Bayesian Filtering Library Generated from SVN r
Public Member Functions | Protected Attributes | List of all members
AnalyticMeasurementModelGaussianUncertainty Class Reference

#include <analyticmeasurementmodel_gaussianuncertainty.h>

Inheritance diagram for AnalyticMeasurementModelGaussianUncertainty:
MeasurementModel< MatrixWrapper::ColumnVector, MatrixWrapper::ColumnVector > LinearAnalyticMeasurementModelGaussianUncertainty NonLinearAnalyticMeasurementModelGaussianUncertainty_Ginac LinearAnalyticMeasurementModelGaussianUncertainty_Implicit

Public Member Functions

 AnalyticMeasurementModelGaussianUncertainty (AnalyticConditionalGaussian *Measurementpdf=NULL)
 Constructor. More...
 
virtual ~AnalyticMeasurementModelGaussianUncertainty ()
 Destructor.
 
virtual MatrixWrapper::Matrix df_dxGet (const MatrixWrapper::ColumnVector &u, const MatrixWrapper::ColumnVector &x)
 Returns H-matrix. More...
 
virtual MatrixWrapper::ColumnVector PredictionGet (const MatrixWrapper::ColumnVector &u, const MatrixWrapper::ColumnVector &x)
 Returns estimation of measurement. More...
 
virtual MatrixWrapper::SymmetricMatrix CovarianceGet (const MatrixWrapper::ColumnVector &u, const MatrixWrapper::ColumnVector &x)
 Returns covariance on the measurement. More...
 
int MeasurementSizeGet () const
 Get Measurement Size.
 
bool SystemWithoutSensorParams () const
 Number of Conditional Arguments.
 
ConditionalPdf< MatrixWrapper::ColumnVector, MatrixWrapper::ColumnVector > * MeasurementPdfGet ()
 Get the MeasurementPDF.
 
void MeasurementPdfSet (ConditionalPdf< MatrixWrapper::ColumnVector, MatrixWrapper::ColumnVector > *pdf)
 Set the MeasurementPDF. More...
 
MatrixWrapper::ColumnVector Simulate (const MatrixWrapper::ColumnVector &x, const MatrixWrapper::ColumnVector &s, const SampleMthd sampling_method=SampleMthd::DEFAULT, void *sampling_args=NULL)
 Simulate the Measurement, given a certain state, and an input. More...
 
MatrixWrapper::ColumnVector Simulate (const MatrixWrapper::ColumnVector &x, const SampleMthd sampling_method=SampleMthd::DEFAULT, void *sampling_args=NULL)
 Simulate the system (no input system) More...
 
Probability ProbabilityGet (const MatrixWrapper::ColumnVector &z, const MatrixWrapper::ColumnVector &x, const MatrixWrapper::ColumnVector &s)
 Get the probability of a certain measurement. More...
 
Probability ProbabilityGet (const MatrixWrapper::ColumnVector &z, const MatrixWrapper::ColumnVector &x)
 Get the probability of a certain measurement. More...
 

Protected Attributes

ConditionalPdf< MatrixWrapper::ColumnVector, MatrixWrapper::ColumnVector > * _MeasurementPdf
 ConditionalPdf representing $ P(Z_k | X_{k}, U_{k}) $. More...
 
bool _systemWithoutSensorParams
 System with no sensor params?? More...
 

Detailed Description

Class representing all continuous analytic Measurement Models with additive Gaussian Uncertainty

Definition at line 30 of file analyticmeasurementmodel_gaussianuncertainty.h.

Constructor & Destructor Documentation

◆ AnalyticMeasurementModelGaussianUncertainty()

Constructor.

