MathGL

for version 8.0

A.A. Balakin (http://mathgl.sourceforge.net/)

http://mathgl.sourceforge.net/

This manual is for MathGL (version 8.0), a collection of classes and routines for scientific
plotting. Please report any errors in this manual to mathgl.abalakin@gmail.org.

Copyright (©) 2008-2012 Alexey A. Balakin.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License.”

mailto:mathgl.abalakin@gmail.org

Table of Contents

1 Overview 1
1.1 What is MathGL? 1
1.2 MathGL featurescooi i 1
1.3 Installation......... ..o 2
1.4 Quick guide 3
1.5 Changes from v.1.% 4
1.6 Utilities for parsing MGL.......... . i 4
1.7 Thanks.o 5

2 MathGL examples....................ooiii... 6
2.1 BasSiC USAZE . .ttt vttt 7

2.1.1 Using MathGL window 7
2.1.2 Drawing to file oo 9
2.1.3 Animation....... ... i 10
2.1.4 Drawing in MeMOTYveee ettt iiiieeae e 12
2.1.5 Draw and calculate........... ... o i i 13
2.1.6 Using QMathGL 15
2.1.7 OpenGL outpubo 16
2.1.8 MathGL and PyQt ... 18
2.1.9 MathGL and MPI...... .. . o 19
2.2 Advanced USAget 20
2.2.1 SUbPlotS. .o 21
2.2.2 Axisand ticks 23
2.2.3 Curvilinear coordinates........... ..o 27
2.2.4 ColoTbarsouii 29
2.2.5 Bounding box ... 30
2.2.6 Ternary axiS.ueiiiii 31
2.2.7 Text featuresoo i 32
2.2.8 Legend sample 35
2.2.9 Cutting sample. ... 36
2.3 Data handling...........o i 37
2.3.1 Array creation......... ..ot 37
2.3.2 Linking arrayooueiiiiiii i 39
2.3.3 Change data.ouiuuiiii e 39
2.4 Data plotting.coovuiii e 43
2.0 HInts. ..o 46
2.5.1 “Compound” graphics..........ccoviiiiieiiiieeniinaann. 46
2.5.2 Transparency and lighting 47
2.5.3 Types of transparencycoouuuieniiiieennieeann. 48
2.5.4 AxXiS projection 50
255 Adding fog ... oo 52
2.5.6 Lightingsample....... ... i 53
2.5.7 Using primitives.o 55

2.5.8 STFA sample. ..o e 58
2.5.9 Mapping visualization i 59
2.5.10 Data interpolation............coooiiiiiiiiiiiii i, 60
2.5.11 Making regular data............ ... 63
2.5.12 Making histogram i 64
2.5.13 Nonlinear fitting hints...........o .. 64
2.5.14 PDE solving hints......... i i 66
2.5.15 Drawing phase plain...........o i 70
2.5.16 Pulse properties......... .o 71
2.5.17 Using MGL parser. ...ttt 72
2.5.18 Using optionsuuiiiiiii i 74
2.5.19 “Templates” e 75
2.5.20 SEEreo IMAGE .« oo vttt e 76
2.5.21 Reduce memory USAZE v v vttt 77
2.5.22 Scanning file 7
2.5.23 Mixing bitmap and vector output......................... 78
2.6 FAQ . 78
General concepts 83
3.1 Coordinate axXest ein e 84
3.2 Color Styles . ..o 84
3.3 Line styles ... 84
3.4 Color SCheme. 86
3.5 Font styles 88
3.6 Textual formulaso i 89
3.7 Command OptionsS.coviiiiiiiii e 91
3.8 Interfaceso.uoo i 92
3.8.1 C/Fortran interface............ ... i 92
3.8.2 C++/Python interface ..., 93
MathGL core i, 94
4.1 Create and delete objects. ...l 94
4.2 Graphics Setupcovuii i 95
4.2.1 Transparency...........ii 95
4.22 Lighting. ... 96
4.2.3 O 97
4.2.4 Default sizes ... 98
4.25 Cutbingo 99
4.2.6 Font settings 99
4.2.7 Paletteand colors......... ... 100
4.2.8 Masks. ..o 101
4.2.9 Error handling o i 102
4.2.10 Stop drawing.oouuuiiini e 104
4.3 AXIS Settingst 104
4.3.1 Ranges (bounding box)...........coiiiiiiiiiiiiiiiiiit 104

4.3.2 Curved coordinates.coouuiiiin i 106

ii

4.3.3 TiCKS. ot 108
4.4 Subplots and rotation 111
4.5 Export picture....... ... 115

4.5.1 Export tofile.... ..o 116

4.5.2 Frames/Animation i 120

4.5.3 Bitmap in memory ... 121

4.5.4 Parallelization........... .. i 123
4.6 Background......... ... 123
4.7 Primitives. 124
4.8 Text printing.oooevimiii 129
4.9 Axis and Colorbar 131
410 Legend. ..o 134
411 1D plotting . . oo e e 135
4.12 2D plottingve i 149
4.13 3D plotting ... cooii 157
4.14 Dual plotting ... 161
4.15 Vector fields . ..o 166
4.16 Other plotting ... 173
4.17 Nonlinear fitting ... i 178
4.18 Data manipulation........... ... o i 181

Widget classes.................. 184
5.1 mgIWnd class 186
5.2 mgIDraw class. ... 188
5.3 FILMathGL class e 189
5.4 QMathGL classo 191
5.5 wxMathGL class 195

Data processing L. 199
6.1 Public variables.o i 199
6.2 Data constructor............. i 200
6.3 Data resizing....... ... 202
6.4 Data filling. ... 204
6.5 File I/O ..o 212
6.6 Make another data.......... ... 215
6.7 Datachangingo i 221
6.8 Interpolation......... ... 226
6.9 Data information.......... ... i i 227
6.10 Operators.ttt 231
6.11 Global functions ...t 232
6.12 Evaluate expressiono 241

6.13 Special data classes i 242

iii

7 MGL scripts.............. i 245

7.1 MGL definitiono e 245
7.2 Program flow commands i, 247
7.3 Special comments 249
7.4 LaTeX package. .. .oouuoiiii e 250
7.5 mglParse class ... 253
8 UDAV ... 257
8.1 UDAV OVEIVIEW . .. vt ittt ettt e e 257
8.2 UDAV dialogs. ..ot 259
8.3 UDAV hints.oouuiii e 263
9 Otherclasses............. 265
9.1 Define new kind of plot (mglBase class)........................ 266
9.2 User defined types (mglDataA class).........ooovviieiinia.. 272
9.3 mglColor class ..o 273
9.4 mglPoint class. 275
10 All samples............cooiiiiiiiiiiiii.. 277
10.1 Functions for initialization L. 277
10.2 Sample ‘BWave’t 279
10.3 Sample ‘@lpha’oiiiiii e 280
10.4 Sample ‘@pde’.o 281
10.5 Sample ‘@rea’.t e 283
10.6 Sample ‘@spect’ ... 284
10.7 Sample ‘@xial’t 285
10.8 Sample ‘@xis’. ..ot 286
10.9 Sample ‘background’ ...ttt 287
10.10 Sample ‘Darh’. ...ttt e 288
10.11 Sample barst 289
10.12 Sample Delt . ..ottt e 290
10.13 Sample ‘Deltc’ ..ot 291
10.14 Sample ‘bifurcation’ ...ttt 292
10.15 Sample Dox ..ot 293
10.16 Sample ‘boxplot’ot 294
10.17 Sample DOXS . .ottt e 295
10.18 Sample ‘candle’ooiiiii 296
10.19 Sample ‘chart’ 297
10.20 Sample ‘cloud’ttt 298
10.21 Sample ‘colorbar’.t 299
10.22 Sample ‘combined’. ...t 300
10.23 Sample ‘cones’ 301
10.24 Sample ‘Contt e 303
10.25 Sample ‘contd’ 303

10.26 Sample ‘Cont_XYZttt 304

10.27
10.28
10.29
10.30
10.31
10.32
10.33
10.34
10.35
10.36
10.37
10.38
10.39
10.40
10.41
10.42
10.43
10.44
10.45
10.46
10.47
10.48
10.49
10.50
10.51
10.52
10.53
10.54
10.55
10.56
10.57
10.58
10.59
10.60
10.61
10.62
10.63
10.64
10.65
10.66
10.67
10.68
10.69
10.70
10.71
10.72
10.73

Sample ‘contd’ ... 305
Sample ‘contf’ ... 306
Sample ‘contf3’ 307
Sample ‘contf_Xyz 308
Sample ‘Conts’ ... 309
Sample ‘Contv’ ... 310
Sample ‘correl’ 311
Sample ‘curveoor’ 312
Sample ‘cut’. ... 313
Sample ‘daisy’ 314
Sample ‘dat_diff i 315
Sample ‘dat_extra’.o 316
Sample ‘datal’oin 318
Sample ‘data’ ... 319
Sample ‘Acont’ ... 321
Sample ‘dens’.t 322
Sample ‘dens3’ 323
Sample ‘Aens_XyzZ’ttt 324
Sample ‘detect’ 325
Sample ‘dew’ 326
Sample ‘Aiffract’......oouiiiii e 327
Sample ‘dilate’t 330
Sample ‘Aots’. ... 332
Sample ‘earth’ttt 333
Sample ‘error’ 334
Sample ‘@rror2’ 336
Sample ‘@Xport’ 337
Sample ‘Fall 338
Sample ‘FeXport’ 339
Sample “Fit’ 343
Sample ‘flame2d’ooinii i 344
Sample FLow 345
Sample ‘FLoW3’ ...ttt 346
Sample “Fog . .. 347
Sample “Fonts’ovi 348
Sample ‘grad’. 349
Sample histot 350
Sample ‘Acon’. ... 351
Sample ‘Afs2d’ ... it 352
Sample ‘AfS3d ...t 353
Sample ‘Andirect’t 354
Sample ‘Anplot’ ...t 355
Sample ‘Aris’. 357
Sample Keept 357
Sample ‘Label’ ... 358
Sample ‘lamerey’........... ... 359
Sample ‘Tegend’eiiuiiniiiii i 360

10.74
10.75
10.76
10.77
10.78
10.79
10.80
10.81
10.82
10.83
10.84
10.85
10.86
10.87
10.88
10.89
10.90
10.91
10.92
10.93
10.94
10.95
10.96
10.97
10.98
10.99
10.100
10.101
10.102
10.103
10.104
10.105
10.106
10.107
10.108
10.109
10.110
10.111
10.112
10.113
10.114
10.115
10.116
10.117
10.118
10.119
10.120

Sample ‘Tight’ 361
Sample ‘L1ines’t 362
Sample ‘LogLog ..ottt 363
Sample ‘Map’.o 364
Sample Markt 365
Sample ‘Mask’.t 366
Sample ‘mesh’. 368
Sample ‘Minmax’oiutii i 369
Sample ‘MIirror’ 370
Sample ‘molecule’oiiiiiiiiiii 371
Sample ‘0de’ 373
Sample Ohlc 375
Sample ‘paraml’ 376
Sample ‘param2’ 377
Sample ‘param3’ 379
Sample ‘paramv’ 380
Sample ‘parser’ 382
Sample ‘pde’. ... 385
Sample ‘pendelta’. ...t 386
Sample Pipe’. ..t 387
Sample PLOt . .ot 388
Sample ‘Pmap’.vt i 389
Sample ‘primitives’ ...ttt 390
Sample ‘projection’o 392
Sample ‘projectiond’t 394
Sample ‘pulse’ttt 395
Sample ‘qo2dt 396
Sample ‘qQualityO’ttt 397
Sample ‘qualityl’t 401
Sample ‘quality2’ 404
Sample ‘qualityd’ 408
Sample ‘Qualityd’oiiuiiii 411
Sample ‘qQUalityB’ovutiiitiii 415
Sample ‘quality8’t 418
Sample ‘radar’oii 422
Sample ‘refill’o 423
Sample ‘region’ 425
Sample ‘scanfile’.........iiiiiiiiiii 426
Sample ‘Schemes’o 427
Sample ‘Section’t 429
Sample ‘several _Llight’.........c.oiiiiiiiiiiniineann.., 430
Sample ‘S01ve’ ... 431
Sample ‘Stem’. 433
Sample ‘Step . ..o 434
Sample ‘Stereo’ttt 435
Sample ‘stfa’.o 436
Sample ‘Style’ 437

vi

Appendix D GNU Free Documentation

10.121 Sample ‘Surf’. e 440
10.122 Sample ‘surf3d’ 441
10.123 Sample ‘surf3a’. 442
10.124 Sample ‘Surf3c’o 443
10.125 Sample ‘surf3ca’. ...t 444
10.126 Sample ‘surfa’t 445
10.127 Sample ‘Surfc’ 446
10.128 Sample ‘surfca’.......c.oiiii 447
10.129 Sample ‘table’t 448
10.130 Sample ‘tape’.ot 449
10.131 Sample “temns’. ...ttt e 450
10.132 Sample ‘ternary’......... ... 451
10.133 Sample ‘“Cext . ..o e 453
10.134 Sample ‘text2’ ... 455
10.135 Sample ‘textmark’........ooririiii i 456
10.136 Sample “ticks’ ...t 457
10.137 Sample ‘“tile . ..o e 459
10.138 Sample ‘tiles’t 460
10.139 Sample “Corus’ot 461
10.140 Sample “Brajo e 462
10.141 Sample ‘triangulation’.........l 463
10.142 Sample “Criplot’ot 464
10.143 Sample ‘“Cube’. ...t 466
10.144 Sample ‘Cypel’ot 466
10.145 Sample ‘Bypel’o 467
10.146 Sample ‘type2’ 468
10.147 Sample ‘VeCtt 469
10.148 Sample ‘Vectd’ ... 470
10.149 Sample VNNt e 471
Appendix A Symbols and hot-keys............ 473
A.1 Symbols for styles ... 473
A.2 Hot-keys for mglview i 480
A.3 Hot-keys for UDAV ... 481
Appendix B File formats....................... 485
B.1 Font fileso 485
B.2 MGLD formatoii 485
B.3 JSON formatooi e 486
B.4 TFES format 487
Appendix C Plotting time...................... 488

License. ... 495

vii

viii

1 Overview

MathGL is ...

a library for making high-quality scientific graphics under Linux and Windows;

e a library for the fast data plotting and handling of large data arrays;

e a library for working in window and console modes and for easy embedding into other
programs;

e a library with large and growing set of graphics.

