedure Partial Knowledge (X : Integer) is
| A here

Note

Due to pragmas Assert_And_Cut and Loop_Invariant both acting as cut points for verification, but in

5.6. Assertion Pragmas

131

SPARK User’s Guide, Release 15.0

slightly different ways, GNATprove does not support the full breadth of their potential interactions. Pragma
Assert_And_Cut is only supported within loops when the immediately surrounding statement sequence does
not contain the loop invariants, including any occurring within nested blocks. GNATprove also supports as
a convenience the special case when the loop invariants occurs at top level in the sequence prefix preceding
pragma Assert_And_Cut, by implicitly assuming that a new block starts immediately after the last pragma
Loop_Invariant.

5.7 Overflow Modes

Annotations such as preconditions, postconditions, assertions, loop invariants, are analyzed by GNATprove with the
exact same meaning that they have during execution. In particular, evaluating the expressions in an annotation may
raise a run-time error, in which case GNATprove will attempt to prove that this error cannot occur, and report a warning
otherwise.

Integer overflows are a kind of run-time error that occurs when the result of an arithmetic computation does not fit
in the bounds of the machine type used to hold the result. In some cases, it is convenient to express properties in
annotations as they would be expressed in mathematics, where quantities are unbounded. This is best achieved using
the Big Numbers Library, which defines types for unbounded integers and rational numbers, operations on these and
conversions from/to machine integers and reals.

Alternatively, GNATprove supports different overflow modes, so that the usual signed arithmetic operations are inter-
preted differently from their standard interpretation. For example:

function Add (X, Y : Integer) return Integer with
Pre => X + Y in Integer,
Post => Add'Result = X + Y;

The precondition of Add states that the result of adding its two parameters should fit in type Integer. In the default
mode, evaluating this expression will fail an overflow check, because the result of X + Y is stored in a temporary of
type Integer. If the compilation switch -gnatol3 is used, then annotations are compiled specially, so that arithmetic
operations use unbounded intermediate results. In this mode, GNATprove does not generate a check for the addition
of X and Y in the precondition of Add, as there is no possible overflow here.

There are three overflow modes:

» Use base type for intermediate operations (STRICT): in this mode, all intermediate results for predefined arith-
metic operators are computed using the base type, and the result must be in range of the base type.

* Most intermediate overflows avoided (MINIMIZED): in this mode, the compiler attempts to avoid intermedi-
ate overflows by using a larger integer type, typically Long_Long_Integer, as the type in which arithmetic is
performed for predefined arithmetic operators.

 Allintermediate overflows avoided (ELIMINATED): in this mode, the compiler avoids all intermediate overflows
by using arbitrary precision arithmetic as required.

The desired mode for handling intermediate overflow can be specified using either the Overflow_Mode pragma or an
equivalent compiler switch. The pragma has the form:

pragma Overflow_Mode ([General =>] MODE [, [Assertions =>] MODE]);

where MODE is one of
» STRICT: intermediate overflows checked (using base type)
e MINIMIZED: minimize intermediate overflows

e ELIMINATED: eliminate intermediate overflows

132 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

For example:

pragma Overflow_Mode (General => Strict, Assertions => Eliminated);

specifies that general expressions outside assertions be evaluated in the usual strict mode, and expressions within
assertions be evaluated in “eliminate intermediate overflows” mode. Currently, GNATprove only supports pragma
Overflow_MNMode being specified as a configuration pragma, either in a configuration pragma file or directly in a unit.

Additionally, a compiler switch -gnato?? can be used to control the checking mode default. Here ? is one of the digits
1 through 3:

1. use base type for intermediate operations (STRICT)
2. minimize intermediate overflows (MINIMIZED)
3. eliminate intermediate overflows (ELIMINATED)

The switch -gnato13, like the Overflow_Mode pragma above, specifies that general expressions outside assertions be
evaluated in the usual strict mode, and expressions within assertions be evaluated in “eliminate intermediate overflows”
mode.

Note that these modes apply only to the evaluation of predefined arithmetic, membership, and comparison operators
for signed integer arithmetic.

For further details of the meaning of these modes, and for further information about the treatment of overflows for fixed-
point and floating-point arithmetic please refer to the “Overflow Check Handling in GNAT” appendix in the GNAT
User’s Guide.

5.8 Object Oriented Programming and Liskov Substitution Principle

SPARK supports safe Object Oriented Programming by checking behavioral subtyping between parent types and de-
rived types, a.k.a. Liskov Substitution Principle: every overriding operation of the derived type should behave so that
it can be substituted for the corresponding overridden operation of the parent type anywhere.

5.8.1 Class-Wide Subprogram Contracts
Supported in Ada 2012

Specific Subprogram Contracts are required on operations of tagged types, so that GNATprove can check Liskov Sub-
stitution Principle on every overriding operation:

* The class-wide precondition introduced by aspect Pre'Class is similar to the normal precondition.
* The class-wide postcondition introduced by aspect Post'Class is similar to the normal postcondition.

Although these contracts are defined in Ada, they have a stricter meaning in SPARK for checking Liskov Substitution
Principle:

* The class-wide precondition of an overriding operation should be weaker (more permissive) than the class-wide
precondition of the corresponding overridden operation.

* The class-wide postcondition of an overriding operation should be stronger (more restrictive) than the class-wide
postcondition of the corresponding overridden operation.

For example, suppose that the Logging unit introduced in Ghost Packages defines a tagged type Log_Type for logs,
with corresponding operations:

package Logging with
SPARK_Mode
is

(continues on next page)

5.8. Object Oriented Programming and Liskov Substitution Principle 133

20

21

22

23

24

25

26

SPARK User’s Guide, Release 15.0

(continued from previous page)

Max_Count : constant := 10_000;

type Log_Count is range 0 .. Max_Count;

type Log_Type is tagged private;

function Log_Size (Log : Log_Type) return Log_Count;

procedure Init_Log (Log : out Log_Type) with
Post'Class => Log.Log_Size = 0;

procedure Append_To_Log (Log : in out Log_Type; Incr : in Integer) with
Pre'Class => Log.Log_Size < Max_Count,
Post'Class => Log.Log_Size = Log.Log_Size'Old + 1;

private

subtype Log_Index is Log_Count range 1 .. Max_Count;
type Integer_Array is array (Log_Index) of Integer;

type Log_Type is tagged record
Log_Data : Integer_Array;
Log_Size : Log_Count;

end record;

function Log_Size (Log : Log_Type) return Log_Count is (Log.Log_Size);

end Logging;

and that this type is derived in Range_Logging.Log_Type which additionally keeps track of the minimum and max-
imum values in the log, so that they can be accessed in constant time:

with Logging; use type Logging.Log_Count;

package Range_Logging with
SPARK_Mode
is
type Log_Type is new Logging.Log_Type with private;

not overriding
function Log_Min (Log : Log_Type) return Integer;

not overriding
function Log_Max (Log : Log_Type) return Integer;

overriding
procedure Init_Log (Log : out Log_Type) with
Post'Class => Log.Log_Size = 0 and
Log.Log_Min = Integer'Last and
Log.Log_Max = Integer'First;

overriding
(continues on next page)

134 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)

procedure Append_To_Log (Log : in out Log_Type; Incr : in Integer) with
Pre'Class => Log.Log_Size < Logging.Max_Count,
Post'Class => Log.Log_Size = Log.Log_Size'0Old + 1 and
Log.Log_Min = Integer'Min (Log.Log_Min'Old, Incr) and
Log.Log_Max = Integer'Max (Log.Log_Max'Old, Incr);

private

type Log_Type is new Logging.Log_Type with record
Min_Entry : Integer;
Max_Entry : Integer;

end record;

function Log_Min (Log : Log_Type) return Integer is (Log.Min_Entry);
function Log_Max (Log : Log_Type) return Integer is (Log.Max_Entry);

end Range_Logging;

GNATprove proves that the contracts on Logging.Append_To_Log and its overriding Range_Logging.
Append_To_Log respect the Liskov Substitution Principle:

range_logging.ads:9:13: info: implicit aspect Always_Terminates on "Log_Min" has been.
—proved, subprogram will terminate

range_logging.ads:12:13: info: implicit aspect Always_Terminates on "Log_Max" has been.
—proved, subprogram will terminate

range_logging.ads:16:20: info: class-wide postcondition is stronger than overridden one
range_logging.ads:22:20: info: class-wide precondition is weaker than overridden one
range_logging.ads:23:20: info: class-wide postcondition is stronger than overridden one
logging.ads:10:13: info: implicit aspect Always_Terminates on "Log_Size" has been proved,
< subprogram will terminate

Units Logging and Range_Logging need not be implemented, or available, or in SPARK. It is sufficient that the specifi-
cation of Logging and Range_Logging are in SPARK for this checking. Here, the postcondition of Range_Logging.
Append_To_Log is strictly stronger than the postcondition of Logging.Append_To_Log, as it also specifies the new
expected value of the minimum and maximum values. The preconditions of both procedures are exactly the same, which
is the most common case, but in other cases it might be useful to be more permissive in the overriding operation’s pre-
condition. For example, Range_Logging.Append_To_Log could allocate dynamically additional memory for storing
an unbounded number of events, instead of being limited to Max_Count events like Logging.Append_To_Log, in
which case its precondition would be simply True (the default precondition).

A derived type may inherit both from a parent type and from one or more interfaces, which only provide abstract
operations and no components. GNATprove checks Liskov Substitution Principle on every overriding operation, both
when the overridden operation is inherited from the parent type and when it is inherited from an interface.

GNATDprove separately checks that a subprogram implements its class-wide contract, like for a specific contract.

5.8.2 Mixing Class-Wide and Specific Subprogram Contracts
Supported in Ada 2012

It is possible to specify both a specific contract and a class-wide contract on a subprogram, in order to use a more precise
contract (the specific one) for non-dispatching calls and a contract compatible with the Liskov Substitution Principle
(the class-wide contract) for dispatching calls. In that case, GNATprove checks that:

* The specific precondition is weaker (more permissive) than the class-wide precondition.

5.8. Object Oriented Programming and Liskov Substitution Principle 135

SPARK User’s Guide, Release 15.0

* The specific postcondition is stronger (more restrictive) than the class-wide postcondition.

For example, Logging.Append_To_Log could set a boolean flag Special_Value_Logged when some
Special_Value is appended to the log, and express this property in its specific postcondition so that it is available for
analyzing non-dispatching calls to the procedure:

procedure Append_To_Log (Log : in out Log_Type; Incr : in Integer) with
Pre'Class => Log.Log_Size < Max_Count,
Post'Class => Log.Log_Size = Log.Log_Size'Old + 1,
Post => Log.Log_Size = Log.Log_Size'Old + 1 and
(if Incr = Special_Value then Special_Value_Logged = True);

This additional postcondition would play no role in dispatching calls, thus it is not involved in checking the Liskov
Substitution Principle. Note that the absence of specific precondition on procedure Append_To_Log does not mean
that the default precondition of True is used: as a class-wide precondition is specified on procedure Append_To_Log,
it is also used as specific precondition. Similarly, if a procedure has a class-wide contract and a specific precondition,
but no specific postcondition, then the class-wide postcondition is also used as specific postcondition.

