saery-package {saery} | R Documentation |
Small Area Estimation for Rao and Yu model
Description
A complete set of functions to calculate several eblups estimators and its mean square errors. All estimators are based in area-level linear mixed model introduced by Rao and Yu in 1994 (see documentation). Saery package are developed to fit the model with REML method.
Details
Package: | saery |
Type: | Package |
Version: | 2.0 |
Date: | 2025-02-06 |
License: | GPL-2 |
The main functions of the saery package are fit.saery
and eblup.saery
.
The function fit.saery
is used to fit the correct model for three options. eblup.saery
calculates the eblup and mse for the model.
Author(s)
Esteban Cabello Garcia, Maria Dolores Esteban Lefler, Domingo Morales Gonzalez, Agustin Perez Martin
Maintainer: Perez Agustin <agustin.perez@umh.es>
References
Rao, J.N.K., Yu, M., 1994. Small area estimation by combining time series and cross sectional data. Canadian Journal of Statistics 22, 511-528.
Esteban, M.D., Morales, D., Perez, A., Santamaria, L., 2012. Small area estimation of poverty proportions under area-level time models. Computational Statistics and Data Analysis, 56 (10), pp. 2840-2855.
Examples
sigma2edi <- datos[,6]
X <- as.matrix(datos[,5])
ydi <- datos[,3]
D <- length(unique(datos[,1]))
md <- rep(length(unique(datos[,2])), D)
output.fit.ar1 <- fit.saery(X, ydi, D, md, sigma2edi, "AR", 0.9)
output.fit.ar1
#For computational reasons B is too low. We recomend to increase up to 100
eblup.output.ar1 <- eblup.saery(X, ydi, D, md, sigma2edi, "a", plot = TRUE, B = 2)
eblup.output.ar1