1.1 What is MathGL?

A code for making high-quality scientific graphics under Linux and Windows. A code for the
fast handling and plotting of large data arrays. A code for working in window and console
regimes and for easy including into another program. A code with large and renewal set of
graphics. Exactly such a code I tried to put in MathGL library.

At this version (8.0) MathGL has more than 50 general types of graphics for 1d, 2d
and 3d data arrays. It can export graphics to bitmap and vector (EPS or SVG) files. It
has OpenGL interface and can be used from console programs. It has functions for data
handling and script MGL language for simplification of data plotting. It also has several
types of transparency and smoothed lighting, vector fonts and TeX-like symbol parsing, ar-
bitrary curvilinear coordinate system and many other useful things (see pictures section at
homepage (http://mathgl.sf.net/)). Finally it is platform-independent and free (under
GPL v.2.0 or later license).

1.2 MathGL features
MathGL can plot a wide range of graphics. It includes:

e one-dimensional (Plot, Area, Bars, Step, Stem, Torus, Chart, Error, Tube, Mark, see
Section 4.11 [1D plotting], page 135);

e two-dimensional plots (Mesh, Surf, Dens, Cont, ContF, Boxs, Axial, Fall, Belt, Tile,
see Section 4.12 [2D plotting], page 149);

e three-dimensional plots (Surf3, Dens3, Cont3, ContF3, Cloud-like, see Section 4.13 [3D
plotting], page 157);

e dual data plots: vector fields Vect, flow threads Flow, mapping chart Map, surfaces
and isosurfaces, transparent or colored (i.e. with transparency or color varied) by other
data SurfA, SurfC, Surf3A, Surf3C (see Section 4.14 [Dual plotting], page 161);

e and so on. For details see see Chapter 4 [MathGL core|, page 94.

In fact, I created the functions for drawing of all the types of scientific plots that I know.
The list of plots is growing; if you need some special type of a plot then please email me
e-mail and it will appear in the new version.

I tried to make plots as nice looking as possible: e.g., a surface can be transparent
and highlighted by several (up to 10) light sources. Most of the drawing functions have 2
variants: simple one for the fast plotting of data, complex one for specifying of the exact
position of the plot (including parametric representation). Resulting image can be saved in

http://mathgl.sf.net/
mailto:mathgl.abalakin@gmail.com

Chapter 1: Overview 2

bitmap PNG, JPEG, GIF, TGA, BMP format, or in vector EPS, SVG or TeX format, or
in 3D formats OBJ, OFF, STL, or in PRC format which can be converted into U3D.

All texts are drawn by vector fonts, which allows for high scalability and portability.
Texts may contain commands for: some of the TeX-like symbols, changing index (upper
or lower indexes) and the style of font inside the text string (see Section 3.5 [Font styles],
page 88). Texts of ticks are rotated with axis rotation. It is possible to create a legend of
plot and put text in an arbitrary position on the plot. Arbitrary text encoding (by the help
of function setlocale()) and UTF-16 encoding are supported.

Special class mglData is used for data encapsulation (see Chapter 6 [Data processing],
page 199). In addition to a safe creation and deletion of data arrays it includes functions
for data processing (smoothing, differentiating, integrating, interpolating and so on) and
reading of data files with automatic size determination. Class mglData can handle arrays
with up to three dimensions (arrays which depend on up to 3 independent indexes ayijk}).
Using an array with higher number of dimensions is not meaningful, because I do not know
how it can be plotted. Data filling and modification may be done manually or by textual
formulas.

There is fast evaluation of a textual mathematical expression (see Section 3.6 [Textual
formulas|, page 89). It is based on string precompilation to tree-like code at the creation of
class instance. At evaluation stage code performs only fast tree-walk and returns the value
of the expression. In addition to changing data values, textual formulas are also used for
drawing in arbitrary curvilinear coordinates. A set of such curvilinear coordinates is limited
only by user’s imagination rather than a fixed list like: polar, parabolic, spherical, and so
on.

1.3 Installation

MathGL can be installed in 4 different ways.

1. Compile from sources. The cmake build system is useded in the library. To run it,
one should execute commands: cmake . twice, after it make and make install with
root/sudo rights. Sometimes after installation you may need to update the library list
— just execute ldconfig with root/sudo rights.

There are several additional options which are switched off by default. They are:
enable-fltk, enable-glut, enable-qt4, enable-qt5 for ebabling FLTK, GLUT
and/or Qt windows; enable-jpeg, enable-gif, enable-hdf5 and so on for enabling
corresponding file formats; enable-all for enabling all additional features. For using
double as base internal data type use option enable-double. For enabling language
interfaces use enable-python, enable-octave or enable-all-swig for all languages.
You can use WYSIWYG tool (cmake-gui) to view all of them, or type cmake -D
enable-all=on -D enable-all-widgets=on -D enable-all-swig=on . in command
line for enabling all features.
There is known bug for building in MinGW — you need to manually add linker option
-fopenmp (i.e. CMAKE_EXE_LINKER_FLAGS:STRING='-fopenmp' and CMAKE_SHARED_
LINKER_FLAGS:STRING='-fopenmp') if you enable OpenMP support (i.e. if enable-
openmp=0N).

2. Use a precompiled binary. There are binaries for MinGW (platform Win32). For a
precompiled variant one needs only to unpack the archive to the location of the com-

Chapter 1: Overview 3

piler (i.e. mathgl/lib in mingw/lib, mathgl/include in mingw/include and so on) or in
arbitrary other folder and setup paths in compiler. By default, precompiled versions in-
clude the support of GSL (www.gsl.org) and PNG. So, one needs to have these libraries
installed on system (it can be found, for example, at http://gnuwin32.sourceforge.
net/packages.html).

3. Install precompiled versions from standard packages (RPM, deb, DevPak and so on).

Note, you can download the latest sources (which can be not stable) from sourceforge.net
SVN by command

svn checkout http://svn.code.sf.net/p/mathgl/code/mathgl-2x mathgl-code

IMPORTANT! MathGL use a set of defines, which were determined at configure

stage and may differ if used with non-default compiler (like using MathGL binaries
compiled by MinGW in VisualStudio). There are MGL_SYS_NAN, MGL_HAVE_TYPEOF,
MGL_HAVE_PTHREAD, MGL_HAVE_ATTRIBUTE, MGL_HAVE_C99_COMPLEX, MGL_HAVE_RVAL.
I specially set them to O for Borland and Microsoft compilers due to compatibility
reasons. Also default setting are good for GNU (gcc, mingw) and clang compilers.
However, for another compiler you may need to manually set this defines to 0 in file
include/mgl2/config.h if you are using precompiled binaries.

1.4 Quick guide

There are 3 steps to prepare the plot in MathGL: (1) prepare data to be plotted, (2) setup
plot, (3) plot data. Let me show this on the example of surface plotting.

First we need the data. MathGL use its own class mglData to handle data arrays (see
Chapter 6 [Data processing], page 199). This class give ability to handle data arrays by
more or less format independent way. So, create it

int main()
{
mglData dat(30,40); // data to for plotting
for(long i=0;i<30;i++) for(long j=0;j<40;j++)
dat.ali+30%j] = 1/(1+(i-15)*(i-15)/225.+(j-20)*(j-20)/400.);

Here I create matrix 30*40 and initialize it by formula. Note, that I use long type for
indexes i, j because data arrays can be really large and long type will automatically provide
proper indexing.

Next step is setup of the plot. The only setup I need is axis rotation and lighting.

mglGraph gr; // class for plot drawing
gr.Rotate(50,60); // rotate axis
gr.Light (true); // enable lighting

Everything is ready. And surface can be plotted.
gr.Surf (dat); // plot surface

Basically plot is done. But I decide to add yellow (‘y’ color, see Section 3.2 [Color styles],
page 84) contour lines on the surface. To do it I can just add:

gr.Cont(dat,"y"); // plot yellow contour lines

http://gnuwin32.sourceforge.net/packages.html
http://gnuwin32.sourceforge.net/packages.html

Chapter 1: Overview 4

This demonstrate one of base MathGL concept (see, Chapter 3 [General concepts],
page 83) — “new drawing never clears things drawn already”. So, you can just conse-
quently call different plotting functions to obtain “combined” plot. For example, if one
need to draw axis then he can just call one more plotting function

gr.AxisQ); // draw axis
Now picture is ready and we can save it in a file.
gr.WriteFrame("sample.png"); // save it
}
To compile your program, you need to specify the linker option -1mgl.

This is enough for a compilation of console program or with external (non-MathGL)
window library. If you want to use FLTK or Qt windows provided by MathGL then you
need to add the option -1mgl-wnd.

Fortran users also should add C++ library by the option -1stdc++. If library was built
with enable-double=0N (this default for v.2.1 and later) then all real numbers must be
real*8. You can make it automatic if use option -fdefault-real-8.

1.5 Changes from v.1.*

There are a lot of changes for v.2. Here I denote only main of them.
e mglGraph class is single plotter class instead of mglGraphZB, mglGraphPS and so on.

e Text style and text color positions are swapped. I.e. text style ‘r:C’ give red centered
text, but not roman dark cyan text as for v.1.*.

e ColumnPlot() indexing is reverted.

e Move most of arguments of plotting functions into the string parameter and/or options.
e “Bright” colors (like {b8}) can be used in color schemes and line styles.

e Intensively use pthread internally for parallelization of drawing and data processing.
e Add tick labels rotation and skipping. Add ticks in time/date format.

e New kinds of plots (Tape(), Label(), Cones(), ContV()). Extend existing plots. New
primitives (Circle(), Ellipse(), Rhomb(), ...). New plot positioning (MultiPlot(), Grid-
Plot())

e Improve MGL scripts. Add ’ask’ command and allow string concatenation from differ-
ent lines.

e Export to LaTeX and to 3D formats (OBJ, OFF, STL).

e Add pipes support in utilities (mglconv, mglview).

1.6 Utilities for parsing MGL

MathGL library provides several tools for parsing MGL scripts. There is tools saving it
to bitmap or vectorial images (mglconv). Tool mglview show MGL script and allow one
to rotate and setup the image. Another feature of mglview is loading *.mgld files (see
ExportMGLD()) for quick viewing 3d pictures.

Both tools have similar set of arguments. They can be name of script file or options.
You can use ‘-’ as script name for using standard input (i.e. pipes). Options are:

e -1 str set str as argument $1 for script;

Chapter 1: Overview 5

e -9 str set str as argument $9 for script;
e -L loc set locale to loc;
e -s fname set MGL script for setting up the plot;

e -h print help message.

Additionally mglconv have following options:
e -A val add val into the list of animation parameters;

e -C vI:v2[:dv] add values from vl ot v2 with step dv (default is 1) into the list of
animation parameters;

e -0 name set output file name;

e -n disable default output (script should save results by itself);
e -S val set set scaling factor for [setsize], page 115;

e -q val set [quality], page 115, for output (val=0...9).

