MGL script language

for version 8.0

A.A. Balakin (http://mathgl.sourceforge.net/)

http://mathgl.sourceforge.net/

This manual is for MathGL (version 8.0), a collection of classes and routines for scientific
plotting. Please report any errors in this manual to mathgl.abalakin@gmail.org.

Copyright (©) 2008-2012 Alexey A. Balakin.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License.”

mailto:mathgl.abalakin@gmail.org

Table of Contents

1 MGL scripts............. 1
1.1 MGL definitionoooi e 1
1.2 Program flow commands. ..., 2
1.3 Special comments i)
1.4 LaTeX packagecoouuuiiii e 5

2 General concepts................... ... 9
2.1 Coordinate aXeSuue ettt e 10
2.2 Color Styles . .o 10
2.3 Line styles ...t 10
2.4 Color sScheme.o 12
2.5 Font styleso 14
2.6 Textual formulas........ ... 15
2.7 Command OptionS.o 17
2.8 INterfaces e 18

3 MathGL core 19
3.1 Create and delete objects........ ... 19
3.2 GraphiCs SEtUP ...\ttt 19

3.2.1 Transparency.............iiiii i 20
3.2.2 Lighting..... .o 20
3.2.3 O it 21
3.2.4 Default sizes ... 21
3.25 Cubbingt 22
3.2.6 Font settings....... ..o 22
3.2.7 Paletteand colors........ ..o 23
3.2.8 Masks. ...t 23
3.2.9 Error handlingo i i 23
3.2.10 Stop drawing........c.uveerit e 23
3.3 AXIS Settings ... oo 23
3.3.1 Ranges (bounding box)o, 24
3.3.2 Curved coordinates....... ..o 25
3.3.3 THCKS . ot 26
3.4 Subplots and rotation 28
3.5 Export picture e 30
3.5.1 Export tofile... ..o 31
3.5.2 Frames/Animation 31
3.5.3 Bitmap in memory 31
3.5.4 Parallelization.......... ... 31
3.6 Background............ 31
3.7 Primitives. e 32

3.8 Text printing.ccoouuuiiii i e 35

3.9 Axisand Colorbar. ... 36
3.10 Legend. ..o 38
311 1D plotting e 38
3.12 2D plottingove e 45
3.13 3D plottingove i 48
3.14 Dual plotting. ... 50
3.15 Vector flelds. . ..o 53
3.16 Other plottingo 56
3.17 Nonlinear fitting ... 58
3.18 Data manipulation.......... 59
Data processing.................... 61
4.1 Public variables 61
4.2 Data constructor....... ..o 61
4.3 DataresizZing.oouiiiiiiiii 62
4.4 Data filling.o 63
45 File I/O. .o 65
4.6 Make another data........... ... i 67
4.7 Data changing 70
4.8 Interpolation........ ... 72
4.9 Data information.......... ... o 72
410 OPEratorSo vttt ettt e e 74
4.11 Global functions.t 75
4.12 Evaluate exXpressioneeeiiiiiiiiiiiiiiiiiiiiieaa., 80
4.13 Special data classes. ... 80
MathGL examples.............................. 81
0.1 BasSiC USAZE . ..ttt ittt e 81
5.2 Advanced USaget 81
5.2.1 Subplots. ...t 82
5.2.2 Axisand ticks. ... 84
5.2.3 Curvilinear coordinates........... ..o, 88
5.2.4 ColoTbars 89
5.2.5 Bounding boxo 90
5.2.6 Ternary axXiS.ouuuuetemintt i 91
5.2.7 Text featuresoouiiii e 92
5.2.8 Legend sampleo 94
5.2.9 Cutting sample. ... 95
5.3 Data handling........ ... 96
5.3.1 Array creation......... ..ot 96
5.3.2 Change data.cooiuuiiii i 97
5.4 Data plotting ..o 101
5.5 HInts .o 103
5.5.1 “Compound” graphics..........coiuiiiiiiieiiiinennn.. 103
5.5.2 Transparency and lighting................ 105

5.5.3 Types of transparencyc.ooueieiiiieiniieean.. 106

ii

5.5.4 AXiS Projection......... ... 108
555 Adding fog. ..o 109
5.5.6 Lighting sample.......... o i i 110
5.5.7 Using primitives. 111
5.5.8 STFA sample ... e 114
5.5.9 Mapping visualization................ L. 115
5.5.10 Data interpolation.......... i i 116
5.5.11 Making regular data................. .o i, 118
5.5.12 Making histogram............ i 119
5.5.13 Nonlinear fitting hints............ L. 120
5.5.14 PDE solving hints........... o i 121
5.5.15 Drawing phase plain........... ... i, 125
5.5.16 Pulse properties........ ... 126
5.5.17 Using MGL parser ..o, 127
5.5.18 Using optionsoiiiiiiiiiii e 128
5.5.19 “Templates”ot 129
5.5.20 SEEreo IMAZEottt 130
5.5.21 Reduce memory USagevveuiee i, 130
5.5.22 Scanning fileo 131
5.5.23 Mixing bitmap and vector output........................ 131
B.6 FAQ . 132
All samples ... 135
6.1 Functions for initialization 135
6.2 Sample ‘Bwave’ 135
6.3 Sample ‘@lpha’ ..ot e 136
6.4 Sample ‘apde’. 137
6.5 Sample ‘area’. 138
6.6 Sample ‘@spect’ 139
6.7 Sample ‘axial’ ... 140
6.8 Sample ‘@xis’ ...t 141
6.9 Sample ‘background’........ ..ot 142
6.10 Sample ‘Darh’. ..o 143
6.11 Sample ‘Dars’. ..o 144
6.12 Sample Deltt 144
6.13 Sample ‘Deltc’ ...t 145
6.14 Sample ‘bifurcation’ i 146
6.15 Sample DOX ... e 146
6.16 Sample DoxPLot’ ...ttt e 147
6.17 Sample DOXSttt 148
6.18 Sample ‘candle’ ... 148
6.19 Sample ‘chart’o 149
6.20 Sample ‘cloud’ 150
6.21 Sample ‘colorbar’ttt 151
6.22 Sample ‘combined’. 152
6.23 Sample ‘cones’ 153

iii

6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57
6.58
6.59
6.60
6.61
6.62
6.63
6.64
6.65
6.66
6.67
6.68
6.69
6.70

Sample ‘Cont’t 154
Sample ‘Cont3’t 155
Sample ‘Cont_XyzZ’ ... 156
Sample ‘contd’ ... 156
Sample ‘contf’ ... 157
Sample ‘contf3’ 158
Sample ‘Contf _XYzot 159
Sample ‘Conts’ ... 159
Sample ‘Contv’ ... 160
Sample ‘Correl’ 161
Sample ‘CUTVCOOT ...\ttt 162
Sample ‘Cut’. 163
Sample ‘daisy’ 163
Sample ‘dat_diff 164
Sample ‘dat_extra’.......ovirit i 165
Sample ‘datal’ 165
Sample ‘datal’ 166
Sample ‘dcont’ ... 167
Sample ‘dens’.o 168
Sample ‘dens3’ 169
Sample ‘dens_Xyz’ 170
Sample ‘detect’ 170
Sample ‘dew’ 171
Sample ‘diffract’ ...t 172
Sample ‘dilate’o 173
Sample ‘Aots . ..t 175
Sample ‘earth’ 175
Sample ‘@rror’ 176
Sample ‘error2’ 177
Sample ‘export’ 178
Sample ‘Fall 179
Sample ‘Fexport’ 179
Sample ‘Tito 182
Sample ‘flame2d’coiiiiiiiii 183
Sample FLoW ... 184
Sample ‘F1oW3’ ...ttt 185
Sample Fog ... 186
Sample ‘Tonts’ ... 187
Sample ‘grad’. 187
Sample histt 188
Sample ‘ACOn 189
Sample ‘AFs2d’ ...t 190
Sample ‘AFs3d ...ttt 191
Sample ‘indirect’ ...t 192
Sample ‘Anplot’ 193
Sample ‘Aris 194

Sample Keept 195

iv

6.71
6.72
6.73
6.74
6.75
6.76
6.77
6.78
6.79
6.80
6.81
6.82
6.83
6.84
6.85
6.86
6.87
6.88
6.89
6.90
6.91
6.92
6.93
6.94
6.95
6.96
6.97
6.98
6.99
6.100
6.101
6.102
6.103
6.104
6.105
6.106
6.107
6.108
6.109
6.110
6.111
6.112
6.113
6.114
6.115
6.116
6.117

Sample ‘Label’ 195

Sample ‘lamerey’ 196
Sample ‘Legend’ ...ttt 197
Sample ‘Light’o e 198
Sample ‘1ines’ttt 199
Sample ‘L1oglog’ot 200
Sample Map’.o 201
Sample Mark’. 202
Sample Mask’.t 202
Sample ‘mesh’. ... 203
Sample ‘minmax’ 204
Sample ‘Mirror’ 205
Sample ‘molecule’t 206
Sample ‘0de’ 207
Sample On1Ct 208
Sample ‘paraml’ 209
Sample ‘param’ 210
Sample ‘param3’ 211
Sample ‘paramv’ 212
Sample ‘Parser’ 213
Sample ‘pde’. 215
Sample ‘pendelta’.ot 216
Sample Pipe . ..ot 217
Sample PLOt . ..o 218
Sample ‘Pmap’.t 219
Sample ‘primitives’..... ... 220
Sample ‘projection’.......... ... il 221
Sample ‘projectiond’ 222
Sample Pulse’ 223
Sample ‘qo2d’. 224
Sample ‘quality0’ 225
Sample ‘qualityl’ 228
Sample ‘QUuality2’ 231
Sample ‘qualityd’o 235
Sample ‘qualityb’ 238
Sample ‘quality6’........ 241
Sample ‘Quality8’t 245
Sample ‘radar’ ... 248
Sample ‘Tefill’ ... 249
Sample ‘region’ 250
Sample ‘scanfile’c.iiiiii e 251
Sample ‘schemes’ 252
Sample ‘Section’t 253
Sample ‘several_light’.......... i 254
Sample ‘S01Ve’ ...ttt 255
Sample ‘Stem’. 256

Sample Stept 257

6.118 Sample ‘Stere0’ot e 257
6.119 Sample ‘Stfa’. ... 258
6.120 Sample ‘Style’t e 259
6.121 Sample ‘Surf’. ... 259
6.122 Sample ‘surf3’ 260
6.123 Sample ‘surf3a’ 261
6.124 Sample ‘Surf3c’o 262
6.125 Sample ‘surf3ca’.o 262
6.126 Sample ‘surfa’o 263
6.127 Sample ‘Surfc’ 264
6.128 Sample ‘surfca’t 264
6.129 Sample ‘table’t 265
6.130 Sample “Cape’.ot 266
6.131 Sample “Temso 267
6.132 Sample ‘ternary’ 268
6.133 Sample “Textt 269
6.134 Sample ‘“text2’ ... o 270
6.135 Sample ‘textmark’........coiiiiiii e 271
6.136 Sample “Cicks’ ... 272
6.137 Sample “Bile 273
6.138 Sample “tiles’ ...t 274
6.139 Sample “Corus’ 274
6.140 Sample “Brajoii e 275
6.141 Sample ‘triangulation’.......... i 276
6.142 Sample “Criplot’ot 276
6.143 Sample “tube’. ... 277
6.144 Sample ‘Cypel’ e 278
6.145 Sample ‘Cypel’ ... 279
6.146 Sample ‘Cype2’ 280
6.147 Sample ‘VeCt 281
6.148 Sample ‘Vectd’ ... 282
6.149 Sample VNN’ 283
Appendix A Symbols and hot-keys............ 284
A.1 Symbols for styles ..ot 284
A.2 Hot-keys for mglview i 291
A.3 Hot-keys for UDAVo e 292
Appendix B GNU Free Documentation
License.... 296
Index 303

vi

1 MGL scripts

MathGL library supports the simplest scripts for data handling and plotting. These scripts
can be used independently (with the help of UDAV, mglconv, mglview programs and others

1.1 MGL definition

MGL script language is rather simple. Each string is a command. First word of string is
the name of command. Other words are command arguments. Words are separated from
each other by space or tabulation symbol. The upper or lower case of words is important,
i.e. variables a and A are different variables. Symbol ‘#’ starts the comment (all characters
after # will be ignored). The exception is situation when ‘#’ is a part of some string. Also
options can be specified after symbol ‘;’ (see Section 2.7 [Command options|, page 17).
Symbol ‘:’ starts new command (like new line character) if it is not placed inside a string
or inside brackets.

If string contain references to external parameters (substrings ‘$0’, ‘$1” ... ‘$9’) or defini-
tions (substrings ‘$a’, ‘$b’ ... ‘$2z’) then before execution the values of parameter/definition
will be substituted instead of reference. It allows one to use the same MGL script for
different parameters (filenames, paths, condition and so on).

Argument can be a string, a variable (data arrays) or a number (scalars).

e The string is any symbols between ordinary marks ‘'’. Long strings can be concatenated
from several lines by ‘\’ symbol. I.e. the string ‘'a +\
 b'’ will give string ‘'a +
b'’ (here ‘
’ is newline). There are several operations which can be performed with
string:

e Concatenation of strings and numbers using ‘,” with out spaces (for example,
“'max(u)=',u.max,' a.u.' or ‘'u=',!(1+i2)’ for complex numbers);

e Getting n-th symbol of the string using ‘[1’ (for example, ‘'abc' [1]" will give
B);

e Adding value to the last character of the string using ‘+’ (for example, ‘'abc'+3’
will give 'abf').

e Usually variable have a name which is arbitrary combination of symbols (except spaces
and ‘'’) started from a letter. Note, you can start an expression with ‘!’ symbol
if you want to use complex values. For example, the code new x 100 'x':copy !b
lexp(li*x) will create real valued data x and complex data b, which is equal to
exp(I * x), where I? = —1. A temporary array can be used as variable too:

e sub-arrays (like in [subdata], page 67, command) as command argument. For
example, a(1) or a(l,:) or a(l,:,:) is second row, a(:,2) or a(:,2,:) is third
column, a(:,:,0) is first slice and so on. Also you can extract a part of array
from m-th to n-th element by code a(m:n,:,:) or just a(m:n).

e any column combinations defined by formulas, like a('n*w~2/exp(t) ') if names
for data columns was specified (by [idset], page 64, command or in the file at string
started with ##).

e any expression (without spaces) of existed variables produce temporary variable.
For example, ‘sqrt(dat(:,5)+1)’ will produce temporary variable with data
values equal to tmp[i,j] = sqrt(dat[i,5,jl+1). At this symbol >’ will return

Chapter 1: MGL scripts 2

transposed data array: both ‘“sqrt(dat(:,5)+1)’ and ‘sqrt("dat(:,5)+1)’
will produce temporary variable with data values equal to tmpl[i,jl =
sqrt(dat[j,5,i]1+1).

e temporary variable of higher dimensions by help of []. For example, ‘[1,2,3]’
will produce a temporary vector of 3 elements {1, 2, 3}; ‘[[11,12],[21,22]]’
will produce matrix 2*2 and so on. Here you can join even an arrays of the same
dimensions by construction like ‘[v1,v2,...,vn]’ .

e result of code for making new data (see Section 4.6 [Make another data], page 67)
inside {}. For example, ‘{sum dat 'x'}’ produce temporary variable which contain
result of summation of dat along direction ’x’. This is the same array tmp as
produced by command ‘sum tmp dat 'x'’. You can use nested constructions, like
‘{sum {max dat 'z'} 'x'}.

Temporary variables can not be used as 1st argument for commands which create
(return) the data (like ‘new’, ‘read’, ‘hist’ and so on).

e Special names nan=#QNAN, inf=INFINITY, rnd=random value, pi=3.1415926...,
on=1, off=0, all=-1, :=-1, variables with suffixes (see Section 4.9 [Data
information|, page 72), names defined by [define], page 3, command, time values (in
format "hh-mm-ss. DD.MM.YYYY", "hh-mm-ss" or "DD.MM.YYYY") are treated
as number. Also results of formulas with sizes 1x1x1 are treated as number (for
example, ‘pi/dat.nx’).

Before the first using all variables must be defined with the help of commands, like,
[new], page 61, [var], page 63, [list], page 63, [copy], page 61, [read], page 65, [hist], page 68,
[sum], page 69, and so on (see sections Section 4.2 [Data constructor], page 61, Section 4.4
[Data filling], page 63, and Section 4.6 [Make another datal, page 67).

Command may have several set of possible arguments (for example, plot ydat and
plot xdat ydat). All command arguments for a selected set must be specified. However,
some arguments can have default values. These argument are printed in [], like text ydat

['stl'="'] or text x y 'txt' ['fnt'='"' size=-1]. At this, the record [argl arg2 arg3
...] means [argl [arg2 [arg3 ...]]], i.e. you can omit only tailing arguments if you
agree with its default values. For example, text x y 'txt' '' 1 or text xy 'txt' '' is

correct, but text x y 'txt' 1 is incorrect (argument 'fnt' is missed).

