We compute the equation and nonminimal resolution F of the carpet of type (a,b) where $a \ge b$ over a larger finite prime field, lift the complex to the integers, which is possible since the coefficients are small. Finally we study the nonminimal strands over ZZ by computing the Smith normal form. The resulting data allow us to compute the Betti tables for arbitrary primes.
i1 : a=5,b=5
o1 = (5, 5)
o1 : Sequence
|
i2 : elapsedTime T=carpetBettiTable(a,b,3)
-- .00168772s elapsed
-- .00427781s elapsed
-- .0141547s elapsed
-- .00627409s elapsed
-- .00231124s elapsed
-- .167719s elapsed
0 1 2 3 4 5 6 7 8 9
o2 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o2 : BettiTally
|
i3 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
ZZ
o3 : Ideal of --[x ..x , y ..y ]
3 0 5 0 5
|
i4 : elapsedTime T'=minimalBetti J
-- .123408s elapsed
0 1 2 3 4 5 6 7 8 9
o4 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o4 : BettiTally
|
i5 : T-T'
0 1 2 3 4 5 6 7 8 9
o5 = total: . . . . . . . . . .
1: . . . . . . . . . .
2: . . . . . . . . . .
3: . . . . . . . . . .
o5 : BettiTally
|
i6 : elapsedTime h=carpetBettiTables(6,6);
-- .0031952s elapsed
-- .0118481s elapsed
-- .0662279s elapsed
-- .625694s elapsed
-- .17093s elapsed
-- .028429s elapsed
-- .0106672s elapsed
-- 2.99856s elapsed
|
i7 : carpetBettiTable(h,7)
0 1 2 3 4 5 6 7 8 9 10 11
o7 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 . . . . . .
2: . . . . . . 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o7 : BettiTally
|
i8 : carpetBettiTable(h,5)
0 1 2 3 4 5 6 7 8 9 10 11
o8 = total: 1 55 320 891 1408 1275 1275 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 120 . . . . .
2: . . . . . 120 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o8 : BettiTally
|