cal_estimate_none {probably} | R Documentation |
Do not calibrate model predictions.
Description
Do not calibrate model predictions.
Usage
cal_estimate_none(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
parameters = NULL,
...
)
## S3 method for class 'data.frame'
cal_estimate_none(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
parameters = NULL,
...,
.by = NULL
)
## S3 method for class 'tune_results'
cal_estimate_none(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
parameters = NULL,
...
)
## S3 method for class 'grouped_df'
cal_estimate_none(.data, truth = NULL, estimate = NULL, parameters = NULL, ...)
Arguments
.data |
An ungrouped |
truth |
The column identifier for the true outcome results (that is factor or numeric). This should be an unquoted column name. |
estimate |
A vector of column identifiers, or one of |
parameters |
(Optional) An optional tibble of tuning parameter values
that can be used to filter the predicted values before processing. Applies
only to |
... |
Additional arguments passed to the models or routines used to calculate the new probabilities. |
.by |
The column identifier for the grouping variable. This should be
a single unquoted column name that selects a qualitative variable for
grouping. Default to |
Details
This function does nothing to the predictions. It is used as a reference when tuning over different calibration methods.
Examples
nada <- cal_estimate_none(boosting_predictions_oob, outcome, .pred)
nada
identical(
cal_apply(boosting_predictions_oob, nada),
boosting_predictions_oob
)
# ------------------------------------------------------------------------------
nichts <- cal_estimate_none(segment_logistic, Class)
identical(
cal_apply(segment_logistic, nichts),
segment_logistic
)