Parameters
MeasurementpdfConditionalPdf<S,T> representing $ P(Z_k |
X_{k} (, U_{k})) $
See also
MEASUREMENT_SIZE, STATE_SIZE, INPUT_SIZE, _MeasurementPdf

Member Function Documentation

◆ CovarianceGet()

virtual MatrixWrapper::SymmetricMatrix CovarianceGet ( const MatrixWrapper::ColumnVector &  u,
const MatrixWrapper::ColumnVector &  x 
)
virtual

◆ df_dxGet()

virtual MatrixWrapper::Matrix df_dxGet ( const MatrixWrapper::ColumnVector &  u,
const MatrixWrapper::ColumnVector &  x 
)
virtual

Returns H-matrix.

\[ H = \frac{df}{dx} \mid_{u,x} \]

used by extended kalman filter

Parameters
uThe value of the input in which the derivate is evaluated
xThe value in the state in which the derivate is evaluated

Reimplemented in LinearAnalyticMeasurementModelGaussianUncertainty, NonLinearAnalyticMeasurementModelGaussianUncertainty_Ginac, and LinearAnalyticMeasurementModelGaussianUncertainty_Implicit.

◆ MeasurementPdfSet()

void MeasurementPdfSet ( ConditionalPdf< MatrixWrapper::ColumnVector , MatrixWrapper::ColumnVector > *  pdf)
inherited

Set the MeasurementPDF.

Parameters
pdfa pointer to the measurement pdf

◆ PredictionGet()

virtual MatrixWrapper::ColumnVector PredictionGet ( const MatrixWrapper::ColumnVector &  u,
const MatrixWrapper::ColumnVector &  x 
)
virtual

◆ ProbabilityGet() [1/2]

Probability ProbabilityGet ( const MatrixWrapper::ColumnVector &  z,
const MatrixWrapper::ColumnVector &  x 
)
inherited

Get the probability of a certain measurement.

(measurement independent of input) gived a certain state and input

Parameters
zthe measurement value
xx current state of the system
Returns
the "probability" of the measurement

◆ ProbabilityGet() [2/2]

Probability ProbabilityGet ( const MatrixWrapper::ColumnVector &  z,
const MatrixWrapper::ColumnVector &  x,
const MatrixWrapper::ColumnVector &  s 
)
inherited

Get the probability of a certain measurement.

given a certain state and input

Parameters
zthe measurement value
xcurrent state of the system
sthe sensor param value
Returns
the "probability" of the measurement

◆ Simulate() [1/2]

MatrixWrapper::ColumnVector Simulate ( const MatrixWrapper::ColumnVector &  x,
const MatrixWrapper::ColumnVector &  s,
const SampleMthd  sampling_method = SampleMthd::DEFAULT,
void *  sampling_args = NULL 
)
inherited

Simulate the Measurement, given a certain state, and an input.

Parameters
xcurrent state of the system
ssensor parameter
Returns
Measurement generated by simulating the measurement model
Parameters
sampling_methodthe sampling method to be used while sampling from the Conditional Pdf describing the system (if not specified = DEFAULT)
sampling_argsSometimes a sampling method can have some extra parameters (eg mcmc sampling)
Note
Maybe the return value would better be a Sample<StateVar> instead of a StateVar

◆ Simulate() [2/2]

MatrixWrapper::ColumnVector Simulate ( const MatrixWrapper::ColumnVector &  x,
const SampleMthd  sampling_method = SampleMthd::DEFAULT,
void *  sampling_args = NULL 
)
inherited

Simulate the system (no input system)

Parameters
xcurrent state of the system
Returns
State where we arrive by simulating the measurement model
Note
Maybe the return value would better be a Sample<StateVar> instead of a StateVar
Parameters
sampling_methodthe sampling method to be used while sampling from the Conditional Pdf describing the system (if not specified = DEFAULT)
sampling_argsSometimes a sampling method can have some extra parameters (eg mcmc sampling)

Member Data Documentation

◆ _MeasurementPdf

ConditionalPdf<MatrixWrapper::ColumnVector ,MatrixWrapper::ColumnVector >* _MeasurementPdf
protectedinherited

ConditionalPdf representing $ P(Z_k | X_{k}, U_{k}) $.

Definition at line 62 of file measurementmodel.h.

◆ _systemWithoutSensorParams

bool _systemWithoutSensorParams
protectedinherited

System with no sensor params??

Definition at line 65 of file measurementmodel.h.


The documentation for this class was generated from the following file: