wr.var {WRestimates}R Documentation

Approximate Variance of the Natural Log (ln) of the Win Ratio.

Description

Calculating the approximate variance of the natural log (ln) a win ratio.

Var(ln(WR)) ~~ \sigma^2/N

Where;

\sigma^2 = (4 * (1 + p[tie]))/(3 * k * (1 - k) * (1 - p[tie])

Usage

wr.var(N, sigma.sqr, k, p.tie)

Arguments

N

Sample size.

sigma.sqr

Population variance of the natural log (ln) of the win ratio.

k

The proportion of subjects allocated to one group i.e. the proportion of patients allocated to treatment.

p.tie

The proportion of ties.

Value

wr.var returns an object of class "list" containing the following components:

var.ln.WR

Approximate variance of the natural log (ln) a win ratio.

N

Sample size.

sigma.sqr

Population variance of the natural log (ln) of the win ratio.

k

The proportion of subjects allocated to one group.

p.tie

The proportion of ties.

Author(s)

Autumn O'Donnell autumn.research@gmail.com

References

Yu, R. X. and Ganju, J. (2022). Sample size formula for a win ratio endpoint. Statistics in medicine, 41(6), 950-963. doi: 10.1002/sim.9297.

See Also

wr.sigma.sqr


[Package WRestimates version 0.1.0 Index]