Also you can create animated GIF file or a set of JPEG files with names ‘frameNNNN. jpg’
(here ‘NNNN’ is frame index). Values of the parameter $0 for making animation can be
specified inside the script by comment ##a val for each value val (one comment for one
value) or by option(s) ‘-A val’. Also you can specify a cycle for animation by comment ##c
v1 v2 dv or by option -C v1:v2:dv. In the case of found/specified animation parameters,
tool will execute script several times — once for each value of $0.

MathGL also provide another simple tool mgl.cgi which parse MGL script from CGI
request and send back produced PNG file. Usually this program should be placed in
/usr/lib/cgi-bin/. But you need to put this program by yourself due to possible se-
curity issues and difference of Apache server settings.

1.7 Thanks

e My special thanks to my wife for the patience during the writing of this library and
for the help in documentation writing and spelling.

e I'm thankful to my coauthors D. Kulagin and M. Vidassov for help in developing
MathGL.

e 'm thankful to Diego Sejas Viscarra for developing mgltex, contribution to fractal
generation and fruitful suggestions.

e ['m thankful to D. Eftaxiopoulos, D. Haley, V. Lipatov and S.M. Plis for making binary
packages for Linux.

e ['m thankful to S. Skobelev, C. Mikhailenko, M. Veysman, A. Prokhorov, A. Korotke-
vich, V. Onuchin, S.M. Plis, R. Kiselev, A. Ivanov, N. Troickiy and V. Lipatov for
fruitful comments.

e I'm thankful to sponsors M. Veysman (IHED RAS (http://jiht.ru/en/about/
structure.php?set_filter_structure=Y&structure UF_DEPARTMENT=241&
filter=Y&set_filter=Y)) and A. Prokhorov (DATADVANCE (www.datadvance.
net)).

Javascript interface was developed with support of DATADVANCE (www.datadvance.
net) company.

http://jiht.ru/en/about/structure.php?set_filter_structure=Y&structure_UF_DEPARTMENT=241&filter=Y&set_filter=Y
http://jiht.ru/en/about/structure.php?set_filter_structure=Y&structure_UF_DEPARTMENT=241&filter=Y&set_filter=Y
http://jiht.ru/en/about/structure.php?set_filter_structure=Y&structure_UF_DEPARTMENT=241&filter=Y&set_filter=Y
www.datadvance.net
www.datadvance.net
www.datadvance.net
www.datadvance.net

2 MathGL examples

This chapter contain information about basic and advanced MathGL, hints and samples for
all types of graphics. I recommend you read first 2 sections one after another and at least
look on Section 2.5 [Hints|, page 46, section. Also I recommend you to look at Chapter 3
[General concepts], page 83, and Section 2.6 [FAQ], page 78.

Note, that MathGL v.2.* have only 2 end-user interfaces: one for C/Fortran and similar
languages which don’t support classes, another one for C++/Python/Octave and similar
languages which support classes. So, most of samples placed in this chapter can be run as
is (after minor changes due to different syntaxes for different languages). For example, the
C++ code

#include <mgl2/mgl.h>
int main()
{
mglGraph gr;
gr.FPlot ("sin(pi*x)");
gr.WriteFrame("test.png");
3

in Python will be as

from mathgl import *

gr = mglGraphQ);

gr.FPlot ("sin(pi*x)");
gr.WriteFrame("test.png");

in Octave will be as (you need first execute mathgl; in newer Octave versions)
gr = mglGraphQ);
gr .FPlot ("sin(pi*x)");
gr.WriteFrame("test.png");

in C will be as

#include <mgl2/mgl_cf.h>

int mainQ)

{
HMGL gr = mgl_create_graph(600,400);
mgl_fplot (gr, "sin(pi*x) " , nn s " n) ;
mgl_write_frame(gr,"test.png","");
mgl_delete_graph(gr);

in Fortran will be as

integer gr, mgl_create_graph

gr = mgl_create_graph(600,400) ;

call mgl_fplot(gr, 'sin(pi*x)',"'"',"'");
call mgl_write_frame(gr, 'test.png','');
call mgl_delete_graph(gr);

and so on.

Chapter 2: MathGL examples

2.1 Basic usage

MathGL library can be used by several manners. Each has positive and negative sides:

e Using of MathGL library features for creating graphical window (requires FLTK, Qt or

GLUT libraries).

Positive side is the possibility to view the plot at once and to modify it (rotate, zoom
or switch on transparency or lighting) by hand or by mouse. Negative sides are: the
need of X-terminal and limitation consisting in working with the only one set of data

at a time.

e Direct writing to file in bitmap or vector format without creation of graphical window.

Positive aspects are: batch processing of similar data set (for example, a set of result-
ing data files for different calculation parameters), running from the console program
(including the cluster calculation), fast and automated drawing, saving pictures for
further analysis (or demonstration). Negative sides are: the usage of the external pro-
gram for picture viewing. Also, the data plotting is non-visual. So, you have to imagine
the picture (view angles, lighting and so on) before the plotting. I recommend to use
graphical window for determining the optimal parameters of plotting on the base of
some typical data set. And later use these parameters for batch processing in console

program.

e Drawing in memory with the following displaying by other graphical program.

In this case the programmer has more freedom in selecting the window libraries (not
only FLTK, Qt or GLUT), in positioning and surroundings control and so on. I rec-

ommend to use such way for “stand alone” programs.
e Using FLTK or Qt widgets provided by MathGL

Here one can use a set of standard widgets which support export to many file formats,

copying to clipboard, handle mouse and so on.

MathGL drawing can be created not only by object oriented languages (like, C++ or
Python), but also by pure C or Fortran-like languages. The usage of last one is mostly
identical to usage of classes (except the different function names). But there are some
differences. C functions must have argument HMGL (for graphics) and/or HMDT (for
data arrays) which specifies the object for drawing or manipulating (changing). Fortran
users may regard these variables as integer. So, firstly the user has to create this object by

function mgl_create_*() and has to delete it after the using by function mgl_delete_*().

Let me consider the aforesaid in more detail.

2.1.1 Using MathGL window

The “interactive” way of drawing in MathGL consists in window creation with help of class
mglQT, mglFLTK or mglGLUT (see Chapter 5 [Widget classes|, page 184) and the following

drawing in this window. There is a corresponding code:
#include <mgl2/qt.h>
int sample(mglGraph *gr)
{
gr->Rotate(60,40) ;
gr->Box () ;
return O;

Chapter 2: MathGL examples 8

int main(int argc,char **argv)

{
mglQT gr(sample,"MathGL examples");
return gr.Run();

}

Here callback function sample is defined. This function does all drawing. Other func-
tion main is entry point function for console program. For compilation, just execute the
command

gcc test.cpp —-lmgl-qtb5 -1mgl
You can use "-lmgl-qt4" instead of "-Imgl-qt5", if Qt4 is installed.

Alternatively you can create yours own class inherited from Section 5.2 [mglDraw class],
page 188, and re-implement the function Draw() in it:

#include <mgl2/qt.h>
class Foo : public mglDraw
{
public:
int Draw(mglGraph *gr);

int Foo::Draw(mglGraph *gr)
{
gr->Rotate(60,40) ;
gr->Box () ;
return O;

int main(int argc,char **argv)

{
Foo foo;
mglQT gr(&foo,"MathGL examples");
return gr.Run();

¥

Or use pure C-functions:

#include <mgl2/mgl_cf.h>

int sample(HMGL gr, void *)

{
mgl_rotate(gr,60,40,0);
mgl_box(gr);

}

int main(int argc,char **argv)

{
HMGL gr;
gr = mgl_create_graph_qt(sample,"MathGL examples",0,0);

Chapter 2: MathGL examples 9

return mgl_qt_run();
/* generally I should call mgl_delete_graph() here,
* but I omit it in main() function. */

¥

The similar code can be written for mglGLUT window (function sample() is the same):

#include <mgl2/glut.h>

int main(int argc,char **argv)

{
mglGLUT gr(sample,"MathGL examples");
return O;

¥

The rotation, shift, zooming, switching on/off transparency and lighting can be done with
help of tool-buttons (for mglQT, mglFLTK) or by hot-keys: ‘a’, ‘d’, ‘w’, ‘s’ for plot rotation,
‘r’ and ‘f’ switching on/off transparency and lighting. Press ‘x’ for exit (or closing the
window).

In this example function sample rotates axes (Rotate(), see Section 4.4 [Subplots and
rotation], page 111) and draws the bounding box (Box()). Drawing is placed in separate
function since it will be used on demand when window canvas needs to be redrawn.

2.1.2 Drawing to file

Another way of using MathGL library is the direct writing of the picture to the file. It is
most usable for plot creation during long calculation or for using of small programs (like
Matlab or Scilab scripts) for visualizing repetitive sets of data. But the speed of drawing is
much higher in comparison with a script language.

The following code produces a bitmap PNG picture:

#include <mgl2/mgl.h>

int main(int ,char *x*)

{
mglGraph gr;
gr.Alpha(true); gr.Light(true);
sample (&gr) ; // The same drawing function.
gr.WritePNG("test.png"); // Don't forget to save the result!
return O;

For compilation, you need only libmgl library not the one with widgets
gcc test.cpp -1lmgl

This can be important if you create a console program in computer/cluster where X-
server (and widgets) is inaccessible.

The only difference from the previous variant (using windows) is manual switching on
the transparency Alpha and lightning Light, if you need it. The usage of frames (see
Section 2.1.3 [Animation], page 10) is not advisable since the whole image is prepared each
time. If function sample contains frames then only last one will be saved to the file. In
principle, one does not need to separate drawing functions in case of direct file writing in
consequence of the single calling of this function for each picture. However, one may use the

Chapter 2: MathGL examples 10

same drawing procedure to create a plot with changeable parameters, to export in different
file types, to emphasize the drawing code and so on. So, in future I will put the drawing in
the separate function.

The code for export into other formats (for example, into vector EPS file) looks the
same:

#include <mgl2/mgl.h>

int main(int ,char *x*)

{
mglGraph gr;
gr.Light (true);
sample (&gr) ; // The same drawing function.
gr.WriteEPS("test.eps"); // Don't forget to save the result!
return O;

The difference from the previous one is using other function WriteEPS() for EPS format
instead of function WritePNG(). Also, there is no switching on of the plot transparency
Alpha since EPS format does not support it.

2.1.3 Animation

Widget classes (mglWindow, mglGLUT) support a delayed drawing, when all plotting func-
tions are called once at the beginning of writing to memory lists. Further program displays
the saved lists faster. Resulting redrawing will be faster but it requires sufficient memory.
Several lists (frames) can be displayed one after another (by pressing ¢,’, ‘.”) or run as

cinema. To switch these feature on one needs to modify function sample:

int sample(mglGraph *gr)

{
gr->NewFrame () ; // the first frame
gr->Rotate(60,40);
gr->Box () ;
gr->EndFrame () ; // end of the first frame
gr->NewFrame () ; // the second frame
gr->Box () ;
gr->Axis("xy");
gr->EndFrame () ; // end of the second frame
return gr->GetNumFrame(); // returns the frame number
}

First, the function creates a frame by calling NewFrame () for rotated axes and draws
the bounding box. The function EndFrame () must be called after the frame drawing! The
second frame contains the bounding box and axes Axis("xy") in the initial (unrotated)
coordinates. Function sample returns the number of created frames GetNumFrame ().

Note, that animation can be also done as visualization of running calculations (see
Section 2.1.5 [Draw and calculate], page 13).

Pictures with animation can be saved in file(s) as well. You can: export in animated
GIF, or save each frame in separate file (usually JPEG) and convert these files into the
movie (for example, by help of ImageMagic). Let me show both methods.

