step1_down_basic {AccelStab} | R Documentation |
Basic version Step1 Down Model
Description
Quickly fit the one-step Šesták–Berggren kinetic model.
Usage
step1_down_basic(
data,
y,
.time,
K = NULL,
C = NULL,
validation = NULL,
parms = NULL,
reparameterisation = FALSE,
zero_order = FALSE,
...
)
Arguments
data |
Dataframe containing accelerated stability data (required). |
y |
Name of decreasing variable (e.g. concentration) contained within data (required). |
.time |
Time variable contained within data (required). |
K |
Kelvin variable (numeric or column name) (optional). |
C |
Celsius variable (numeric or column name) (optional). |
validation |
Validation dummy variable, the column must contain only 1s and 0s, 1 for validation data and 0 for fit data. (column name) (optional). |
parms |
Starting values for the parameters as a list - k1, k2, k3, and c0. |
reparameterisation |
Use alternative parameterisation of the one-step model which aims to reduce correlation between k1 and k2. |
zero_order |
Set kinetic order, k3, to zero (straight lines). |
... |
Further arguments to passed to minpack.lm. |
Details
Fit the one-step Šesták–Berggren kinetic (non-linear) model using accelerated stability data that has been stored in an R data frame. Only the model fit object is returned and a summary of the model fit is printed in the console, allowing for more rapid testing than step1_down(). Kinetic parameters (k1, k2 and, if used, k3) are retained in the model even if one or more of these parameters turn out to be non-significant. Further arguments relating to model fitting, such as setting lower bounds for one or more model parameters, may be passed.
Value
The fit object
Examples
#load antigenicity and potency data.
data(antigenicity)
data(potency)
#Use of the step1_down_basic function with C column defined.
fit1 <- step1_down_basic(data = antigenicity, y = "conc", .time = "time", C = "Celsius")
#Basic use of the step1_down_basic function with K column defined & Validation data segmented out.
fit2 <- step1_down_basic(data = antigenicity, y = "conc", .time = "time", K = "K",
validation = "validA")
#When zero_order = FALSE, the output suggests using zero_order = TRUE for Potency dataset.
fit3 <- step1_down_basic(data = potency, y = "Potency", .time = "Time",C = "Celsius",
reparameterisation = FALSE, zero_order = TRUE)
#reparameterisation is TRUE.
fit4 <- step1_down_basic(data = antigenicity, y = "conc", .time = "time",C = "Celsius",
reparameterisation = TRUE)
#Use a custom lower bound for k1 (default is 0).
fit5 <- step1_down_basic(data = potency, y = "Potency", .time = "Time", C = "Celsius",
reparameterisation = TRUE, zero_order = TRUE, lower = c(-Inf, 0, 0))