rankShiftPlot {giniCI} | R Documentation |
Rank Shift Plot
Description
Generate rank shift plots for ranking comparison.
Usage
rankShiftPlot(object, p.cols = c("black", "red"), p.shapes = c(1, 8),
p.sizes = c(1.5, 1.5), s.col = "black",
s.type = 1, s.width = 0.5, max.tick = 50,
ref.lab = "Reference ranking", alt.lab = "Alternative ranking",
y.lab = "Ranking", combine = FALSE, nr = NULL, nc = NULL)
Arguments
object |
an object of class |
p.cols |
a vector with two elements denoting the color codes for
reference and alternative positions. See ‘Color Specification’ in
|
p.shapes |
a vector with two elements denoting the shapes for reference
and alternative positions. See ‘pch values’ in |
p.sizes |
a vector with two elements denoting the sizes for reference and alternative positions. |
s.col |
color code for rank shift segments. See ‘Color
Specification’ in |
s.type |
line type for rank shift segments. See ‘Line Type
Specification’ in |
s.width |
line width for rank shift segments. |
max.tick |
a positive integer to control the maximum number of axis
ticks. The default value is |
ref.lab |
name of the reference index. |
alt.lab |
name of the alternative index. |
y.lab |
label of the y-axis. |
combine |
a logical value indicating whether to generate a grid that
combines plots from different time factors (If |
nr |
(optional) number of rows in the plot grid. |
nc |
(optional) number of columns in the plot grid. |
Value
A plot displaying shifts in ranking between two indices. In case object$time
is not NULL
, a list of plots for different time factors and the combined
grid (if combine = TRUE
) will be returned. The function does not print the
return value if it is assigned to an object. Use print
with the storing
object to produce the plot.
Author(s)
Viet Duong Nguyen, Chiara Gigliarano, Mariateresa Ciommi
See Also
rankComp
, rankScatterPlot
, rankRankPlot
.
Examples
data(bli)
# Goalpost normalization
bli.pol = c("neg", "pos", "pos", "pos", "pos", "neg",
"pos", "pos", "pos", "neg", "pos")
bli.norm.2014 <- normalize(inds = bli[, 3:13], method = "goalpost",
ind.pol = bli.pol, time = bli$YEAR,
ref.time = 2014)
# Composite indices
ci.gini <- giniCI(bli.norm.2014, method = "gini",
ci.pol = "pos", time = bli$YEAR, ref.time = 2014,
only.ci = TRUE)
ci.reci <- giniCI(bli.norm.2014, method = "reci", agg = "geo",
ci.pol = "pos", time = bli$YEAR, ref.time = 2014,
only.ci = TRUE)
# Ranking comparison plots
ci.comp <- rankComp(ci.gini, ci.reci, id = bli$COUNTRY, time = bli$YEAR)
rankScatterPlot(ci.comp)$'2014'
rankShiftPlot(ci.comp)$'2015'
rankRankPlot(ci.comp)$'2016'
# Storing and printing
p.scatter <- rankScatterPlot(ci.comp, combine = TRUE, max.overlaps = 20)
print(p.scatter$'2017') # or: print(p.scatter[[4]])
print(p.scatter$'comb') # or: print(p.scatter[[5]])