Chapter 2: MathGL examples 11

The simplest methods is making animated GIF. There are 3 steps: (1) open GIF file by
StartGIF() function; (2) create the frames by calling NewFrame () before and EndFrame ()
after plotting; (3) close GIF by CloseGIF () function. So the simplest code for “running”
sinusoid will look like this:

#include <mgl2/mgl.h>
int main(int ,char *x*)
{
mglGraph gr;
mglData dat(100);
char str[32];
gr.StartGIF("sample.gif");
for(int i=0;i<40;i++)
{
gr .NewFrame () ; // start frame
gr.Box(); // some plotting
for(int j=0;j<dat.nx;j++)
dat.al[jl=sin(M_PI*j/dat.nx+M_PI*0.05%i);
gr.Plot(dat,"b");
gr .EndFrame () ; // end frame
}
gr.CloseGIFQ);
return O;

The second way is saving each frame in separate file (usually JPEG) and later make the
movie from them. MathGL have special function for saving frames — it is WriteFrame ().
This function save each frame with automatic name ‘frame0001. jpg, frame0002. jpg’ and
so on. Here prefix ‘frame’ is defined by Plotld variable of mglGraph class. So the similar
code will look like this:

#include <mgl2/mgl.h>
int main(int ,char *x*)
{
mglGraph gr;
mglData dat(100);
char str[32];
for(int i=0;i<40;i++)
{
gr .NewFrame () ; // start frame
gr.Box(); // some plotting
for(int j=0;j<dat.nx;j++)
dat.al[jl=sin(M_PI*j/dat.nx+M_PI*0.05%1i);
gr.Plot(dat,"b");

gr .EndFrame () ; // end frame
gr.WriteFrame(); // save frame
}
return O;

Chapter 2: MathGL examples 12

Created files can be converted to movie by help of a lot of programs. For example, you
can use ImageMagic (command ‘convert frame*.jpg movie.mpg’), MPEG library, GIMP
and so on.

Finally, you can use mglconv tool for doing the same with MGL scripts (see Section 1.6
[Utilities|, page 4).

2.1.4 Drawing in memory

The last way of MathGL using is the drawing in memory. Class mglGraph allows one to
create a bitmap picture in memory. Further this picture can be displayed in window by
some window libraries (like wxWidgets, FLTK, Windows GDI and so on). For example,
the code for drawing in wxWidget library looks like:

void MyForm::0OnPaint (wxPaintEvent& event)

{
int w,h,x,y;
GetClientSize (&w,&h) ; // size of the picture
mglGraph gr(w,h);

gr.Alpha(true) ; // draws something using MathGL
gr.Light (true);
sample (&gr,NULL) ;

wxImage img(w,h,gr.GetRGB(),true);

ToolBar->GetSize (&x,&y) ; // gets a height of the toolbar if any
wxPaintDC dc(this); // and draws it
dc.DrawBitmap (wxBitmap(img),0,y);

The drawing in other libraries is most the same.
For example, FLTK code will look like

void F1_MyWidget::draw()
{
mglGraph gr(w(),h());
gr.Alpha(true); // draws something using MathGL
gr.Light (true);
sample (&gr,NULL) ;
fl_draw_image(gr.GetRGB(), x(), y(), gr.GetWidth(), gr.GetHeight(), 3);

Qt code will look like

void MyWidget::paintEvent (QPaintEvent *)
{
mglGraph gr(w(),h());

gr.Alpha(true); // draws something using MathGL
gr.Light (true); gr.Light (0,mglPoint(1,0,-1));
sample (&gr,NULL) ;

Chapter 2: MathGL examples 13

// Qt don't support RGB format as is. So, let convert it to BGRN.

long w=gr.GetWidth(), h=gr.GetHeight();

unsigned char *buf = new uchar [4*wx*h];

gr.GetBGRN (buf, 4*wxh)

QPixmap pic = QPixmap::fromImage(QImage(*buf, w, h, QImage::Format_RGB32));

QPainter paint;
paint.begin(this); paint.drawPixmap(0,0,pic); paint.end();
delete []buf;

2.1.5 Draw and calculate

MathGL can be used to draw plots in parallel with some external calculations. The simplest
way for this is the usage of Section 5.2 [mglDraw class]|, page 188. At this you should enable
pthread for widgets by setting enable-pthr-widget=0N at configure stage (it is set by
default). First, you need to inherit you class from mglDraw class, define virtual members
Draw() and Calc() which will draw the plot and proceed calculations. You may want to
add the pointer mglWnd *wnd; to window with plot for interacting with them. Finally, you
may add any other data or member functions. The sample class is shown below

class myDraw : public mglDraw

{
mglPoint pnt; // some variable for changeable data
long ij; // another variable to be shown
mglWnd *wnd; // external window for plotting
public:
myDraw (mglWnd *w=0) : mglDraw() { wnd=w; }
void SetWnd(mglWnd *w) { wnd=w; }
int Draw(mglGraph *gr)
{

gr->Line (mglPoint () ,pnt,"Ar2");
char str[16]; snprintf (str,15,"i=)1d4",1);
gr->Puts (mglPoint () ,str);

return O;
}
void Calc()
{
for(i=0;;i++) // do calculation
{
long_calculations();// which can be very long
Check(); // check if need pause
pot.Set(2*mgl_rnd()-1,2*mgl_rnd()-1);
if (wnd) wnd->Update();
}
}

} dr;

Chapter 2: MathGL examples 14

There is only one issue here. Sometimes you may want to pause calculations to view
result carefully, or save state, or change something. So, you need to provide a mechanism
for pausing. Class mglDraw provide function Check () ; which check if toolbutton with pause
is pressed and wait until it will be released. This function should be called in a "safety"
places, where you can pause the calculation (for example, at the end of time step). Also you
may add call exit(0); at the end of Calc(); function for closing window and exit after
finishing calculations. Finally, you need to create a window itself and run calculations.

int main(int argc,char **argv)

{
mglFLTK gr(&dr,"Multi-threading test"); // create window
dr.SetWnd(&gr); // pass window pointer to yours class
dr.Run(Q); // run calculations
gr.Run(); // run event loop for window
return O;

}

Note, that you can reach the similar functionality without using mglDraw class (i.e. even
for pure C code).

mglFLTK *gr=NULL; // pointer to window
void *calc(void *) // function with calculations
{
mglPoint pnt; // some data for plot
for(long i=0;;i++) // do calculation
{
long_calculations(); // which can be very long
pnt.Set (2+mgl_rnd()-1,2*mgl_rnd()-1);
if (gr)
{
gr->C1£f Q) ; // make new drawing

// draw something

gr->Line (mglPoint () ,pnt, "Ar2");

char str[16]; snprintf (str,15,"i=%1d",1i);
gr->Puts (mglPoint () ,str) ;

// don't forgot to update window
gr->Update () ;

}
}
}
int main(int argc,char **argv)
{

static pthread_t thr;
pthread_create(&thr,0,calc,0); // create separate thread for calculations]]

pthread_detach(thr); // and detach it
gr = new mglFLTK; // now create window

gr->Run() ; // and run event loop
return O;

Chapter 2: MathGL examples 15

This sample is exactly the same as one with mglDraw class, but it don’t have function-
ality for pausing calculations. If you need it then you have to create global mutex (like
pthread_mutex_t *mutex = pthread_mutex_init (&mutex,NULL);), set it to window (like
gr->SetMutex (mutex) ;) and periodically check it at calculations (like pthread_mutex_
lock(&mutex) ; pthread_mutex_unlock(&mutex) ;).

Finally, you can put the event-handling loop in separate instead of yours code by using
RunThr () function instead of Run() one. Unfortunately, such method work well only for
FLTK windows and only if pthread support was enabled. Such limitation come from the
Qt requirement to be run in the primary thread only. The sample code will be:

int main(int argc,char **argv)

{
mglFLTK gr("test");
gr.RunThr () ; // <-- need MathGL version which use pthread for widgets|i
mglPoint pnt; // some data
for(int i=0;i<10;i++) // do calculation
{
long_calculations();// which can be very long
pnt.Set (2*mgl_rnd ()-1,2*mgl_rnd(O-1);
gr.Clf(Q); // make new drawing
gr.Line(mglPoint () ,pnt, "Ar2");
char str[10] = "i=0"; str[3] = '0'+i;
gr->Puts (mglPoint () ,str);
gr.Update() ; // update window
}
return O; // finish calculations and close the window
}

2.1.6 Using QMathGL

MathGL have several interface widgets for different widget libraries. There are QMathGL
for Qt, F1_MathGL for FLTK. These classes provide control which display MathGL graphics.
Unfortunately there is no uniform interface for widget classes because all libraries have
slightly different set of functions, features and so on. However the usage of MathGL widgets
is rather simple. Let me show it on the example of QMathGL.

First of all you have to define the drawing function or inherit a class from mglDraw class.
After it just create a window and setup QMathGL instance as any other Qt widget:

#include <QApplication>

#include <QMainWindow>

#include <QScrollArea>

#include <mgl2/qgmathgl.h>

int main(int argc,char **argv)

{
QApplication a(argc,argv);
QMainWindow *Wnd = new QMainWindow;
Wnd->resize(810,610); // for fill up the QMGL, menu and toolbars
Wnd->setWindowTitle ("QMathGL sample");
// here I allow one to scroll QMathGL -- the case

Chapter 2: MathGL examples 16

// then user want to prepare huge picture
QScrollArea *scroll = new QScrollArea(Wnd);

// Create and setup QMathGL
QMathGL *QMGL = new QMathGL(Wnd) ;

//QMGL->setPopup (popup); // if you want to setup popup menu for QMGL
QMGL->setDraw(sample) ;
// or use QMGL->setDraw(foo); for instance of class Foo:public mglDraw
QMGL->update () ;

// continue other setup (menu, toolbar and so on)
scroll->setWidget (QMGL) ;

Wnd->setCentralWidget (scroll);

Wnd->show () ;

return a.exec();

}

2.1.7 OpenGL output

MathGL have possibility to draw resulting plot using OpenGL. This produce resulting plot
a bit faster, but with some limitations (especially at use of transparency and lighting).
Generally, you need to prepare OpenGL window and call MathGL functions to draw it.
There is GLUT interface (see Chapter 5 [Widget classes|, page 184) to do it by simple way.
Below I show example of OpenGL usage basing on Qt libraries (i.e. by using QGLWidget
widget).

First, one need to define widget class derived from QGLWidget and implement a few
methods: resizeGL() called after each window resize, paintGL() for displaying the im-
age on the screen, and initializeGL() for initializing OpenGL. The header file looks as
following.

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QGLWidget>
#include <mgl2/mgl.h>

class MainWindow : public QGLWidget

{
Q_OBJECT
protected:
mglGraph *gr; // pointer to MathGL core class
void resizeGL(int nWidth, int nHeight); // Method called after each window resizefl
void paintGLQ) ; // Method to display the image on the screen
void initializeGL(); // Method to initialize OpenGL
public:
MainWindow(QWidget #*parent = 0);

“MainWindow() ;

};

Chapter 2: MathGL examples 17

#endif // MAINWINDOW_H

The class implementation is rather straightforward. One need to recreate the instance of
mglGraph at initializing OpenGL, and ask MathGL to use OpenGL output (set argument 1
in mglGraph constructor). Of course, the mglGraph object should be deleted at destruction.
The method resizeGL() just pass new sizes to OpenGL and update viewport sizes. All
plotting functions are located in the method paintGL(). At this, one need to add 2 calls:
gr->C1lf () at beginning for clearing previous OpenGL primitives; and swapBuffers() for
showing output on the screen. The source file looks as following.