You can provide several variants of arguments for a command by using ‘?’ symbol for
separating them. The actual argument being used is set by [variant], page 4. At this, the
last argument is used if the value of [variant], page 4, is large than the number of provided
variants. By default the first argument is used (i.e. as for variant 0). For example, the
first plot will be drawn by blue (default is the first argument ‘b’), but the plot after variant
1 will be drawn by red dash (the second is ‘r|’):
fplot 'x' 'b'?'r!
variant 1
fplot 'x"3' 'b'?'r|"

1.2 Program flow commands

Below I show commands to control program flow, like, conditions, loops, define script ar-
guments and so on. Other commands can be found in chapters Chapter 3 [MathGL core],

Chapter 1: MGL scripts 3

page 19, and Chapter 4 [Data processing], page 61. Note, that some of program flow com-
mands (like [define], page 3, [ask], page 3, [call], page 3, [for], page 4, [func|, page 3) should
be placed alone in the string.

chdir ’path’ [MGL command]
Changes the current directory to path.

ask $N ’question’ [MGL command]
Sets N-th script argument to answer which give the user on the question. Usually
this show dialog with question where user can enter some text as answer. Here N is
digit (0...9) or alpha (a...z).

define $N smth [MGL command]
Sets N-th script argument to smth. Note, that smth is used as is (with ‘'’ symbols if
present). Here N is digit (0...9) or alpha (a...z).

define name smth [MGL command]
Create scalar variable name which have the numeric value of smth. Later you can use
this variable as usual number.

defchr $N smth [MGL command]
Sets N-th script argument to character with value evaluated from smth. Here N is
digit (0...9) or alpha (a...z).

defnum $N smth [MGL command]
Sets N-th script argument to number with value evaluated from smth. Here N is digit
(0...9) or alpha (a...z).

call ’funcname’ [ARG1 ARG2 ... ARGY| [MGL command]
Executes function fname (or script if function is not found). Optional arguments will
be passed to functions. See also [func], page 3.

func ’funcname’ [narg=0] [MGL command|]
Define the function fname and number of required arguments. The arguments will be
placed in script parameters $1, $2, ... $9. Note, script execution is stopped at func

keyword, similarly to [stop], page 4, command. See also [return], page 3.

return [MGL command]
Return from the function. See also [func], page 3.

load ’filename’ [MGL command]
Load additional MGL command from external module (DLL or .so), located in file
filename. This module have to contain array with name mgl_cmd_extra of type
mglCommand, which describe provided commands.

if val then CMD [MGL command]
Executes command CMD only if val is nonzero.

if val [MGL command]
Starts block which will be executed if val is nonzero.

Chapter 1: MGL scripts 4

if dat ’cond’ [MGL command]
Starts block which will be executed if dat satisfy to cond.

elseif val [MGL command]
Starts block which will be executed if previous if or elseif is false and val is nonzero.

elseif dat ’cond’ [MGL command]
Starts block which will be executed if previous if or elseif is false and dat satisfy
to cond.

else [MGL command]

Starts block which will be executed if previous if or elseif is false.

endif [MGL command]
Finishes if/elseif/else block.

for $N vi v2 [dv=1] [MGL command]
Starts loop with $N-th argument changing from v1 to v2 with the step dv. Here N
is digit (0...9) or alpha (a...z).

for $N dat [MGL command]
Starts loop with $N-th argument changing for dat values. Here N is digit (0...9) or
alpha (a...z).

next [MGL command]

Finishes for loop.

do [MGL command]
Starts infinite loop.

while val [MGL command]
Continue loop iterations if val is nonzero, or finishes loop otherwise.

while dat ’cond’ [MGL command]
Continue loop iterations if dat satisfy to cond, or finishes loop otherwise.

once val [MGL command]
The code between once on and once off will be executed only once. Useful for large
data manipulation in programs like UDAV.

stop [MGL command]
Terminate execution.

variant val [MGL command]
Set variant of argument(s) separated by ‘?’ symbol to be used in further commands.

rkstep eql;... varl;... [dt=1] [MGL command]
Make one step for ordinary differential equation(s) {varl’ = eql, ... } with time-step
dt. Here variable(s) ‘varl’, ... are the ones, defined in MGL script previously. The
Runge-Kutta 4-th order method is used for solution.

Chapter 1: MGL scripts 5

1.3 Special comments

There are number of special comments for MGL script, which set some global behavior
(like, animation, dialog for parameters and so on). All these special comments starts with
double sign ##. Let consider them.

‘Ft#c vl v2 [dv=1]’
Sets the parameter for animation loop relative to variable $0. Here v1 and v2
are initial and final values, dv is the increment.

‘##a val’ Adds the parameter val to the list of animation relative to variable $0. You
can use it several times (one parameter per line) or combine it with animation

loop #+#c.

‘##d $I kind|label|parl|par2]|...’
Creates custom dialog for changing plot properties. Each line adds one widget
to the dialog. Here $I is id ($0,$1...$9,%a,3b...8z), label is the label of widget,
kind is the kind of the widget:

e ¢’ for editor or input line (parameter is initial value) ,

e v’ for spinner or counter (parameters are "ini|min|max|step|big_step"),
e s’ for slider (parameters are "ini|min|max|step"),

e b’ for check box (parameter is "ini"; also understand "on"=1),

e ¢’ for choice (parameters are possible choices).

Now, it work in FLTK-based mgllab and mglview only.

1.4 LaTeX package

There is LaTeX package mgltex (was made by Diego Sejas Viscarra) which allow one to
make figures directly from MGL script located in LaTeX file.

For using this package you need to specify -—shell-escape option for latez/pdflatex or
manually run mglconv tool with produced MGL scripts for generation of images. Don’t for-
got to run latex/pdflatex second time to insert generated images into the output document.
Also you need to run pdfiatex third time to update converted from EPS images if you are
using vector EPS output (default).

The package may have following options: draft, final — the same as in the graphicz
package; on, off — to activate/deactivate the creation of scripts and graphics; comments,
nocomments — to make visible/invisible comments contained inside mglcomment environ-
ments; jpg, jpeg, png — to export graphics as JPEG/PNG images; eps, epsz — to export
to uncompressed /compressed EPS format as primitives; bps, bpsz — to export to uncom-
pressed/compressed EPS format as bitmap (doesn’t work with pdflatex); pdf — to export
to 3D PDF; tex — to export to LaTeX/tikz document.

The package defines the following environments:

‘mgl’ It writes its contents to a general script which has the same name as the LaTeX
document, but its extension is .mgl. The code in this environment is com-
piled and the image produced is included. It takes exactly the same optional
arguments as the \includegraphics command, plus an additional argument
imgext, which specifies the extension to save the image.

Chapter 1: MGL scripts 6

An example of usage of ‘mgl’ environment would be:

\begin{mglfunc}{prepare2d}

new a 50 40 '0.6*sin(pi*(x+1))*sin(1.5*pi*(y+1))+0.4*cos(0.75*pix(x+1)*(y+1))'}}
new b 50 40 '0.6%cos(pi*(x+1))*cos(1l.5*pi*(y+1))+0.4*cos(0.75*pi*(x+1)*(y+1))'}}

\end{mglfunc}

\begin{figure}[!ht]
\centering
\begin{mgl} [width=0.85\textwidth,height=7.5cm]
fog 0.5
call 'prepare2d'

subplot 2 2 0 : title 'Surf plot (default)' : rotate 50 60 : light on :

subplot 2 2 1 : title '"\#" style; meshnum 10' : rotate 50 60 :
surf a '#'; meshnum 10

subplot 2 2 2 : title 'Mesh plot' : rotate 50 60 : box
mesh a

new x 50 40 '0.8*sin(pi*x)*sin(pi*(y+1)/2)"
new y 50 40 '0.8*cos(pi*x)*sin(pix(y+1)/2)"'
new z 50 40 '0.8%*cos(pix(y+1)/2)"'
subplot 2 2 3 : title 'parametric form' : rotate 50 60 : box
surf x y z 'BbwrR'
\end{mgl}
\end{figure}

‘mgladdon’
It adds its contents to the general script, without producing any image.

‘mglcode’ Is exactly the same as ‘mgl’, but it writes its contents verbatim to its own file,
whose name is specified as a mandatory argument.

‘mglscript’
Is exactly the same as ‘mglcode’, but it doesn’t produce any image, nor accepts
optional arguments. It is useful, for example, to create a MGL script, which
can later be post processed by another package like "listings".

‘mglblock’
It writes its contents verbatim to a file, specified as a mandatory argument, and
to the LaTeX document, and numerates each line of code.

‘mglverbatim’
Exactly the same as ‘mglblock’, but it doesn’t write to a file. This environment
doesn’t have arguments.

‘mglfunc’ Is used to define MGL functions. It takes one mandatory argument, which is the
name of the function, plus one additional argument, which specifies the number
of arguments of the function. The environment needs to contain only the body
of the function, since the first and last lines are appended automatically, and

Chapter 1: MGL scripts 7

the resulting code is written at the end of the general script, after the [stop],
page 4, command, which is also written automatically. The warning is produced
if 2 or more function with the same name is defined.

‘mglcomment’

‘mglsetup’

Is used to contain multiline comments. This comments will be visible/invisible
in the output document, depending on the use of the package options comments
and nocomments (see above), or the \mglcomments and \mglnocomments com-
mands (see bellow).

If many scripts with the same code are to be written, the repetitive code can
be written inside this environment only once, then this code will be used auto-
matically every time the ‘\mglplot’ command is used (see below). It takes one
optional argument, which is a name to be associated to the corresponding con-
tents of the environment; this name can be passed to the ‘\mglplot’ command
to use the corresponding block of code automatically (see below).

The package also defines the following commands:

‘\mglplot’

It takes one mandatory argument, which is MGL instructions separated by
the symbol ‘:’ this argument can be more than one line long. It takes the
same optional arguments as the ‘mgl’ environment, plus an additional argument
setup, which indicates the name associated to a block of code inside a ‘mglsetup’
environment. The code inside the mandatory argument will be appended to the
block of code specified, and the resulting code will be written to the general
script.

An example of usage of ‘\mglplot’ command would be:

\begin{mglsetup}

box '@{W9}' : axis
\end{mglsetup}
\begin{mglsetup}[2d]

box : axis
grid 'xy' ';k'
\end{mglsetup}
\begin{mglsetup} [3d]
rotate 50 60
box : axis : grid 'xyz' ';k'
\end{mglsetup}
\begin{figure}[!ht]
\centering
\mglplot[scale=0.5]{new a 200 'sin(pi*x)' : plot a '2B'}
\end{figure}
\begin{figure}[!ht]
\centering
\mglplot [scale=0.5,setup=2d]{
fplot 'sin(pixx)' '2B'
fplot 'cos(pi*x~2)' '2R'

Chapter 1: MGL scripts 8

}
\end{figure}
\begin{figure}[!ht]

\centering

\mglplot [setup=3d] {fsurf 'sin(pi*x)+cos(pixy)'}
\end{figure}

‘\mglgraphics’
This command takes the same optional arguments as the ‘mgl’ environment, and
one mandatory argument, which is the name of a MGL script. This command
will compile the corresponding script and include the resulting image. It is
useful when you have a script outside the LaTeX document, and you want to
include the image, but you don’t want to type the script again.

‘“\mglinclude’
This is like ‘\mglgraphics’ but, instead of creating/including the corresponding
image, it writes the contents of the MGL script to the LaTeX document, and
numerates the lines.

‘\mgldir’ This command can be used in the preamble of the document to specify a direc-
tory where LaTeX will save the MGL scripts and generate the corresponding
images. This directory is also where ‘\mglgraphics’ and ‘\mglinclude’ will
look for scripts.

‘\mglquality’
Adjust the quality of the MGL graphics produced similarly to [quality], page 30.

‘\mgltexon, \mgltexoff’
Activate/deactivate the creation of MGL scripts and images. Notice these com-
mands have local behavior in the sense that their effect is from the point they
are called on.

‘\mglcomment, \mglnocomment’
Make visible/invisible the contents of the mglcomment environments. These
commands have local effect too.

‘\mglTeX’ It just pretty prints the name of the package.

As an additional feature, when an image is not found or cannot be included, instead of
issuing an error, mgltex prints a box with the word ‘MGL image not found’ in the LaTeX
document.

2 (eneral concepts

The set of MathGL features is rather rich — just the number of basic graphics types is larger
than 50. Also there are functions for data handling, plot setup and so on. In spite of it I
tried to keep a similar style in function names and in the order of arguments. Mostly it is
used for different drawing functions.

There are six most general (base) concepts:

1. Any picture is created in memory first. The internal (memory) representation can be
different: bitmap picture (for SetQuality (MGL_DRAW_LMEM) or [quality], page 30,
6) or the list of vector primitives (default). After that the user may decide what he/she
want: save to file, display on the screen, run animation, do additional editing and so on.
This approach assures a high portability of the program — the source code will produce
exactly the same picture in any OS. Another big positive consequence is the ability
to create the picture in the console program (using command line, without creating a
window)!

2. Every plot settings (style of lines, font, color scheme) are specified by a string. It
provides convenience for user/programmer — short string with parameters is more com-
prehensible than a large set of parameters. Also it provides portability — the strings
are the same in any OS so that it is not necessary to think about argument types.

3. All functions have “simplified” and “advanced” forms. It is done for user’s convenience.
One needs to specify only one data array in the “simplified” form in order to see the
result. But one may set parametric dependence of coordinates and produce rather
complex curves and surfaces in the “advanced” form. In both cases the order of function
arguments is the same: first data arrays, second the string with style, and later string
with options for additional plot tuning.

4. All data arrays for plotting are encapsulated in mglData(A) class. This reduces the
number of errors while working with memory and provides a uniform interface for data
of different types (mreal, double and so on) or for formula plotting.

5. All plots are vector plots. The MathGL library is intended for handling scientific
data which have vector nature (lines, faces, matrices and so on). As a result, vector
representation is used in all cases! In addition, the vector representation allows one to
scale the plot easily — change the canvas size by a factor of 2, and the picture will be
proportionally scaled.

6. New drawing never clears things drawn already. This, in some sense, unexpected, idea
allows one to create a lot of “combined” graphics. For example, to make a surface
with contour lines one needs to call the function for surface plotting and the func-
tion for contour lines plotting (in any order). Thus the special functions for making
this “combined” plots (as it is done in Matlab and some other plotting systems) are
superfluous.

In addition to the general concepts I want to comment on some non-trivial or less com-
monly used general ideas — plot positioning, axis specification and curvilinear coordinates,
styles for lines, text and color scheme.

Chapter 2: General concepts 10

2.1 Coordinate axes

Two axis representations are used in MathGL. The first one consists of normalizing coordi-
nates of data points in axis range (see Section 3.3 [Axis settings]|, page 23). If SetCut () is
true then the outlier points are omitted, otherwise they are projected to the bounding box
(see Section 3.2.5 [Cutting], page 22). Also, the point will be omitted if it lies inside the box
defined by SetCutBox () or if the value of formula Cut0ff () is nonzero for its coordinates.
After that, transformation formulas defined by SetFunc () or SetCoor() are applied to the
data point (see Section 3.3.2 [Curved coordinates], page 25). Finally, the data point is
plotted by one of the functions.

The range of z, y, z-axis can be specified by SetRange () or [ranges]|, page 24, functions.
Its origin is specified by [origin|, page 24, function. At this you can you can use NAN values
for selecting axis origin automatically.

There is 4-th axis ¢ (color axis or colorbar) in addition to the usual axes z, y, z It sets
the range of values for the surface coloring. Its borders are automatically set to values of
z-range during the call of [ranges]|, page 24, function. Also, one can directly set it by call
SetRange('c', ...). Use [colorbar], page 36, function for drawing the colorbar.

The form (appearence) of tick labels is controlled by SetTicks() function (see Sec-
tion 3.3.3 [Ticks], page 26). Function SetTuneTicks switches on/off tick enhancing by
factoring out acommon multiplier (for small coordinate values, like 0.001 to 0.002, or large,
like from 1000 to 2000) or common component (for narrow range, like from 0.999 to 1.000).
Finally, you may use functions SetTickTempl() for setting templates for tick labels (it
supports TeX symbols). Also, there is a possibility to print arbitrary text as tick labels the
by help of SetTicksVal() function.

2.2 Color styles

Base colors are defined by one of symbol ‘wkrgbcymhRGBCYMHWlenupqLENUPQ’. The color
types are: ‘k’ — black, ‘r’ — red, ‘R’ — dark red, ‘g’ — green, ‘G’ — dark green, ‘b’ — blue, ‘B’ -
dark blue, ‘c’ — cyan, ‘C’ — dark cyan, ‘m’ — magenta, ‘M’ — dark magenta, ‘y’ — yellow, ‘Y’ —
dark yellow (gold), ‘h’ — gray, ‘H’ — dark gray, ‘w’ — white, ‘W’ — bright gray, ‘1’ — green-blue,
‘L’ — dark green-blue, ‘e’ — green-yellow, ‘E’ — dark green-yellow, ‘n’ — sky-blue, ‘N’ — dark
sky-blue, ‘u’ — blue-violet, ‘U’ — dark blue-violet, ‘p” — purple, ‘P’ — dark purple, ‘q’ — orange,
‘Q’ — dark orange (brown).

You can also use “bright” colors. The “bright” color contain 2 symbols in brackets
‘{cN}’: first one is the usual symbol for color id, the second one is a digit for its brightness.
The digit can be in range ‘1’...‘9’. Number ‘56’ corresponds to a normal color, ‘1’ is a very
dark version of the color (practically black), and ‘9’ is a very bright version of the color
(practically white). For example, the colors can be ‘{b2}’ ‘{b7}’ ‘{r7}’ and so on.

Finally, you can specify RGB or RGBA values of a color using format ‘{xRRGGBB}’ or
‘{xRRGGBBAA}’ correspondingly. For example, ‘{xFF9966}’ give you melone color.

