%global __brp_check_rpaths %{nil} %global __requires_exclude ^libmpi %global packname slendr %global packver 1.1.0 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 1.1.0 Release: 1%{?dist}%{?buildtag} Summary: A Simulation Framework for Spatiotemporal Population Genetics License: MIT + file LICENSE URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 3.6.0 Requires: R-core >= 3.6.0 BuildArch: noarch BuildRequires: R-CRAN-ggplot2 BuildRequires: R-CRAN-dplyr BuildRequires: R-CRAN-purrr BuildRequires: R-CRAN-readr BuildRequires: R-CRAN-magrittr BuildRequires: R-CRAN-reticulate BuildRequires: R-CRAN-tidyr BuildRequires: R-CRAN-png BuildRequires: R-CRAN-ijtiff BuildRequires: R-CRAN-ape BuildRequires: R-CRAN-shinyWidgets BuildRequires: R-CRAN-shiny BuildRequires: R-CRAN-scales BuildRequires: R-CRAN-digest BuildRequires: R-CRAN-ggrepel Requires: R-CRAN-ggplot2 Requires: R-CRAN-dplyr Requires: R-CRAN-purrr Requires: R-CRAN-readr Requires: R-CRAN-magrittr Requires: R-CRAN-reticulate Requires: R-CRAN-tidyr Requires: R-CRAN-png Requires: R-CRAN-ijtiff Requires: R-CRAN-ape Requires: R-CRAN-shinyWidgets Requires: R-CRAN-shiny Requires: R-CRAN-scales Requires: R-CRAN-digest Requires: R-CRAN-ggrepel %description A framework for simulating spatially explicit genomic data which leverages real cartographic information for programmatic and visual encoding of spatiotemporal population dynamics on real geographic landscapes. Population genetic models are then automatically executed by the 'SLiM' software by Haller et al. (2019) behind the scenes, using a custom built-in simulation 'SLiM' script. Additionally, fully abstract spatial models not tied to a specific geographic location are supported, and users can also simulate data from standard, non-spatial, random-mating models. These can be simulated either with the 'SLiM' built-in back-end script, or using an efficient coalescent population genetics simulator 'msprime' by Baumdicker et al. (2022) with a custom-built 'Python' script bundled with the R package. Simulated genomic data is saved in a tree-sequence format and can be loaded, manipulated, and summarised using tree-sequence functionality via an R interface to the 'Python' module 'tskit' by Kelleher et al. (2019) . Complete model configuration, simulation and analysis pipelines can be therefore constructed without a need to leave the R environment, eliminating friction between disparate tools for population genetic simulations and data analysis. %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true [ -d %{packname}/src ] && find %{packname}/src/Make* -type f -exec \ sed -i 's@-g0@@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}