#include "qgl_example.h"
#include <QApplication>
//#include <QtOpenGL>

/)= |
MainWindow: :MainWindow(QWidget *parent) : QGLWidget (parent) { gr=0; 1}j
e i
MainWindow: : "MainWindow () { if(gr) delete gr; }
/)= |

void MainWindow::initializeGL() // recreate instance of MathGL core
{
if(gr) delete gr;
gr = new mglGraph(1); // use 'l' for argument to force OpenGL output in MathGLJ]

}
= N
void MainWindow::resizeGL(int w, int h) // standard resize replace
{

QGLWidget: :resizeGL(w, h);

glViewport (0, 0, w, h);
}
e e R R S i
void MainWindow: :paintGL() // main drawing function
{

gr->C1lf () ; // clear previous OpenGL primitives

gr->SubPlot(1,1,0);

gr->Rotate(40,60) ;

gr->Light (true);

gr->AddLight (0,mglPoint (0,0,10) ,mglPoint(0,0,-1));

gr->Axis(Q);

gr->Box () ;

gr->FPlot ("sin(pi*x)","i2");

gr->FPlot ("cos(pi*x)","|");

gr->FSurf ("cos (2*pix(x~2+y~2))");

gr->Finish();

swapBuffers(); // show output on the screen
}
/)= i
int main(int argc, char *argv([]) // create application

{

Chapter 2: MathGL examples 18

mgl_textdomain(argv?argv[0] :NULL,"");
QApplication a(argc, argv);
MainWindow w;

w.show() ;

return a.exec();

2.1.8 MathGL and PyQt

Generally SWIG based classes (including the Python one) are the same as C++ classes.
However, there are few tips for using MathGL with PyQt. Below I place a very simple
python code which demonstrate how MathGL can be used with PyQt. This code is mostly
written by Prof. Dr. Heino Falcke. You can just copy it to a file mgl-pyqt-test.py and
execute it from python shell by command execfile("mgl-pyqt-test.py")

from PyQt4 import QtGui,QtCore
from mathgl import *

import sys

app = QtGui.QApplication(sys.argv)
gpointf=QtCore.QPointF ()

class hfQtPlot(QtGui.QWidget) :

def __init__(self, parent=None):
QtGui.QWidget.__init__(self, parent)
self.img=(QtGui.QImage())

def setgraph(self,gr):
self.buffer="'\t'
self .buffer=self.buffer.expandtabs(4*gr.GetWidth() *gr.GetHeight ())
gr.GetBGRN (self .buffer,len(self.buffer))
self.img=QtGui.QImage (self.buffer, gr.GetWidth(),gr.GetHeight(),QtGui.QImage.Format
self.update()

def paintEvent(self, event):
paint = QtGui.QPainter()
paint.begin(self)
paint.drawImage(gpointf,self.img)
paint.end()

BackgroundColor=[1.0,1.0,1.0]

size=100

gr=mglGraph ()

y=mglData(size)

#y.Modify (" ((0.7*cos(2*pi*(x+.2)*500)+0.3)*(rnd*0.5+0.5)+362.135+10000.)")
y.Modify (" (cos(2*pi*x*10)+1.1)*1000.*rnd-501")

x=mglData(size)

x.Modify("x"2");

def plotpanel(gr,x,y,n):

Chapter 2: MathGL examples 19

gr.SubPlot(2,2,n)
gr.SetXRange (x)
gr.SetYRange (y)
gr.AdjustTicks ()
gr.Axis()

gr.Box()

gr.Label ("x","x-Axis",1)
gr.Label("y","y-Axis",1)
gr.ClearLegend ()
gr.AddLegend("Legend: "+str(m),"k")
gr.Legend ()

gr.Plot(x,y)

gr.Clf (BackgroundColor [0] ,BackgroundColor[1] ,BackgroundColor [2])
gr.SetPlotFactor(1.5)

plotpanel(gr,x,y,0)

y.Modify (" (cos(2*pi*x*10)+1.1)*1000.*rnd-501")
plotpanel(gr,x,y,1)

y.Modify (" (cos(2*pi*x*10)+1.1)*1000.*rnd-501")

plotpanel (gr,x,y,2)

y.Modify (" (cos(2*pi*x*10)+1.1)*1000.*rnd-501")

plotpanel (gr,x,y,3)

gr.WritePNG("test.png","Test Plot")

qw = hfQtPlot ()
qw.show ()
qw.setgraph(gr)
qw.raise_(Q)

2.1.9 MathGL and MPI

For using MathGL in MPI program you just need to: (1) plot its own part of data for each
running node; (2) collect resulting graphical information in a single program (for example,
at node with rank=0); (3) save it. The sample code below demonstrate this for very simple
sample of surface drawing.

First you need to initialize MPI

#include <stdio.h>
#include <mgl2/mpi.h>
#include <mpi.h>

int main(int argc, char *argvl[])
{
// initialize MPI
int rank=0, numproc=1;
MPI_Init(&argc, &argv);

Chapter 2: MathGL examples 20

MPI_Comm_size (MPI_COMM_WORLD,&numproc) ;

MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;

if (rank==0) printf("Use %d processes.\n", numproc);

Next step is data creation. For simplicity, I create data arrays with the same sizes for
all nodes. At this, you have to create mglGraph object too.

// initialize data similarly for all nodes

mglData a(128,256);

mglGraphMPI gr;

Now, data should be filled by numbers. In real case, it should be some kind of calcula-
tions. But I just fill it by formula.

// do the same plot for its own range

char buf [64];

sprintf (buf,"xrange %g %g",2.*rank/numproc-1,2.*(rank+1)/numproc-1);

gr.Fill(a,"sin(2*pix*x)",buf);

It is time to plot the data. Don’t forget to set proper axis range(s) by using parametric
form or by using options (as in the sample).

// plot data in each node

gr.Clf(); // clear image before making the image

gr .Rotate (40,60) ;

gr.Surf(a,"",buf);

Finally, let send graphical information to node with rank=0.

// collect information

if (rank!=0) gr.MPI_Send(0);

else for(int i=1;i<numproc;i++) gr.MPI_Recv(i);

Now, node with rank=0 have whole image. It is time to save the image to a file. Also,
you can add a kind of annotations here — I draw axis and bounding box in the sample.

if (rank==0)

{

gr.Box(); gr.Axis(); // some post processing
gr .WritePNG("test.png"); // save result

}

In my case the program is done, and I finalize MPI. In real program, you can repeat the
loop of data calculation and data plotting as many times as you need.

MPI_Finalize();

return O;
}

You can type ‘mpic++ test.cpp -lmgl-mpi -1lmgl && mpirun -np 8 ./a.out’ for com-
pilation and running the sample program on 8 nodes. Note, that you have to set enable-
mpi=0ON at MathGL configure to use this feature.

2.2 Advanced usage

Now I show several non-obvious features of MathGL: several subplots in a single picture,
curvilinear coordinates, text printing and so on. Generally you may miss this section at
first reading.

Chapter 2: MathGL examples 21

2.2.1 Subplots

Let me demonstrate possibilities of plot positioning and rotation. MathGL has a set of
functions: [subplot], page 111, [inplot], page 112, [title], page 113, [aspect], page 114, and
[rotate], page 113, and so on (see Section 4.4 [Subplots and rotation]|, page 111). The order
of their calling is strictly determined. First, one changes the position of plot in image area
(functions [subplot], page 111, [inplot], page 112, and [multiplot], page 111). Secondly, you
can add the title of plot by [title], page 113, function. After that one may rotate the plot
(function [rotate], page 113). Finally, one may change aspects of axes (function [aspect],
page 114). The following code illustrates the aforesaid it:

int sample(mglGraph *gr)

{
gr->SubPlot(2,2,0); gr->Box();
gr->Puts (mglPoint(-1,1.1),"Just box",":L");
gr->InPlot(0.2,0.5,0.7,1,false); gr->Box();
gr->Puts (mglPoint(0,1.2),"InPlot example");
gr->SubPlot(2,2,1); gr->Title("Rotate only");
gr->Rotate(50,60); gr->Box();
gr->SubPlot(2,2,2); gr->Title("Rotate and Aspect");
gr->Rotate(50,60); gr->Aspect(1,1,2); gr->Box();
gr->SubPlot(2,2,3); gr->Title("Shear");
gr->Box("c"); gr->Shear(0.2,0.1); gr->Box();
return O;

Here I used function Puts for printing the text in arbitrary position of picture (see
Section 4.8 [Text printing], page 129). Text coordinates and size are connected with axes.
However, text coordinates may be everywhere, including the outside the bounding box. I'll
show its features later in Section 2.2.7 [Text features|, page 32.

Chapter 2: MathGL examples 22

1okiot cxample

Just box L S S ROtate On] y

Rotate and Aspect Shear

More complicated sample show how to use most of positioning functions:

int sample(mglGraph *gr)

{
gr->SubPlot(3,2,0); gr->Title("StickPlot");
gr->StickPlot(3, 0, 20, 30); gr->Box("r"); gr->Puts(mglPoint(0),"0","r");
gr->StickPlot(3, 1, 20, 30); gr->Box("g"); gr->Puts(mglPoint(0),"1","g");
gr->StickPlot(3, 2, 20, 30); gr->Box("b"); gr->Puts(mglPoint(0),"2","b");
gr->SubPlot(3,2,3,""); gr->Title("ColumnPlot");
gr->ColumnPlot (3, 0); gr->Box("r"); gr->Puts(mglPoint(0),"0","r");
gr->ColumnPlot (3, 1); gr->Box("g"); gr->Puts(mglPoint(0),"1","g");
gr->ColumnPlot (3, 2); gr->Box("b"); gr->Puts(mglPoint(0),"2","b");
gr->SubPlot(3,2,4,""); gr->Title("GridPlot");
gr->GridPlot (2, 2, 0); gr->Box("r"); gr->Puts(mglPoint(0),"0","r");
gr->GridPlot (2, 2, 1); gr->Box("g"); gr->Puts(mglPoint(0),"1","g");
gr->GridPlot (2, 2, 2); gr->Box("b"); gr->Puts(mglPoint(0),"2","bd");
gr->GridPlot (2, 2, 3); gr->Box("m"); gr->Puts(mglPoint(0),"3","m");
gr->SubPlot(3,2,5,""); gr->Title("InPlot"); gr->Box();
gr->InPlot(0.4, 1, 0.6, 1, true); gr->Box("r");
gr->MultiPlot(3,2,1, 2, 1,""); gr->Title("MultiPlot and ShearPlot"); gr->Box();]}
gr->ShearPlot(3, 0, 0.2, 0.1); gr->Box("r"); gr->Puts(mglPoint(0),"0","r");|}
gr->ShearPlot(3, 1, 0.2, 0.1); gr->Box("g"); gr->Puts(mglPoint(0),"1","g");l}
gr->ShearPlot(3, 2, 0.2, 0.1); gr->Box("b"); gr->Puts(mglPoint(0),"2","d");}}
return O;

Chapter 2: MathGL examples 23

StickPlot MultiPlot and ShearPlot

T

ColumnPlot GridPlot

[J L 4

2.2.2 Axis and ticks

MathGL library can draw not only the bounding box but also the axes, grids, labels and so
on. The ranges of axes and their origin (the point of intersection) are determined by func-
tions SetRange (), SetRanges (), SetOrigin() (see Section 4.3.1 [Ranges (bounding box)],
page 104). Ticks on axis are specified by function SetTicks, SetTicksVal, SetTicksTime
(see Section 4.3.3 [Ticks], page 108). But usually

Function [axis], page 131, draws axes. Its textual string shows in which directions the
axis or axes will be drawn (by default "xyz", function draws axes in all directions). Function
[grid], page 133, draws grid perpendicularly to specified directions. Example of axes and
grid drawing is:
int sample(mglGraph *gr)

{
gr->SubPlot(2,2,0); gr->Title("Axis origin, Grid"); gr->SetOrigin(0,0);
gr->Axis(); gr->Grid(); gr->FPlot("x"3");

gr->SubPlot(2,2,1); gr->Title("2 axis");
gr->SetRanges(-1,1,-1,1); gr->SetOrigin(-1,-1,-1); // first axis
gr->Axis(); gr->Label('y',"axis 1",0); gr->FPlot("sin(pi*x)");
gr->SetRanges(0,1,0,1); gr->SetOrigin(1,1,1); // second axis
gr->Axis(); gr->Label('y',"axis 2",0); gr->FPlot("cos(pi*x)");

gr->SubPlot(2,2,3); gr->Title("More axis");

gr->SetOrigin (NAN,NAN); gr->SetRange('x',-1,1);

gr->Axis(); gr->Label('x',"x",0); gr->Label('y',"y_1",0);
gr->FPlot ("x~2","k");

gr->SetRanges(-1,1,-1,1); gr->SetOrigin(-1.3,-1); // second axis
gr->Axis("y","r"); gr->Label('y',"#r{y_2}",0.2);

gr->FPlot ("x~3","r");

Chapter 2: MathGL examples 24

gr->SubPlot(2,2,2); gr->Title("4 segments, inverted axis");
gr->SetOrigin(0,0);

gr->InPlot(0.5,1,0.5,1); gr->SetRanges(0,10,0,2); gr->Axis();
gr->FPlot ("sqrt(x/2)"); gr->Label('x',"W",1); gr->Label('y',"U",1);
gr->InPlot(0,0.5,0.5,1); gr->SetRanges(1,0,0,2); gr->Axis("x");
gr->FPlot ("sqrt(x)+x~3"); gr->Label('x',"\\tau",-1);
gr->InPlot(0.5,1,0,0.5); gr->SetRanges(0,10,4,0); gr->Axis("y");
gr->FPlot ("x/4"); gr->Label('y',"L",-1);

gr->InPlot(0,0.5,0,0.5); gr->SetRanges(1,0,4,0); gr->FPlot("4*x"2");
return O;

Note, that MathGL can draw not only single axis (which is default). But also several
axis on the plot (see right plots). The idea is that the change of settings does not influence
on the already drawn graphics. So, for 2-axes I setup the first axis and draw everything
concerning it. Then I setup the second axis and draw things for the second axis. Generally,
the similar idea allows one to draw rather complicated plot of 4 axis with different ranges
(see bottom left plot).

At this inverted axis can be created by 2 methods. First one is used in this sample — just
specify minimal axis value to be large than maximal one. This method work well for 2D
axis, but can wrongly place labels in 3D case. Second method is more general and work in
3D case too — just use [aspect], page 114, function with negative arguments. For example,
following code will produce exactly the same result for 2D case, but 2nd variant will look
better in 3D.

