%global __brp_check_rpaths %{nil} %global __requires_exclude ^libmpi %global packname rms %global packver 6.9-0 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 6.9.0 Release: 1%{?dist}%{?buildtag} Summary: Regression Modeling Strategies License: GPL (>= 2) URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 4.4.0 Requires: R-core >= 4.4.0 BuildRequires: R-CRAN-Hmisc >= 5.2.1 BuildRequires: R-CRAN-nlme >= 3.1.123 BuildRequires: R-CRAN-htmlTable >= 1.11.0 BuildRequires: R-methods BuildRequires: R-CRAN-survival BuildRequires: R-CRAN-quantreg BuildRequires: R-CRAN-ggplot2 BuildRequires: R-CRAN-SparseM BuildRequires: R-CRAN-rpart BuildRequires: R-CRAN-polspline BuildRequires: R-CRAN-multcomp BuildRequires: R-CRAN-htmltools BuildRequires: R-CRAN-MASS BuildRequires: R-CRAN-cluster BuildRequires: R-CRAN-digest BuildRequires: R-CRAN-colorspace BuildRequires: R-CRAN-knitr BuildRequires: R-grDevices Requires: R-CRAN-Hmisc >= 5.2.1 Requires: R-CRAN-nlme >= 3.1.123 Requires: R-CRAN-htmlTable >= 1.11.0 Requires: R-methods Requires: R-CRAN-survival Requires: R-CRAN-quantreg Requires: R-CRAN-ggplot2 Requires: R-CRAN-SparseM Requires: R-CRAN-rpart Requires: R-CRAN-polspline Requires: R-CRAN-multcomp Requires: R-CRAN-htmltools Requires: R-CRAN-MASS Requires: R-CRAN-cluster Requires: R-CRAN-digest Requires: R-CRAN-colorspace Requires: R-CRAN-knitr Requires: R-grDevices %description Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. 'rms' is a collection of functions that assist with and streamline modeling. It also contains functions for binary and ordinal logistic regression models, ordinal models for continuous Y with a variety of distribution families, and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. 'rms' works with almost any regression model, but it was especially written to work with binary or ordinal regression models, Cox regression, accelerated failure time models, ordinary linear models, the Buckley-James model, generalized least squares for serially or spatially correlated observations, generalized linear models, and quantile regression. %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true [ -d %{packname}/src ] && find %{packname}/src/Make* -type f -exec \ sed -i 's@-g0@@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}