BayesGA {bayesestdft} | R Documentation |
Estimating the Student's t degrees of freedom (dof) with a Gamma Prior over the dof
Description
BayesGA
samples from the posterior distribution of the degrees of freedom (dof) with Gamma prior endowed upon the dof, using a random walk Metropolis (RMW) algorithm.
Usage
BayesGA(y, ini.nu = 1, S = 1000, delta = 0.001, a = 1, b = 0.1)
Arguments
y |
an N-dimensional vector of continuous observations supported on the real-line |
ini.nu |
the initial posterior sample value of the degrees of freedom (default is 1) |
S |
the number of posterior samples (default is 1000) |
delta |
the step size for the respective sampling engines (default is 0.001) |
a |
rate parameter of Gamma prior (default is 1, corresponds to an Exponential prior) |
b |
rate parameter of Gamma prior (default is 0.1) |
Value
A vector of posterior sample estimates
res |
an S-dimensional vector with the posterior samples |
References
Lee, S. Y. (2022). "The Use of a Log-Normal Prior for the Student t-Distribution", Axioms, doi:10.3390/axioms11090462
Fernández, C., Steel, M. F. (1998). "On Bayesian modeling of fat tails and skewness", Journal of the American Statistical Association, doi:10.1080/01621459.1998.10474117
Juárez, M. A., Steel, M. F. (2010). "Model-Based Clustering of Non-Gaussian Panel Data Based on Skew-t Distributions", Journal of Business and Economic Statistics, doi:10.1198/jbes.2009.07145
Examples
# data from Student's t-distribution with dof = 0.1
y = rt(n = 100, df = 0.1)
# running the random walk Metropolis algorithm with default settings
nu = BayesGA(y)
# reporting the posterior mean estimate of the dof
mean(nu)
# application to log-return (daily index values) of United States (S&P500)
data(index_return)
# log-returns of United States
index_return_US <- dplyr::filter(index_return, Country == "United States")
y = index_return_US$log_return_rate
# running the random walk Metropolis algorithm with default settings
nu = BayesGA(y)
# reporting the posterior mean estimate of the dof from the log-return data of US
mean(nu)