Probability Density Function of TPXG Distribution {TPXG} | R Documentation |
Probability Density Function of TPPXG Distribution
Description
Computes the probability density function of the Two Parameter Xgamma distribution for a given set positive real values.
Usage
dtpxg(x, alpha = 1, theta = 1)
Arguments
x |
A numeric vector containing strictly positive values. |
alpha |
A positive real number. |
theta |
A positive real number. |
Details
Let U\sim \text{TPXG}(\alpha,\theta)
.Then the probability density function of U is given by:
f(u;\alpha,\theta)=\frac{\theta^2}{\alpha+\theta}(1+\frac{\alpha \theta}{2}u^2)e^{-\theta u}
\quad \theta,\alpha > 0 , u > 0
Value
A numeric vector containing the probability density function value of the TPXG distribution for each of the given values of x.
Author(s)
Nikolaos Kontemeniotis.
R implementation and documentation: Nikolaos Kontemeniotis kontemeniotisn@gmail.com and Michail Tsagris mtsagris@uoc.gr.
References
"Sen, S., Chandra, N. and Maiti, S. S. (2018). On properties and applications of a two-parameter XGamma distribution. Journal of Statistical Theory and Applications, 17(4): 674–685."
See Also
Examples
x <- rtpxg(100)
dtpxg(x, 1, 1)