grmsem.var {grmsem} | R Documentation |
grmsem variance estimation function
Description
This function estimates genetic and residual variances, and genetic correlations.
Usage
grmsem.var(grmsem.out = NULL)
Arguments
grmsem.out |
A grmsem.fit or grmsem.stpar object. Default NULL. |
Details
The grmsem.var
function can be used to estimate genetic and residual covariance and correlations for DS, Cholesky, IP and IPC models, based on
grmsem.fit
or grmsem.stpar
objects. For the latter, the diagonal elements of the VA output matrix
detail the heritabilities. Except for directly estimated variance components using the DS model, all standard errors
are derived with the Delta method.
Value
grmsem.var
returns a list object consisting of the following matrices:
VA |
estimated genetic variance |
VA.se |
standard error of estimated genetic variance |
VE |
estimated residual variance |
VE.se |
standard error of estimated residual variance |
VP |
estimated total phenotypic variance |
RG |
genetic correlation |
RG.se |
standard error genetic correlation |
RE |
residual correlation |
RG.se |
standard error residual correlation |
Examples
#(runtime should be less than one minute)
out <- grmsem.fit(ph.small, G.small, LogL = TRUE, estSE = TRUE)
var.out <- grmsem.var(out)
print(var.out)