// variant 1
gr->SetRanges(0,10,4,0); gr->AxisQ);

// variant 2
gr->SetRanges(0,10,0,4); gr->Aspect(l,-1); gr->Axis();

Chapter 2: MathGL examples 25

Axis origin, Grid 2 axis

1

02 04 06 08
axis 2

—_ 1
Al
o
Y
105 _0
axis 1

4]

4 segments, inverted axis More axis

A _:

;
0
b3l

02 04 06 08

1
e

'
0.5 1

|
=
o
=]

Another MathGL feature is fine ticks tunning. By default (if it is not changed by
SetTicks function), MathGL try to adjust ticks positioning, so that they looks most human
readable. At this, MathGL try to extract common factor for too large or too small axis
ranges, as well as for too narrow ranges. Last one is non-common notation and can be
disabled by SetTuneTicks function.

Also, one can specify its own ticks with arbitrary labels by help of SetTicksVal function.
Or one can set ticks in time format. In last case MathGL will try to select optimal format
for labels with automatic switching between years, months/days, hours/minutes/seconds
or microseconds. However, you can specify its own time representation using formats de-
scribed in http://www.manpagez.com/man/3/strftime/. Most common variants are ‘%X’
for national representation of time, ‘%x’ for national representation of date, ‘%Y’ for year
with century.

The sample code, demonstrated ticks feature is

int sample(mglGraph *gr)

{
gr->SubPlot(3,3,0); gr->Title("Usual axis"); gr->AxisQ);
gr->SubPlot(3,3,1); gr->Title("Too big/small range");
gr->SetRanges(-1000,1000,0,0.001); gr->AxisQ);
gr->SubPlot(3,3,2); gr->Title("LaTeX-like labels");
gr->Axis("FI");
gr->SubPlot(3,3,3); gr->Title("Too narrow range");
gr->SetRanges(100,100.1,10,10.01); gr->AxisQ);
gr->SubPlot(3,3,4); gr->Title("No tuning, manual '+'");
// for version<2.3 you need first call gr->SetTuneTicks(0);
gr->Axis("+!I");
gr->SubPlot(3,3,5); gr->Title("Template for ticks");
gr->SetTickTempl ('x',"xxx:%g"); gr->SetTickTempl('y',"y:%g");
gr—->Axis();

http://www.manpagez.com/man/3/strftime/

Chapter 2: MathGL examples 26

// now switch it off for other plots

gr->SetTickTempl('x',""); gr->SetTickTempl('y',"");

gr->SubPlot(3,3,6); gr->Title("No tuning, higher precision");

gr->Axis("!4");

gr->SubPlot(3,3,7); gr->Title("Manual ticks"); gr->SetRanges(-M_PI,M_PI, 0, 2);li
gr->SetTicks('x' ,M_PI,0,0,"\\pi"); gr->AddTick('x',0.886,"x"*");

// alternatively you can use following lines

//double val[]l={-M_PI, -M_PI/2, 0, 0.886, M_PI/2, M_PI};

//gr->SetTicksVal('x', mglData(6,val), "-\\pi\n-\\pi/2\nO\nx~*\n\\pi/2\n\\pi");]]
gr->Axis(); gr->Grid(); gr->FPlot("2*cos(x"2)"2", "r2");

gr->SubPlot(3,3,8); gr->Title("Time ticks"); gr->SetRange('x',0,3e5);
gr->SetTicksTime('x',0); gr->Axis();

Usual axis with "' style _ Too big/small range LaTeX-like labels
- 5 E
i . L
i . L
o= 3
) L

I—L -5 o s ! 21\) -4 i 3 W SIU =5 a Ll Ly

_ Too narrow range No tuning, manual '+' Template for ticks

& “gsi

+,
G

5y iy
4y, g, 4
oy gy

W s pe e o

2

5
o cem SEMD 4100 OB <KD 1001 +I0RD P Te Mg They. A,
iy Tty S iy Pty St

No tuning, higher precision Manual ticks Time ticks

3

a5

e, t
oy "y,

0 0 0e0d WOde L0DS 1001 —x TS x OLDLTU GINROD LU DLBATD

The last sample I want to show in this subsection is Log-axis. From MathGL’s point
of view, the log-axis is particular case of general curvilinear coordinates. So, we need first
define new coordinates (see also Section 2.2.3 [Curvilinear coordinates|, page 27) by help of
SetFunc or SetCoor functions. At this one should wary about proper axis range. So the
code looks as following:

int sample(mglGraph *gr)

{
gr->SubPlot(2,2,0,"<_"); gr->Title("Semi-log axis");
gr->SetRanges(0.01,100,-1,1); gr->SetFunc("lg(x)","");
gr->Axis(); gr->Grid("xy","g"); gr->FPlot("sin(1/x)");
gr->Label('x',"x",0); gr->Label('y', "y = sin 1/x",0);

gr->SubPlot(2,2,1,"<_"); gr->Title("Log-log axis");
gr->SetRanges(0.01,100,0.1,100); gr->SetFunc("lg(x)","1lg(y)");

Chapter 2: MathGL examples 27

gr->Axis(); gr->Grid("!","h="); gr->Grid();
gr->FPlot ("sqrt(1+x~2)"); gr->Label('x',"x",0);
gr->Label('y', "y = \\sqrt{1+x~2}",0);

gr->SubPlot(2,2,2,"<_"); gr->Title("Minus-log axis");
gr->SetRanges(-100,-0.01,-100,-0.1); gr->SetFunc("-1g(-x)","-1g(-y)");
gr->Axis(); gr->FPlot("-sqrt(1+x°2)");

gr->Label('x',"x",0); gr->Label('y', "y = -\\sqrt{1+x~2}",0);

gr->SubPlot(2,2,3,"<_"); gr->Title("Log-ticks");
gr->SetRanges(0.1,100,0,100); gr->SetFunc("sqrt(x)","");
gr->Axis(); gr >FPlot(" ")

gr->Label('x',"x",1); gr->Label('y', "y = x",0);

return O;
}
||S§nu -log axis . Log-log axis
‘|| ‘ ‘| [r
23 - . Yo
- \W f "._ -
CR — S
I \ l " L I
g ll - e
I | | I ‘..‘ ~
ﬂﬁ e L T e (ST ST
X X
. Minus-log axis . Log-ticks
=| —
%7 — I y
L 5]
> I 4
1= -~z
= =
jlzi;l ‘ —II(JM I —‘] I ‘—]I()“ ‘ I—](P‘l]{;-‘l-ll o ‘I() ‘ L 102
X X

You can see that MathGL automatically switch to log-ticks as we define log-axis formula
(in difference from v.1.*). Moreover, it switch to log-ticks for any formula if axis range
will be large enough (see right bottom plot). Another interesting feature is that you not
necessary define usual log-axis (i.e. when coordinates are positive), but you can define
“minus-log” axis when coordinate is negative (see left bottom plot).

2.2.3 Curvilinear coordinates

As T noted in previous subsection, MathGL support curvilinear coordinates. In difference
from other plotting programs and libraries, MathGL uses textual formulas for connection
of the old (data) and new (output) coordinates. This allows one to plot in arbitrary coordi-
nates. The following code plots the line y=0, z=0 in Cartesian, polar, parabolic and spiral
coordinates:

Chapter 2: MathGL examples 28

int sample(mglGraph *gr)

{

gr->SetOrigin(-1,1,-1);

gr->SubPlot(2,2,0); gr->Title("Cartesian"); gr->Rotate(50,60);
gr_>FPlot(||2*t_1" s ||O.5" s ||O|| s III-2||) ;
gr->Axis(); gr->Grid();

gr->SetFunc ("y*sin(pi*x)","y*cos(pi*x)",0);

gr->SubPlot(2,2,1); gr->Title("Cylindrical"); gr->Rotate(50,60);
gr—>FPlot("2*t—1","O.5",“O“,"r2“);

gr->Axis(); gr->Grid();

gr->SetFunc ("2*xy*x","y*y - x*x",0);

gr->SubPlot(2,2,2); gr->Title("Parabolic"); gr->Rotate(50,60);
gr—>FPlot("2*t—1","O.5",“O“,"r2");

gr—>Axis(); gr->Grid();

gr->SetFunc("y*sin(pi*x)","y*cos(pi*x)","x+z");
gr->SubPlot(2,2,3); gr->Title("Spiral"); gr->Rotate(50,60);
gr->FPlot ("2%t—1","0.5" ,"0" "r2") ;

gr—->Axis(); gr->Grid();

gr->SetFunc(0,0,0); // set to default Cartesian

return O;

Cartesian Cylindrical

Chapter 2: MathGL examples

2.2.4 Colorbars

MathGL handle [colorbar], page 132, as special kind of axis. So, most of functions for axis
and ticks setup will work for colorbar too. Colorbars can be in log-scale, and generally as
arbitrary function scale; common factor of colorbar labels can be separated; and so on.

But of course, there are differences — colorbars usually located out of bounding box. At

this, colorbars can be at subplot boundaries (by default), or at bounding box (if symbol
‘T’ is specified). Colorbars can handle sharp colors. And they can be located at arbitrary
position too. The sample code, which demonstrate colorbar features is:

int sample(mglGraph *gr)

{

gr->SubPlot(2,2,0); gr->Title("Colorbar out of box"); gr->Box();
gr->Colorbar("<"); gr->Colorbar(">");
gr->Colorbar("_"); gr->Colorbar(""");

gr->SubPlot(2,2,1); gr->Title("Colorbar near box"); gr->Box () ;
gr->Colorbar ("<I"); gr->Colorbar(">I");
gr->Colorbar("_I"); gr->Colorbar(""I");

gr->SubPlot(2,2,2); gr->Title("manual colors");
mglData a,v; mgls_prepare2d(&a,0,&v);
gr->Box(); gr->ContD(v,a);
gr->Colorbar(v,"<"); gr->Colorbar(v,">");
gr->Colorbar(v,"_"); gr->Colorbar(v," ");

gr->SubPlot(2,2,3); gr->Title(" ");

gr->Puts (mglPoint(-0.5,1.55),"Color positions",":C",-2);

gr->Colorbar ("bwr>",0.25,0); gr->Puts(mglPoint(-0.9,1.2),"Default");
gr->Colorbar ("b{w,0.3}r>",0.5,0); gr->Puts(mglPoint(-0.1,1.2),"Manual");

gr->Puts (mglPoint(1,1.55),"log-scale",":C",-2);
gr->SetRange('c',0.01,1e3);
gr->Colorbar(">",0.75,0); gr->Puts(mglPoint(0.65,1.2),"Normal scale");

gr_>setFunC(" n s nn s nn s lllg(c) ll) ;
gr->Colorbar (">"); gr->Puts (mglPoint(1.35,1.2),"Log scale");
return O;

Chapter 2: MathGL examples 30

Colorbar out of box Colorbar near box
— | 4 _us o 0s 1
I - -1 —0.5 l? 05 1 _‘I - ‘ -
I 3 I 3
-1 —0.5 {13 0.5 1 !
[R | -1 05 0 05 1
man J itions -
a ual C‘.?’]”H:- Color positions %log scale
-1 -035-05-025 0 025 05 075 | Default Manual Norpal scale Log scale
A - - = =]
\ 2 g
5 a1® I I
I §5 . = bl | o = E
o = @ - S- -

o = =

. > f“ni - . i -
A A T T = 5
el 15 =
n
. —) - 1,

PAS A 1 |

—L 07505025 0025 05 035 1

2.2.5 Bounding box

Box around the plot is rather useful thing because it allows one to: see the plot boundaries,
and better estimate points position since box contain another set of ticks. MathGL provide
special function for drawing such box — [box], page 133, function. By default, it draw black
or white box with ticks (color depend on transparency type, see Section 2.5.3 [Types of
transparency|, page 48). However, you can change the color of box, or add drawing of
rectangles at rear faces of box. Also you can disable ticks drawing, but I don’t know why
anybody will want it. The sample code, which demonstrate [box], page 133, features is:

int sample(mglGraph *gr)

{
gr->SubPlot(2,2,0); gr->Title("Box (default)"); gr->Rotate(50,60);
gr->Box () ;
gr->SubPlot(2,2,1); gr->Title("colored"); gr->Rotate(50,60) ;
gr->Box("r");
gr->SubPlot(2,2,2); gr->Title("with faces"); gr->Rotate(50,60);
gr->Box ("@");
gr->SubPlot(2,2,3); gr->Title("both"); gr->Rotate(50,60);
gr->Box("@cm") ;
return O;

Chapter 2: MathGL examples 31

Box (default) colored

with faces both

2.2.6 Ternary axis

There are another unusual axis types which are supported by MathGL. These are ternary
and quaternary axis. Ternary axis is special axis of 3 coordinates a, b, ¢ which satisfy
relation a+b+c=1. Correspondingly, quaternary axis is special axis of 4 coordinates a, b, c,
d which satisfy relation a+b+c+d=1.