2.3 Line styles

The line style is defined by the string which may contain specifications for color
(‘wkrgbcymhRGBCYMHW1enupqLENUPQ’), dashing style (‘=|;:ji=" or space), width
(‘123456789’) and marks (‘*o+xsd. v<> and ‘# modifier). If one of the type of

Chapter 2: General concepts 11

information is omitted then default values used with next color from palette (see
Section 3.2.7 [Palette and colors], page 23). Note, that internal color counter will be
nullified by any change of palette. This includes even hidden change (for example, by [box],
page 37, or [axis|, page 36, functions). By default palette contain following colors: dark
gray ‘H’, blue ‘b’, green ‘g’, red ‘r’, cyan ‘c’, magenta ‘m’, yellow ‘y’, gray ‘h’, blue-green
‘1’, sky-blue ‘n’, orange ‘q’, yellow-green ‘e’, blue-violet ‘u’, purple ‘p’.

Dashing style has the following meaning: space — no line (usable for plotting
only marks), ‘=’ — solid line (H#HH#HHHHH#HHHFHHFHHHH#F#), ‘I’ — long dashed line
(HH#AHHHAHHH -), 37 — dashed line (####____####_-_-), ‘=" — small dashed

line (#H#_ H#H#H__H#H#__#H#__), ‘" —dotted line (#___#___#___#___),‘j’ — dash-dotted line
(HHHH#HH#H___ H#_), ‘1 — small dash-dotted line (#HH#__#__#H#H#__#__), {dNNNN}Y’
— manual dash style (for v.2.3 and later, like ‘{df090}’ for (#H#HHH#____#__F#____)).

Marker types are: ‘o’ — circle, ‘+’ — cross, ‘x” — skew cross, ‘s’ — square, ‘d’ — rhomb (or
diamond), ‘.” — dot (point), ‘~’ — triangle up, ‘v’ — triangle down, ‘<’ — triangle left, ‘>’ —
triangle right, ‘#%’ — Y sign, ‘#+’ — squared cross, ‘#x’ — squared skew cross, ‘#.’ — circled
dot. If string contain symbol ‘#’ then the solid versions of markers are used.

You can provide user-defined symbols (see [addsymbol], page 35) to draw it as marker
by using ‘&’ style. In particular, ‘&*’, ‘&o’, ‘&+’, ‘&x’, ‘&s’, ‘&d’, ‘&.’, ‘&~’, ‘&v’, ‘&<, &>’
will draw user-defined symbol ‘*o+xsd. ~v<>’ correspondingly; and ‘&#o’, ‘&#+’, ‘&#x’, ‘&#s’,
‘GHd’, &#., &#T, ‘&#v’, ‘&#<’, ‘&#> will draw user-defined symbols ‘YOPXSDCTVLR’ cor-
respondingly. Note, that wired version of user-defined symbols will be drawn if you set
negative marker size (see [marksize|, page 21, or size in Section 2.7 [Command options],
page 17).

One may specify to draw a special symbol (an arrow) at the beginning and at the end
of line. This is done if the specification string contains one of the following symbols: ‘A’
— outer arrow, ‘V’ — inner arrow, ‘I’ — transverse hatches, ‘K’ — arrow with hatches, ‘T’ —
triangle, ‘S’ — square, ‘D’ — rhombus, ‘0’ — circle, ‘X’ — skew cross, ‘_’ — nothing (the default).
The following rule applies: the first symbol specifies the arrow at the end of line, the second
specifies the arrow at the beginning of the line. For example, ‘r-A’ defines a red solid line
with usual arrow at the end, ‘b|AI’ defines a blue dash line with an arrow at the end and
with hatches at the beginning, ‘_0’ defines a line with the current style and with a circle at
the beginning. These styles are applicable during the graphics plotting as well (for example,
Section 3.11 [1D plotting], page 38).

Chapter 2: General concepts 12

- Solid - . Style AN’ . Siyle'A' or ‘A

‘f e Long Dash T * « Style vV < Style V' or 'V_'
L L . Style 'KK' Style 'K' or 'K
v ™ Dash \ Style ' Style T or '
o s Small dash '=" . + Style DD’ + Style D'or D’
@ wd' Dash-dot - a Style 'SS" a Style 's‘ or'S_"
o o' . o Style "GO o Style 'O or 'O
e Small dash-dot 1 - » Style TT' » Style T or 'T_'
" # Dos e Style WX Style X' ar X
'y L o Dets Style ' Style '_' or none
e e None '’ < L Style VAT » Style "AS'
ot s s Manmal G090 s Siyle’AV . Siyle A

Eoed U E TS E

2.4 Color scheme

The color scheme is used for determining the color of surfaces, isolines, isosurfaces and
so on. The color scheme is defined by the string, which may contain several characters
that are color id (see Section 2.3 [Line styles], page 10) or characters ‘#:|’. Symbol ‘#
switches to mesh drawing or to a wire plot. Symbol ‘|’ disables color interpolation in color
scheme, which can be useful, for example, for sharp colors during matrix plotting. Symbol
‘.’ terminate the color scheme parsing. Following it, the user may put styles for the text,
rotation axis for curves/isocontours, and so on. Color scheme may contain up to 32 color
values.

The final color is a linear interpolation of color array. The color array is constructed from
the string ids (including “bright” colors, see Section 2.2 [Color styles|, page 10). The argu-
ment is the amplitude normalized in color range (see Section 3.3 [Axis settings], page 23).
For example, string containing 4 characters ‘bcyr’ corresponds to a colorbar from blue (low-
est value) through cyan (next value) through yellow (next value) to the red (highest value).
String ‘kw’ corresponds to a colorbar from black (lowest value) to white (highest value).
String ‘m’ corresponds to a simple magenta color.

The special 2-axis color scheme (like in [map|, page 52, plot) can be used if it contain
symbol ‘%’. In this case the second direction (alpha channel) is used as second coordinate
for colors. At this, up to 4 colors can be specified for corners: {cl,al}, {c2,al}, {cl,a2},
{c2,a2}. Here color and alpha ranges are {c1,c2} and {al,a2} correspondingly. If one specify
less than 4 colors then black color is used for corner {cl,al}. If only 2 colors are specified
then the color of their sum is used for corner {c2,a2}.

There are several useful combinations. String ‘kw’ corresponds to the simplest gray color
scheme where higher values are brighter. String ‘wk’ presents the inverse gray color scheme
where higher value is darker. Strings ‘kRryw’, ‘kGgw’, ‘kBbcw’ present the well-known hot,
summer and winter color schemes. Strings ‘BbwrR’ and ‘bBkRr’ allow one to view bi-color

Chapter 2: General concepts 13

figure on white or black background, where negative values are blue and positive values are
red. String ‘BbcyrR’ gives a color scheme similar to the well-known jet color scheme.

For more precise coloring, you can change default (equidistant) position of colors in color
scheme. The format is ‘{CN,pos}’, ‘{CN,pos}’ or ‘{xRRGGBB,pos}’. The position value pos
should be in range [0, 1]. Note, that alternative method for fine tuning of the color scheme
is using the formula for coloring (see Section 3.3.2 [Curved coordinates], page 25).

w %gbrw
kHCew N KBbew
kRryw [N kGgew
owR R Ml Bowec
GgwmM I o
Qqwec I W cowyy
bewyr - . bwr
wirgy . UbcyqR
BheyR R T oy
BocyRI N M o005

When coloring by coordinate (used in [map|, page 52), the final color is determined by
the position of the point in 3d space and is calculated from formula c=x*c[1] + y*c[2].
Here, c[1], c[2] are the first two elements of color array; x, y are normalized to axis range
coordinates of the point.

Additionally, MathGL can apply mask to face filling at bitmap rendering. The kind of
mask is specified by one of symbols ‘-+=;00s57<>jdD*"’ in color scheme. Mask can be
rotated by arbitrary angle by command [mask], page 23, or by three predefined values +45,
-45 and 90 degree by symbols ‘\/I’ correspondingly. Examples of predefined masks are
shown on the figure below.

Chapter 2: General concepts 14

" mask '+' mask '=" mask mask 1' mask
— — —— — - - [I} [
- - —_— — - - - [| [

I I o o (A [
—_— — — — __ o L 1
- o —_ — _ o [(]
- I P — - - - [(]
- R - o - _ [| [
's' mask S mask /' mask
ooocC ooao Immm Imm LA L
P .
aooc oaoa Immm I m P P
aooc ooa Immm I m P s
goooc ooao Immn . L e
aooc Joo Immm I mm . .
oooc ooao Immm mm N s
s 7 P
aoooc ooao Immm mm v, ; -
' mask "\ mask
- = [N N
- P ~ Ay Y
NN Ay
_____________ e N
- mimime— = cmm LT Y
[N N
JE R .
------------- NN ~
[AT h
NN N
A" mask manual mask
. .
+++ ++4
+ 4+ + 44
+ 4+ + 44
+++ ++4
+++ ++4
+++ ++4
. Lia

However, you can redefine mask for one symbol by specifying new matrix of size 8*8 as
second argument for [mask|, page 23, command. For example, the right-down subplot on
the figure above is produced by code
mask '+' 'ff00182424f800"' :dens a '3+’
or just use manual mask style (for v.2.3 and later)
dens a '3{s00ff00182424£800}"

2.5 Font styles

Text style is specified by the string which may contain: color id characters
‘wkrgbcymhRGBCYMHW’ (see Section 2.2 [Color styles|, page 10), and font style (‘ribwou’)
and/or alignment (‘LRC’) specifications. At this, font style and alignment begin after the
separator ‘:’. For example, ‘r:iCb’ sets the bold (‘b’) italic (‘i’) font text aligned at the
center (‘C’) and with red color (‘r’). Starting from MathGL v.2.3, you can set not single
color for whole text, but use color gradient for printed text (see Section 2.4 [Color scheme],
page 12).

The font styles are: ‘r’ — roman (or regular) font, ‘i’ — italic style, ‘b’ — bold style. By
default roman roman font is used. The align types are: ‘L’ — align left (default), ‘C’ — align

center, ‘R’ — align right, ‘T’ — align under, ‘V’ — align center vertical. Additional font effects
are: ‘w — wired, ‘0’ — over-lined, ‘u’ — underlined.

Also a parsing of the LaTeX-like syntax is provided. There are commands for the font
style changing inside the string (for example, use \b for bold font): \a or \overline — over-
lined, \b or \textbf — bold, \i or \textit — italic, \r or \textrm — roman (disable bold and
italic attributes), \u or \underline — underlined, \w or \wire — wired, \big — bigger size, @
— smaller size. The lower and upper indexes are specified by ‘_’ and ‘~’ symbols. At this
the changed font style is applied only on next symbol or symbols in braces {}. The text
in braces {} are treated as single symbol that allow one to print the index of index. For
example, compare the strings ‘sin (x"{273})’ and ‘sin (x7273)’. You may also change
text color inside string by command #7 or by \color? where ‘?’ is symbolic id of the color

Chapter 2: General concepts 15

(see Section 2.2 [Color styles|, page 10). For example, words ‘blue’ and ‘red’ will be colored
in the string ‘#b{blue} and \colorr{red} text’. The most of functions understand the
newline symbol ‘\n’ and allows one to print multi-line text. Finally, you can use arbitrary (if
it was defined in font-face) UTF codes by command \utf0x??7?. For example, \utf0x3b1
will produce a symbol.

The most of commands for special TeX or AMSTeX symbols, the commands for font
style changing (\textrm, \textbf, \textit, \textsc, \overline, \underline), accents (\hat,
\tilde, \dot, \ddot, \acute, \check, \grave, \bar, \breve) and roots (\sqrt, \sqrt3, \sqrt4)
are recognized. The full list contain approximately 2000 commands. Note that first space
symbol after the command is ignored, but second one is printed as normal symbol (space).
For example, the following strings produce the same result a: ‘\tilde{a}’; ‘\tilde a’;
‘\tilde{}a’.

In particular, the Greek letters are recognizable special symbols: « — \alpha, 8 — \beta,
v —\gamma, § — \delta, ¢ — \epsilon, — \eta, ¢« — \iota, x — \chi, k — \kappa, A — \lambda,
u— \mu, v — \nu, o — \o, w — \omega, ¢ — \phi, 7 — \pi, ¥ — \psi, p — \rho, ¢ — \sigma,
0 — \theta, 7 — \tau, v — \upsilon, £ — \xi, {(— \zeta, ¢ — \varsigma, € — \varepsilon, 9 —
\vartheta, ¢ — \varphi, A — \Alpha, B — \Beta, I' — \Gamma, A — \Delta, E — \Epsilon,
H — \Eta, I — \lota, C — \Chi, K — \Kappa, A — \Lambda, M — \Mu, N — \Nu, O —\O, Q
—\Omega, ® — \Phi, II — \Pi, ¥ — \Psi, R — \Rho, ¥ — \Sigma, © — \Theta, T — \Tau, T
— \Upsilon, = — \Xi, Z — \Zeta.

The small part of most common special TeX symbols are: / — \angle, X — \aleph, - —
\cdot, & — \clubsuit, U — \cup, N — \cap, ¢ — \diamondsuit, ¢ — \diamond, + — \div, | —
\downarrow, T — \dag, — \ddag, = — \equiv, 3 — \exists, —~ — \frown, b — \flat, > — \ge,
> —\geq, + — \gets, © — \heartsuit, co — \infty, € — \in, [— \int, I — \Im, (— \langle, <
—\le, < —\leq, + — \leftarrow, & — \mp, V — \nabla, # — \ne, # — \neq, § — \natural, § —
\oint, ® — \odot, & — \oplus, d — \partial, || — \parallel, L — \perp, + — \pm, x — \propto,
[T - \prod, ® — \Re, — — \rightarrow,) — \rangle, & — \spadesuit, ~ — \sim, — — \smile,
C — \subset, D — \supset, v/ — \sqrt or \surd, § — \S, # — \sharp, > — \sum, x — \times,
— — \to, T — \uparrow, p — \wp and so on.

The font size can be defined explicitly (if size>0) or relatively to a base font size
as |size|*FontSize (if size<0). The value size=0 specifies that the string will not be
printed. The base font size is measured in internal “MathGL” units. Special functions
SetFontS8izePT (), SetFontSizeCM(), SetFontSizeIN() (see Section 3.2.6 [Font settings],
page 22) allow one to set it in more “common” variables for a given dpi value of the picture.

2.6 Textual formulas

MathGL have the fast variant of textual formula evaluation . There are a lot of functions and

operators available. The operators are: ‘+’ — addition, ‘=" — subtraction, ‘*” — multiplication,
¢/’ — division, ‘%’ — modulo, ‘~’ — integer power. Also there are logical “operators”: ‘<’ —
true if x<y, >’ — true if x>y, ‘=" — true if x=y, ‘&’ — true if x and y both nonzero, ‘|’ — true

if x or y nonzero. These logical operators have lowest priority and return 1 if true or 0 if
false.

The basic functions are: ‘sqrt(x)’ —square root of x, ‘pow(x,y)’ — power x in y, ‘In(x)’
— natural logarithm of x, ‘1g(x)’ — decimal logarithm of x, ‘log(a,x)’ — logarithm base a of
x, ‘abs (x)’ — absolute value of x, ‘sign(x)’ — sign of x, ‘mod (x,y)’ — x modulo y, ‘step(x)’ -

Chapter 2: General concepts 16

step function, ‘int(x)’ — integer part of x, ‘rnd’ — random number, ‘random(x)’ — random
data of size as in x, ‘hypot(x,y)’=sqrt(x~2+y~2) — hypotenuse, ‘cmplx(x,y)’=x+i*y —
complex number, ‘pi’ — number m = 3.1415926...,inf = co

Functions for complex numbers ‘real(x)’, ‘imag(x)’, ‘abs(x)’, ‘arg(x)’, ‘conj(x)’.

Trigonometric functions are: ‘sin(x)’, ‘cos(x)’, ‘tan(x)’ (or ‘tg(x)’). Inverse trigono-
metric functions are: ‘asin(x)’, ‘acos(x)’, ‘atan(x)’. Hyperbolic functions are: ‘sinh(x)’
(or ‘sh(x)’), ‘cosh(x)’ (or ‘ch(x)’), ‘tanh(x)’ (or ‘th(x)’). Inverse hyperbolic functions
are: ‘asinh(x)’, ‘acosh(x)’, ‘atanh(x)’.

There are a set of special functions: ‘gamma(x)’ - Gamma function
L(z) = [ditle — 1}exp(—t), ‘gamma_inc(x,y)’ - incomplete Gamma function
C(z,y) = [° dttlz — 1}exp(—t), ‘psi(x)’ — digamma function ¢ (z) = I'(z)/T(x) for
x!=0, ‘ai(x)’ — Airy function Ai(x), ‘pi(x)’ — Airy function Bi(x), ‘c1(x)’ — Clausen
function, ‘1i2(x)’ (or ‘dilog(x)’) — dilogarithm Liy(z) = —R [dslog(l — s)/s,
‘sinc(x)’ — compute sinc(x) = sin(wz)/(wx) for any value of x, ‘zeta(x)’ — Riemann
zeta function ((s) = Xk = 1}k — s} for arbitrary sl=1, ‘eta(x)’ — eta function
n(s) = (1 — 211 — s})((s) for arbitrary s, ‘1p(1,%)’ — Legendre polynomial P;(z), (|x|<=1,
1>=0), ‘w0(x)’, ‘wl(x)’ — principal branch of the Lambert W functions. Function W(x) is
defined to be solution of the equation Wexp(W) = z.

The exponent integrals are: ‘ci(x)’ — Cosine integral Ci(z) = [dtcos(t)/t,
‘si(x)’ — Sine integral Si(z) = [;dtsin(t)/t, ‘erf(x)’ — error function
erf(z) = (2/V/(n)) [y dtexp(—t?), ‘ei(x)’ — exponential integral Ei(z) :=
—PV ([—z}>*dtexp(—t)/t) (where PV denotes the principal value of the integral), ‘e1(x)’
— exponential integral F;(z) := Re [” dtexp(—at)/t , ‘e2(x)’ — exponential integral
Es(z) := Re [dtexp(—axt)/t?, ‘ei3(x)’ — exponential integral Eiz(z) = [dt exp(—t?)
for x>=0.