When both a specific contract and a class-wide contract are specified on a subprogram, GNATprove only checks that
the subprogram implements its specific (more precise) contract.

5.8.3 Dispatching Calls and Controlling Operands
Supported in Ada 2012

In a dispatching call, the controlling operand is the parameter of class-wide type whose dynamic type determinates the
actual subprogram called. The dynamic type of this controlling operand may be any type derived from the specific type
corresponding to the class-wide type of the parameter (the specific type is T when the class-wide type is T'Class).
Thus, in general it is not possible to know in advance which subprograms may be called in a dispatching call, when
separately analyzing a unit.

In SPARK, there is no need to know all possible subprograms called in order to analyze a dispatching call, which
makes it possible for GNATprove to perform this analysis without knowledge of the whole program. As SPARK
enforces Liskov Substitution Principle, the class-wide contract of an overriding operation is always less restrictive than
the class-wide contract of the corresponding overridden operation. Thus, GNATprove uses the class-wide contract of
the operation for the specific type of controlling operand to analyze a dispatching call.

For example, suppose a global variable The_Log of class-wide type defines the log that should be used in the program:

The_Log : Logging.Log_Type'Class := ...

The call to Append_To_Log in procedure Add_To_Total may dynamically call either Logging.Append_To_Log or
Range_lLogging.Append_To_Log:

procedure Add_To_Total (Incr : in Integer) is
begin
Total := Total + Incr;
The_Log.Append_To_Log (Incr);
end Add_To_Total;

Because GNATprove separately checks Liskov Substitution Principle for procedure Append_To_Log, it can use the
class-wide contract of Logging.Append_To_Log for analyzing procedure Add_To_Total.

136 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

5.8.4 Dynamic Types and Invisible Components
Specific to SPARK

The Data Initialization Policy in SPARK applies specially to objects of tagged type. In general, the dynamic type of
an object of tagged type may be different from its static type, hence the object may have invisible components, that are
only revealed when the object is converted to a class-wide type.

For objects of tagged type, modes on parameters and data dependency contracts have a different meaning depending
on the object’s static type:

* For objects of a specific (not class-wide) tagged type, the constraints described in Data Initialization Policy apply
to the visible components of the object only.

* For objects of a class-wide type, the constraints described in Data Initialization Policy apply to all components
of the object, including invisible ones.

GNATDprove checks during flow analysis that no uninitialized data is read in the program, and that the specified data
dependencies and flow dependencies are respected in the implementation, based on the semantics above for objects
of tagged type. For example, it detects no issues during flow analysis on procedure Use_Logging which initializes
parameter Log and then updates it:

with Logging; use Logging;

procedure Use_Logging (Log : out Log_Type) with
SPARK_Mode

is

begin
Log.Init_Log;
Log.Append_To_Log (1);

end Use_Logging;

If parameter Log is of dynamic type Logging.Log_Type, then the call to Init_Log initializes all components
of Log as expected, and the call to Append_To_Log can safely read those. If parameter Log is of dynamic type
Range_Logging.Log_Type, then the call to Init_Log only initializes those components of Log that come from the
parent type Logging.Log_Type, but since the call to Append_To_Log only read those, then there is no read of unini-
tialized data. This is in contrast with what occurs in procedure Use_Logging_Classwide:

with Logging; use Logging;

procedure Use_Logging_Classwide (Log : out Log_Type'Class) with
SPARK_Mode

is

begin
Log_Type (Log).Init_Log;
Log.Append_To_Log (2);

end Use_Logging_Classwide;

on which GNATprove issues a check message during flow analysis:

use_logging_classwide.adb:8:04: high: extension of "Log" is not initialized
8 | Log.Append_To_Log (2);

Indeed, the call to Init_Log (a non-dispatching call to Logging.Init_Log due to the conversion on its parame-
ter) only initializes those components of Log that come from the parent type Logging.Log_Type, but the call to
Append_To_Log may read other components from Range_Logging.Log_Type which may not be initialized.

5.8. Object Oriented Programming and Liskov Substitution Principle 137

SPARK User’s Guide, Release 15.0

A consequence of these rules for data initialization policy is that a parameter of a specific tagged type cannot be
converted to a class-wide type, for example for a dispatching call. A special aspect Extensions_Visible is defined
in SPARK to allow this case. When Extensions_Visible is specified on a subprogram, the data initialization policy
for the subprogram parameters of a specific tagged type requires that the constraints described in Data Initialization
Policy apply to all components of the object, as if the parameter was of a class-wide type. This allows converting this
object to a class-wide type.

5.9 Pointer Support and Dynamic Memory Management

Access types are supported in SPARK but with major restrictions. Here is an overview of the kind of access types
supported in SPARK, their restrictions, and what they can be used for.

* Named pool-specific access-to-variable types can only designate data allocated on the heap (this is an Ada rule).
SPARK enforces a Memory Ownership Policy to retain absence of aliasing, see Access to Objects and Ownership.
Values of such an access type can be deallocated safely. GNATprove generates verification conditions to ensure
that no memory can be leaked.

type PS_Int_Acc is access Integer;
X1 : PS_Int_Acc := new Integer'(1l5);

» Named access-to-constant types (using the keyword constant) can be used to designate data regardless of where
it is allocated (the stack, the heap...), but they cannot be deallocated. Objects of this type are not subject to any
ownership checking but the value they designate should be constant all the way down (ie. if such a value has a
subcomponent of an access-to-variable type, the value designated by this subcomponent should be constant too).

type Cst_Int_Acc is access constant Integer;
C : aliased constant Integer := 15;
X2 : Cst_Int_Acc := C'Access;

* Named general access-to-variable types (using the keyword all) can designate data regardless of where it is
allocated. Like access-to-constant types, they cannot be deallocated, so GNATprove will flag memory leaks as
soon as a value of such a type is allocated on the heap. They are subject to the Memory Ownership Policy of
SPARK.

type Gen_Int_Acc is access all Integer;
V : aliased Integer := 15;
X3 : Gen_Int_Acc := V'Access;

¢ Anonymous access-to-object types can only be used as the type of stand-alone objects for Observing and Bor-
rowing and as the return type of Traversal Functions. In particular they cannot be stored inside composite types.
They are used to grant temporary access to parts of other data-structures (recursive data-structures, composite
types, formal containers...).

type List;
type List_Acc is access List;
type List is record
Value : aliased Integer;
Next : List_Acc;
end record;

L : List_Acc := new List'(14, new List'(1l5, new List'(16, null)));
B : access Integer := L.Next.Value'Access;

* Access-to-subprogram types can designate functions and procedures. Named access-to-subprogram types can
be annotated with a contract, see Contracts for Subprogram Pointers, but the designated subprograms cannot

138 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

currently have global inputs or outputs.

type Func_Acc is not null access function (X : Natural) return Natural;
function Id (X : Natural) return Natural is (X);
F : Func_Acc := Id'Access;

5.9.1 Access to Objects and Ownership

In SPARK, values of an access-to-variable type are subject to a Memory Ownership Policy. The idea is that an object
designated by a pointer always has a single owner, which retains the right to either modify it, or (exclusive or) share
it with others in a read-only way. Said otherwise, we always have either several copies of the pointer that allow only
reading, or only a single copy of the pointer that allows modification.

The main idea used to enforce single ownership for pointers is the move semantics of assignments. When a pointer
is copied through an assignment statement, the ownership of the pointer is transferred to the left hand side of the
assignment. As a result, the right hand side loses the ownership of the object, and therefore loses the right to access
it, both for writing and reading. In the example below, the assignment from X to Y causes X to lose ownership on the
value it references:

procedure Test is
type Int_Ptr is access Integer;
X : Int_Ptr := new Integer'(10);

Y : Int_Ptr; -- Y is null by default
begin
Y := X; -- ownership of X is transferred to Y
pragma Assert (Y.all = 10); -- Y can be accessed
Y.all := 11; -- both for reading and writing

pragma Assert (X.all
end Test;

11); -- but X cannot, or we would have an alias

As a result, the last assertion, which reads the value of X, is illegal in SPARK, leading to an error message from
GNATprove:

test.adb:9:21: error: dereference from "X" is not readable
9 | pragma Assert (X.all = 11); -- but X cannot, or we would have an alias
| IS
object was moved at line 6 [E0010]
6 | Y := X; -- ownership of X is transferred to Y
| A here
launch "gnatprove --explain=E0010" for more information
gnatprove: error during flow analysis and proof

In this example, we can see the point of these ownership rules. To correctly reason about the semantics of a program,
SPARK needs to know, when a change is made, what are the objects that are potentially impacted. Because it assumes
that there can be no aliasing (at least no aliasing of mutable data, see Absence of Interferences), the tool can easily de-
termine what are the parts of the environment that are updated by a statement, be it a simple assignment, or for example
a procedure call. If we were to break this assumption, we would need to either assume the worst (that all references
can be aliases of each other) or require the user to explicitly annotate subprograms to describe which references can be
aliased and which cannot. In our example, SPARK can deduce that an assignment to Y cannot impact X. This is only
correct because of ownership rules that prevent us from accessing the value of X after the update of Y.

Note that a variable which has been moved is not necessarily lost for the rest of the program. Indeed, it is possible to
assign it again, restoring ownership. For example, here is a piece of code that swaps the pointers X and Y:

5.9. Pointer Support and Dynamic Memory Management 139

SPARK User’s Guide, Release 15.0

procedure Test is
type Int_Ptr is access Integer;
X : Int_Ptr := new Integer'(10);

Y : Int_Ptr; -- Y is null by default
Tmp : Int_Ptr := X; -- ownership of X is moved to Tmp
-- X cannot be accessed.
begin
X :=Y; -- ownership of Y is moved to X

-- Y cannot be accessed
-- X has full ownership.
Y := Tmp; -- ownership of Tmp is moved to Y
-- Tmp cannot be accessed
-- Y has fullownership.
end Test;

This code is accepted by GNATprove. Intuitively, we can see that writing at top-level into X after it has been moved is
OK, since it will not modify the actual owner of the moved value (here Tmp). However, writing in X.al1 is forbidden,
as it would affect Tmp:

procedure Test is
type Int_Ptr is access Integer;

X : Int_Ptr := new Integer'(10);
Tmp : Int_Ptr := X; -- ownership of X is moved to Tmp
-- X cannot be accessed.
begin
X.all := 0;
end Test;

The above variant is rejected by GNATprove:

test.adb:7:06: error: dereference from "X" is not writable
7 | X.all := 0;

A

| ~mAem
object was moved at line 4 [E0010]
4 | Tmp : Int_Ptr := X; -- ownership of X is moved to Tmp
| A here
launch "gnatprove --explain=E0010" for more information
gnatprove: error during flow analysis and proof

5.9.2 Attribute Access

Let’s consider objects Variable and Const, respectively a variable and constant of type T, marked as aliased so that
it is possible to use attribute Access on them:

Variable : aliased T;
Const : aliased constant T := ...;

Depending on the type of the attribute reference expression, taking an access value to an object is interpreted differently
in SPARK.

