confidence_grid {SimBaRepro} | R Documentation |
confidence_grid
Description
returns the indicator array
Usage
confidence_grid(
alpha,
lower_bds,
upper_bds,
seeds,
generating_fun,
s_obs,
tol,
resolution,
theta_init = NULL,
T_stat = ma_depth
)
Arguments
alpha |
A numeric representing the significance level of the test. |
lower_bds |
A vector containing the lower bounds for the parameter search space. |
upper_bds |
A vector containing the upper bounds for the parameter search space. |
seeds |
A matrix (or array) of seeds for generating artificial statistics. |
generating_fun |
A function that takes the random seeds above and a parameter in the search space as inputs to generate artificial statistics. |
s_obs |
A vector representing the observed statistic. |
tol |
A numeric specifying the tolerance of the confidence interval. |
resolution |
An integer specifying the mesh number of the search space. |
theta_init |
A vector specifying the starting point for the initial |
T_stat |
Default to the Mahalanobis distance. See Vignette for detailed explanation. |
Value
A list containing an indicator array (ind_array
) representing the confidence set, the confidence set lower bounds (updated_lower_bds
), and the confidence set upper bounds (updated_upper_bds
).
Examples
### Note that the examples may take a few seconds to run.
### Regular normal
set.seed(123)
n <- 50 # sample size
R <- 50 # Repro sample size (should be at least 200 for accuracy in practice)
alpha <- .05 # significance level
tol <- 0.01 # tolerance for the confidence set (use smaller tolerance in practice)
s_obs <- c(1.12, 0.67) # the observed sample mean
seeds <- matrix(rnorm(R * (n + 2)), nrow = R, ncol = n + 2) # pre-generated seeds
# this function computes the repro statistics given the seeds and the parameter
s_sample <- function(seeds, theta) {
# generate the raw data points
raw_data <- theta[1] + sqrt(theta[2]) * seeds[, 1:n]
# compute the regular statistics
s_mean <- apply(raw_data, 1, mean)
s_var <- apply(raw_data, 1, var)
return(cbind(s_mean, s_var))
}
lower_bds <- c(0.5, 0.3) # lower bounds for the parameter search region
upper_bds <- c(1.5, 1.3) # upper bounds for the parameter search region
resolution = 10 # resolution of the grid
result <- confidence_grid(alpha, lower_bds, upper_bds, seeds, s_sample, s_obs, tol, resolution)
print(result$ind_array)
print(result$search_lower_bds)
print(result$search_upper_bds)