%global packname geoGAM %global packver 0.1-2 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 0.1.2 Release: 1%{?dist} Summary: Select Sparse Geoadditive Models for Spatial Prediction License: GPL (>= 2) URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 2.14.0 Requires: R-core >= 2.14.0 BuildArch: noarch BuildRequires: R-CRAN-mboost BuildRequires: R-mgcv BuildRequires: R-CRAN-grpreg BuildRequires: R-MASS Requires: R-CRAN-mboost Requires: R-mgcv Requires: R-CRAN-grpreg Requires: R-MASS %description A model building procedure to build parsimonious geoadditive model from a large number of covariates. Continuous, binary and ordered categorical responses are supported. The model building is based on component wise gradient boosting with linear effects, smoothing splines and a smooth spatial surface to model spatial autocorrelation. The resulting covariate set after gradient boosting is further reduced through backward elimination and aggregation of factor levels. The package provides a model based bootstrap method to simulate prediction intervals for point predictions. A test data set of a soil mapping case study in Berne (Switzerland) is provided. %prep %setup -q -c -n %{packname} %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css %files %dir %{rlibdir}/%{packname} %doc %{rlibdir}/%{packname}/html %{rlibdir}/%{packname}/Meta %{rlibdir}/%{packname}/help %{rlibdir}/%{packname}/data %{rlibdir}/%{packname}/DESCRIPTION %{rlibdir}/%{packname}/NAMESPACE %doc %{rlibdir}/%{packname}/NEWS %{rlibdir}/%{packname}/R %{rlibdir}/%{packname}/INDEX