* attribute 'Access of an anonymous access type:

140 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

Variable_Handle : access T := Variable'Access;
Const_Handle : access constant T := Const'Access;

The 'Access attribute of an anonymous access-to-variable type, like for Variable_Handle above, allows Bor-
rowing a part of an object temporarily, like Variable here. The 'Access attribute of an anonymous access-
to-constant type, like for Const_Handle above, allows Observing a part of an object temporarily, like Const
here.

* attribute 'Access of a general access-to-variable type:

type General_Ptr is access all T;
General_Handle : General_Ptr := Variable'Access;

The 'Access attribute of a general access-to-variable type, like for General_Handle above, allows moving
the ownership of a local object, like Variable here, into a pointer. Ownership cannot be reclaimed back by
Variable which should not be read or written directly afterwards. This is only allowed in SPARK if Variable
is a local object, i.e. it is declared inside a subprogram.

* attribute 'Access of a named access-to-constant type:

type Const_Ptr is access constant T;
Const_Handle : Const_Ptr := Const'Access;

The 'Access attribute of a named access-to-constant type, like for Const_Handle above, allows sharing a read-
only access to a constant part of an object, like Const here.

5.9.3 Deallocation

At the end of its lifetime, unless the memory it points to is transferred to another owner, an owning
pointer should be deallocated. This is typically achieved by instantiating the standard generic procedure Ada.
Unchecked_Deallocation with the type of the underlying Object and the type Name of the access type:

with Ada.Unchecked_Deallocation;

procedure Test is
type Int_Ptr is access Integer;

procedure Free is new Ada.Unchecked Deallocation (Object => Integer, Name => Int_Ptr);

X : Int_Ptr := new Integer'(10);
Y : Int_Ptr;
begin
Y := X;
Free (Y);
end Test;

GNATDprove guarantees the absence of memory leak in the above code:

test.adb:8:04: info: absence of resource or memory leak at end of scope proved
test.adb:9:04: info: initialization of "Y" proved

test.adb:9:04: info: absence of resource or memory leak at end of scope proved
test.adb:11:06: info: absence of resource or memory leak proved

Notice that there are three kinds of checks for memory leaks:

5.9. Pointer Support and Dynamic Memory Management 141

SPARK User’s Guide, Release 15.0

1. On each assignment, GNATprove checks that the left-hand side is not leaking memory. That’s the case on the
assignment to Y above on line 11.

2. On each declaration, GNATprove checks that the object is not leaking memory at the end of its lifetime. That’s
the case for the declarations of X and Y above on lines 8 and 9.

3. Oneach callto an instance of Ada.Unchecked_Deallocation, GNATprove checks that the underlying memory
is not itself owning memory. Above, the object pointed to is an integer, so this holds trivially.

Here is an example of code with all three cases of memory leaks:

with Ada.Unchecked_Deallocation;

procedure Test is
type Int_Ptr is access Integer;
type Int_Ptr_Ptr is access Int_Ptr;

procedure Free is new Ada.Unchecked_Deallocation (Object => Int_Ptr, Name => Int_Ptr_
—Ptr);

X : Int_Ptr := new Integer'(10); -- memory leak at end of scope
Y : Int_Ptr = new Integer'(11);
Z : Int_Ptr_Ptr := new Int_Ptr'(Y);
begin
Z.all := X; -- memory leak on assignment
X := new Integer'(12);
Free (2); -- memory leak on deallocation
end Test;

GNATDprove detects all three memory leaks in the above code:

test.adb:9:04: medium: resource or memory leak might occur at end of scope

9 | X : Int_Ptr := new Integer'(10); -- memory leak at end of scope
| A

test.adb:13:10: medium: resource or memory leak might occur
13 | Z.all := X; -- memory leak on assignment

test.adb:15:04: medium: resource or memory leak might occur
15 | Free (2); -- memory leak on deallocation

Finally, in a case like above where a data structure manipulated through pointers also contains pointers, it is customary
to define deallocation procedures to take care of deallocating the complete subtree of allocated memory. This is done
in the following code by defining a higher-level Free procedure applying to arguments of type Int_Ptr_Ptr, which
is based on instances of Ada.Unchecked_Deallocation for deallocating individual memory chunks:

with Ada.Unchecked_Deallocation;
procedure Test is
type Int_Ptr is access Integer;

type Int_Ptr_Ptr is access Int_Ptr;

(continues on next page)

142 Chapter 5. Overview of SPARK Language

20

21

22

23

24

26

27

SPARK User’s Guide, Release 15.0

(continued from previous page)

procedure Free is new Ada.Unchecked_Deallocation (Object => Integer, Name => Int_Ptr);

procedure Free (X : in out Int_Ptr_Ptr) with
Depends => (X => null,
null = X),
Post => X = null
is
procedure Internal_Free is new Ada.Unchecked_Deallocation
(Object => Int_Ptr, Name => Int_Ptr_Ptr);
begin
if X /= null and then X.all /= null then
Free (X.all);

end if;
Internal_Free (X);
end Free;
Y : Int_Ptr := new Integer'(11);
Z : Int_Ptr_Ptr := new Int_Ptr'(Y);
begin
Free (Z);
end Test;

Note the contract of the higher-level Free procedure, with a postcondition stating that X is null on exit, and correct
dependences similar to what is defined for the standard Ada .Unchecked_Deallocation. GNATprove guarantees that
the above code is correctly deallocating memory:

test.adb:10:06: info: flow dependencies proved

test.adb:12:14: info: postcondition proved

test.adb:17:31: info: pointer dereference check proved

test.adb:18:18: info: pointer dereference check proved

test.adb:20:07: info: absence of resource or memory leak proved

test.adb:23:04: info: absence of resource or memory leak at end of scope proved
test.adb:24:04: info: absence of resource or memory leak at end of scope proved

5.9.4 Observing

The ownership policy of SPARK allows sharing a single reference between several readers. This mechanism is called
observing. When a variable is observed, both the observed object and the observer retain the right to read the object, but
none can modify it. When the observer disappears, the observed object regains the permissions it had before (read-write
or read-only).

To declare an observer, it is necessary to use an anonymous access-to-constant type. It is what allows the tool to tell the
difference between moving and observing a value. Here is an example. We have a list L, defined as a recursive pointer-
based data structure in the usual way. We then observe its tail by introducing a local observer N using an anonymous
access to constant type. We then do it again to observe the tail of N:

type List;
type List_Acc is access List;
type List is record
Value : Element;
Next : List_Acc;
end record;

(continues on next page)

5.9. Pointer Support and Dynamic Memory Management 143

SPARK User’s Guide, Release 15.0

(continued from previous page)

L : List := ...;
declare
N : access constant List := L.Next; -- observe part of L
begin
declare
M : access constant List := N.Next; -- observe again part of N
begin
pragma Assert (M.Value = 3); -- N can be read
pragma Assert (N.Value = 2); -- but we can still read N
pragma Assert (L.Value = 1); -- and even L
end;
end;
L.Next := null; -- all observers are out of scope, we can modify L

We can see that the three variables retain the right to read their content. But it is OK as none of them is allowed to
update it. When no more observers exist, it is again possible to modify L.

It is not possible to update a data structure through an observer, but it does not mean that the observer itself is necessarily
a constant. It is possible to update it so that it designates another part of a data structure. This is especially useful to
traverse recursive data structures using loops. As an example, here is a function which searches for the an element E in
alist L:

function Contains (L : access constant List; E : Element) return Boolean is
C : access constant List := L; -- C observes L
begin
while C /= null loop
if C.Value = E then
return True;
end if;
C := C.Next; -- C now designates the tail of the list
end loop;
return False;
end Contains;

A local observer Cis used to traverse the list L. At each iteration of the loop, C is shifted so that it designates one element
further in the list.

5.9.5 Borrowing

Moving is not the only way to transfer ownership. It is also possible to borrow the ownership of (a part of) an object
for a period of time. During this period, the part of the object which was borrowed can only be accessed through
the borrower. When the borrower disappears (goes out of scope), the borrowed object regains the ownership, and is
accessible again. It is what happens for example for mutable parameters of a subprogram when the subprogram is
called. The ownership of the actual parameter is transferred to the formal parameter for the duration of the call, and
should be returned when the subprogram terminates. In particular, this disallows procedures that move some of their
parameters away, as in the following example:

type Int_Ptr_Holder is record
Content : Int_Ptr;
end record;

procedure Move (X : in out Int_Ptr_Holder; Y : in out Int_Ptr_Holder) is
(continues on next page)

144 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)
begin
X :=Y; -- ownership of Y.Content is moved to X.Content
end Move;

insufficient permission for "Y" when returning from "Move"
object was moved at line 7

Note that borrowing does not occur on subprogram calls for in out parameters of a named access type. Indeed, SPARK
RM has a special wording for these parameters, stating that they are not borrowed but moved on entry and on exit of
the subprogram. This allows us to move these parameters inside the call, so they can designate something else (or be
set to null), which otherwise would be forbidden, as borrowed top-level access objects cannot be moved (but parts of
such objects can be moved).

The ownership policy of SPARK also allows declaring local borrowers in a nested scope by using an anonymous
access-to-variable type (without the constant keyword used above for an observer):

declare

Y : access Integer := X; -- Y borrows the ownership of X

-- for the duration of the declare block

begin

pragma Assert (Y.all = 10); -- Y can be accessed

Y.all := 11; -- both for reading and writing
end;
pragma Assert (X.all = 11); -- The ownership of X is restored,

-- 1t can be accessed again

Just like local observers, local borrowers are especially useful to modify a recursive data structure through a loop. In
the example below, the procedure Replace_Element uses a loop to assign a new value E to the element at position N
in alist L.

procedure Replace_Element (L : access List; N : Positive; E : Element) is

X : access List := L; -- X borrows the ownership of L
P : Positive := N;
begin

while X /= null loop
if P = 1 then

X.Value := E; -- We use X to modify L arbitrarily deeply
return;
end if;
X := X.Next; -- X now designates the tail of the list
P :=P - 1;
end loop;

end Replace_Element;

A local borrower X is used to traverse the list and modify it in place. The two assignments to X in the loop are different
in essence. The first one assigns a part of the structure designated by X. It is a modification of the borrowed list L.
The second one assigns X at top-level. It does not modify L, but changes X so that it designates another the part of L.
It is called a reborrow. In SPARK, reborrows are only allowed to borrow a part of the borrower. Said otherwise, a
borrower can only go deeper in the data structure, it is not allowed to jump to a distinct object or distinct part of the
same standalone object.

