prior_weightfunction {BayesTools} | R Documentation |
Creates a prior distribution for a weight function
Description
prior_weightfunction
creates a prior distribution for fitting
a RoBMA selection model. The prior can be visualized by the plot
function.
Usage
prior_weightfunction(distribution, parameters, prior_weights = 1)
Arguments
distribution |
name of the prior distribution. The possible options are
|
parameters |
list of appropriate parameters for a given
|
prior_weights |
prior odds associated with a given distribution. The model fitting function usually creates models corresponding to all combinations of prior distributions for each of the model parameters, and sets the model priors odds to the product of its prior distributions. |
Details
Constrained cases of weight functions can be specified by adding
".fixed" after the distribution name, i.e., "two.sided.fixed"
and
"one.sided.fixed"
. In these cases, the functions are specified using
steps
and omega
parameters, where the omega
parameter
is a vector of weights that corresponds to the relative publication probability
(i.e., no parameters are estimated).
Value
prior_weightfunction
returns an object of class 'prior'.
See Also
Examples
p1 <- prior_weightfunction("one-sided", parameters = list(steps = c(.05, .10), alpha = c(1, 1, 1)))
# the prior distribution can be visualized using the plot function
# (see ?plot.prior for all options)
plot(p1)