Bessel functions are: ‘j(nu,x)’ — regular cylindrical Bessel function of fractional order
nu, ‘y(nu,x)’ — irregular cylindrical Bessel function of fractional order nu, ‘i(nu,x)’ —
regular modified Bessel function of fractional order nu, ‘k (nu,x)’ — irregular modified Bessel
function of fractional order nu.

Elliptic integrals are: ‘ee (k)’ — complete elliptic integral is denoted by E(k) = E(7/2,k),
‘ek(k)’ — complete elliptic integral is denoted by K(k) = F(m/2,k), ‘e(phi,k)’ — ellip-
tic integral E(¢,k) = [7dt\/((1 — k*sin®(t))), ‘f(phi,k)’ — elliptic integral F(¢,k) =
J2dt1//((1 = K2 sin®(t))).

Jacobi elliptic functions are: ‘sn(u,m)’, ‘cn(u,m)’, ‘dn(u,m)’, ‘sc(u,m)’, ‘sd(u,m)’,
‘ns(u,m)’, ‘cs(u,m)’, ‘cd(u,m)’, ‘nc(u,m)’, ‘ds(u,m)’, ‘dc(u,m)’, ‘nd(u,m)’.

Note, some of these functions are unavailable if MathGL was compiled without GSL
support.

There is no difference between lower or upper case in formulas. If argument value lie
outside the range of function definition then function returns NaN.

MathGL version 2.5 introduce user-defined functions ‘fn1()...fn9()’ at formula eval-
uation, which are defined after symbol ‘\’. For example, "fn1(3)\x~_1" will produce "x~3".
Also functions ‘sum’, ‘dsum’, ‘prod’ are added at formula evaluation for summation, sum-
mation with variable sign and product evaluation. For example, "sum(_i~2,5)" will pro-
duce "30"=0+1"2+2"2+3"2+4"2, "dsum(_i"2,5)" will produce "10"=0-1"2+2"2-3"2+4"2,

Chapter 2: General concepts 17

and "prod(1+_.i,5)" will produce 5!="120". You can nest them for variables _i,_j,...,_z,
like "sum(sum(_j+-i"2,5),5)" will give "200". Also you can use user-defined functions,
like "sum(fnl(_i)-fm2(_i),4)\-1"4_1"3" is the same as "sum(_i"4-_1"3,4)" and will produce
"62“‘

2.7 Command options

Command options allow the easy setup of the selected plot by changing global settings only
for this plot. Each option start from symbol ‘;’. Options work so that MathGL remember
the current settings, change settings as it being set in the option, execute function and
return the original settings back. So, the options are most usable for plotting functions.
The most useful options are xrange, yrange, zrange. They sets the boundaries for data
change. This boundaries are used for automatically filled variables. So, these options allow
one to change the position of some plots. For example, in command Plot(y,"","xrange
0.10.9"); or plot y; xrange 0.1 0.9 the x coordinate will be equidistantly distributed
in range 0.1 ... 0.9. See Section 5.5.18 [Using options], page 128, for sample code and

picture.

The full list of options are:

alpha val [MGL option]
Sets alpha value (transparency) of the plot. The value should be in range [0, 1]. See
also [alphadef], page 20.

xrange vall val2 [MGL option]
Sets boundaries of x coordinate change for the plot. See also [xrange], page 24.

yrange vall val2 [MGL option]
Sets boundaries of y coordinate change for the plot. See also [yrange], page 24.

zrange vall val2 [MGL option]
Sets boundaries of z coordinate change for the plot. See also [zrange|, page 24.

cut val [MGL option]
Sets whether to cut or to project the plot points lying outside the bounding box. See
also [cut], page 22.

size val [MGL option]
Sets the size of text, marks and arrows. See also [font], page 22, [marksize], page 21,
[arrowsize], page 21.

meshnum val [MGL option]
Work like [meshnum]|, page 21, command.

legend ’txt’ [MGL option]
Adds string 'txt’ to internal legend accumulator. The style of described line and mark
is taken from arguments of the last Section 3.11 [1D plotting], page 38, command.
See also [legend], page 38.

value val [MGL option]
Set the value to be used as additional numeric parameter in plotting command.

Chapter 2: General concepts

2.8 Interfaces

You can use mglParse class for executing MGL scripts from different languages.

18

19

3 MathGL core

This chapter contains a lot of plotting commands for 1D, 2D and 3D data. It also encap-
sulates parameters for axes drawing. Moreover an arbitrary coordinate transformation can
be used for each axis. Additional information about colors, fonts, formula parsing can be
found in Chapter 2 [General concepts], page 9. The full list of symbols used by MathGL
for setting up plots can be found in Section A.1 [Symbols for styles|, page 284.

Some of MathGL features will appear only in novel versions. To test used MathGL
version you can use following function.

version ’ver’ [MGL command]
Return zero if MathGL version is appropriate for required by ver, i.e. if major version
is the same and minor version is greater or equal to one in ver.

3.1 Create and delete objects

You don’t need to create canvas object in MGL.

3.2 Graphics setup

Functions and variables in this group influences on overall graphics appearance. So all of
them should be placed before any actual plotting function calls.

reset
Restore initial values for all of parameters and clear the image.

[MGL command]

setup val flag
Sets the value of internal binary flag to val. The list of flags can be found at define.h
(https://sourceforge.net/p/mathgl/code/HEAD/tree/mathgl-2x/include/

mgl2/define.h#1267). The current list of flags are:

#define MGL_ENABLE_CUT 0x00000004 ///< Flag which determines how points
#define MGL_ENABLE_RTEXT 0x00000008 ///< Use text rotation along axis|]
#define MGL_AUTO_FACTOR 0x00000010 ///< Enable autochange PlotFactor]]
#define MGL_ENABLE_ALPHA 0x00000020 ///< Flag that Alpha is used]]

#define MGL_ENABLE_LIGHT 0x00000040 ///< Flag of using lightning]]

#define MGL_TICKS_ROTATE 0x00000080 ///< Allow ticks rotationfl

#define MGL_TICKS_SKIP 0x00000100 ///< Allow ticks rotationll

#define MGL_DISABLE_SCALE 0x00000200 ///< Temporary flag for disable scalin
#define MGL_FINISHED 0x00000400 ///< Flag that final picture (i.e. mgl
#define MGL_USE_GMTIME 0x00000800 ///< Use gmtime instead of localtimefl
#define MGL_SHOW_POS 0x00001000 ///< Switch to show or not mouse click
#define MGL_CLF_ON_UPD 0x00002000 ///< Clear plot before Update(ff
#define MGL_NOSUBTICKS 0x00004000 ///< Disable subticks drawing (for bou
#define MGL_LOCAL_LIGHT 0x00008000 ///< Keep light sources for each inplo
#define MGL_VECT_FRAME 0x00010000 ///< Use DrwDat to remember all data o
#define MGL_REDUCEACC 0x00020000 ///< Reduce accuracy of points (to red
#define MGL_PREFERVC 0x00040000 ///< Prefer vertex color instead of te
#define MGL_ONESIDED 0x00080000 ///< Render only front side of surface

[MGL command]

https://sourceforge.net/p/mathgl/code/HEAD/tree/mathgl-2x/include/mgl2/define.h#l267
https://sourceforge.net/p/mathgl/code/HEAD/tree/mathgl-2x/include/mgl2/define.h#l267
https://sourceforge.net/p/mathgl/code/HEAD/tree/mathgl-2x/include/mgl2/define.h#l267

Chapter 3: MathGL core 20

#define MGL_NO_ORIGIN 0x00100000 ///< Don't draw tick labels at axis or
#define MGL_GRAY_MODE 0x00200000 ///< Convert all colors to gray ones]
#define MGL_FULL_CURV 0x00400000 ///< Disable omitting points in straig
#define MGL_NO_SCALE_REL 0x00800000 ///< Disable font scaling in relative

3.2.1 Transparency

There are several functions and variables for setup transparency. The general function
is [alphal], page 20, which switch on/off the transparency for overall plot. It influence
only for graphics which created after [alpha], page 20, call (with one exception, OpenGL).
Function [alphadef], page 20, specify the default value of alpha-channel. Finally, function
[transptype], page 20, set the kind of transparency. See Section 5.5.2 [Transparency and
lighting], page 105, for sample code and picture.

alpha [val=on] [MGL command]
Sets the transparency on/off and returns previous value of transparency. It is recom-
mended to call this function before any plotting command. Default value is trans-
parency off.

alphadef val [MGL command]
Sets default value of alpha channel (transparency) for all plotting functions. Initial
value is 0.5.

transptype val [MGL command]

Set the type of transparency. Possible values are:

e Normal transparency (‘0’) — below things is less visible than upper ones. It does
not look well in OpenGL mode (mglGraphGL) for several surfaces.

e Glass-like transparency (‘1’) — below and upper things are commutable and just
decrease intensity of light by RGB channel.

e Lamp-like transparency (‘2’) — below and upper things are commutable and are
the source of some additional light. I recommend to set SetAlphaDef (0.3) or
less for lamp-like transparency.

See Section 5.5.3 [Types of transparency|, page 106, for sample code and picture..

3.2.2 Lighting

There are several functions for setup lighting. The general function is [light], page 20, which
switch on/off the lighting for overall plot. It influence only for graphics which created after
[light], page 20, call (with one exception, OpenGL). Generally MathGL support up to
10 independent light sources. But in OpenGL mode only 8 of light sources is used due
to OpenGL limitations. The position, color, brightness of each light source can be set
separately. By default only one light source is active. It is source number 0 with white
color, located at top of the plot. See Section 5.5.6 [Lighting sample|, page 110, for sample
code and picture.

light [val=on] [MGL command]
Sets the using of light on/off for overall plot. Function returns previous value of
lighting. Default value is lightning off.

Chapter 3: MathGL core 21

light num val [MGL command]
Switch on/off n-th light source separately.
light num xdir ydir zdir [’col’=’w’ br=0.5] [MGL command]
light num xdir ydir zdir xpos ypos zpos [’col’=’w’ [MGL command]
br=0.5 ap=0]

The function adds a light source with identification n in direction d with color ¢ and
with brightness bright (which must be in range [0,1]). If position r is specified and
isn’t NAN then light source is supposed to be local otherwise light source is supposed
to be placed at infinity.

diffuse val [MGL command]
Set brightness of diffusive light (only for local light sources).

ambient val [MGL command]
Sets the brightness of ambient light. The value should be in range [0,1].

attachlight val [MGL command]
Set to attach light settings to [inplot], page 29/[subplot], page 28. Note, OpenGL
and some output formats don’t support this feature.

3.2.3 Fog

fog val [dz=0.25] [MGL command]
Function imitate a fog in the plot. Fog start from relative distance dz from view point
and its density growths exponentially in depth. So that the fog influence is determined
by law ~ 1-exp(-d*z). Here z is normalized to 1 depth of the plot. If value d=0 then
the fog is absent. Note, that fog was applied at stage of image creation, not at stage
of drawing. See Section 5.5.5 [Adding fog], page 109, for sample code and picture.

3.2.4 Default sizes

These variables control the default (initial) values for most graphics parameters including
sizes of markers, arrows, line width and so on. As any other settings these ones will influence
only on plots created after the settings change.

barwidth val [MGL command]
Sets relative width of rectangles in [bars], page 40, [barh], page 41, [boxplot], page 42,
[candle], page 42, [ohlc], page 42. Default value is 0.7.

marksize val [MGL command]
Sets size of marks for Section 3.11 [1D plotting], page 38. Default value is 1.

arrowsize val [MGL command]
Sets size of arrows for Section 3.11 [1D plotting], page 38, lines and curves (see
Section 3.7 [Primitives|, page 32). Default value is 1.

meshnum val [MGL command]
Sets approximate number of lines in [mesh], page 45, [fall], page 45, [grid2], page 48,
and also the number of hachures in [vect], page 53, [dew], page 54, and the number of
cells in [cloud], page 49, and the number of markers in [plot], page 39, [tens], page 39,
[step], page 39, [mark], page 43, [textmark], page 43. By default (=0) it draws all
lines/hachures/cells/markers.

Chapter 3: MathGL core 22

facenum val [MGL command]
Sets approximate number of visible faces. Can be used for speeding up drawing by
cost of lower quality. By default (=0) it draws all of them.

plotid ’id’ [MGL command]
Sets default name id as filename for saving (in FLTK window for example).

pendelta val [MGL command]
Changes the blur around lines and text (default is 1). For val>1 the text and lines
are more sharped. For val<1 the text and lines are more blurred.

3.2.5 Cutting

These variables and functions set the condition when the points are excluded (cutted) from
the drawing. Note, that a point with NAN value(s) of coordinate or amplitude will be
automatically excluded from the drawing. See Section 5.2.9 [Cutting sample], page 95, for
sample code and picture.

cut val [MGL command]
Flag which determines how points outside bounding box are drawn. If it is true then
points are excluded from plot (it is default) otherwise the points are projected to
edges of bounding box.

cut x1 y1 z1 x2 y2 z2 [MGL command]
Lower and upper edge of the box in which never points are drawn. If both edges are
the same (the variables are equal) then the cutting box is empty.

cut ’cond’ [MGL command]
Sets the cutting off condition by formula cond. This condition determine will point
be plotted or not. If value of formula is nonzero then point is omitted, otherwise it
plotted. Set argument as "" to disable cutting off condition.

3.2.6 Font settings

font ’fnt’ [val=6] [MGL command]
Font style for text and labels (see text). Initial style is ’fnt’=":rC’ give Roman font
with centering. Parameter val sets the size of font for tick and axis labels. Default
font size of axis labels is 1.4 times large than for tick labels. For more detail, see
Section 2.5 [Font styles], page 14.

rotatetext val [MGL command]
Sets to use or not text rotation.

scaletext val [MGL command]
Sets to scale text in relative [inplot], page 29, (including [columnplot], page 29, [grid-
plot], page 29, [stickplot], page 29, [shearplot], page 29) or not.

texparse val [MGL command]
Enables/disables TeX-like command parsing at text output.

loadfont [’name’=’’] [MGL command]
Load font typeface from path/name. Empty name will load default font.

Chapter 3: MathGL core 23

3.2.7 Palette and colors

palette ’colors’ [MGL command]
Sets the palette as selected colors. Default value is "Hbgrcmyhlngeup" that corre-
sponds to colors: dark gray ‘H’, blue ‘b’, green ‘g’, red ‘r’, cyan ‘c’, magenta ‘m’, yellow
‘y’, gray ‘h’, blue-green ‘1’ sky-blue ‘n’, orange ‘q’, yellow-green ‘e’, blue-violet ‘u’,
purple ‘p’. The palette is used mostly in 1D plots (see Section 3.11 [1D plotting],
page 38) for curves which styles are not specified. Internal color counter will be nul-
lified by any change of palette. This includes even hidden change (for example, by
[box], page 37, or [axis]|, page 36, functions).

gray [val=on] [MGL command]
Sets the gray-scale mode on/off.

3.2.8 Masks

mask ’id’ ’hex’ [angle] [MGL command]

mask ’id’ hex [angle] [MGL]
Sets new bit matrix hex of size 8*8 for mask with given id. This is global set-
ting which influence on any later usage of symbol id. The predefined masks are
(see Section 2.4 [Color scheme], page 12): ‘=’ give lines (0x000000FF00000000), ‘+’
give cross-lines (080808FF08080808), ‘=" give double lines (0000FFOOFF000000), ¢;’
give dash lines (0x0000000F00000000), ‘o’ give circles (0000182424180000), ‘0’ give
filled circles (0000183C3C180000), ‘s’ give squares (00003C24243C0000), ‘S’ give solid
squares (00003C3C3C3C0000), ‘=’ give waves (0000060990600000), ‘<’ give left tri-
angles (0060584658600000), ‘>’ give right triangles (00061A621A060000), ‘j’ give
dash-dot lines (0000002700000000), ‘d’ give pluses (0x0008083E08080000), ‘D’ give
tacks (0x0139010010931000), ‘*’ give dots (0x0000001818000000), ‘~’ give bricks
(0x101010FF010101FF). Parameter angle set the rotation angle too. IMPORTANT:
the rotation angle will be replaced by a multiple of 45 degrees at export to EPS.

mask angle [MGL command]
Sets the default rotation angle (in degrees) for masks. Note, you can use symbols
‘N, ¢/7, ‘T’ in color scheme for setting rotation angles as 45, -45 and 90 degrees
correspondingly. IMPORTANT: the rotation angle will be replaced by a multiple of
45 degrees at export to EPS.

3.2.9 Error handling

All warnings will be displayed automatically in special tool-window or in console.

3.2.10 Stop drawing

You can use [stop], page 4, command or press corresponding toolbutton to stop drawing
and script execution.

3.3 Axis settings

These large set of variables and functions control how the axis and ticks will be drawn. Note
that there is 3-step transformation of data coordinates are performed. Firstly, coordinates

Chapter 3: MathGL core 24

are projected if Cut=true (see Section 3.2.5 [Cutting], page 22), after it transformation
formulas are applied, and finally the data was normalized in bounding box. Note, that
MathGL will produce warning if axis range and transformation formulas are not compatible.