Borrowers essentially are statically known aliases of their borrowed objects. As a consequence, verifying programs
involving borrowers sometimes requires describing the relation between the borrowed object and the borrower. This
can be done by using an Annotation for Referring to a Value at the End of a Local Borrow.

5.9. Pointer Support and Dynamic Memory Management 145

SPARK User’s Guide, Release 15.0

5.9.6 Traversal Functions

It is possible to write a function which computes and returns an observer or a borrower of an input data structure,
provided the traversed data structure is itself an access type. This is called a traversal function.

An observing traversal function takes an access type as its first parameter and returns an anonymous access-to-constant
object which should be a part of this first parameter. As an example, we can write a function which returns a value
stored in a list as an anonymous access-to-constant type. To be able to do this, we need to store an access to the value
instead of the value itself in the list:

type List;
type List_Acc is access List;
type Element_Acc is not null access Element;
type List is record
Value : Element_Acc;
Next : List_Acc;
end record;

function Constant_Access (L : access constant List; N : Positive) return access constant.
—Element

is
C : access constant List := L;
P : Positive := N;

begin

while C /= null loop
if P = 1 then
return C.Value;

end if;

C := C.Next;

P :=P - 1;
end loop;

return null;
end Constant_Access;

The function Constant_Access returns an access designating a value which is already contained in the list L. As
per the ownership policy of SPARK, if Constant_Access was returning a named access type, it would be rejected.
However, since it returns an anonymous access-to-constant type, the return statement is considered to create an observer
of L. Note that an observing traversal function should necessarily observe its first parameter.

declare
C : access constant Element := Constant_Access (L, 3);
-- C is an observer of L
begin
pragma Assert (C.all = L.Next.Next.Value.all);
-- It is OK to read both C and L, but L cannot be modified
end;
L :=null; -- L can be modified again

It is also possible to return a mutable access inside a data structure using a borrowing traversal function. Just like
observing traversal functions, their borrowing counterparts take as a first parameter an access type, but they have as a
return type an anonymous access-to-variable type. The function Reference below is similar to Constant_Access
except that both its parameter and its return type are mutable:

function Reference (L : access List; N : Positive) return access Element
is

(continues on next page)

146 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)

C : access List := L;
P : Positive := N;
begin

while C /= null loop
if P = 1 then
return C.Value;

end if;

C := C.Next;

P:=P - 1;
end loop;

return null;
end Reference;

A borrowing traversal function returns a borrower of its first parameter. The result of a call to Reference can be
used to modify its actual parameter arbitrarily deeply. Like for any borrowers, it is illegal to either read or modify the
parameter while the object storing the result of the call is still in scope.

Note that it is possible to use pledges to describe the relation between the result of a borrowing traversal function and
its parameter in a postcondition, see Annotation for Referring to a Value at the End of a Local Borrow.

5.9.7 Subprogram Pointers

Unlike access to objects, access to subprograms are not subject to the ownership policy of SPARK. Both anonymous
and named access-to-subprogram types are supported. As an example, the procedure Update_All below calls its
parameter Update_One on all the elements of its array parameter A:

procedure Update_All

(A : in out Nat_Array;

Update_One : not null access procedure (X : in out Natural))
is
begin

for E of A loop
Update_One (E);
end loop;
end Update_All;

It can be called on any procedure with the correct profile:

procedure Update_One (X : in out Natural);

procedure Test (A : in out Nat_Array) is
begin

Update_All (A, Update_One'Access);
end Test;

As GNATprove verifies subprograms modularly, no precondition checks are generated during the analysis of
Update_All. As a consequence, a check needs to be performed in Test to make sure that the parameter supplied
for Update_One does not have a precondition. For example, if we modify Update_One to have a precondition:

function In_Range (X : Natural) return Boolean;

procedure Update_One (X : in out Natural) with
Pre => In_Range (X);

5.9. Pointer Support and Dynamic Memory Management 147

SPARK User’s Guide, Release 15.0

Then GNATprove will complain on the call to Update_A11 that the precondition of Update_One might not be satisfied:

medium: precondition of target might not be strong enough to imply precondition of..
—,source, cannot prove In_Range (X)

For postconditions, it is the opposite. No postconditions will be assumed when verifying Update_Al1, so it is perfectly
OK if Update_One has any postconditions. However, it will not be possible to use this postcondition to prove anything
on the effect of Update_All.

5.9.8 Contracts for Subprogram Pointers

Supported in Ada 2022

The upcoming standard of Ada allows adding contracts to access-to-subprogram types. As an example, here is a named
access type Update_Proc with a contract:

type Update_Proc is not null access procedure (X : in out Natural) with
Pre => In_Range (X),
Post => Relation (X'0ld, X);

The Ada standard mandates that, when a subprogram designated by an access type with a contract is called, the con-
tract is verified. Thus, it is possible for GNATprove to use this contract on indirect calls. For example, we can use
Update_Proc as the type of the Update_One parameter of Update_All. As the call to Update_One now has a pre-
condition, we should ensure before a call to Update_Al1 that In_Range holds for all elements of A. We can also prove
that Relation holds at every index of the array after the call:

procedure Update_All
(A : in out Nat_Array;
Update_One : Update_Proc)
with Pre => (for all E of A => In_Range (E)),
Post => (for all I in A'Range => Relation (A'Old (I), A (I)))
is
begin
for K in A'Range loop
Update_One (A (K));
pragma Loop_Invariant
(for all T in A'First .. K => Relation (A'Loop_Entry (I), A (I)));
end loop;
end Update_All;

As the contract of an access type is the only one which is known by GNATprove when checking indirect callers, SPARK
requires that this contract is a valid approximation of the contract of every subprogram designated by an access objects
of this type. More precisely, each time a value of a given access-to-subprogram type is created, GNATprove makes sur
that:

* the precondition of the access-to-subprogram type if any (or the default precondition of True otherwise) is strong
enough to imply the precondition of the designated subprogram, and

* the postcondition of the designated subprogram if any (or the default postcondition of True otherwise) is strong
enough to imply the postcondition of the subprogram type.

Consider the four procedures below:

procedure Update_One_1 (X : in out Natural) with
Pre => In_Range (X),
Post => Relation (X'0Old, X);

(continues on next page)

148 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)

-- Update_One_1 has exactly the same contract as Update_Proc

procedure Update_One_2 (X : in out Natural) with
Post => Relation (X'Old, X) and Relation_2 (X'0ld, X);
-- Update_Proc safely approximates Update_One_2:
—— * the precondition of Update_Proc is enough to ensure that Update_One_2 can.
—,execute safely
-- * the postcondition of Update_One_2 implies the postcondition of Update_Proc

procedure Update_One_3 (X : in out Natural) with
Pre => In_Range (X);
-- Does Relation hold after a call to Update_One_3?

procedure Update_One_4 (X : in out Natural) with
Pre => In_Range (X) and In_Range_2 (X),
Post => Relation (X'0ld, X);
-- Is it safe to call Update_One_4 when we do not check In_Range_27?

The procedures Update_One_1 and Update_One_2 can be designated by objects of type Update_Proc, as their con-
tract can be safely approximated by the contract of Update_Proc. The procedures Update_One_3 and Update_One_4
on the other hand cannot. For example, if we try to use Update_One_3 as a parameter of Update_All, GNATprove
emits a check message stating that the postcondition of Update_Proc might not be valid after a call to Update_One_3:

procedure Test (A : in out Nat_Array) with
Pre => (for all E of A => In_Range (E))
is
begin
Update_All (A, Update_One_3'Access);
end Test;

medium: postcondition of source might not be strong enough to imply postcondition of.
—»target, cannot prove Relation (X'Old, X)

Theoretically, a similar notion of approximation should be used for Data Dependencies and Flow Dependencies con-
tracts. However, as these contracts are not currently allowed on access-to-subprogram types, SPARK simply disallows
taking the Access attribute on a subprogram which has global inputs or outputs.

Note

Annotations specifying whether or not a subprogram returns are not available currently on access-to-subprogram
types. As a result, all calls through dereferences are considered to possibly not terminate.

5.10 Concurrency and Ravenscar Profile

Concurrency in SPARK requires enabling the Ravenscar profile (see Guide for the use of the Ada Ravenscar Profile in
high integrity systems by Alan Burns, Brian Dobbing, and Tullio Vardanega). This profile defines a subset of the Ada
concurrency features suitable for hard real-time/embedded systems requiring stringent analysis, such as certification
and safety analyses. In particular, it is concerned with determinism, analyzability, and memory-boundedness.

In addition to the subset defined by the Ravenscar profile, concurrency in SPARK also requires that tasks do
not start executing before the program has been completely elaborated, which is expressed by setting pragma

5.10. Concurrency and Ravenscar Profile 149

SPARK User’s Guide, Release 15.0

Partition_Elaboration_Policy to the value Sequential. Together with the requirement to apply the Raven-
scar profile, this means that a concurrent SPARK program should define the following configuration pragmas, either in
a configuration pragma file (see Setting the Default SPARK_Mode for an example of defining a configuration pragma
file in your project file) or at the start of files:

pragma Profile (Ravenscar);
pragma Partition_Elaboration_Policy (Sequential);

GNATprove also supports the Jorvik profile, as defined in Ada 2022 RM, D.13. To use this profile simply replace
Ravenscar with Jorvik in the pragma Profile in the above code. The extended profile is intended for hard real-
time/embedded systems that may require schedulability analysis but not the most stringent analyses required for other
domains.

In particular, to increase expressive power the Jorvik profile relaxes certain restrictions defined by the standard Raven-
scar profile. Notably, these relaxed constraints allow multiple protected entries per protected object, multiple queued
callers per entry, and more expressive protected entry barrier expressions. The profile also allows the use of relative de-
lay statements in addition to the absolute delay statements allowed by Ravenscar. The two forms of delay statement are
processed by GNATprove based on the type of their expression, as follows (absolute and relative delays, respectively):

* If the expression is of the type Ada.Real_Time.Time then for the purposes of determining global inputs and
outputs the absolute delay statement is considered just like the relative delay statement, i.e., to reference the state
abstraction Ada.Real_Time.Clock_Time as an input (see SPARK RM 9(17) for details).

e If the expression is of the type Ada.Calendar.Time then it is considered to reference the state abstraction
Ada.Calendar.Clock_Time, which is defined similarly to Ada.Real_Time.Clock_Time but represents a different
time base.

