Probability Density Function of TPXG Distribution {TPXG}R Documentation

Probability Density Function of TPPXG Distribution

Description

Computes the probability density function of the Two Parameter Xgamma distribution for a given set positive real values.

Usage

dtpxg(x, alpha = 1, theta = 1)

Arguments

x

A numeric vector containing strictly positive values.

alpha

A positive real number.

theta

A positive real number.

Details

Let U\sim \text{TPXG}(\alpha,\theta).Then the probability density function of U is given by:

f(u;\alpha,\theta)=\frac{\theta^2}{\alpha+\theta}(1+\frac{\alpha \theta}{2}u^2)e^{-\theta u} \quad \theta,\alpha > 0 , u > 0

Value

A numeric vector containing the probability density function value of the TPXG distribution for each of the given values of x.

Author(s)

Nikolaos Kontemeniotis.

R implementation and documentation: Nikolaos Kontemeniotis kontemeniotisn@gmail.com and Michail Tsagris mtsagris@uoc.gr.

References

"Sen, S., Chandra, N. and Maiti, S. S. (2018). On properties and applications of a two-parameter XGamma distribution. Journal of Statistical Theory and Applications, 17(4): 674–685."

See Also

rtpxg,qtpxg,ptpxg

Examples

x <- rtpxg(100)
dtpxg(x, 1, 1)

[Package TPXG version 1.0 Index]