Generally speaking, only 2 of coordinates (3 for quaternary) are independent. So,
MathGL just introduce some special transformation formulas which treat a as ‘x’, b as
‘y’ (and ¢ as ‘2’ for quaternary). As result, all plotting functions (curves, surfaces, contours
and so on) work as usual, but in new axis. You should use [ternary], page 107, function for
switching to ternary/quaternary coordinates. The sample code is:

int sample(mglGraph *gr)

{
gr->SetRanges(0,1,0,1,0,1);
mglData x(50),y(50),z(50),rx(10),ry(10), a(20,30);
a.Modify ("30*xx*xy*(1-x-y) "2% (x+y<1)");
x.Modify ("0.25%(1+cos(2xpixx))");
y.Modify ("0.25*%(1+sin(2*pi*x))");
rx.Modify("rnd"); ry.Modify("(1-v)*rnd",rx);
z.Modify("x");

gr->SubPlot(2,2,0); gr->Title("Ordinary axis 3D");
gr->Rotate(50,60) ; gr->Light (true) ;

gr->Plot(x,y,z,"r2"); gr->Surf(a,"BbcyrR#");

gr->Axis(); gr->Grid(); gr->Box();

gr->Label('x',"B",1); gr->Label('y',"C",1); gr->Label('z',"Z",1);

gr->SubPlot(2,2,1); gr->Title("Ternary axis (x+y+t=1)");
gr->Ternary(1);

Chapter 2: MathGL examples 32

gr->Plot(x,y,"r2"); gr->Plot(rx,ry,"q” "); gr->Cont(a,"BbcyrR");
gr->Line (mglPoint (0.5,0), mglPoint(0,0.75), "g2");

gr->Axis(); gr->Grid("xyz","B;");

gr->Label('x',"B"); gr->Label('y',"C"); gr->Label('t',"A");

gr->SubPlot(2,2,2); gr->Title("Quaternary axis 3D");
gr->Rotate(50,60) ; gr->Light (true) ;
gr->Ternary(2);

gr->Plot(x,y,z,"r2"); gr->Surf(a,"BbcyrR#");
gr->Axis(); gr->Grid(); gr->Box();
gr->Label('t',"A",1); gr->Label('x',"B",1);
gr->Label('y',"C",1); gr->Label('z',"D",1);

gr->SubPlot(2,2,3); gr->Title("Ternary axis 3D");
gr->Rotate (50,60) ; gr->Light (true);
gr->Ternary (1) ;

gr->Plot(x,y,z,"r2"); gr->Surf(a,"BbcyrR#");
gr->Axis(); gr->Grid(); gr->Box();
gr->Label('t',"A",1); gr->Label('x',"B",1);
gr->Label('y',"C",1); gr->Label('z',"Z",1);
return O;

Ordinary axis 3D Ternary axis (x+y+t=1)

D

N o
g

2.2.7 Text features

MathGL prints text by vector font. There are functions for manual specifying of text
position (like Puts) and for its automatic selection (like Label, Legend and so on). MathGL
prints text always in specified position even if it lies outside the bounding box. The default

Chapter 2: MathGL examples 33

size of font is specified by functions SetFontSize* (see Section 4.2.6 [Font settings], page 99).
However, the actual size of output string depends on subplot size (depends on functions
SubPlot, InPlot). The switching of the font style (italic, bold, wire and so on) can be
done for the whole string (by function parameter) or inside the string. By default MathGL
parses TeX-like commands for symbols and indexes (see Section 3.5 [Font styles], page 88).

Text can be printed as usual one (from left to right), along some direction (rotated text),

or along a curve. Text can be printed on several lines, divided by new line symbol ‘\n’.

Example of MathGL font drawing is:

int sample(mglGraph *gr)

{

gr->SubPlot(2,2,0,"");

gr->Putsw(mglPoint (0,1) ,L"Text can be in ASCII and in Unicode");
gr->Puts(mglPoint (0,0.6),"It can be \\wire{wire}, \\big{big} or #r{colored}");ll
gr->Puts (mglPoint (0,0.2),"One can change style in string: "

"\\b{bold}, \\i{italic, \\b{both}}");

gr->Puts (mglPoint (0,-0.2),"Easy to \\a{overline} or "

"\\u{underline}");

gr->Puts(mglPoint (0,-0.6),"Easy to change indexes “{up} _{down} @{center}");l
gr->Puts (mglPoint (0,-1),"It parse TeX: \\int \\alpha \\cdot "

"\\sqrt3{sin(\\pi x)~°2 + \\gamma_{i_k}} dx");

gr->SubPlot(2,2,1,"");
gr->Puts (mglPoint (0,0.5), "\\sqrt{\\frac{\\alpha"{\\gamma~2}+\\overset 1{\\big\\infty}}{\
gr->Puts (mglPoint (0,-0.5),"Text can be printed\non several lines");

gr->SubPlot(2,2,2,"");

mglData y; mgls_prepareld(&y);

gr->Box(); gr->Plot(y.SubData(-1,0));

gr->Text (y,"This is very very long string drawn along a curve",":k");
gr->Text (y,"Another string drawn under a curve","T:r");

gr->SubPlot(2,2,3,"");

gr->Line (mglPoint(-1,-1) ,mglPoint(1,-1),"rA");
gr->Puts (mglPoint (0,-1) ,mglPoint(1,-1),"Horizontal");
gr->Line (mglPoint(-1,-1) ,mglPoint(1,1),"rA");
gr->Puts (mglPoint (0,0) ,mglPoint(1,1),"At angle","@");
gr->Line (mglPoint(-1,-1) ,mglPoint(-1,1),"rA");
gr->Puts (mglPoint (-1,0) ,mglPoint(-1,1),"Vertical");
return O;

Chapter 2: MathGL examples

34

Text can be in ASCII and in Unicode

1t can be wirs, blg or colored ‘ ,\/ o+l

2+

One can change style in string: bold, italic, both

Easy to overline or underline
Easy to change indexes % ggp, conter

It parse TeX: fm V/sin(mx? + ¥, dx

More text position: &, E, Lol Gl L), & 3

Text can be printed
on several lines
or with radient

T T
1 Ve
.}Gf/"' R
I 005@,\1“6
hod .

&
%,

7y

%, Png string
drawn ug e
% 2

»
4

=
_U
&
_ =
@ T
?jnok“‘?{)c & 3
Y

Horizontal >

You can change font faces by loading font files by function [loadfont], page 100. Note,

that this is long-run procedure.

Font faces can be downloaded from MathGL website

(http://mathgl.sourceforge.net/download.html) or from here (http://sourceforge.
net/project/showfiles.php?group_id=152187&package_i1d=267177). The sample code

1s:

int sample(mglGraph *gr)
{
double h=1.1, d=0.25;
gr->LoadFont ("STIX");

gr->LoadFont ("adventor") ;

gr->LoadFont ("bonum") ;

gr->LoadFont ("chorus") ;
gr->LoadFont ("cursor") ;

gr->LoadFont ("heros") ;

gr->LoadFont ("heroscn") ;
gr->LoadFont ("pagella");
gr->LoadFont ("schola");
gr->LoadFont ("termes") ;

return O;

gr->Puts(mglPoint (0,h), "default font (STIX)");
gr->Puts (mglPoint (0,h-d), "adventor font");
gr->Puts (mglPoint (0,h-2%d), "bonum font");
gr->Puts (mglPoint (0,h-3*d), "chorus font");
gr->Puts (mglPoint (0,h-4%*d), "cursor font");
gr->Puts(mglPoint (0,h-5%d), "heros font");
gr->Puts(mglPoint (0,h-6%d), "heroscn font");
gr->Puts(mglPoint (0,h-7*d), "pagella font");
gr->Puts (mglPoint (0,h-8*d), "schola font");
gr->Puts (mglPoint (0,h-9%d), "termes font");

http://mathgl.sourceforge.net/download.html
http://mathgl.sourceforge.net/download.html
http://sourceforge.net/project/showfiles.php?group_id=152187&package_id=267177
http://sourceforge.net/project/showfiles.php?group_id=152187&package_id=267177

Chapter 2: MathGL examples 35

default font (STIX)
adventor font
bonum font
chorus font
cursor font
heros font
heroscen font
pagella font
schola font

termes font

2.2.8 Legend sample

Legend is one of standard ways to show plot annotations. Basically you need to connect
the plot style (line style, marker and color) with some text. In MathGL, you can do it
by 2 methods: manually using [addlegend], page 135, function; or use ‘legend’ option (see
Section 3.7 [Command options|, page 91), which will use last plot style. In both cases,
legend entries will be added into internal accumulator, which later used for legend drawing
itself. [clearlegend], page 135, function allow you to remove all saved legend entries.

There are 2 features. If plot style is empty then text will be printed without indent. If
you want to plot the text with indent but without plot sample then you need to use space
" as plot style. Such style ¢’ will draw a plot sample (line with marker(s)) which is invisible
line (i.e. nothing) and print the text with indent as usual one.

Function [legend], page 134, draw legend on the plot. The position of the legend can be
selected automatic or manually. You can change the size and style of text labels, as well as
setup the plot sample. The sample code demonstrating legend features is:
int sample(mglGraph *gr)

{

gr->AddLegend ("sin(\\pi {x"2})","d");

gr->AddLegend ("sin(\\pi x)","g*");

gr->AddLegend ("sin(\\pi \\sqrt{zx})","rd");

gr->AddLegend ("just text"," ");

gr->AddLegend("no indent for this","");

gr->SubPlot(2,2,0,""); gr->Title("Legend (default)");
gr->Box(); gr->Legend();

gr->Legend (3, "A#") ;
gr->Puts(mglPoint (0.75,0.65),"Absolute position","A");

Chapter 2: MathGL examples

gr->SubPlot(2,2,2,"");

gr->Title("coloring");

gr->Box () ;

gr->Legend (0, "r#"); gr->Legend(1,"Wb#");

gr->SubPlot(2,2,3,"");
gr->Legend(0.5,1);

gr->Legend (2, "ygr#") ;

gr->Title("manual position"); gr->Box();
gr->Puts (mglPoint(0.5,0.55),"at x=0.5, y=1","a");

36

gr->Legend(1,"#-"); gr->Puts(mglPoint(0.75,0.25),"Horizontal legend","a");

return O;

—F 2
Legend (default) sin(me)
Style 'A' i
‘ . . yle sin(mx)
sinxx) T — sin(my/x)
L —e—si.u(x\/x) 1 & sin ﬁ) q
just text just text ‘]uSt text
o indent fr 5| s indeut for wls no indent for this
Absolute position
coloring manual position
sin(a(x’; I ‘ I sin(mx?) I
sin(xx) sin(xx)
| —— sinfx+/x) 4 L —— sin(xy/x) _
just text just text
no indent for this no indent for this
at x=0.3, y=1
sin(ax?) — sin(xx?)
sin{xx) sin(mx) f y
- oty ity | L Horizontal legend |
just text just text sin(mx?) @ gin(x \/;) no indent for this
no indent Iur‘ this no indent for this !iﬂ(::x? jus‘l text .

2.2.9 Cutting sample

The last common thing which I want to show in this section is how one can cut off points
from plot. There are 4 mechanism for that.

e You can set one of coordinate to NAN value.

omitted.

All points with NAN values will be

e You can enable cutting at edges by SetCut function. As result all points out of bounding

box will be omitted.

e You can set cutting box by SetCutBox function. All points inside this box will be

omitted.

e You can define cutting formula by SetCut0ff function. All points for which the value

of formula is nonzero will be omitted. Note, that this is the slowest variant.

