sbeta {skewunit} | R Documentation |
The symmetrical beta distribution.
Description
Density, distribution function and random generation for the symmetrical beta distribution.
Usage
dsbeta(x, delta=1, log=FALSE)
psbeta(q, delta=1, lower.tail=TRUE, log.p=FALSE)
rsbeta(n, delta=1)
Arguments
x , q |
vector of quantiles. |
n |
number of observations. If length(n) > 1, the length is taken to be the number required. |
delta |
shape parameter (by default is 1). |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
Details
The symmetrical beta distribution has density
f(x)=\frac{1}{B(\delta,\delta)}x^{\delta-1}(1-x)^{\delta-1}, \quad x \in (0,1), \delta>0,
where B(a,b)
denotes the beta function. Its cumulative distribution function is
F(x)=I_x(\delta,\delta), \quad x \in (0,1).
Value
dsbeta gives the density, psbeta gives the distribution function, and rsbeta generates random deviates. The length of the result is determined by n for rasin, and is the maximum of the lengths of the numerical arguments for the other functions. The numerical arguments other than n are recycled to the length of the result. Only the first elements of the logical arguments are used.
Author(s)
Diego Gallardo
Examples
dsbeta(0.5, 1.2)
psbeta(0.5, 0.5)
rsbeta(5, 1.5)