3.3.1 Ranges (bounding box)

xrange vl v2 [add=off] [MGL command]
yrange vl v2 [add=off] [MGL command]
zrange vl v2 [add=off] [MGL command|]
crange vl v2 [add=off] [MGL command]

Sets or adds the range for ‘x’-,'y’-,‘z’- coordinate or coloring (‘c’). If one of values is
NAN then it is ignored. See also [ranges|, page 24.

xrange dat [add=off] [MGL command]
yrange dat [add=off] [MGL command|]
zrange dat [add=off] [MGL command]
crange dat [add=off] [MGL command]
Sets the range for ‘x’-,‘y’-,‘z’- coordinate or coloring (‘c’) as minimal and maximal
values of data dat. Parameter add=on shows that the new range will be joined to

existed one (not replace it).

ranges x1 x2 yl y2 [z1=0 z2=0] [MGL command]
Sets the ranges of coordinates. If minimal and maximal values of the coordinate are
the same then they are ignored. Also it sets the range for coloring (analogous to
crange z1 z2). This is default color range for 2d plots. Initial ranges are [-1, 1].

ranges xx yy [zz cc=zz] [MGL command]

Sets the ranges of ‘x’-,'y’-,‘z’-,‘c’-coordinates and coloring as minimal and maximal
values of data xx, yy, zz, cc correspondingly.

origin x0 yO [zO=nan] [MGL command]
Sets center of axis cross section. If one of values is NAN then MathGL try to select
optimal axis position.

zoomaxis x1 x2 [MGL command]

zoomaxis x1 yl x2 y2 [MGL command]

zoomaxis x1 yl1 zl1 x2 y2 z2 [MGL command]

zoomaxis x1 y1 z1 cl x2 y2 z2 c2 [MGL command]
Additionally extend axis range for any settings made by SetRange or SetRanges
functions according the formula min+ = (max — min) x pl and maz+ = (max —
min) * pl (or minx = (max/min)?1 and mazr+x = (mazx/min)?1 for log-axis range
when inf > maxz/min > 100 or 0 < max/min < 0.01). Initial ranges are [0, 1].
Attention! this settings can not be overwritten by any other functions, including
DefaultPlotParam().

fastcut val [MGL command]
Enable/disable accurate but slower primitive cutting at axis borders. In C/Fortran
you can use mgl_set_flag(gr,val, MGL_FAST_PRIM);. It automatically set on for
[ternary|, page 26, axis now.

Chapter 3: MathGL core 25

3.3.2 Curved coordinates

axis

axis

Yfx? Cfy? fz’ [Pfa’=’’] [MGL command]
Sets transformation formulas for curvilinear coordinate. Each string should contain
mathematical expression for real coordinate depending on internal coordinates ‘x’, ‘y’,
‘z” and ‘a’ or ‘c’ for colorbar. For example, the cylindrical coordinates are introduced
as SetFunc("x*cos(y)", "x*sin(y)", "z");. For removing of formulas the corre-
sponding parameter should be empty or NULL. Using transformation formulas will
slightly slowing the program. Parameter EqA set the similar transformation formula

for color scheme. See Section 2.6 [Textual formulas], page 15.

how [MGL command]
Sets one of the predefined transformation formulas for curvilinear coordinate. Pa-
rameter how define the coordinates:

mglCartesian=0
Cartesian coordinates (no transformation, {x,y,z});

mglPolar=1
Polar coordinates: {x*cos(y), x*sin(y), z};

mglSpherical=2
Sperical coordinates: {x*sin(y)*cos(z), x*sin(y)*sin(z), x*cos(y)};

mglParabolic=3
Parabolic coordinates: {x*y, (x*x-y*y)/2, z}

mglParaboloidal=4
Paraboloidal coordinates: {(x*x-y*y)*cos(z)/2, (x*x-y*y)*sin(z)/2,
Xy}

mglOblate=5

Oblate coordinates: {cosh(x)*cos(y)*cos(z), cosh(x)*cos(y)*sin(z),
sinh(x)*sin(y) };

mglProlate=6
Prolate coordinates: {sinh(x)*sin(y)*cos(z), sinh(x)*sin(y)*sin(z),
cosh(x)*cos(y)};

mglElliptic=7
Elliptic coordinates: {cosh(x)*cos(y), sinh(x)*sin(y), z};

mglToroidal=8
Toroidal coordinates: {sinh(x)*cos(z)/(cosh(x)-cos(y)),

sinh(x)*sin(z)/(cosh(x)-cos(y)), sin(y)/(cosh(x)-cos(y))};
mglBispherical=9

Bispherical coordinates: {sin(y)*cos(z)/(cosh(x)-cos(y)),

sin(y)*sin(z)/(cosh(x)-cos(y)), sinh(x)/(cosh(x)-cos(y))};
mglBipolar=10

Bipolar coordinates: {sinh(x)/(cosh(x)-cos(y)), sin(y)/(cosh(x)-cos(y)),

z};

Chapter 3: MathGL core 26

mglloglog=11

Log-log coordinates: {lg(x), lg(y), lg(z)};
mglLogX=12

Log-x coordinates: {lg(x), vy, z};

mglLogY=13
Log-y coordinates: {x, 1g(y), z}.

ternary val [MGL command]
The function sets to draws Ternary (tern=1), Quaternary (tern=2) plot or projections
(tern=4,5,6).
Ternary plot is special plot for 3 dependent coordinates (components) a, b, ¢ so that
atb+c=1. MathGL uses only 2 independent coordinates a=x and b=y since it is
enough to plot everything. At this third coordinate z act as another parameter to
produce contour lines, surfaces and so on.

Correspondingly, Quaternary plot is plot for 4 dependent coordinates a, b, ¢ and d so
that a+b+c+d=1. MathGL uses only 3 independent coordinates a=x, b=y and d=z
since it is enough to plot everything.

Projections can be obtained by adding value 4 to tern argument. So, that tern=4 will
draw projections in Cartesian coordinates, tern=5 will draw projections in Ternary
coordinates, tern=6 will draw projections in Quaternary coordinates. If you add 8
instead of 4 then all text labels will not be printed on projections.

Use Ternary(0) for returning to usual axis. See Section 5.2.6 [Ternary axis|, page 91,
for sample code and picture. See Section 5.5.4 [Axis projection], page 108, for sample
code and picture.

3.3.3 Ticks

adjust [’dir’=’xyzc’] [MGL command]
Set the ticks step, number of sub-ticks and initial ticks position to be the most human
readable for the axis along direction(s) dir. Also set SetTuneTicks(true). Usually
you don’t need to call this function except the case of returning to default settings.

xtick val [sub=0 org=nan 'fact'=''] [MGL command]
ytick val [sub=0 org=nan 'fact'=''] [MGL command]
ztick val [sub=0 org=nan 'fact'=''] [MGL command]
xtick val sub ['fact'=''] [MGL command]
ytick val sub ['fact'=''] [MGL command]
ztick val sub ['fact'=''] [MGL command]
ctick val ['fact'=''] [MGL command]
Set the ticks step d, number of sub-ticks ns (used for positive d) and initial ticks
position org for the axis along direction dir (use ’c’ for colorbar ticks). Variable d
set step for axis ticks (if positive) or it’s number on the axis range (if negative). Zero
value set automatic ticks. If org value is NAN then axis origin is used. Parameter
fact set text which will be printed after tick label (like "\pi" for d=M_PI).

xtick vall ’1bl1’ [val2 ’1bl2’ ...] [MGL command]
ytick vall ’1bl1’ [val2 ’1bl2’ ...] [MGL command]

Chapter 3: MathGL core 27

ztick vall ’1bl1’ [val2 ’1bl2’ ...] [MGL command]
ctick vall ’1bl1l’ [val2 ’1bl2’° ...] [MGL command]
xtick vdat ’1bls’ [add=off] [MGL command]
ytick vdat ’1bls’ [add=off] [MGL command]
ztick vdat ’1bls’ [add=off] [MGL command]
ctick vdat ’1bls’ [add=off] [MGL command]
Set the manual positions val and its labels Ibl for ticks along axis dir. If array val
is absent then values equidistantly distributed in x-axis range are used. Labels are
separated by ‘\n’ symbol. If only one value is specified in MGL command then the

label will be add to the current ones. Use SetTicks () to restore automatic ticks.

xtick ’templ’ [MGL command]

ytick ’templ’ [MGL command]

ztick ’templ’ [MGL command]

ctick ’templ’ [MGL command]
Set template templ for x-,y-,z-axis ticks or colorbar ticks. It may contain TeX symbols
also. If templ="" then default template is used (in simplest case it is ‘%.2g’). If
template start with ‘&’ symbol then long integer value will be passed instead of
default type double. Setting on template switch off automatic ticks tuning.

ticktime ’dir’ [dv=0 ’tmpl’=’’] [MGL command]
Sets time labels with step val and template templ for x-,y-,z-axis ticks or colorbar
ticks. It may contain TeX symbols also. The format of template templ is the same
as described in http://www.manpagez.com/man/3/strftime/. Most common vari-
ants are ‘%X’ for national representation of time, ‘%x’ for national representation of
date, ‘4Y’ for year with century. If val=0 and/or templ="" then automatic tick step
and/or template will be selected. You can use mgl_get_time() function for obtaining
number of second for given date/time string. Note, that MS Visual Studio couldn’t
handle date before 1970.

tuneticks val [pos=1.15] [MGL command]
Switch on/off ticks enhancing by factoring common multiplier (for small, like from
0.001 to 0.002, or large, like from 1000 to 2000, coordinate values — enabled if tuneé&1 is
nonzero) or common component (for narrow range, like from 0.999 to 1.000 — enabled
if tune&2 is nonzero). Also set the position pos of common multiplier/component on
the axis: =0 at minimal axis value, =1 at maximal axis value. Default value is 1.15.

tickshift dx [dy=0 dz=0 dc=0] [MGL command]
Set value of additional shift for ticks labels.

origintick val [MGL command]
Enable/disable drawing of ticks labels at axis origin. In C/Fortran you can use mgl_
set_flag(gr,val, MGL_NO_ORIGIN) ;.

ticklen val [stt=1] [MGL command]
The relative length of axis ticks. Default value is 0.1. Parameter stt>0 set relative
length of subticks which is in sqrt(1+stt) times smaller.

http://www.manpagez.com/man/3/strftime/

Chapter 3: MathGL core 28

axisstl ’stl’ [’tck’=’’ ’sub’=’’] [MGL command]
The line style of axis (stl), ticks (tck) and subticks (sub). If stl is empty then default
style is used (‘k’ or ‘w’ depending on transparency type). If tck or sub is empty then
axis style is used (i.e. stl).

3.4 Subplots and rotation

These functions control how and where further plotting will be placed. There is a certain
calling order of these functions for the better plot appearance. First one should be [subplot],
page 28, [multiplot], page 28, or [inplot], page 29, for specifying the place. Second one can
be [title], page 29, for adding title for the subplot. After it a [rotate], page 29, [shear],
page 29, and [aspect]|, page 30. And finally any other plotting functions may be called.
Alternatively you can use [columnplot], page 29, [gridplot], page 29, [stickplot], page 29,
[shearplot], page 29, or relative [inplot], page 29, for positioning plots in the column (or grid,
or stick) one by another without gap between plot axis (bounding boxes). See Section 5.2.1
[Subplots], page 82, for sample code and picture.

subplot nx ny m [’stl’=’<>_"’ dx=0 dy=0] [MGL command]
Puts further plotting in a m-th cell of nx*ny grid of the whole frame area. The
position of the cell can be shifted from its default position by relative size dx, dy.
This function set off any aspects or rotations. So it should be used first for creating
the subplot. Extra space will be reserved for axis/colorbar if stI contain:

e ‘L’ or ‘<’ — at left side,

e ‘R’ or >’ — at right side,

e ‘A’or ‘°7 — at top side,

e ‘U’ or ‘_’ — at bottom side,

e ‘#’ — reserve none space (use whole region for axis range) — axis and tick labels
will be invisible by default.

From the aesthetical point of view it is not recommended to use this function with
different matrices in the same frame. Note, colorbar can be invisible (be out of image
borders) if you set empty style .

multiplot nx ny m dx dy [’style’=’<>_"’ sx sy] [MGL command]
Puts further plotting in a rectangle of dx*dy cells starting from m-th cell of nx*ny
grid of the whole frame area. The position of the rectangular area can be shifted
from its default position by relative size sx, sy. This function set off any aspects or
rotations. So it should be used first for creating subplot. Extra space will be reserved
for axis/colorbar if stl contain:

e ‘L’ or ‘<’ — at left side,
e ‘R’ or >’ — at right side,
e ‘A’or ‘°’ — at top side,

e ‘U’ or ‘_’ — at bottom side. ‘#’ — reserve none space (use whole region for axis

range) — axis and tick labels will be invisible by default.

Chapter 3: MathGL core 29

inplot x1 x2 y1 y2 [rel=on] [MGL command]
Puts further plotting in some region of the whole frame surface. This function allows
one to create a plot in arbitrary place of the screen. The position is defined by rectan-
gular coordinates [x1, x2]*[y1, y2]. The coordinates x1, x2, y1, y2 are normalized to
interval [0, 1]. If parameter rel=true then the relative position to current [subplot],
page 28, (or [inplot], page 29, with rel=false) is used. This function set off any
aspects or rotations. So it should be used first for creating subplot.

columnplot num ind [d=0] [MGL command]
Puts further plotting in ind-th cell of column with num cells. The position is relative
to previous [subplot], page 28, (or [inplot], page 29, with rel=false). Parameter d
set extra gap between cells.

gridplot nx ny ind [d=0] [MGL command]
Puts further plotting in ind-th cell of nx*ny grid. The position is relative to previous
[subplot], page 28, (or [inplot], page 29, with rel=false). Parameter d set extra gap
between cells.

stickplot num ind tet phi [MGL command]
Puts further plotting in ind-th cell of stick with num cells. At this, stick is rotated
on angles tet, phi. The position is relative to previous [subplot], page 28, (or [inplot],
page 29, with rel=false).

shearplot num ind sx sy [xd yd] [MGL command]
Puts further plotting in ind-th cell of stick with num cells. At this, cell is sheared on
values sx, sy. Stick direction is specified be xd and yd. The position is relative to
previous [subplot], page 28, (or [inplot], page 29, with rel=false).

title ’title’ [’stl’=’’ size=-2] [MGL command]
Add text title for current subplot/inplot. Parameter stl can contain:

e font style (see, Section 2.5 [Font styles|, page 14);

e ‘#’ for box around the title.

Parameter size set font size. This function set off any aspects or rotations. So it
should be used just after creating subplot. Note, that each call of this command will
reserve extra space. So, you need to manually call [subplot], page 28, command after
[rasterize], page 31, if you want to combine bitmap and vector graphics.

rotate tetx tetz [tety=0] [MGL command]
Rotates a further plotting relative to each axis {x, z, y} consecutively on angles TetX,
TetZ, TetY.

rotate tet x y z [MGL command]

Rotates a further plotting around vector {x, y, z} on angle Tet.

shear sx sy [MGL command]
Shears a further plotting on values sx, sy.

Chapter 3: MathGL core 30

aspect ax ay [az=1] [MGL command]
Defines aspect ratio for the plot. The viewable axes will be related one to another
as the ratio Ax:Ay:Az. For the best effect it should be used after [rotate], page 29,
function. If Ax is NAN then function try to select optimal aspect ratio to keep equal
ranges for x-y axis. At this, Ay will specify proportionality factor, or set to use
automatic one if Ay=NAN.

There are 3 functions View(), Zoom() and Perspective() which transform whole im-
age. L.e. they act as secondary transformation matrix. They were introduced for rotat-
ing/zooming the whole plot by mouse. It is not recommended to call them for picture
drawing.

perspective val [MGL command]
Add (switch on) the perspective to plot. The parameter a = Depth/(Depth + dz) €
[0,1). By default (a=0) the perspective is off.

view tetx tetz [tety=0] [MGL command|]
Rotates a further plotting relative to each axis {x, z, y} consecutively on angles
TetX, TetZ, TetY. Rotation is done independently on [rotate], page 29. Attention!
this settings can not be overwritten by DefaultPlotParam(). Use Zoom(0,0,1,1)
to return default view.

zoom x1 y1 x2 y2 [MGL command]
The function changes the scale of graphics that correspond to zoom in/out of the
picture. After function call the current plot will be cleared and further the picture
will contain plotting from its part [x1,x2]*[yl,y2]. Here picture coordinates xI, x2,
v1, y2 changes from 0 to 1. Attention! this settings can not be overwritten by
any other functions, including DefaultPlotParam(). Use Zoom(0,0,1,1) to return
default view.

3.5 Export picture

Functions in this group save or give access to produced picture. So, usually they should be
called after plotting is done.

setsize w h [MGL command]
Sets size of picture in pixels. This function should be called before any other plotting
because it completely remove picture contents if clear=true. Function just clear
pixels and scale all primitives if clear=false.

setsizescl factor [MGL command]
Set factor for width and height in all further calls of [setsize], page 30. This command
is obsolete since v.2.4.2.

quality [val=2] [MGL command]
Sets quality of the plot depending on value val: MGL_DRAW_WIRE=0 — no face drawing
(fastest), MGL_DRAW_FAST=1 — no color interpolation (fast), MGL_DRAW_NORM=2 — high
quality (normal), MGL_DRAW_HIGH=3 — high quality with 3d primitives (arrows and
marks); MGL_DRAW_LMEM=0x4 — direct bitmap drawing (low memory usage); MGL_
DRAW_DOTS=0x8 — for dots drawing instead of primitives (extremely fast).