Below I place the code which demonstrate last 3 possibilities:

int sample(mglGraph *gr)
{

mglData a,c,v(1); mgls_prepare2d(&a); mgls_prepare3d(&c); v.al[0]=0.5;

gr->SubPlot(2,2,0); gr->Title("Cut on (default)");

gr->Rotate(50,60) ;

gr->Light (true) ;

Chapter 2: MathGL examples 37

gr->Box(); gr->Surf(a,"","zrange -1 0.5");

gr->SubPlot(2,2,1); gr->Title("Cut off"); gr->Rotate(50,60) ;
gr->Box(); gr->Surf(a,"","zrange -1 0.5; cut off");

gr->SubPlot(2,2,2); gr->Title("Cut in box"); gr->Rotate(50,60);
gr->SetCutBox(mglPoint (0,-1,-1), mglPoint(1,0,1.1));
gr->Alpha(true); gr->Box(); gr->Surf3(c);

gr->SetCutBox (mglPoint (0), mglPoint(0)); // switch it off

gr->SubPlot(2,2,3); gr->Title("Cut by formula"); gr->Rotate(50,60);
gr—>Cut0ff (" (z>(x+0.5%y-1)"2-1) & (2>(x-0.5%y-1)"2-1)");

gr->Box(); gr->Surf3(c); gr->CutOff(""); // switch it off

return O;

Cut on (default)

2.3 Data handling

Class mglData contains all functions for the data handling in MathGL (see Chapter 6 [Data
processing], page 199). There are several matters why I use class mglData but not a single
array: it does not depend on type of data (mreal or double), sizes of data arrays are kept
with data, memory working is simpler and safer.

2.3.1 Array creation
There are many ways in MathGL how data arrays can be created and filled.
One can put the data in mglData instance by several ways. Let us do it for sinus function:

e one can create external array, fill it and put to mglData variable

Chapter 2: MathGL examples 38

double *a = new double[50];
for(int i=0;i<50;i++) ali] = sin(M_PI*i/49.);

mglData y;
y.Set(a,50);
e another way is to create mglData instance of the desired size and then to work directly
with data in this variable
mglData y(50);
for(int i=0;i<50;i++) y.ali] = sin(M_PI*i/49.);
e next way is to fill the data in mglData instance by textual formula with the help of
Modify () function
mglData y(50);
y.Modify("sin(pix*x)");
e or one may fill the array in some interval and modify it later
mglData y(50);
y.Fill(0,M_PI);
y.Modify("sin(u)");
e finally it can be loaded from file

FILE *fp=fopen("sin.dat","wt"); // create file first
for(int i=0;i<50;i++) fprintf (fp,"%g\n",sin(M_PI*i/49.));
fclose(fp);

mglData y("sin.dat"); // load it

At this you can use textual or HDF files, as well as import values from bitmap image
(PNG is supported right now).
e at this one can read only part of data
FILE *fp-fopen("sin.dat","wt"); // create large file first
for(int i=0;i<70;i++) fprintf (fp,"%g\n",sin(M_PI*i/49.));
fclose(fp);

mglData y;
y.Read("sin.dat",50); // load it

Creation of 2d- and 3d-arrays is mostly the same. But one should keep in mind that
class mglData uses flat data representation. For example, matrix 30*40 is presented as flat
(1d-) array with length 30*40=1200 (nx=30, ny=40). The element with indexes {i,j} is
a[i+nx*j]. So for 2d array we have:

mglData z(30,40);

for(int i=0;i<30;i++) for(int j=0;j<40;j++)

z.al[i+30%j] = sin(M_PI*i/29.)*sin(M_PI*j/39.);
or by using Modify() function
mglData z(30,40);
z.Modify("sin(pi*x)*cos(pixy)");

The only non-obvious thing here is using multidimensional arrays in C/C++, i.e. arrays
defined like mreal dat[40] [30] ;. Since, formally these elements dat[i] can address the

Chapter 2: MathGL examples 39

memory in arbitrary place you should use the proper function to convert such arrays to
mglData object. For C++ this is functions like mglData: :Set (mreal **dat, int N1, int
N2) ;. For C this is functions like mgl_data_set_mreal2(HMDT d, const mreal **dat, int
N1, int N2);. At this, you should keep in mind that nx=N2 and ny=N1 after conversion.

2.3.2 Linking array

Sometimes the data arrays are so large, that one couldn’t’ copy its values to another array
(i.e. into mglData). In this case, he can define its own class derived from mglDataA (see
Section 9.2 [mglDataA class], page 272) or can use Link function.

In last case, MathGL just save the link to an external data array, but not copy it. You
should provide the existence of this data array for whole time during which MathGL can
use it. Another point is that MathGL will automatically create new array if you’ll try to
modify data values by any of mglData functions. So, you should use only function with
const modifier if you want still using link to the original data array.

Creating the link is rather simple — just the same as using Set function

double *a = new double[50];
for(int i=0;i<50;i++) alil] = sin(M_PI*i/49.);

mglData y;
y.Link(a,50);

2.3.3 Change data

MathGL has functions for data processing: differentiating, integrating, smoothing and so
on (for more detail, see Chapter 6 [Data processing], page 199). Let us consider some
examples. The simplest ones are integration and differentiation. The direction in which
operation will be performed is specified by textual string, which may contain symbols ‘x’,
‘y’ or ‘z’. For example, the call of Diff ("x") will differentiate data along ‘x’ direction; the
call of Integral("xy") perform the double integration of data along ‘x’ and ‘y’ directions;
the call of Diff2("xyz") will apply 3d Laplace operator to data and so on. Example of
this operations on 2d array a=x*y is presented in code:

int sample(mglGraph *gr)

{
gr->SetRanges(0,1,0,1,0,1);
mglData a(30,40); a.Modify("x*y");
gr->SubPlot(2,2,0); gr->Rotate(60,40);
gr->Surf (a); gr->Box () ;
gr->Puts (mglPoint(0.7,1,1.2),"a(x,y)");
gr->SubPlot(2,2,1); gr->Rotate(60,40);
a.Diff ("x"); gr->Surf(a); gr->Box();
gr->Puts (mglPoint(0.7,1,1.2),"da/dx");
gr->SubPlot(2,2,2); gr->Rotate(60,40);
a.Integral("xy"); gr->Surf(a); gr->Box();
gr->Puts(mglPoint(0.7,1,1.2),"\\int da/dx dxdy");
gr->SubPlot(2,2,3); gr->Rotate(60,40);
a.Diff2("y"); gr->Surf(a); gr->Box();
gr->Puts (mglPoint(0.7,1,1.2),"\\int {d"2}a/dxdy dx");

Chapter 2: MathGL examples 40

return O;

fda/dx dxdy Jd%a/dxdy dx

Data smoothing (function [smooth|, page 224) is more interesting and important. This
function has single argument which define type of smoothing and its direction. Now 3
methods are supported: ‘3’ — linear averaging by 3 points, ‘6’ — linear averaging by 5
points, and default one — quadratic averaging by 5 points.

MathGL also have some amazing functions which is not so important for data processing
as useful for data plotting. There are functions for finding envelope (useful for plotting
rapidly oscillating data), for data sewing (useful to removing jumps on the phase), for data
resizing (interpolation). Let me demonstrate it:

int sample(mglGraph *gr)

{
gr->SubPlot(2,2,0,""); gr->Title("Envelop sample");
mglData d1(1000); gr->Fill(d1l,"exp(-8%x"2)*sin(10*pi*x)");
gr->Axis(); gr->Plot(d1, "b");
dl.Envelop('x'); gr->Plot(dl, "r");

gr->SubPlot(2,2,1,""); gr->Title("Smooth sample");

mglData y0(30),y1,y2,y3;

gr->SetRanges(0,1,0,1);

gr->Fill(y0, "0.4*sin(pi*x) + 0.3*cos(1.5*pi*x) - 0.4*sin(2*pi*x)+0.5xrnd");|}

y1=y0; y1.Smooth("x3");
y2=y0; y2.Smooth("x5");
y3=y0; y3.Smooth("x");

gr->Plot(y0,"{m7}:s", "legend 'none'"); //gr->AddLegend("none","k");

Chapter 2: MathGL examples 41

gr->Plot(yl,"r", "legend ''3' style'");
gr->Plot(y2,"g", "legend ''5' style'");
gr->Plot(y3,"b", "legend 'default'");
gr->Legend(); gr->Box();

gr->SubPlot(2,2,2); gr->Title("Sew sample");

mglData d2(100, 100); gr->Fill(d2, "mod((y~2-(1-x)"2)/2,0.1)");
gr->Rotate(50, 60); gr->Light(true); gr->Alpha(true);
gr->Box () ; gr->Surf (d2, "b");

d2.Sew("xy", 0.1); gr->Surf(d2, "r");

gr->SubPlot(2,2,3); gr->Title("Resize sample (interpolation)");
mglData x0(10), v0(10), x1, vi;

gr->Fill(x0,"rnd"); gr->Fill(v0,"rnd");

x1 = x0.Resize(100); vl = v0.Resize(100);

gr->Plot (x0,v0,"b+ "); gr->Plot(xl,vl,"r-");

gr->Label (x0,v0,"%n") ;

return O;

Envelop sample Smooth sample

none

. B — '3 style i
O 7 defmlt
| P Pd X

L
I '-‘. '3 style

0.5

0
|
|

—0.5

=1

Also one can create new data arrays on base of the existing one: extract slice, row or
column of data ([subdatal, page 215), summarize along a direction(s) ([sum], page 219),
find distribution of data elements ([hist], page 218) and so on.

Another interesting feature of MathGL is interpolation and root-finding. There are
several functions for linear and cubic spline interpolation (see Section 6.8 [Interpolation],
page 226). Also there is a function [evaluate], page 216, which do interpolation of data
array for values of each data element of index data. It look as indirect access to the data
elements.

Chapter 2: MathGL examples 42

This function have inverse function [solve], page 217, which find array of indexes at which
data array is equal to given value (i.e. work as root finding). But [solve], page 217, function
have the issue — usually multidimensional data (2d and 3d ones) have an infinite number of
indexes which give some value. This is contour lines for 2d data, or isosurface(s) for 3d data.
So, [solve], page 217, function will return index only in given direction, assuming that other
index(es) are the same as equidistant index(es) of original data. If data have multiple roots
then second (and later) branches can be found by consecutive call(s) of [solve], page 217,
function. Let me demonstrate this on the following sample.

int sample(mglGraph *gr)
{
gr->SetRange('z',0,1);
mglData x(20,30), y(20,30), z(20,30), xx,yy,zZ;
gr->Fill(x," (x+2)/3*cos(pi*y)");
gr->Fill(y," (x+2)/3*sin(pi*y)");
gr->Fill(z, "exp(-6*x"2-2*sin(pi*y) "2)");

gr->SubPlot(2,1,0); gr->Title("Cartesian space"); gr->Rotate(30,-40);
gr->Axis("xyzU"); gr->Box(); gr->Label('x',"x"); gr->Label('y',"y");
gr->SetOrigin(1,1); gr->Grid("xy");

gr->Mesh(x,y,z);

// section along 'x' direction

mglData u = x.Solve(0.5,'x');

mglData v(u.nx); v.Fill1(0,1);

xx = x.Evaluate(u,v); yy = y.Evaluate(u,v); zz
gr->Plot (xx,yy,zz, "k20") ;

z.Evaluate(u,v);

// 1st section along 'y' direction

mglData ul = x.Solve(-0.5,'y');

mglData vi(ul.nx); v1.Fill(0,1);

xx = x.Evaluate(vl,ul); yy = y.Evaluate(vli,ul); zz
gr->Plot (xx,yy,zz,"b2™") ;

z.Evaluate(vl,ul);

// 2nd section along 'y' direction

mglData u2 = x.Solve(-0.5,'y',ul);

xx = x.Evaluate(vl,u2); yy = y.Evaluate(vl,u2); zz
gr->Plot (xx,yy,zz,"r2v") ;

z.Evaluate(vl,u2);

gr->SubPlot(2,1,1); gr->Title("Accompanied space");
gr->SetRanges(0,1,0,1); gr->SetOrigin(0,0);

gr->Axis(); gr->Box(); gr->Label('x',"i"); gr->Label('y',"j");
gr->Grid(z,"h");

gr->Plot (u,v,"k20"); gr->Line (mglPoint (0.4,0.5) ,mglPoint(0.8,0.5),"kA");
gr->Plot(vl,ul,"b2""); gr->Line(mglPoint(0.5,0.15),mglPoint(0.5,0.3),"bA");l}
gr->Plot(vl,u2,"r2v"); gr->Line(mglPoint(0.5,0.7),mglPoint(0.5,0.85),"rA");]}

Chapter 2: MathGL examples 43

Cartesian space Accompanied space

S

5 (__,/*""""' .
ijiiiSun

Id, 3 I M
Bl

0

2.4 Data plotting

Let me now show how to plot the data. Next section will give much more examples for all
plotting functions. Here I just show some basics. MathGL generally has 2 types of plotting
functions. Simple variant requires a single data array for plotting, other data (coordinates)
are considered uniformly distributed in axis range. Second variant requires data arrays for
all coordinates. It allows one to plot rather complex multivalent curves and surfaces (in
case of parametric dependencies). Usually each function have one textual argument for
plot style and another textual argument fo