tidy_pool_obj {rbmiUtils}R Documentation

Tidy and Annotate a Pooled Object for Publication

Description

This function processes a pooled analysis object of class pool into a tidy tibble format. It adds contextual information, such as whether a parameter is a treatment comparison or a least squares mean, dynamically identifies visit names from the parameter column, and provides additional columns for parameter type, least squares mean type, and visit.

Usage

tidy_pool_obj(pool_obj)

Arguments

pool_obj

A pooled analysis object of class pool.

Details

The function rounds numeric columns to three decimal places for presentation. It dynamically processes the parameter column by separating it into components (e.g., type of estimate, reference vs. alternative arm, and visit), and provides informative descriptions in the output.

Value

A tibble containing the processed pooled analysis results. The tibble includes columns for the parameter, description, estimates, standard errors, confidence intervals, p-values, visit, parameter type, and least squares mean type.

Examples

# Example usage:
library(dplyr)
library(rbmi)

data("ADMI")
N_IMPUTATIONS <- 100
BURN_IN <- 200
BURN_BETWEEN <- 5

# Convert key columns to factors
ADMI$TRT <- factor(ADMI$TRT, levels = c("Placebo", "Drug A"))
ADMI$USUBJID <- factor(ADMI$USUBJID)
ADMI$AVISIT <- factor(ADMI$AVISIT)

# Define key variables for ANCOVA analysis
 vars <- set_vars(
  subjid = "USUBJID",
  visit = "AVISIT",
  group = "TRT",
  outcome = "CHG",
  covariates = c("BASE", "STRATA", "REGION")  # Covariates for adjustment
 )

# Specify the imputation method (Bayesian) - need for pool step
method <- rbmi::method_bayes(
  n_samples = N_IMPUTATIONS,
  control = rbmi::control_bayes(
    warmup = BURN_IN,
    thin = BURN_BETWEEN
    )
  )

# Perform ANCOVA Analysis on Each Imputed Dataset
ana_obj_ancova <- analyse_mi_data(
  data = ADMI,
  vars = vars,
  method = method,
  fun = ancova,  # Apply ANCOVA
  delta = NULL   # No sensitivity analysis adjustment
)

pool_obj_ancova <- pool(ana_obj_ancova)
tidy_df <- tidy_pool_obj(pool_obj_ancova)

# Print tidy data frames
print(tidy_df)


[Package rbmiUtils version 0.1.4 Index]