Chapter 3: MathGL core 31

3.5.1 Export to file

These functions export current view to a graphic file. The filename fname should have
appropriate extension. Parameter descr gives the short description of the picture. Just now
the transparency is supported in PNG, SVG, OBJ and PRC files.

write [’fname’=’’] [MGL command]
Exports current frame to a file fname which type is determined by the extension.
Parameter descr adds description to file (can be ""). If fname="" then the file

‘frame####. jpg’ is used, where ‘####’ is current frame id and name ‘frame’ is defined
by [plotid], page 22, class property.

bbox x1 y1 [x2=-1 y2=-1] [MGL command]
Set boundary box for export graphics into 2D file formats. If x2<0 (y2<0) then
original image width (height) will be used. If x1<0 or y1<0 or xI1>=x2|Width or
y1>=y2|Height then cropping will be disabled.

3.5.2 Frames/Animation

There are no commands for making animation in MGL. However you can use features of
b

mglconv and mglview utilities. For example, by busing special comments ‘##a ’ or ‘##c ’.

3.5.3 Bitmap in memory

3.5.4 Parallelization

3.6 Background

These functions change background image.

clf [’col’] [MGL command]
clfrghb [MGL command]
Clear the picture and fill background by specified color.

rasterize [MGL command]
Force drawing the plot and use it as background. After it, function clear the list of
primitives, like [clf], page 31. This function is useful if you want save part of plot as
bitmap one (for example, large surfaces, isosurfaces or vector fields) and keep some
parts as vector one (like annotation, curves, axis and so on). Often, you need to
manually call [subplot], page 28, command after [rasterize|, page 31, to avoid extra
space allocation or plot rotation.

background ’fname’ [alpha=1] [MGL command]

background ’fname’ ’how’ [alpha=1] [MGL command]
Load PNG or JPEG file fname as background for the plot. Parameter alpha manually
set transparency of the background. Parameter how can be: ‘a’ for filling current
subplot only, ‘s’ for scaling (resizing) image to whole area, ‘c’ for centering image, ‘m’
for tessellate image as mosaic.

background r g b [MGL command]
Fill background by the specified color. Values should be in range [0,1].

Chapter 3: MathGL core 32

3.7 Primitives

These functions draw some simple objects like line, point, sphere, drop, cone and so on. See
Section 5.5.7 [Using primitives|, page 111, for sample code and picture.

ball x y [*col’=’r.’] [MGL command]

ball x y z [’col’=’r.’] [MGL command]
Draws a mark (point ‘.” by default) at position p={x, y, z} with color col.

errbox x y ex ey [’stl’=’] [MGL command]

errbox x y z ex ey ez [’stl’=’’] [MGL command]

Draws a 3d error box at position p={x, y, z} with sizes e={ex, ey, ez} and style stl.
Use NAN for component of e to reduce number of drawn elements.

line x1 y1 x2 y2 [’stl’="’] [MGL command]

line x1 y1 z1 x2 y2 z2 [’stl’=’"] [MGL command]
Draws a geodesic line (straight line in Cartesian coordinates) from point pl to p2
using line style stl. Parameter num define the “quality” of the line. If num=2 then the
straight line will be drawn in all coordinate system (independently on transformation
formulas (see Section 3.3.2 [Curved coordinates|, page 25). Contrary, for large values
(for example, =100) the geodesic line will be drawn in corresponding coordinate
system (straight line in Cartesian coordinates, circle in polar coordinates and so on).
Line will be drawn even if it lies out of bounding box.

curve x1 y1 dx1 dyl x2 y2 dx2 dy2 [’stl’=’’] [MGL command]
curve x1 y1 z1 dx1 dyl dzl x2 y2 z2 dx2 dy2 dz2 [MGL command]
[’Stl’=’)]

Draws Bezier-like curve from point pl to p2 using line style stl. At this tangent is
codirected with d1, d2 and proportional to its amplitude. Parameter num define the
“quality” of the curve. If num=2 then the straight line will be drawn in all coor-
dinate system (independently on transformation formulas, see Section 3.3.2 [Curved
coordinates|, page 25). Contrary, for large values (for example, =100) the spline like
Bezier curve will be drawn in corresponding coordinate system. Curve will be drawn
even if it lies out of bounding box.

face x1 y1 x2 y2 x3 y3 x4 y4 [’stl’=’’] [MGL command]

face x1 yl1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 [’stl’="’] [MGL command]
Draws the solid quadrangle (face) with vertexes p1, p2, p3, p4 and with color(s) stl.
At this colors can be the same for all vertexes or different if all 4 colors are specified
for each vertex. Face will be drawn even if it lies out of bounding box. Argument stl
can also contain mask specification (see Section 2.4 [Color scheme], page 12).

rect x1 yl x2 y2 [’stl’="’] [MGL command]

rect x1 yl z1 x2 y2 z2 [’stl’=’’] [MGL command]
Draws the solid rectangle (face) with vertexes {x1, y1, z1} and {x2, y2, z2} with
color stl. At this colors can be the same for all vertexes or separately if all 4 colors
are specified for each vertex. Face will be drawn even if it lies out of bounding box.
Argument stl can also contain mask specification (see Section 2.4 [Color scheme],
page 12).

Chapter 3: MathGL core 33

facex x0 yO z0 wy wz [’stl’=’’ d1=0 d2=0] [MGL command]
facey x0 yO z0 wx wz [’stl’=’’ d1=0 d2=0] [MGL command|]
facez x0 yO z0 wx wy [’stl’=’’ d1=0 d2=0] [MGL command]

Draws the solid rectangle (face) perpendicular to [x,y,z]-axis correspondingly at po-
sition {x0, y0, z0} with color stl and with widths wx, wy, wz along corresponding
directions. At this colors can be the same for all vertexes or separately if all 4 colors
are specified for each vertex. Argument stl can also contain mask specification (see
Section 2.4 [Color scheme], page 12). Parameters d1!=0, d2!=0 set additional shift
of the last vertex (i.e. to draw quadrangle). Face will be drawn even if it lies out of
bounding box.

sphere x0 yO r [’col’=’r’] [MGL command]
sphere x0 yO z0 r [’col’=’r’] [MGL command]
Draw the sphere with radius r and center at point p={x0, y0, z0} and color stl.
drop x0 yO dx dy r [’col’=’r’ sh=1 asp=1] [MGL command]
drop x0 yO z0 dx dy dz r [’col’=’r’ sh=1 asp=1] [MGL command]

Draw the drop with radius r at point p elongated in direction d and with color col.
Parameter shift set the degree of drop oblongness: ‘0’ is sphere, ‘1’ is maximally
oblongness drop. Parameter ap set relative width of the drop (this is analogue of
“ellipticity” for the sphere).

cone x1 y1 z1 x2 y2 z2 rl [r2=-1 ’stl’=’] [MGL command]
Draw tube (or truncated cone if edge=false) between points pl, p2 with radius at
the edges rl1, r2. If r2<0 then it is supposed that r2=r1. The cone color is defined by
string stl. Parameter stl can contain:

e ‘@ for drawing edges;

e ‘# for wired cones;

‘t” for drawing tubes/cylinder instead of cones/prisms;

e ‘4’ ‘6’ ‘8’ for drawing square, hex- or octo-prism instead of cones.

circle x0 yO r [’col’="r’] [MGL command]

circle x0 yO z0 r [’col’="r’] [MGL command]
Draw the circle with radius r and center at point p={x0, y0, z0}. Parameter col may
contain

e colors for filling and boundary (second one if style ‘@’ is used, black color is used
by default);

e ‘#’ for wire figure (boundary only);
e ‘@ for filling and boundary;

e mask specification (see Section 2.4 [Color scheme], page 12).

ellipse x1 y1 x2 y2 r [’col’="r’] [MGL command]
ellipse x1 yl1 z1 x2 y2 z2 r [’col’=’r’]| [MGL command]
Draw the ellipse with radius r and focal points p1, p2. Parameter col may contain

e colors for filling and boundary (second one if style ‘@’ is used, black color is used
by default);

Chapter 3: MathGL core 34

e ‘#’ for wire figure (boundary only);
e ‘@ for filling and boundary;

e mask specification (see Section 2.4 [Color scheme], page 12).

rhomb x1 y1 x2 y2 r [’col’=’r’] [MGL command]
rhomb x1 y1 z1 x2 y2 22 r [’col’=’r’| [MGL command]
Draw the rhombus with width r and edge points p1, p2. Parameter col may contain

e colors for filling and boundary (second one if style ‘@’ is used, black color is used
by default);

e ‘#’ for wire figure (boundary only);
e ‘@ for filling and boundary;

e mask specification (see Section 2.4 [Color scheme], page 12).

arc x0 yO x1 y1 a [’col’=’r’] [MGL command]
arc x0 y0 z0 x1 y1 a [’col’=’r’] [MGL command]
arc x0 yO z0 xa ya za x1 yl z1 a [’col’=’r’] [MGL command]

Draw the arc around axis pa (default is z-axis pa={0,0,1}) with center at p0 and
starting from point pl. Parameter a set the angle of arc in degree. Parameter col
may contain color of the arc and arrow style for arc edges.

polygon x0 yO x1 y1 num [’col’=’r’] [MGL command]

polygon x0 yO z0 x1 y1 z1 num [’col’=’r’] [MGL command]
Draw the polygon with num edges starting from pl. The center of polygon is located
in p0. Parameter col may contain

e colors for filling and boundary (second one if style ‘@’ is used, black color is used
by default);

e ‘#’ for wire figure (boundary only);
e ‘@ for filling and boundary;

e mask specification (see Section 2.4 [Color scheme], page 12).

logo ’fname’ [smooth=off] [MGL command|]
Draw bitmap (logo) along whole axis range, which can be changed by Section 2.7
[Command options], page 17. Bitmap can be loaded from file or specified as RGBA
values for pixels. Parameter smooth set to draw bitmap without or with color inter-

polation.
symbol x y ’id’ [*fnt’=’’ size=-1] [MGL command]
symbol x y z ’id’ [’fnt’=’’ size=-1] [MGL command]

Draws user-defined symbol with name id at position p with style specifying by fnt.
The size of font is set by size parameter (default is -1). The string fnt may contain
color specification ended by ‘:” symbol; styles ‘a’, ‘A’ to draw at absolute position {x,
v} (supposed to be in range [0,1]) of picture (for ‘A’) or subplot/inplot (for ‘a’); and
style ‘w’ to draw wired symbol.

symbol x y dx dy ’id’ [’fnt’=’:L’ size=-1] [MGL command]
symbol x y z dx dy dz ’id’ [’fnt’=’:L’ size=-1] [MGL command]
The same as previous but symbol will be drawn rotated along direction d.

Chapter 3: MathGL core 35

addsymbol ’id’ xdat ydat [MGL command]
Add user-defined symbol with name id and contour {xdat, ydat}. You can use NAN
values to set break (jump) of contour curve.

3.8 Text printing

These functions draw the text. There are functions for drawing text in arbitrary place, in
arbitrary direction and along arbitrary curve. MathGL can use arbitrary font-faces and
parse many TeX commands (for more details see Section 2.5 [Font styles|, page 14). All
these functions have 2 variant: for printing 8-bit text (char *) and for printing Unicode
text (wchar_t *). In first case the conversion into the current locale is used. So sometimes
you need to specify it by setlocale() function. The size argument control the size of text:
if positive it give the value, if negative it give the value relative to SetFontSize(). The
font type (STIX, arial, courier, times and so on) can be selected by function LoadFont().
See Section 3.2.6 [Font settings|, page 22.

The font parameters are described by string. This string may set the text color
‘wkrgbcymhRGBCYMHW’ (see Section 2.2 [Color styles|, page 10). Starting from MathGL
v.2.3, you can set color gradient for text (see Section 2.4 [Color scheme|, page 12). Also,
after delimiter symbol ‘:’, it can contain characters of font type (‘rbiwou’) and/or align
(‘LRCTV’) specification. The font types are: ‘r’ — roman (or regular) font, ‘i’ — italic style,
‘D’ — bold style, ‘w’ — wired style, ‘o’ — over-lined text, ‘u’ — underlined text. By default
roman font is used. The align types are: ‘L’ — align left (default), ‘C’ — align center, ‘R’
— align right, ‘T’ — align under, ‘V’ — align center vertical. For example, string ‘b:iC’
correspond to italic font style for centered text which printed by blue color.

If string contains symbols ‘aA’ then text is printed at absolute position {x, y} (supposed
to be in range [0,1]) of picture (for ‘A’) or subplot/inplot (for ‘a’). If string contains symbol
‘@’ then box around text is drawn.

See Section 5.2.7 [Text features|, page 92, for sample code and picture.

text x y ’text’ [’fnt’=’’ size=-1] [MGL command]

text x y z ’text’ [’fnt’=’’ size=-1] [MGL command]
Draws the string text at position p with fonts specifying by the criteria fnt. The size
of font is set by size parameter (default is -1).

text x y dx dy ’text’ [’fnt’=’:L’ size=-1] [MGL command]

text x y z dx dy dz ’text’ [’fnt’=’:L’ size=-1] [MGL command]
Draws the string text at position p along direction d with specified size. Parameter
fnt set text style and text position: under (‘T’) or above (‘t’) the line.

fgets x y ’fname’ [n=0 ’fnt’=’’ size=-1.4] [MGL command]

fgets x y z ’fname’ [n=0 ’fnt’=’’ size=-1.4] [MGL command]
Draws unrotated n-th line of file fname at position {x,y,z} with specified size. By
default parameters from [font], page 22, command are used.

text ydat ’text’ [’fnt’=’’] [MGL command]
text xdat ydat ’text’ [’fnt’=’’] [MGL command]
text xdat ydat zdat ’text’ [’fnt’=’’] [MGL command]
The function draws text along the curve between points {x[i], y[i], z[i|} by font style
fnt. The string fnt may contain symbols ‘t’ for printing the text under the curve

Chapter 3: MathGL core 36

(default), or ‘T’ for printing the text under the curve. The sizes of 1st dimension
must be equal for all arrays x.nx=y.nx=z.nx. If array x is not specified then its
an automatic array is used with values equidistantly distributed in x-axis range (see
Section 3.3.1 [Ranges (bounding box)|, page 24). If array z is not specified then
z[i] equal to minimal z-axis value is used. String opt contain command options (see
Section 2.7 [Command options|, page 17).

3.9 Axis and Colorbar

These functions draw the “things for measuring”, like axis with ticks, colorbar with ticks,
grid along axis, bounding box and labels for axis. For more information see Section 3.3
[Axis settings|, page 23.

axis [’dir’=’xyz’ ’stl’=’’] [MGL command]
Draws axes with ticks (see Section 3.3 [Axis settings|, page 23). Parameter dir may
contain:
e ‘xyz’ for drawing axis in corresponding direction;

‘XYZ’ for drawing axis in corresponding direction but with inverted positions of
labels;

‘7 or ‘_’ for disabling tick labels;

‘U’ for disabling rotation of tick labels;

‘=’ for inverting default axis origin;

‘17 for disabling ticks tuning (see [tuneticks]|, page 27);
‘AKDTVISO’ for drawing arrow at the end of axis;
‘a’ for forced adjusting of axis ticks;

‘:” for drawing lines through point (0,0,0);

‘£’ for printing ticks labels in fixed format;

‘E’ for using ‘E’ instead of ‘e’ in ticks labels;

‘F’ for printing ticks labels in LaTeX format;

‘+’ for printing ‘+’ for positive ticks;

‘=’ for printing usual ‘-’ in ticks labels;
‘0123456789’ for precision at printing ticks labels.

Styles of ticks and axis can be overrided by using stl string. Option value set the
manual rotation angle for the ticks. See Section 5.2.2 [Axis and ticks], page 84, for
sample code and picture.

colorbar [’sch’=’’] [MGL command]
Draws colorbar. Parameter sch may contain:

color scheme (see Section 2.4 [Color scheme], page 12);

‘<>~ _’ for positioning at left, at right, at top or at bottom correspondingly;

‘T’ for positioning near bounding (by default, is positioned at edges of subplot);
‘A’ for using absolute coordinates;

‘=’ for disabling tick labels.

Chapter 3: MathGL core 37

e ‘!’ for disabling ticks tuning (see [tuneticks|, page 27);
e ‘f’ for printing ticks labels in fixed format;

e ‘E’ for using ‘E’ instead of ‘e’ in ticks labels;

e ‘F’ for printing ticks labels in LaTeX format;

e ‘+’ for printing ‘+’ for positive ticks;

9

e ‘~’ for printing usual ‘-’ in ticks labels;

e ‘0123456789’ for precision at printing ticks labels.

See Section 5.2.4 [Colorbars|, page 89, for sample code and picture.

colorbar vdat [’sch’=’’] [MGL command]
The same as previous but with sharp colors sch (current palette if sch="") for values
v. See Section 6.27 [contd sample], page 156, for sample code and picture.

colorbar ’sch’ x y [w=1 h=1] [MGL command]
The same as first one but at arbitrary position of subplot {x, y} (supposed to be in
range [0,1]). Parameters w, h set the relative width and height of the colorbar.

colorbar vdat ’sch’ x y [w=1 h=1] [MGL command]
The same as previous but with sharp colors sch (current palette if sch="") for values
v. See Section 6.27 [contd sample], page 156, for sample code and picture.

grid [’dir’=’xyz’ ’pen’=’B’] [MGL command]
Draws grid lines perpendicular to direction determined by string parameter dir. If dir
contain ‘!’ then grid lines will be drawn at coordinates of subticks also. The step of
grid lines is the same as tick step for [axis|, page 36. The style of lines is determined
by pen parameter (default value is dark blue solid line ‘B-’).

box [’stl’=’k’ ticks=on] [MGL command]
Draws bounding box outside the plotting volume with color col. If col contain ‘@’
then filled faces are drawn. At this first color is used for faces (default is light yellow),
last one for edges. See Section 5.2.5 [Bounding box]|, page 90, for sample code and
picture.

xlabel ’text’ [pos=1] [MGL command]
ylabel ’text’ [pos=1] [MGL command]
zlabel ’text’ [pos=1] [MGL command]
tlabel ’text’ [pos=1] [MGL command]
clabel ’text’ [pos=1] [MGL command]
Prints the label text for axis dir=‘%’,'y’,'z’,'t’,‘c’, where ‘t’ is “ternary” axis t =
1 —x —y; ‘c’ is color axis (should be called after [colorbar], page 36). The position
of label is determined by pos parameter. If pos=0 then label is printed at the center
of axis. If pos>0 then label is printed at the maximum of axis. If pos<0 then label
is printed at the minimum of axis. Option value set additional shifting of the label.

