spcrl {OPCreg}R Documentation

The stochastic principal component regression with varying learning-rate can handle online data sets.

Description

The stochastic principal component regression with varying learning-rate can handle online data sets.

Usage

spcrl(data, m, eta, alpha)

Arguments

data

is a online data set

m

is the number of principal component

eta

is the proportion of online data to total data

alpha

is the step size

Value

T2,T2k,V,Vhat,lambdahat,time

Examples


library(MASS)
n <- 2000
p <- 20
m <- 9
mu <- t(matrix(rep(runif(p, 0, 1000), p, n)))
mu0 <- as.matrix(runif(p, 0))  
sigma0 <- diag(runif(p, 1, 10)) 
ro <- as.matrix(c(runif(round(p/2), -1, -0.8), runif(p - round(p/2), 0.8, 1)))
R0 <- ro %*% t(ro)
diag(R0) <- 1
Sigma0 <- sigma0 %*% R0 %*% sigma0 
x <- mvrnorm(n, mu0, Sigma0)
colnames(x) <- paste0("x", 1:p)
e <- rnorm(n, 0, 1)
B <- sample(1:3, (p + 1), replace = TRUE)
en <- matrix(rep(1, n), ncol = 1)
y <- cbind(en, x) %*% B + e
colnames(y) <- "y"
data <- data.frame(cbind(y, x))
spcrl(data = data, m = m, eta = 0.8, alpha = 0.5)


[Package OPCreg version 3.0.0 Index]