%global __brp_check_rpaths %{nil} %global __requires_exclude ^libmpi %global packname ecocbo %global packver 0.13.0 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 0.13.0 Release: 1%{?dist}%{?buildtag} Summary: Calculating Optimum Sampling Effort in Community Ecology License: GPL (>= 3) URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 4.1.0 Requires: R-core >= 4.1.0 BuildArch: noarch BuildRequires: R-CRAN-ggplot2 BuildRequires: R-CRAN-ggpubr BuildRequires: R-CRAN-sampling BuildRequires: R-stats BuildRequires: R-CRAN-rlang BuildRequires: R-CRAN-dplyr BuildRequires: R-CRAN-tidyr BuildRequires: R-CRAN-tidyselect BuildRequires: R-CRAN-parabar BuildRequires: R-CRAN-parallelly BuildRequires: R-CRAN-vegan BuildRequires: R-CRAN-SSP BuildRequires: R-CRAN-plotly Requires: R-CRAN-ggplot2 Requires: R-CRAN-ggpubr Requires: R-CRAN-sampling Requires: R-stats Requires: R-CRAN-rlang Requires: R-CRAN-dplyr Requires: R-CRAN-tidyr Requires: R-CRAN-tidyselect Requires: R-CRAN-parabar Requires: R-CRAN-parallelly Requires: R-CRAN-vegan Requires: R-CRAN-SSP Requires: R-CRAN-plotly %description A system for calculating the optimal sampling effort, based on the ideas of "Ecological cost-benefit optimization" as developed by A. Underwood (1997, ISBN 0 521 55696 1). Data is obtained from simulated ecological communities with prep_data() which formats and arranges the initial data, and then the optimization follows the following procedure of four functions: (1) prep_data() takes the original dataset and creates simulated sets that can be used as a basis for estimating statistical power and type II error. (2) sim_beta() is used to estimate the statistical power for the different sampling efforts specified by the user. (3) sim_cbo() calculates then the optimal sampling effort, based on the statistical power and the sampling costs. Additionally, (4) scompvar() calculates the variation components necessary for (5) Underwood_cbo() to calculate the optimal combination of number of sites and samples depending on either an economic budget or on a desired statistical accuracy. Lastly, (6) plot_power() helps the user visualize the results of sim_beta(). %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true [ -d %{packname}/src ] && find %{packname}/src/Make* -type f -exec \ sed -i 's@-g0@@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}