5.10.1 Tasks and Data Races

Requires Ravenscar/Jorvik profile

Concurrent Ada programs are made of several tasks, that is, separate threads of control which share the same address
space. In Ravenscar, only library-level, nonterminating tasks are allowed.

Task Types and Task Objects

Like ordinary objects, tasks have a type in Ada and can be stored in composite objects such as arrays and records. The
definition of a task type looks like the definition of a subprogram. It is made of two parts: a declaration, usually empty
as Ravenscar does not allow tasks to have entries (for task rendezvous), and a body containing the list of statements
to be executed by objects of the task type. The body of nonterminating tasks (the only ones allowed in Ravenscar)
usually takes the form of an infinite loop. For task objects of a given type to be parameterized, task types can have
discriminants. As an example, a task type Account_Management can be declared as follows:

package Account is
Num_Accounts : Natural := 0;

task type Account_Management;
end Account;

package body Account is

task body Account_Management is
begin
loop
Get_Next_Account_Created;
Num_Accounts := Num_Accounts + 1;

(continues on next page)

150 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)

end loop;
end Account_Management;

end Account;

Then, tasks of type Account_Management can be created at library level, either as complete objects or as components
of other objects:

package Bank is
Special_Accounts : Account_Management;

type Account_Type is (Regular, Premium, Selective);
type Account_Array is array (Account_Type) of Account_Management;
All_Accounts : Account_Array;

end Bank;

If only one object of a given task type is needed, then the task object can be declared directly giving a declaration and
a body. An anonymous task type is then defined implicitly for the declared type object. For example, if we only need
one task Account_Management then we can write:

package Account is
Num_Accounts : Natural := 0;

task Account_Management;
end Account;

package body Account is

task body Account_Management is

begin
loop
Get_Next_Account_Created;
Num_Accounts := Num_Accounts + 1;
end loop;

end Account_Management;

end Account;

Preventing Data Races

In Ravenscar, communication between tasks can only be done through shared objects (tasks cannot communicate
through rendezvous as task entries are not allowed in Ravenscar). In SPARK, the language is further restricted to
avoid the possibility of erroneous concurrent access to shared data (a.k.a. data races). More precisely, tasks can only
share synchronized objects, that is, objects that are protected against concurrent accesses. These include atomic ob-
jects, protected objects (see Protected Objects and Deadlocks), and suspension objects (see Suspension Objects). As an
example, our previous definition of the Account_Management task type was not in SPARK. Indeed, data races could
occur when accessing the global variable Num_Accounts, as detected by GNATprove:

accountl.adb:15:39: medium: overflow check might fail, cannot prove upper bound for Num_
—Accounts + 1
15 | Num_Accounts := Num_Accounts + 1;

(continues on next page)

5.10. Concurrency and Ravenscar Profile 151

SPARK User’s Guide, Release 15.0

(continued from previous page)
1 crswwwrweses Am
reason for check: result of addition must fit in a 32-bits machine integer
possible fix: loop at line 13 should mention Num_Accounts in a loop invariant
13 | loop
| A here

bankl.ads:5:04: high: possible data race when accessing variable "accountl.num_accounts"

5 Special_Accounts : Account_Management;
| A

task "bankl.special_accounts" accesses "accountl.num_accounts"
task "bankl.all_accounts" accesses "accountl.num_accounts"

To avoid this problem, shared variable Num_Account can be declared atomic:

package Account is
Num_Accounts : Natural := 0 with Atomic;

task type Account_Management;
end Account;

With this modification, GNATprove now alerts us that the increment of Num_Account is not legal, as a volatile variable
(which is the case of atomic variables) cannot be read as a subexpression of a larger expression in SPARK:

account2.adb:15:26: error: volatile object in interfering context is not allowed in..
--SPARK (SPARK RM 7.1.3(9)) [E0004]
15 | Num_Accounts := Num_Accounts + 1;
| Amimimommmimininins
launch "gnatprove --explain=E0004" for more information
violation of aspect SPARK Mode at line 2
2 | SPARK_Mode
| A here
gnatprove: error during flow analysis and proof

This can be fixed by copying the current value of Num_Account in a temporary before the increment:

declare

Tmp : constant Natural := Num_Accounts;
begin

Num_Accounts := Tmp + 1;
end;

But note that even with that fix, there is no guarantee that Num_Accounts is incremented by one each time an account is
created. Indeed, two tasks may read the same value of Num_Accounts and store this value in Tmp before both updating
itto Tmp + 1. In such a case, two accounts have been created but Num_Accounts has been increased by 1 only. There
is no data race in this program, which is confirmed by running GNATprove with no error, but there is by design a
race condition on shared data that causes the program to malfunction. The correct way to fix this in SPARK is to use
Protected Types and Protected Objects.

As they cannot cause data races, constants and variables that are constant after elaboration (see Aspect Con-
stant_After_Elaboration) are considered as synchronized and can be accessed by multiple tasks. For example, we
can declare a global constant Max_Accounts and use it inside Account_Management without risking data races:

152 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

package Account is
Num_Accounts : Natural := 0 with Atomic;
Max_Accounts : constant Natural := 100;

task type Account_Management;
end Account;

package body Account is

task body Account_Management is

begin
loop
Get_Next_Account_Created;
declare
Tmp : constant Natural := Num_Accounts;
begin
if Tmp < Max_Accounts then
Num_Accounts := Tmp + 1;
end if;
end;
end loop;

end Account_Management;

end Account;

It is possible for a task to access an unsynchronized global variable only if this variable is declared in the same package
as the task and if there is a single task accessing this variable. To allow this property to be statically verified, only
tasks of an anonymous task type are allowed to access unsynchronized variables and the variables accessed should be
declared to belong to the task using aspect Part_0f. Global variables declared to belong to a task are handled just like
local variables of the task, that is, they can only be referenced from inside the task body. As an example, we can state
that Num_Accounts is only accessed by the task object Account_Management in the following way:

package Account is
task Account_Management;

Num_Accounts : Natural := 0@ with Part_Of => Account_Management;
end Account;

5.10.2 Task Contracts
Specific to SPARK

Dependency contracts can be specified on tasks. As tasks should not terminate in SPARK, such contracts specify the
dependencies between outputs and inputs of the task updated while the task runs:

* The data dependencies introduced by aspect Global specify the global data read and written by the task.
* The flow dependencies introduced by aspect Depends specify how task outputs depend on task inputs.

This is a difference between tasks and subprograms, for which such contracts describe the dependencies between outputs
and inputs when the subprogram returns.

5.10. Concurrency and Ravenscar Profile 153

SPARK User’s Guide, Release 15.0

Data Dependencies on Tasks

Data dependencies on tasks follow the same syntax as the ones on subprograms (see Data Dependencies). For example,
data dependencies can be specified for task (type or object) Account_Management as follows:

package Account is
Num_Accounts : Natural := 0 with Atomic;

task type Account_Management with
Global => (In_Out => Num_Accounts);
end Account;

Flow Dependencies on Tasks

Flow dependencies on tasks follow the same syntax as the ones on subprograms (see Flow Dependencies). For example,
flow dependencies can be specified for task (type or object) Account_Management as follows:

package Account is
Num_Accounts : Natural := 0 with Atomic;

task type Account_Management with
Depends => (Account_Management => Account_Management,
Num_Accounts => Num_Accounts) ;
end Account;

Notice that the task unit itself is both an input and an output of the task:
* Itis an input because task discriminants (if any) and task attributes may be read in the task body.

* Itis an output so that the task unit may be passed as in out parameter in a subprogram call. But note that the task
object cannot be modified once created.

The dependency of the task on itself can be left implicit as well, as follows:

package Account is
Num_Accounts : Natural := 0 with Atomic;

task type Account_Management with
Depends => (Num_Accounts => Num_Accounts);
end Account;

5.10.3 Protected Objects and Deadlocks

Requires Ravenscar/Jorvik profile

In Ada, protected objects are used to encapsulate shared data and protect it against data races (low-level unprotected
concurrent access to data) and race conditions (lack of proper synchronization between reads and writes of shared data).
They coordinate access to the protected data guaranteeing that read-write accesses are always exclusive while allowing
concurrent read-only accesses. In Ravenscar, only library-level protected objects are allowed.

Protected Types and Protected Objects

Definitions of protected types resemble package definitions. They are made of two parts, a declaration (divided into a
public part and a private part) and a body. The public part of a protected type’s declaration contains the declarations
of the subprograms that can be used to access the data declared in its private part. The body of these subprograms
are located in the protected type’s body. In Ravenscar, protected objects should be declared at library level, either

154 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

as complete objects or as components of other objects. As an example, here is how a protected type can be used to
coordinate concurrent accesses to the global variable Num_Accounts:

package Account is

protected type Protected_Natural is
procedure Incr;
function Get return Natural;
private
The_Data : Natural := 0;
end Protected_Natural;

Num_Accounts : Protected_Natural;
Max_Accounts : constant Natural := 100;

task type Account_Management;
end Account;

package body Account is

protected body Protected_Natural is
procedure Incr is
begin
The_Data := The_Data + 1;
end Incr;

function Get return Natural is (The_Data);
end Protected_Natural;

task body Account_Management is
begin
loop
Get_Next_Account_Created;
if Num_Accounts.Get < Max_Accounts then
Num_Accounts.Incr;
end if;
end loop;
end Account_Management;

end Account;

Contrary to the previous version using an atomic global variable (see Preventing Data Races), this version prevents also
any race condition when incrementing the value of Num_Accounts. But note that there is still a possible race condition
between the time the value of Num_Accounts is read and checked to be less than Max_Accounts and the time it is
incremented. So this version does not guarantee that Num_Accounts stays below Max_Accounts. The correct way to
fix this in SPARK is to use protected entries (see Protected Subprograms).

Note that, in SPARK, to avoid initialization issues on protected objects, both private variables and variables belonging
to a protected object must be initialized at declaration (either explicitly or through default initialization).

Just like for tasks, it is possible to directly declare a protected object if it is the only one of its type. In this case, an
anonymous protected type is implicitly declared for it. For example, if Num_Account is the only Protected_Natural
we need, we can directly declare:

5.10. Concurrency and Ravenscar Profile 155

SPARK User’s Guide, Release 15.0

package Account is

protected Num_Accounts is

procedure Incr;

function Get return Natural;
private

The_Data : Natural := 0;
end Num_Accounts;

end Account;
package body Account is
protected body Num_Accounts is
procedure Incr is
begin
The_Data := The_Data + 1;

end Incr;

function Get return Natural is (The_Data);
end Num_Accounts;

end Account;

Protected Subprograms

The access mode granted by protected subprograms depends on their kind:
* Protected procedures provide exclusive read-write access to the private data of a protected object.
* Protected functions offer concurrent read-only access to the private data of a protected object.

