%global packname iCellR %global packver 1.5.1 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 1.5.1 Release: 1%{?dist} Summary: Analyzing High-Throughput Single Cell Sequencing Data License: GPL-2 URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 3.3.0 Requires: R-core >= 3.3.0 BuildArch: noarch BuildRequires: R-CRAN-ggplot2 BuildRequires: R-CRAN-plotly BuildRequires: R-Matrix BuildRequires: R-CRAN-Rtsne BuildRequires: R-CRAN-gridExtra BuildRequires: R-CRAN-ggrepel BuildRequires: R-CRAN-ggpubr BuildRequires: R-CRAN-scatterplot3d BuildRequires: R-CRAN-RColorBrewer BuildRequires: R-CRAN-knitr BuildRequires: R-CRAN-NbClust BuildRequires: R-CRAN-shiny BuildRequires: R-CRAN-pheatmap BuildRequires: R-CRAN-ape BuildRequires: R-CRAN-ggdendro BuildRequires: R-CRAN-plyr BuildRequires: R-CRAN-reshape BuildRequires: R-CRAN-Hmisc BuildRequires: R-CRAN-htmlwidgets BuildRequires: R-methods BuildRequires: R-CRAN-uwot BuildRequires: R-CRAN-hdf5r BuildRequires: R-CRAN-progress BuildRequires: R-CRAN-igraph BuildRequires: R-CRAN-data.table Requires: R-CRAN-ggplot2 Requires: R-CRAN-plotly Requires: R-Matrix Requires: R-CRAN-Rtsne Requires: R-CRAN-gridExtra Requires: R-CRAN-ggrepel Requires: R-CRAN-ggpubr Requires: R-CRAN-scatterplot3d Requires: R-CRAN-RColorBrewer Requires: R-CRAN-knitr Requires: R-CRAN-NbClust Requires: R-CRAN-shiny Requires: R-CRAN-pheatmap Requires: R-CRAN-ape Requires: R-CRAN-ggdendro Requires: R-CRAN-plyr Requires: R-CRAN-reshape Requires: R-CRAN-Hmisc Requires: R-CRAN-htmlwidgets Requires: R-methods Requires: R-CRAN-uwot Requires: R-CRAN-hdf5r Requires: R-CRAN-progress Requires: R-CRAN-igraph Requires: R-CRAN-data.table %description A toolkit that allows scientists to work with data from single cell sequencing technologies such as scRNA-seq, scVDJ-seq and CITE-Seq. Single (i) Cell R package ('iCellR') provides unprecedented flexibility at every step of the analysis pipeline, including normalization, clustering, dimensionality reduction, imputation, visualization, and so on. Users can design both unsupervised and supervised models to best suit their research. In addition, the toolkit provides 2D and 3D interactive visualizations, differential expression analysis, filters based on cells, genes and clusters, data merging, normalizing for dropouts, data imputation methods, correcting for batch differences, pathway analysis, tools to find marker genes for clusters and conditions, predict cell types and pseudotime analysis. See Khodadadi-Jamayran, et al (2020) and Khodadadi-Jamayran, et al (2020) for more details. %prep %setup -q -c -n %{packname} find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css %files %dir %{rlibdir}/%{packname} %doc %{rlibdir}/%{packname}/html %{rlibdir}/%{packname}/Meta %{rlibdir}/%{packname}/help %{rlibdir}/%{packname}/data %{rlibdir}/%{packname}/DESCRIPTION %{rlibdir}/%{packname}/NAMESPACE %{rlibdir}/%{packname}/R %doc %{rlibdir}/%{packname}/CITATION %{rlibdir}/%{packname}/extdata %{rlibdir}/%{packname}/INDEX