See Section 3.8 [Text printing], page 35.

Chapter 3: MathGL core 38

3.10 Legend

These functions draw legend to the graph (useful for Section 3.11 [1D plotting], page 38).
Legend entry is a pair of strings: one for style of the line, another one with description text
(with included TeX parsing). The arrays of strings may be used directly or by accumulating
first to the internal arrays (by function [addlegend], page 38) and further plotting it. The
position of the legend can be selected automatic or manually (even out of bounding box).
Parameters fnt and size specify the font style and size (see Section 3.2.6 [Font settings],
page 22). Option value set the relative width of the line sample and the text indent. If
line style string for entry is empty then the corresponding text is printed without indent.
Parameter fnt may contain:

e font style for legend text;

e ‘A’ for positioning in absolute coordinates;
e ‘~’ for positioning outside of specified point;
e ‘#’ for drawing box around legend;

e ‘-’ for arranging legend entries horizontally;

e colors for face (1st one), for border (2nd one) and for text (last one). If less than 3
colors are specified then the color for border is black (for 2 and less colors), and the
color for face is white (for 1 or none colors).

See Section 5.2.8 [Legend sample], page 94, for sample code and picture.

legend [pos=3 ’fnt’=’#’] [MGL command]
Draws legend of accumulated legend entries by font fnt with size. Parameter pos sets
the position of the legend: ‘0’ is bottom left corner, ‘1’ is bottom right corner, ‘2’ is
top left corner, ‘3’ is top right corner (is default). Option value set the space between
line samples and text (default is 0.1).

legend x y [’fnt’=#’] [MGL command]
Draws legend of accumulated legend entries by font fnt with size. Position of legend
is determined by parameter x, y which supposed to be normalized to interval [0,1].
Option value set the space between line samples and text (default is 0.1).

addlegend ’text’ ’stl’ [MGL command]
Adds string text to internal legend accumulator. The style of described line and mark
is specified in string style (see Section 2.3 [Line styles|, page 10).

clearlegend [MGL command]
Clears saved legend strings.

legendmarks val [MGL command]
Set the number of marks in the legend. By default 1 mark is used.

3.11 1D plotting

These functions perform plotting of 1D data. 1D means that data depended from only
1 parameter like parametric curve {x[i],y[i],z[i]}, i=1...n. By default (if absent) values of
x[i] are equidistantly distributed in axis range, and z[i] equal to minimal z-axis value. The

Chapter 3: MathGL core 39

plots are drawn for each row if one of the data is the matrix. By any case the sizes of 1st
dimension must be equal for all arrays x.nx=y.nx=z.nx.

String pen specifies the color and style of line and marks (see Section 2.3 [Line styles],
page 10). By default (pen="") solid line with color from palette is used (see Section 3.2.7
[Palette and colors], page 23). Symbol ‘!’ set to use new color from palette for each point
(not for each curve, as default). String opt contain command options (see Section 2.7
[Command options], page 17).

plot ydat [’stl’=’~’] [MGL command]
plot xdat ydat [’stl’=’’] [MGL command]
plot xdat ydat zdat [’stl’=’’] [MGL command]

These functions draw continuous lines between points {x[i], y[i], z[i]}. If pen contain
‘a’ then segments between points outside of axis range are drawn too. If pen contain ‘~’
then number of segments is reduce for quasi-straight curves. See also [area], page 40,
[step], page 39, [stem], page 40, [tube], page 44, [mark], page 43, [error], page 42,
[belt], page 45, [tens|, page 39, [tape], page 39, [meshnum)], page 21. See Section 6.94
[plot sample|, page 218, for sample code and picture.

radar adat [’stl’=’’] [MGL command]
This functions draws radar chart which is continuous lines between points located
on an radial lines (like plot in Polar coordinates). Option value set the additional
shift of data (i.e. the data a+value is used instead of a). If value<0 then r=max(0,
-min(value). If pen containt ‘#’ symbol then "grid" (radial lines and circle for r)
is drawn. If pen contain ‘a’ then segments between points outside of axis range are
drawn too. See also [plot], page 39, [meshnum]|, page 21. See Section 6.108 [radar
sample], page 248, for sample code and picture.

step ydat [’stl’=’] [MGL command]
step xdat ydat [’stl’=’’] [MGL command]
step xdat ydat zdat [’stl’=’’] [MGL command]

These functions draw continuous stairs for points to axis plane. If x.nx>y.nx then x
set the edges of bars, rather than its central positions. See also [plot], page 39, [stem],
page 40, [tile], page 46, [boxs|, page 46, [meshnum], page 21. See Section 6.117 [step
sample], page 257, for sample code and picture.

tens ydat cdat [’stl’=’’] [MGL command]

tens xdat ydat cdat [’stl’=’’] [MGL command]

tens xdat ydat zdat cdat [’stl’=’’] [MGL command]
These functions draw continuous lines between points {x[i], y[i], z[i]} with color de-
fined by the special array c[i] (look like tension plot). String pen specifies the color
scheme (see Section 2.4 [Color scheme], page 12) and style and/or width of line (see
Section 2.3 [Line styles], page 10). If pen contain ‘a’ then segments between points
outside of axis range are drawn too. If pen contain ‘~’ then number of segments
is reduce for quasi-straight curves. See also [plot], page 39, [mesh], page 45, [fall],
page 45, [meshnum], page 21. See Section 6.131 [tens sample], page 267, for sample
code and picture.

tape ydat [’stl’=’’] [MGL command]
tape xdat ydat [’stl’=’’] [MGL command]

Chapter 3: MathGL core 40

tape xdat ydat zdat [’stl’=’’] [MGL command]
These functions draw tapes of normals for curve between points {x[i], y[i], z[i]}.
Initial tape(s) was selected in x-y plane (for ‘x’ in pen) and/or y-z plane (for ‘x’
in pen). Argument pen can also contain mask specification (see Section 2.4 [Color
scheme|, page 12). The width of tape is proportional to [barwidth], page 21, and
can be changed by option value. See also [plot], page 39, [flow], page 54, [barwidth],
page 21. See Section 6.130 [tape sample], page 266, for sample code and picture.

area ydat [’stl’=’] [MGL command]
area xdat ydat [’stl’=’’] [MGL command]
area xdat ydat zdat [’stl’=’’| [MGL command]

These functions draw continuous lines between points and fills it to axis plane. Also
you can use gradient filling if number of specified colors is equal to 2*number of curves.
If pen contain ‘#’ then wired plot is drawn. If pen contain ‘a’ then segments between
points outside of axis range are drawn too. Argument pen can also contain mask
specification (see Section 2.4 [Color scheme], page 12). See also [plot], page 39, [bars],
page 40, [stem], page 40, [region], page 40. See Section 6.5 [area sample|, page 138,
for sample code and picture.

region ydatl ydat2 [’stl’=’] [MGL command]
region xdat ydatl ydat2 [’stl’=’’] [MGL command]
region xdatl ydatl xdat2 ydat2 [’stl’=’’] [MGL command]
region xdatl ydatl zdatl xdat2 ydat2 zdat2 [’stl’=’’] [MGL command]
These functions fill area between 2 curves. Dimensions of arrays yl and y2 must
be equal. Also you can use gradient filling if number of specified colors is equal to
2*number of curves. If for 2D version pen contain symbol ‘i’ then only area with
y1<y<y2 will be filled else the area with y2<y<yl will be filled too. If pen contain ‘#’
then wired plot is drawn. If pen contain ‘a’ then segments between points outside
of axis range are drawn too. Argument pen can also contain mask specification (see
Section 2.4 [Color scheme], page 12). See also [area], page 40, [bars|, page 40, [stem],
page 40. See Section 6.110 [region sample], page 250, for sample code and picture.

stem ydat [’stl’=’’] [MGL command]
stem xdat ydat [’stl’=’] [MGL command]
stem xdat ydat zdat [’stl’=’’] [MGL command]

These functions draw vertical lines from points to axis plane. See also [areal, page 40,
[bars], page 40, [plot], page 39, [mark], page 43. See Section 6.116 [stem sample],
page 256, for sample code and picture.

bars ydat [’stl’=’’] [MGL command]

bars xdat ydat [’stl’=’’] [MGL command]

bars xdat ydat zdat [’stl’=’’] [MGL command]
These functions draw vertical bars from points to axis plane. Parameter pen can
contain:

e ‘a’ for drawing lines one above another (like summation);

e ‘f’ for drawing waterfall chart, which show the cumulative effect of sequential
positive or negative values;

e ‘F’ for using fixed (minimal) width for all bars;

Chapter 3: MathGL core 41

e ‘< 7 or > for aligning boxes left, right or centering them at its x-coordinates;

e mask specification (see Section 2.4 [Color scheme], page 12).

You can give different colors for positive and negative values if number of specified
colors is equal to 2*number of curves. If x.nx>y.nx then x set the edges of bars, rather
than its central positions. See also [barh], page 41, [cones], page 41, [area], page 40,
[stem], page 40, [chart], page 41, [barwidth], page 21. See Section 6.11 [bars sample],
page 144, for sample code and picture.

barh vdat [’stl’=’’] [MGL command]

barh ydat vdat [’stl’=’’] [MGL command]
These functions draw horizontal bars from points to axis plane. Parameter pen can
contain:

e ‘2’ for drawing lines one above another (like summation);

e ‘f’ for drawing waterfall chart, which show the cumulative effect of sequential
positive or negative values;

e ‘F’ for using fixed (minimal) width for all bars;
e ‘<’ ‘"7 or ‘> for aligning boxes left, right or centering them at its x-coordinates;
e mask specification (see Section 2.4 [Color scheme], page 12).
You can give different colors for positive and negative values if number of specified
colors is equal to 2*number of curves. If x.nx>y.nx then x set the edges of bars,

rather than its central positions. See also [bars], page 40, [barwidth], page 21. See
Section 6.10 [barh sample], page 143, for sample code and picture.

cones ydat [’stl’=’"’] [MGL command]
cones xdat ydat [’stl’=’’] [MGL command]
cones xdat ydat zdat [’stl’=’’] [MGL command]

These functions draw cones from points to axis plane. If string contain symbol ‘a’ then
cones are drawn one above another (like summation). You can give different colors
for positive and negative values if number of specified colors is equal to 2*¥number of
curves. Parameter pen can contain:

e ‘@ for drawing edges;

e ‘#’ for wired cones;

e ‘t’ for drawing tubes/cylinders instead of cones/prisms;

e ‘4’ ‘6’ ‘8’ for drawing square, hex- or octo-prism instead of cones;

e ‘< 7 or > for aligning boxes left, right or centering them at its x-coordinates.

See also [bars], page 40, [cone], page 33, [barwidth], page 21. See Section 6.23 [cones
sample], page 153, for sample code and picture.

chart adat [’col’=’"’] [MGL command]
The function draws colored stripes (boxes) for data in array a. The number of stripes
is equal to the number of rows in a (equal to a.ny). The color of each next stripe is
cyclically changed from colors specified in string col or in palette Pal (see Section 3.2.7
[Palette and colors|, page 23). Argument col can also contain mask specification (see
Section 2.4 [Color scheme], page 12). Spaces in colors denote transparent “color” (i.e.

Chapter 3: MathGL core 42

corresponding stripe(s) are not drawn). The stripe width is proportional to value of
element in a. Chart is plotted only for data with non-negative elements. If string col
have symbol ‘#’ then black border lines are drawn. The most nice form the chart have
in 3d (after rotation of coordinates) or in cylindrical coordinates (becomes so called
Pie chart). See Section 6.19 [chart sample], page 149, for sample code and picture.

boxplot adat [’stl’=’’] [MGL command]

boxplot xdat adat [’stl’=’’] [MGL command]
These functions draw boxplot (also known as a box-and-whisker diagram) at points
x[i]. This is five-number summaries of data ali,j] (minimum, lower quartile (Q1),
median (Q2), upper quartile (Q3) and maximum) along second (j-th) direction. If
pen contain ‘<’, ‘=7 or ‘>’ then boxes will be aligned left, right or centered at its
x-coordinates. See also [plot], page 39, [error], page 42, [bars], page 40, [barwidth],
page 21. See Section 6.16 [boxplot sample], page 147, for sample code and picture.

candle vdatl [’stl’=’’] [MGL command]

candle vdatl vdat2 [’stl’=’’] [MGL command]

candle vdatl ydatl ydat2 [’stl’=’’] [MGL command]

candle vdatl vdat2 ydatl ydat2 [’stl’=’’] [MGL command]

candle xdat vdatl vdat2 ydatl ydat2 [’stl’=’’] [MGL command]
These functions draw candlestick chart at points x[i]. This is a combination of a line-
chart and a bar-chart, in that each bar represents the range of price movement over
a given time interval. Wire (or white) candle correspond to price growth v1[i]<v2[i],
opposite case — solid (or dark) candle. You can give different colors for growth and
decrease values if number of specified colors is equal to 2. If pen contain ‘#’ then the
wire candle will be used even for 2-color scheme. Argument pen can also contain mask
specification (see Section 2.4 [Color scheme], page 12). "Shadows" show the minimal
y1 and maximal y2 prices. If v2 is absent then it is determined as v2[i|=v1[i+1].
See also [plot], page 39, [bars|, page 40, [ohlc], page 42, [barwidth], page 21. See
Section 6.18 [candle sample], page 148, for sample code and picture.

ohlc odat hdat ldat cdat [’stl’=’’] [MGL command]

ohlc xdat odat hdat ldat cdat [’stl’=’’] [MGL command]
These functions draw Open-High-Low-Close diagram. This diagram show vertical
line for between maximal(high h) and minimal(low I) values, as well as horizontal
lines before/after vertical line for initial(open o) /final(close ¢) values of some process
(usually price). You can give different colors for up and down values (when closing
values higher or not as in previous point) if number of specified colors is equal to
2*number of curves. See also [candle], page 42, [plot], page 39, [barwidth], page 21.
See Section 6.85 [ohlc sample], page 208, for sample code and picture.

error ydat yerr [’stl’=’’] [MGL command]
error xdat ydat yerr [’stl’=’’] [MGL command]
error xdat ydat xerr yerr [’stl’=’’] [MGL command]

These functions draw error boxes {ex|i], ey[i]} at points {x[i], y[i]}. This can be useful,
for example, in experimental points, or to show numeric error or some estimations
and so on. If string pen contain symbol ‘@ than large semitransparent mark is used
instead of error box. See also [plot], page 39, [mark], page 43. See Section 6.51 [error
sample|, page 176, for sample code and picture.

Chapter 3: MathGL core 43

mark ydat rdat [’stl’=’’] [MGL command]
mark xdat ydat rdat [’stl’=’’] [MGL command]
mark xdat ydat zdat rdat [’stl’=’’] [MGL command]

These functions draw marks with size r[i]*[marksize|, page 21, at points {x[i], y[i],
z[i]}. If you need to draw markers of the same size then you can use [plot], page 39,
function with empty line style ¢ . For markers with size in axis range use [error],
page 42, with style ‘@’. See also [plot], page 39, [textmark], page 43, [error|, page 42,
[stem], page 40, [meshnum], page 21. See Section 6.78 [mark sample], page 202, for
sample code and picture.

textmark ydat ’txt’ [’stl’=’’] [MGL command]

textmark ydat rdat ’txt’ [’stl’=’’] [MGL command]

textmark xdat ydat rdat ’txt’ [’stl’=’’] [MGL command]

textmark xdat ydat zdat rdat ’txt’ [’stl’=’’] [MGL command]
These functions draw string txt as marks with size proportional to r[i]*marksize at
points {x[i], y[i], z[i]}. By default (if omitted) r[i]=1. See also [plot], page 39, [mark],
page 43, [stem], page 40, [meshnum], page 21. See Section 6.135 [textmark sample],
page 271, for sample code and picture.

label ydat ’txt’ [’stl’=’’] [MGL command]
label xdat ydat ’txt’ [’stl’=’’] [MGL command]
label xdat ydat zdat ’txt’ [’stl’=’’] [MGL command]

These functions draw string txt at points {x[i], y[i], z[i]}. If string txt contain ‘%x’,
“hy’, ‘%z’ or ‘Y%n’ then it will be replaced by the value of x-,y-,z-coordinate of the point
or its index. String fnt may contain:

e font style Section 2.5 [Font styles], page 14;

e ‘f’ for fixed format of printed numbers;

e ‘E’ for using ‘E’ instead of ‘e’;

e ‘F’ for printing in LaTeX format;

e ‘+’ for printing ‘+’ for positive numbers;

e ‘~’ for printing usual ‘-’;

e ‘0123456789’ for precision at printing numbers.

See also [plot], page 39, [mark]|, page 43, [textmark]|, page 43, [table], page 43. See
Section 6.71 [label sample|, page 195, for sample code and picture.

table vdat ’txt’ [’stl’=’#’] [MGL command]
table x y vdat ’txt’ [’stl’=’#’] [MGL command]
These functions draw table with values of val and captions from string txt (separated
by newline symbol ‘\n’) at points {x, y} (default at {0,0}) related to current subplot.