* Protected entries are conceptually procedures with a barrier. When an entry is called, the caller waits until the
condition of the barrier is true to be able to access the protected object.

So that scheduling is deterministic, Ravenscar requires that at most one entry is specified in a protected unit and at most
one task is waiting on a given entry at every time. To ensure this, GNATprove checks that no two tasks can call the
same protected object’s entry. As an example, we could replace the procedure Incr of Protected_Natural to wait
until The_Data is smaller than Max_Accounts before incrementing it. As only simple Boolean variables are allowed
as entry barriers in Ravenscar, we add such a Boolean flag Not_Full as a component of the protected object:

package Account is

protected type Protected_Natural is
entry Incr;
function Get return Natural;
private
The_Data : Natural := 0;
Not_Full : Boolean := True;
end Protected_Natural;

Num_Accounts : Protected_Natural;
Max_Accounts : constant Natural := 100;

task type Account_Management;
(continues on next page)

156 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)

end Account;
package body Account is

protected body Protected_Natural is
entry Incr when Not_Full is
begin
The_Data := The_Data + 1;
if The_Data = Max_Accounts then
Not_Full := False;
end if;
end Incr;

function Get return Natural is (The_Data);
end Protected_Natural;

task body Account_Management is
begin
loop
Get_Next_Account_Created;
Num_Accounts.Incr;
end loop;
end Account_Management;

end Account;

This version fixes the remaining race condition on this example, thus ensuring that every new account created bumps
the value of Num_Accounts by 1, and that Num_Accounts stays below Max_Accounts.

To avoid data races, protected subprograms should not access unsynchronized objects (see Tasks and Data Races).
Like for tasks, it is still possible for subprograms of a protected object of an anonymous protected type to access an
unsynchronized object declared in the same package as long as it is not accessed by any task or subprogram from other
protected objects. In this case, the unsynchronized object should have a Part_Of aspect referring to the protected
object. It is then handled as if it was a private variable of the protected object. This is typically done so that the address
in memory of the variable can be specified, using either aspect Address or a corresponding representation clause.
Here is how this could be done with Num_Account:

package Account is
protected Protected_Num_Accounts is
procedure Incr;
function Get return Natural;
end Protected_Num_Accounts;

Num_Accounts : Natural := 0 with
Part_Of => Protected_Num_Accounts,
Address => ...

end Account;

As it can prevent access to a protected object for an unbounded amount of time, a task should not be blocked or delayed
while inside a protected subprogram. Actions that can block a task are said to be potentially blocking. For example,
calling a protected entry, explicitly waiting using a delay_until statement (note that delay statements are forbidden
in Ravenscar), or suspending on a suspension object (see Suspension Objects) are potentially blocking actions. In Ada,
it is an error to do a potentially blocking action while inside a protected subprogram. Note that a call to a function or

5.10. Concurrency and Ravenscar Profile 157

SPARK User’s Guide, Release 15.0

a procedure on another protected object is not considered to be potentially blocking. Indeed, such a call cannot block
a task in the absence of deadlocks (which is enforced in Ravenscar using the priority ceiling protocol, see Avoiding
Deadlocks and Priority Ceiling Protocol).

GNATDprove verifies that no potentially blocking action is performed from inside a protected subprogram in a modular
way on a per subprogram basis. Thus, if a subprogram can perform a potentially blocking operation, every call to this
subprogram from inside a protected subprogram will be flagged as a potential error. As an example, the procedure
Incr_Num_Accounts is potentially blocking and thus should not be called, directly or indirectly, from a protected
subprogram:

package Account is
protected type Protected_Natural is
entry Incr;
private
The_Data : Natural := 0;
end Protected_Natural;
Num_Accounts : Protected_Natural;
procedure Incr_Num_Accounts;
end Account;
package body Account is
procedure Incr_Num_Accounts is
begin
Num_Accounts.Incr;

end Incr_Num_Accounts;

end Account;

Avoiding Deadlocks and Priority Ceiling Protocol

To ensure exclusivity of read-write accesses, when a procedure or an entry of a protected object is called, the protected
object is locked so that no other task can access it, be it in a read-write or a read-only mode. In the same way, when
a protected function is called, no other task can access the protected object in read-write mode. A deadlock happens
when two or more tasks are unable to run because each of them is trying to access a protected object that is currently
locked by another task.

To ensure absence of deadlocks on a single core, Ravenscar requires the use of the Priority Ceiling Protocol. This
protocol ensures that no task can be blocked trying to access a protected object locked by another task. It relies on
task’s priorities. The priority of a task is a number encoding its urgency. On a single core, scheduling ensures that the
current running task can only be preempted by another task if it has a higher priority. Using this property, the Priority
Ceiling Protocol works by increasing the priorities of tasks accessing a protected object to a priority that is at least as
high as the priorities of other tasks accessing this object. This ensures that, while holding a lock, the currently running
task cannot be preempted by a task which could later be blocked by this lock.

To enforce this protocol, every task is associated with a base priority, either given at declaration using the Priority
aspect or defaulted. This base priority is static and cannot be modified after the task’s declaration. A task also has an
active priority which is initially the task’s base priority but will be increased when the task enters a protected action.
For example, we can set the base priority of Account_Management to 5 at declaration:

158 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

package Account is
task type Account_Management with Priority => 5;
end Account;

Likewise, each protected object is associated at declaration with a ceiling priority which should be equal or higher than
the active priority of any task accessing it. The ceiling priority of a protected object does not need to be static, it can be
set using a discriminant for example. Still, like for tasks, Ravenscar requires that it is set once and for all at the object’s
declaration and cannot be changed afterwards. As an example, let us attach a ceiling priority to the protected object
Num_Accounts. As Num_Accounts will be used by Account_Management, its ceiling priority should be no lower
than 5:

package Account is

protected Num_Accounts with Priority => 7 is
procedure Incr;
function Get return Natural;

private
The_Data : Natural := 0;

end Num_Accounts;

task type Account_Management with Priority => 5;

end Account;

5.10.4 Suspension Objects
Requires Ravenscar/Jorvik profile

The language-defined package Ada.Synchronous_Task_Control provides a type for semaphores called suspension
objects. They allow lighter synchronization mechanisms than protected objects (see Protected Objects and Deadlocks).
More precisely, a suspension object has a Boolean state which can be set atomically to True using the Set_True
procedure. When a task suspends on a suspension object calling the Suspend_Until_True procedure, it is blocked
until the state of the suspension object is True. At that point, the state of the suspension object is set back to False
and the task is unblocked. Note that Suspend_Until_True is potentially blocking and therefore should not be called
directly or indirectly from within Protected Subprograms. In the following example, the suspension object Semaphore
is used to make sure T1 has initialized the shared data by the time T2 begins processing it:

Semaphore : Suspension_Object;
task T1;
task T2;

task body T1 is

begin
Initialize_Shared_Data;
Set_True (Semaphore);
loop

end loop;
end T1;

task body T2 is
begin
Suspend_Until_True (Semaphore);

(continues on next page)

5.10. Concurrency and Ravenscar Profile 159

SPARK User’s Guide, Release 15.0

(continued from previous page)

loop

end loop;
end T2;

In Ada, an exception is raised if a task tries to suspend on a suspension object on which another task is already waiting
on that same suspension object. Like for verifying that no two tasks can be queued on a protected entry, this veri-
fication is done by GNATprove by checking that no two tasks ever suspend on the same suspension object. In the
following example, the suspension objects Semaphorel and Semaphore2 are used to ensure that T1 and T2 never call
Enter_Protected_Region at the same time. GNATprove will successfully verify that only one task can suspend on
each suspension object:

Semaphorel, Semaphore2 : Suspension_Object;
task T1;
task T2;

task body T1 is
begin
loop
Suspend_Until_True (Semaphorel);
Enter_Protected_Region;
Set_True (Semaphore2);
end loop;
end T1;

task body T2 is
begin
loop
Suspend_Until_True (Semaphore2);
Enter_Protected_Region;
Set_True (Semaphorel);
end loop;
end T2;

5.10.5 State Abstraction and Concurrency
Specific to SPARK

Protected objects, as well as suspension objects, are effectively volatile which means that their value as seen from a given
task may change at any time due to some other task accessing the protected object or suspension object. If they are part of
a state abstraction, the volatility of the abstract state must be specified by using the External aspect (see External State
Abstraction). Note that task objects, though they can be part of a package’s hidden state, are not effectively volatile and
can therefore be components of normal state abstractions. For example, the package Synchronous_Abstractions
defines two abstract states, one for external objects, containing the atomic variable V, the suspension object S, and the
protected object P, and one for normal objects, containing the task T:

package Synchronous_Abstractions with

Abstract_State => (Normal_State, (Synchronous_State with External))
is
end Synchronous_Abstractions;

package body Synchronous_Abstractions with

Refined_State => (Synchronous_State => (P,V,S), Normal_State => T)
(continues on next page)

160 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)
is
task T;

S : Suspension_Object;
V : Natural := 0 with Atomic, Async_Readers, Async_lriters;

protected P is

function Read return Natural;
private

V : Natural := 0;
end P;

protected body P is
function Read return Natural is (V);
end P;

task body T is ...
end Synchronous_Abstractions;

To avoid data races, task bodies, as well as protected subprograms, should only access synchronized objects (see Pre-
venting Data Races). State abstractions containing only synchronized objects can be specified to be synchronized using
the Synchronous aspect. Only synchronized state abstractions can be accessed from task bodies and protected subpro-
grams. For example, if we want the procedure Do_Something to be callable from the task Use_Synchronized_State,
then the state abstraction Synchronous_State must be annotated using the Synchronous aspect:

package Synchronous_Abstractions with
Abstract_State => (Normal_State,
(Synchronous_State with Synchronous, External))
is
procedure Do_Something with Global => (In_Out => Synchronous_State);
end Synchronous_Abstractions;

task body Use_Synchronized_State is
begin
loop
Synchronous_Abstractions.Do_Something;
end loop;
end Use_Synchronized_State;

5.10.6 Project-wide Tasking Analysis
Tasking-related analysis, as currently implemented in GNATprove, is subject to two limitations:

First, the analysis is always done when processing a source file with task objects or with a subprogram that can be used
as a main subprogram of a partition (i.e. is at library level, has no parameters, and is either a procedure or a function
returning an integer type).

In effect, you might get spurious checks when:

* a subprogram satisfies conditions for being used as a main subprogram of a partition but is not really used that
way, i.e. it is not specified in the Main attribute of the GNAT project file you use to build executables, and

e it “withs” or is “withed” (directly or indirectly) from a library-level package that declares some task object, and

5.10. Concurrency and Ravenscar Profile 161

SPARK User’s Guide, Release 15.0

* both the fake “main” subprogram and the task object access the same resource in a way that violates tasking-
related rules (e.g. suspends on the same suspension object).

As a workaround, either wrap the fake “main” subprogram in a library-level package or give it a dummy parameter.

Second, the analysis is only done in the context of all the units “withed” (directly and indirectly) by the currently
analyzed source file.

In effect, you might miss checks when:

* building a library that declares tasks objects in unrelated source files, i.e. files that are never “withed” (directly
or indirectly) from the same file, and those tasks objects access the same resource in a way that violates tasking-
related rules, or

* using a library that internally declares some tasks objects, they access some tasking-sensitive resource, and your
main subprogram also accesses this resource.

As a workaround, when building library projects add a dummy main subprogram that “withs” all the library-level
packages of your project.

5.10.7 Interrupt Handlers

SPARK puts no restrictions on the Ada interrupt handling and GNATprove merely checks that interrupt handlers will
be safely executed. In Ada interrupts handlers are defined by annotating protected procedures, for example:

with Ada.Interrupts.Names; use Ada.Interrupts.Names;

protected P is
procedure Signal with Attach_Handler => SIGINT;
end P;

Currently GNATprove emits a check for each handler declaration saying that the corresponding interrupt might be
already reserved. In particular, it might be reserved by either the system or the Ada runtime; see GNAT pragmas
Interrupt_State and Unreserve_All_Interrupts for details. Once examined, those checks can be suppressed with pragma
Annotate.

If pragma Priority or Interrupt_Priority is explicitly specified for a protected type, then GNATprove will check that its
value is in the range of the System.Any_Priority or System.Interrupt_Priority, respectively; see Ada RM D.3(6.1/3).

For interrupt handlers whose bodies are annotated with SPARK_Mode => On, GNATprove will additionally check
that:

« the interrupt handler does not call (directly or indirectly) the Ada.Task_Identification.Current_Task routine,
which might cause a Program_Error runtime exception; see Ada RM C.7.1(17/3);

* all global objects read (either as an Input or a Proof_In) by the interrupt handler are initialized at elaboration;

* there are no unsynchronized objects accessed both by the interrupt handler and by some task (or by some other
interrupt handler);

* there are no protected objects locked both by the interrupt handler and by some task (or by some other interrupt
handler).

5.11 SPARK Libraries

The units described here have their spec in SPARK (with SPARK_Mode => On specified on the spec), more rarely their
body in SPARK as well.

Subprograms in these units fall into one of the following categories:

* Subprograms which should always return without error or exception if their precondition is respected.

162 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

* Procedures marked with the annotation Exceptional_Cases. This corresponds to the possibility of exception
in the procedure, even when its precondition is respected.

¢ Functions marked with SPARK_Mode => Off which cannot be called from SPARK code.

5.11.1 SPARK Library

As part of the SPARK product, several libraries are available through the project file templates <spark-install>/
lib/gnat/sparklib.gpr.templ (or through <spark-install>/lib/gnat/sparklib_light.gpr.templ in
an environment without units Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.
Big_Reals). Header files of the SPARK library are available through Help — SPARK — SPARKIib menu item in
GNAT Studio. To use this library in a program, you need to copy the project template that corresponds to your runtime,
remove the .templ suffix in name and adapt the project file by providing appropriate values for the object directory
(attribute Object_Dir in the project file) and the list of excluded source files (attribute Excluded_Source_Files in
the project file). The simplest is just to provide a value for Object_Dir and inherit Excluded_Source_Files from
the parent project:

project SPARKlib extends "sparklib_internal" is

for Object_Dir use "sparklib_obj";

for Excluded_Source_Files use SPARKlib_Internal'Excluded_Source_Files;
end SPARKlib;

Then, add a corresponding dependency in your project file, for example:

with "sparklib";
project My_Project is

end My_Project;

You may need to update the environment variable GPR_PROJECT_PATH for the lemma library project to be found by
GNAT compiler, as described in Installation of GNATprove.

Finally, if you instantiate in your code a generic from the SPARK library, you may also need to pass
-gnateDSPARK_BODY_MODE=0ff as a compilation switch for the units with these instantiations.

5.11.2 Big Numbers Library

Annotations such as preconditions, postconditions, assertions, loop invariants, are analyzed by GNATprove with the
exact same meaning that they have during execution. In particular, evaluating the expressions in an annotation may
raise a run-time error, in which case GNATprove will attempt to prove that this error cannot occur, and report a warning
otherwise.

In SPARK, scalar types such as integer and floating point types are bounded machine types, so arithmetic computations
over them can lead to overflows when the result does not fit in the bounds of the type used to hold it. In some cases,
it is convenient to express properties in annotations as they would be expressed in mathematics, where quantities are
unbounded, for example:

function Add (X, Y : Integer) return Integer with
Pre => X + Y in Integer,
Post => Add'Result = X + Y;

The precondition of Add states that the result of adding its two parameters should fit in type Integer. Unfortunately,
evaluating this expression will fail an overflow check, because the result of X + Y is stored in a temporary of type
Integer.

To alleviate this issue, it is possible to use the standard library for big numbers. It contains support for:

5.11. SPARK Libraries 163

SPARK User’s Guide, Release 15.0

* Unbounded integers in SPARK.Big_Integers.
* Unbounded rational numbers in SPARK.Big_Reals.

Theses libraries define representations for big numbers and basic arithmetic operations over them, as well as conversions
from bounded scalar types such as floating point numbers or integer types. Conversion from an integer to a big integer
is provided by:

* function To_Big_Integer in SPARK.Big_Integers for type Integer

* function To_Big_Integer in generic package Signed_Conversions in SPARK.Big_Integers for all other
signed integer types

e function To_Big_Integer in generic package Unsigned_Conversions in SPARK.Big_Integers for modular
integer types

Similarly, the same packages define a function From_Big_Integer to convert from a big integer to an integer. A
function To_Real in SPARK.Big_Reals converts from type Integer to a big real and function To_Big_Real in the
same package converts from a big integer to a big real.

Though these operations do not have postconditions, they are interpreted by GNATprove as the equivalent operations
on mathematical integers and real numbers. This allows to benefit from precise support on code using them. Note that
the corresponding Ada libraries Ada . Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.
Big_Reals will be handled in the same way, but might be not available under specific runtimes. It is preferable to use
the units from the SPARK library instead, or use Ada.Numerics.Big_Numbers.Big_Integer_Ghost.

Note

Some functionality of the library are not precisely supported. This includes in particular conversions to and from
strings, conversions of Big_Real to fixed-point or floating-point types, and Numerator and Denominator func-
tions.

The big number library can be used both in annotations and in actual code, as it is executable, though of course, using
it in production code means incurring its runtime costs. It can be considered a good trade-off to only use it in contracts,
if they are disabled in production builds. For example, we can rewrite the precondition of our Add function with big
integers to avoid overflows:

function Add (X, Y : Integer) return Integer with
Pre => In_Range (To_Big_Integer (X) + To_Big_Integer (Y),
Low => To_Big_Integer (Integer'First),
High => To_Big_Integer (Integer'Last)),
Post => Add'Result = X + Y;

As amore advanced example, it is also possible to introduce a ghost model for numerical computations on floating point
numbers as a mathematical real number so as to be able to express properties about rounding errors. In the following
snippet, we use the ghost variable M as a model of the floating point variable Y, so we can assert that the result of our
floating point calculations are not too far from the result of the same computations on real numbers.

declare
package Float_Convs is new Float_Conversions (Num => Float);
-- Introduce conversions to and from values of type Float

subtype Small_Float is Float range -100.0 .. 100.0;
function Init return Small_Float with Import;

-- Unknown initial value of the computation

(continues on next page)

164 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(continued from previous page)

X : constant Small_Float := Init;

Y : Float := X;

M : Big_Real := Float_Convs.To_Big_Real (X) with Ghost;

-- M is used to mimic the computations done on Y on real numbers
begin

Y :=Y * 100.0;

M := M * Float_Convs.To_Big_Real (100.0);

Y :=Y + 100.0;

M := M + Float_Convs.To_Big Real (100.0);

pragma Assert
(In_Range (Float_Convs.To_Big_Real (Y) - M,
Low => Float_Convs.To_Big_Real (- 0.001),
High => Float_Convs.To_Big Real (0.001)));
-- The rounding errors introduced by the floating-point computations
-- are not too big.
end;

5.11.3 Functional Containers Library

To model complex data structures, one often needs simpler, mathematical like containers. The mathematical containers
provided in the SPARK library (see the SPARK Library) are unbounded and may contain indefinite elements. However,
they are controlled and thus not usable in every context. So that these containers can be used safely, we have made
them functional, that is, no primitives are provided which would allow modifying an existing container. Instead, their
API features functions creating new containers from existing ones. As an example, functional containers provide no
Insert procedure but rather a function Add which creates a new container with one more element than its parameter:

function Add (C : Container; E : Element_Type) return Container;

As a consequence, these containers are highly inefficient. Thus, they should in general be used in ghost code and
annotations so that they can be removed from the final executable.

There are 5 functional containers, which are part of the SPARK library:
¢ SPARK.Containers.Functional.Infinite_Sequences
¢ SPARK.Containers.Functional.Maps
* SPARK.Containers.Functional.Multisets
e SPARK.Containers.Functional.Sets
e SPARK.Containers.Functional.Vectors

Sequences defined in Functional.Vectors are no more than ordered collections of elements. In an Ada like manner,
the user can choose the range used to index the elements:

function Length (S : Sequence) return Count_Type;
function Get (S : Sequence; N : Index_Type) return Element_Type;

The sequences defined in Functional.Infinite_Sequences behave as the one of Functional.Vectors. The
difference between them lies in the fact that the inifinte one are indexed by mathematical integers.

5.11. SPARK Libraries 165

SPARK User’s Guide, Release 15.0

function Length (Container : Sequence) return Big_Natural;
function Get (Container : Sequence; Position : Big_Integer) return Element_Type;

Functional sets offer standard mathematical set functionalities such as inclusion, union, and intersection. They are
neither ordered nor hashed:

function Contains (S : Set; E : Element_Type) return Boolean;
function "<=" (Left : Set; Right : Set) return Boolean;

Functional maps offer a dictionary between any two types of elements:

function Has_Key (M : Map; K : Key_Type) return Boolean;
function Get (M : Map; K : Key_Type) return Element_Type;

Multisets are mathematical sets associated with a number of occurrences:

function Nb_Occurence (S : Multiset; E : Element_Type) return Big_Natural;
function Cardinality (S : Multiset) return Big_Natural;

Each functional container type supports quantification over its elements (or keys for functional maps).

These containers can easily be used to model user defined data structures. They were used to this end to annotate and
verify a package of allocators (see the allocators example provided with a SPARK installation). In this example, an
allocator featuring a free list implemented in an array is modeled by a record containing a set of allocated resources
and a sequence of available resources:

type Status is (Available, Allocated);
type Cell is record
Stat : Status;
Next : Resource;
end record;
type Allocator is array (Valid_Resource) of Cell;
type Model is record
Available : Sequence;
Allocated : Set;
end record;

Note

Instances of container packages, both functional and formal, are subject to particular constraints which are necessary
for the contracts on the instance to be correct. For example, container primitives don’t comply with the ownership
policy of SPARK if element or key types are ownership types. These constraints are verified specifically each
time a container package is instantiated. For some of these checks, it is possible for the user to help the proof tool
by providing some lemmas at instantiation. It is the case in particular for the constraints coming from the Ada
reference manual on the container packages (that “=" is an equivalence relation, or that “<” is a strict weak order
in particular). These lemmas appear in the library as additional ghost generic formal parameters.

Note

Functional sets, maps and multisets operate with a user-provided equivalence relation, which might be different from
the logical equality. In this case, all elements or keys of an equivalence class are removed or included together in the
container. This can sometimes have surprising results. For example, Contains can return True if an equivalent

166 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

(but not equal) element has been added to a set. Similarly, the quantified expression for Some E of S => Cond
(E) might be proved if Cond is False for all elements that were explicitely added to the set, but True for an object
equivalent to such an element.

The functional sets, maps, sequences, and vectors have child packages providing higher order functions:
¢ SPARK.Containers.Functional.Infinite_Sequences.Higher_Order
¢ SPARK.Containers.Functional.Maps.Higher_Order
¢ SPARK.Containers.Functional.Sets.Higher_Order
¢ SPARK.Containers.Functional.Vectors.Higher_Order

These functions take as parameters access-to-functions that compute some information about an element of the con-
tainer and apply it to all elements in a generic way. As an example, here is the function Count for functional sets. It
counts the number of elements in the set with a given property. The property is provided by its input access-to-function
parameter Test:

function Count
(S : Set;
Test : not null access function (E : Element_Type) return Boolean)
return Big_Natural
-- Count the number of elements on which the input Test function returns
-- True. Count can only be used with Test functions which return the same
-- value on equivalent elements.

with
Global => null,
Annotate => (GNATprove, Higher_Order_Specialization),
Pre => Eq_Compatible (S, Test),
Post => Count'Result <= Length (S);

All the higher order functions are annotated with Higher_Order_Specialization (see Annotation for Handling
Specially Higher Order Functions) so they can be used even with functions which read global data as parameters.

5.11.4 Formal Containers Library

Containers are generic data structures offering a high-level view of collections of objects, while guaranteeing fast access
to their content to retrieve or modify it. The most common containers are lists, vectors, sets and maps, which are defined
as generic units in the Ada Standard Library. In critical software where verification objectives severely restrict the use
of pointers, containers offer an attractive alternative to pointer-intensive data structures.

The Ada Standard Library defines two kinds of containers:

* The controlled containers using dynamic allocation, for example Ada.Containers.Vectors. They define con-
tainers as controlled tagged types, so that memory for the container is automatic reallocated during assignment
and automatically freed when the container object’s scope ends.

e The bounded containers not using dynamic allocation, for example Ada.Containers.Bounded_Vectors.
They define containers as discriminated tagged types, so that the memory for the container can be reserved
at initialization.

Although bounded containers are better suited to critical software development, neither controlled containers nor
bounded containers can be used in SPARK, because their API does not lend itself to adding suitable contracts en-
suring correct usage in client code as per the restrictions of SPARK (in particular Absence of Interferences).

5.11. SPARK Libraries 167

SPARK User’s Guide, Release 15.0

The formal containers are a variation of the standard containers with API changes that allow adding suitable contracts,
so that GNATprove can prove that client code manipulates containers correctly. There are 12 formal containers, which
are part of the SPARK library.

Among them, 6 are bounded and definite:
e SPARK.Containers.Formal.Vectors
e SPARK.Containers.Formal.Doubly_Linked_Lists
e SPARK.Containers.Formal.Hashed_Sets
e SPARK.Containers.Formal.Ordered_Sets
¢ SPARK.Containers.Formal.Hashed_Maps
e SPARK.Containers.Formal.Ordered_Maps

The 6 others are unbounded and indefinite but are controlled:
e SPARK.Containers.Formal.Unbounded_Vectors
e SPARK.Containers.Formal.Unbounded_Doubly_Linked_Lists
* SPARK.Containers.Formal.Unbounded_Hashed_Sets
* SPARK.Containers.Formal.Unbounded_Ordered_Sets
¢ SPARK.Containers.Formal.Unbounded_Hashed_Maps
e SPARK.Containers.Formal.Unbounded_Ordered_Maps

Bounded definite formal containers can only contain definite objects (objects for which the compiler can compute the
size in memory, hence not String nor T'Class). They do not use dynamic allocation. In particular, they cannot grow
beyond the bound defined at object creation.

Unbounded indefinite formal containers can contain indefinite objects. They use dynamic allocation both to allocate
memory for their elements, and to expand their internal block of memory when it is full.

Note

The capacity of unbounded containers is not set using a discriminant. Instead, it is implicitly set to it maximum
value. All the required memory is not reserved at declaration. As all the formal containers are internally indexed
by Count_Type, their maximum size is Count_Type'Last.

Modified API of Formal Containers

The visible specification of formal containers is in SPARK, with suitable contracts on subprograms to ensure correct
usage, while their private part and implementation is not in SPARK. Hence, GNATprove can be used to prove correct
usage of formal containers in client code, but not to prove that formal containers implement their specification.

Cursors of formal containers do not hold a reference to a specific container, as this would otherwise introduce aliasing
between container and cursor variables, which is not supported in SPARK, see Absence of Interferences. As a result,
the same cursor can be applied to multiple container objects. The Ada rules which define when a cursor becomes
invalid, so that using it leads to erroneous execution, are no longer relevant. Instead, which cursors remain valid in a
container after an operation is specified on a case-by-case basis on each operation.

As a consequence of this difference, only procedures and functions that take the container as parameter to query its
content are vailable on formal containers. For example, the two-parameters Has_Element function is available on
formal containers while the single-parameter one is not:

168 Chapter 5. Overview of SPARK Language

SPARK User’s Guide, Release 15.0

function Has_Element (Container : T; Position : Cursor) return Boolean;
-- This function is part of the SPARK library

function Has_Element (Position : Cursor) return Boolean;
-- This function is not as the Cursor does not contain a reference to the container

Procedures like Update_Element or Query_Element that iterate over a container are not defined on formal containers,
nor are functions returning iterator objects like Iterate. Instead, formal containers use the Iterable aspect to allow
iteration and quantification over containers, see Quantification over Formal Containers. As a result, the notion of
tampering checks as defined for standard Ada containers is not relevant on formal containers.

Functions used to gain read or write access to an individual component of a container such as Reference or
Constant_Reference have been adapted to use the notions of borrowing and observing of the Memory Ownership
Policy of SPARK. They are defined as traversal functions which return values of an anonymous access type. The fact
that the container is not updated while such a reference exists is ensured by ownership:

function Constant_Reference (Container : aliased T;
Position : Cursor)
return not null access constant Element_Type
with Pre => Has_Element (Container, Position);

function Reference (Container : not null access T;
Position : Cursor)
return not null access Element_Type
with Pre => Has_Element (Container.all, Position);

For each container type, the library provides model functions that are used to annotate subprograms from the API.
The different models supply different levels of abstraction of the container’s functionalities. These model functions are
grouped in Ghost Packages named Formal_Model.

The higher level view of a container is usually the mathematical structure of element it represents. We use a sequence
for ordered containers such as lists and vectors and a mathematical map for imperative maps. This allows us to specify
the effects of a subprogram in a very high level way, not having to consider cursors nor order of elements in a map:

procedure Increment_All (L : in out List) with
Post =>
(for all N in 1 .. Length (L) =>
Element (Model (L), N) = Element (Model (L)'0Old, N) + 1);

procedure Increment_All (S : in out Map) with
Post =>
(for all K of Model (S)'0Old => Has_Key (Model (S), K))
and
(for all K of Model (S) =>
Has_Key (Model (S)'0Old, K)
and Get (Model (S), K) = Get (Model (S)'0ld, K) + 1);

For sets and maps, there is a lower level model representing the underlying order used for iteration in the container, as
well as the actual values of elements/keys. It is a sequence of elements/keys. We can use it if we want to specify in
Increment_All on maps that the order and actual values of keys are preserved:

procedure Increment_All (S : in out Map) with
Post =>
Keys (S) = Keys (S)'0Old

(continues on next page)

5.11. SPARK Libraries 169

SPARK User’s Guide, Release 15.0

(continued from previous page)
and

(for all K of Model (S) =>
Get (Model (S), K) = Get (Model (S)'0Old, K) + 1);

Finally, cursors are modeled using a functional map linking them to their position in the container. For example, we
can state that the positions of cursors in a list are not modified by a call to Increment_Al11:

procedure Increment_All (L : in out List) with
Post =>
Positions (L) = Positions (L) '0ld
and
(for all N in 1 .. Length (L) =>
Element (Model (L), N) = Element (Model (L)'0ld, N) + 1);

Switching between the different levels of model functions allows to express precise considerations when needed without
polluting upper level specifications. For example, consider a variant of the List.Find function defined in the API of
formal containers, which returns a cursor holding the value searched if there is one, and the special cursor No_Element
otherwise:

with Element_Lists; use Element_Lists; use Element_Lists.Lists;
with Ada.Containers; use Ada.Containers; use Element_Lists.Lists.Formal_Model;

function My_Find (L : List; E : Element_Type) return Cursor with

SPARK_Mode,
Contract_Cases =>
(Contains (L, E) => Has_Element (L, My_Find'Result) and then

Element (L, My_Find'Result) = E,
not Contains (L, E) => My_Find'Result = No_Element);

The ghost functions mentioned above are specially useful in Loop Invariants to refer to cursors, and positions of ele-
ments in the containers. For example, here, ghost function Positions is used in the loop invariant to query the position
of the current cursor in the list, and Model is used to specify that the value searched is not contained in the part of the
container already traversed (otherwise the loop would have exited):

function My_Find (L : List; E : Element_Type) return Cursor with

SPARK_Mode
is

Cu : Cursor := First (L);
begin

while Has_Element (L, Cu) loop
pragma Loop_Variant (Increases => P.Get (Positions (L), Cu));
pragma Loop_Invariant (for all I in 1 .. P.Get (Positi