String fnt may contain:
e font style Section 2.5 [Font styles], page 14;
e ‘#’ for drawing cell borders;
e ‘|’ for limiting table widh by subplot one (equal to option ‘value 1’);
e ‘=’ for equal width of all cells;

e ‘f’ for fixed format of printed numbers;

Chapter 3: MathGL core 44

e ‘E’ for using ‘E’ instead of ‘e’;
e ‘F’ for printing in LaTeX format;
e ‘+’ for printing ‘+’ for positive numbers;

e ‘=’ for printing usual ‘=’;

‘0123456789’ for precision at printing numbers.

Option value set the width of the table (default is 1). See also [plot], page 39, [label],
page 43. See Section 6.129 [table sample], page 265, for sample code and picture.

iris dats ’ids’ [’stl’=’’] [MGL command]

iris dats rngs ’ids’ [’stl’=’’] [MGL command]
Draws Iris plots for determining cross-dependences of data arrays dats (see http://
en.wikipedia.org/wiki/Iris_flower_data_set). Data rngs of size 2*dats.nx pro-
vide manual axis ranges for each column. String ids contain column names, separated
by ‘;’ symbol. Option value set the text size for column names. You can add another
data set to existing Iris plot by providing the same ranges rngs and empty column
names ids. See also [plot], page 39. See Section 6.69 [iris sample], page 194, for sample
code and picture.

tube ydat rdat [’stl’=’’] [MGL command]
tube ydat rval [’stl’=’’] [MGL command]
tube xdat ydat rdat [’stl’=’’] [MGL command]
tube xdat ydat rval [’stl’=’’] [MGL command]
tube xdat ydat zdat rdat [’stl’=’’] [MGL command]
tube xdat ydat zdat rval [’stl’=’’] [MGL command]
These functions draw the tube with variable radius r[i] along the curve between points
{x[i], y[i], z[i]}. Option value set the number of segments at cross-section (default is
25). See also [plot], page 39. See Section 6.143 [tube sample], page 277, for sample

code and picture.

torus rdat zdat [’stl’=’’] [MGL command]
These functions draw surface which is result of curve {r, z} rotation around axis. If
string pen contain symbols ‘x’ or ‘2z’ then rotation axis will be set to specified direction
(default is ‘y’). If string pen have symbol ‘#’ then wire plot is produced. If string
pen have symbol ‘.’ then plot by dots is produced. See also [plot], page 39, [axial],
page 48. See Section 6.139 [torus sample], page 274, for sample code and picture.

lamerey x0 ydat [’stl’=’’] [MGL command]

lamerey x0 ’y(x)’ [’stl’=’’] [MGL command]
These functions draw Lamerey diagram for mapping x_new = y(x_old) starting from
point x0. String stl may contain line style, symbol ‘v’ for drawing arrows, symbol ‘=’
for disabling first segment. Option value set the number of segments to be drawn
(default is 20). See also [plot], page 39, [fplot], page 56, [bifurcation]|, page 44, [pmap],
page 45. See Section 6.72 [lamerey sample], page 196, for sample code and picture.

bifurcation dx ydat [’stl’=’’] [MGL command]
bifurcation dx ’y(x)’ [’stl’=’’] [MGL command]
These functions draw bifurcation diagram for mapping x_new = y(x_old). Parameter
dx set the accuracy along x-direction. String stl set color. Option value set the

http://en.wikipedia.org/wiki/Iris_flower_data_set
http://en.wikipedia.org/wiki/Iris_flower_data_set

Chapter 3: MathGL core 45

number of stationary points (default is 1024). See also [plot], page 39, [fplot], page 56,
[lamerey], page 44. See Section 6.14 [bifurcation sample], page 146, for sample code
and picture.

pmap ydat sdat [’stl’=’’] [MGL command]
pmap xdat ydat sdat [’stl’=’’] [MGL command]
pmap xdat ydat zdat sdat [’stl’=’’] [MGL command]

These functions draw Poincare map for curve {x, y, z} at surface s=0. Basically,
it show intersections of the curve and the surface. String stl set the style of marks.
See also [plot], page 39, [mark], page 43, [lamerey]|, page 44. See Section 6.95 [pmap
sample], page 219, for sample code and picture.

3.12 2D plotting

These functions perform plotting of 2D data. 2D means that data depend from 2 indepen-
dent parameters like matrix f(x;,y;),7 = 1..n,j = 1...m. By default (if absent) values of
x, y are equidistantly distributed in axis range. The plots are drawn for each z slice of the
data. The minor dimensions of arrays x, y, z should be equal x.nx=z.nx && y.nx=z.ny or
X.nx=y.nx=z.nx && x.ny=y.ny=z.ny. Arrays x and y can be vectors (not matrices as z).
String sch sets the color scheme (see Section 2.4 [Color scheme], page 12) for plot. String
opt contain command options (see Section 2.7 [Command options|, page 17).

surf zdat [’sch’=’’] [MGL command]
surf xdat ydat zdat [’sch’=’’] [MGL command]
The function draws surface specified parametrically {x[i,j|, ¥[i,j], z[i,j]}. If string sch
have symbol ‘#’ then grid lines are drawn. If string sch have symbol ‘.’ then plot

by dots is produced. See also [mesh], page 45, [dens], page 46, [belt], page 45, [tile],
page 46, [boxs|, page 46, [surfc], page 50, [surfa], page 51. See Section 6.121 [surf
sample], page 259, for sample code and picture.

mesh zdat [’sch’=’’] [MGL command]

mesh xdat ydat zdat [’sch’=’’] [MGL command]
The function draws mesh lines for surface specified parametrically {x[i.j], y[i.j], z[i,j]}-
See also [surf], page 45, [fall], page 45, [meshnum], page 21, [cont], page 46, [tens],
page 39. See Section 6.80 [mesh sample], page 203, for sample code and picture.

fall zdat [’sch’=’’] [MGL command]
fall xdat ydat zdat [’sch’=’’] [MGL command]
The function draws fall lines for surface specified parametrically {x[i,j], y[i,j], 2[i,j]}-
This plot can be used for plotting several curves shifted in depth one from another.
If sch contain ‘x’ then lines are drawn along x-direction else (by default) lines are
drawn along y-direction. See also [belt], page 45, [mesh|, page 45, [tens], page 39,
[meshnum], page 21. See Section 6.54 [fall sample|, page 179, for sample code and

picture.
belt zdat [’sch’=’’] [MGL command]
belt xdat ydat zdat [’sch’=’’] [MGL command]

The function draws belts for surface specified parametrically {x[i,j], y[i,j], z[i,j]}-
This plot can be used as 3d generalization of [plot], page 39). If sch contain ‘x’ then

Chapter 3: MathGL core 46

boxs
boxs

tile
tile
tile

dens
dens

cont
cont

cont
cont

cont

belts are drawn along x-direction else (by default) belts are drawn along y-direction.
See also [fall], page 45, [surf], page 45, [beltc], page 51, [plot], page 39, [meshnum],
page 21. See Section 6.12 [belt sample], page 144, for sample code and picture.

zdat [’sch’=’’] [MGL command]
xdat ydat zdat [’sch’=’’] [MGL command]
The function draws vertical boxes for surface specified parametrically {x[i,j], ¥[i,j],
z[i,j]}. Symbol ‘@ in sch set to draw filled boxes. See also [surf], page 45, [dens],
page 46, [tile], page 46, [step], page 39. See Section 6.17 [boxs sample], page 148, for
sample code and picture.

zdat [’sch’=’’] [MGL command]
xdat ydat zdat [’sch’=’’] [MGL command]
xdat ydat zdat cdat [’sch’=’’] [MGL command]

The function draws horizontal tiles for surface specified parametrically {x[i,j], ¥[i,j],
z[1,j]} and color it by matrix c[i,j] (c=z if ¢ is not provided). If string sch contain style
‘x” or ‘y’ then tiles will be oriented perpendicular to x- or y-axis. Such plot can be
used as 3d generalization of [step], page 39. See also [surf], page 45, [boxs], page 46,
[step], page 39, [tiles], page 52. See Section 6.137 [tile sample], page 273, for sample
code and picture.

zdat [’sch’=’’] [MGL command]
xdat ydat zdat [’sch’=’’] [MGL command]
The function draws density plot for surface specified parametrically {x[i,j], y[i,j],
z[i,j]} at z equal to minimal z-axis value. If string sch have symbol ‘#’ then grid lines
are drawn. If string sch have symbol ‘.’ then plot by dots is produced. See also [surf],
page 45, [cont], page 46, [contf], page 47, [boxs], page 46, [tile], page 46, dens [xyz].
See Section 6.42 [dens sample], page 168, for sample code and picture.

vdat zdat [’sch’=’’] [MGL command]
vdat xdat ydat zdat [’sch’=’’] [MGL command]
The function draws contour lines for surface specified parametrically {x[i,j], ¥[i,j],
z[i,j]} at z=v[k], or at z equal to minimal z-axis value if sch contain symbol ‘_’.
Contours are plotted for z[i,j]J=v[k] where v[k| are values of data array v. If string
sch have symbol ‘t’” or ‘T’ then contour labels v[k] will be drawn below (or above) the
contours. See also [dens|, page 46, [contf], page 47, [contd], page 47, [axial], page 48,
cont [xyz]. See Section 6.24 [cont sample|, page 154, for sample code and picture.

zdat [’sch’=’’] [MGL command]
xdat ydat zdat [’sch’=’’] [MGL command]
The same as previous with vector v of num-th elements equidistantly distributed in
color range. Here num is equal to parameter value in options opt (default is 7). If
string sch contain symbol ‘.’ then only contours at levels with saddle points will be
drawn.

val adat xdat ydat zdat [’sch’=’’] [MGL command]
Draws contour lines for surface specified parametrically {x[i,j], y[ij], z[i,j]} at
a[i,j]=val. If string sch have symbol ‘t’ or ‘T’ then contour labels v[k] will be drawn
below (or above) the contours.

Chapter 3: MathGL core 47

contf vdat zdat [’sch’=’’] [MGL command]
contf vdat xdat ydat zdat [’sch’=’’] [MGL command]
The function draws solid (or filled) contour lines for surface specified parametrically
{x[i,j], ¥[i,j], z[i,j]} at z=v[Kk], or at z equal to minimal z-axis value if sch contain
symbol ‘_’. Contours are plotted for z[i,jj=v[k] where v[k] are values of data array
v (must be v.nx>2). See also [dens|, page 46, [cont], page 46, [contd], page 47,
contf [xyz]. See Section 6.28 [contf sample], page 157, for sample code and picture.

contf zdat [’sch’=’’] [MGL command]

contf xdat ydat zdat [’sch’=’’] [MGL command]
The same as previous with vector v of num-th elements equidistantly distributed in
color range. Here num is equal to parameter value in options opt (default is 7).

contf vl v2 adat xdat ydat zdat [’sch’=’’] [MGL command]
Draws solid (or filled) contour lines for surface specified parametrically {x[i,j], y[i,j],
z[1,j]} between a[i,j]=vI and ali,j]=v2.

contd vdat zdat [’sch’=’’] [MGL command]

contd vdat xdat ydat zdat [’sch’=’’] [MGL command]
The function draws solid (or filled) contour lines for surface specified parametrically
{x[i,j], ¥[i,j], z[i,j]} at z=v[k] (or at z equal to minimal z-axis value if sch contain
symbol ‘_’) with manual colors. Contours are plotted for z[i,j]=v[k|] where v[k| are
values of data array v (must be v.nx>2). String sch sets the contour colors: the color
of k-th contour is determined by character schlk%strlen(sch)]. See also [dens],
page 46, [cont], page 46, [contf], page 47. See Section 6.27 [contd sample], page 156,
for sample code and picture.

contd zdat [’sch’=’"] [MGL command]

contd xdat ydat zdat [’sch’=’’] [MGL command]
The same as previous with vector v of num-th elements equidistantly distributed in
color range. Here num is equal to parameter value in options opt (default is 7).

contp vdat xdat ydat zdat adat [’sch’=’’] [MGL command]
The function draws contour lines on surface specified parametrically {x[i,j], y[i,j],
z[i,j]}. Contours are plotted for a[i,j]=v[k] where v[k| are values of data array v. If
string sch have symbol ‘t’ or ‘T’ then contour labels v[k| will be drawn below (or
above) the contours. If string sch have symbol ‘f’ then solid contours will be drawn.
See also [cont], page 46, [contf], page 47, [surfc], page 50, cont [xyz].

contp xdat ydat zdat adat [’sch’=’’] [MGL command]
The same as previous with vector v of num-th elements equidistantly distributed in
color range. Here num is equal to parameter value in options opt (default is 7).

contv vdat zdat [’sch’=’’] [MGL command]

contv vdat xdat ydat zdat [’sch’=’’] [MGL command]
The function draws vertical cylinder (tube) at contour lines for surface specified para-
metrically {x[i,j], ¥[i,j], z[i,j]} at z=v[k], or at z equal to minimal z-axis value if sch
contain symbol ‘_’. Contours are plotted for z[i,jjJ=v[k] where v[k] are values of data
array v. See also [cont], page 46, [contf], page 47. See Section 6.32 [contv sample],
page 160, for sample code and picture.

Chapter 3: MathGL core 48

contv zdat [’sch’=’"’] [MGL command]

contv xdat ydat zdat [’sch’=’’] [MGL command]
The same as previous with vector v of num-th elements equidistantly distributed in
color range. Here num is equal to parameter value in options opt (default is 7).

axial vdat zdat [’sch’=’’] [MGL command]

axial vdat xdat ydat zdat [’sch’=’’] [MGL command]
The function draws surface which is result of contour plot rotation for surface specified
parametrically {x[i,j], y[i,j], z[i,j]}. Contours are plotted for z[i,j]=v[k] where v[k] are
values of data array v. If string sch have symbol ‘#’ then wire plot is produced. If
string sch have symbol ‘.’ then plot by dots is produced. If string contain symbols
‘x” or ‘z’ then rotation axis will be set to specified direction (default is ‘y’). See also
[cont], page 46, [contf], page 47, [torus], page 44, [surf3], page 48. See Section 6.7
[axial sample], page 140, for sample code and picture.

axial zdat [’sch’=’’] [MGL command]

axial xdat ydat zdat [’sch’=’’] [MGL command]
The same as previous with vector v of num-th elements equidistantly distributed in
color range. Here num is equal to parameter value in options opt (default is 3).

grid2 zdat [’sch’=’’] [MGL command]

grid2 xdat ydat zdat [’sch’=’’] [MGL command]
The function draws grid lines for density plot of surface specified parametrically {x[i,j],
yij], 2[i,j]} at z equal to minimal z-axis value. See also [dens], page 46, [cont], page 46,
[contf], page 47, [grid3], page 50, [meshnum]|, page 21.

3.13 3D plotting

These functions perform plotting of 3D data. 3D means that data depend from 3 indepen-
dent parameters like matrix f(x;,y;, 2x),7 = 1..n,j = 1...m, k = 1...[. By default (if absent)
values of x, y, z are equidistantly distributed in axis range. The minor dimensions of arrays
X, ¥, 7, ashould be equal x.nx=a.nx && y.nx=a.ny && z.nz=a.nz or Xx.nx=y.nx=z.nx=a.nx
&& x.ny=y.ny=z.ny=a.ny && x.nz=y.nz=z.nz=a.nz. Arrays x, y and z can be vectors (not
matrices as a). String sch sets the color scheme (see Section 2.4 [Color scheme|, page 12) for
plot. String opt contain command options (see Section 2.7 [Command options]|, page 17).

surf3 adat val [’sch’=’’] [MGL command|]

surf3 xdat ydat zdat adat val [’sch’=’’] [MGL command]
The function draws isosurface plot for 3d array specified parametrically ali,j,k](x[i,j,k],
yv[i,j.k], z[i,j,k]) at a(x,y,z)=val. If string contain ‘#’ then wire plot is produced. If
string sch have symbol ‘.’ then plot by dots is produced. Note, that there is possibility
of incorrect plotting due to uncertainty of cross-section defining if there are two or
more isosurface intersections inside one cell. See also [cloud], page 49, [dens3], page 49,
[surf3c], page 51, [surf3al, page 51, [axial], page 48. See Section 6.122 [surf3 sample],
page 260, for sample code and picture.

surf3 adat [’sch’=’"’] [MGL command]

surf3 xdat ydat zdat adat [’sch’=’’] [MGL command]
Draws num-th uniformly distributed in color range isosurfaces for 3d data. Here num
is equal to parameter value in options opt (default is 3).

Chapter 3: MathGL core 49

cloud adat [’sch’=’"’] [MGL command]
cloud xdat ydat zdat adat [’sch’=’’] [MGL command]
The function draws cloud plot for 3d data specified parametrically ali,j.k](x[i,j,k],
v[i,j,k], z[i,j,k]). This plot is a set of cubes with color and transparency proportional
to value of a. The resulting plot is like cloud — low value is transparent but higher
ones are not. The number of plotting cells depend on [meshnum], page 21. If string
sch contain symbol ‘.’ then lower quality plot will produced with much low memory
usage. If string sch contain symbol ‘i’ then transparency will be inversed, i.e. higher
become transparent and lower become not transparent. See also [surf3], page 48,
[meshnum], page 21. See Section 6.20 [cloud sample], page 150, for sample code and

picture.
dens3 adat [’sch’=’’ sval=-1] [MGL command]
dens3 xdat ydat zdat adat [’sch’=’’ sval=-1] [MGL command]

The function draws density plot for 3d data specified parametrically ali,j,k](x[i,j,k],
vli,j.k], z[i,j,k]). Density is plotted at slice sVal in direction {‘x’, ‘y’, ‘2’} if sch contain
corresponding symbol (by default, ‘y’ direction is used). If string stI have symbol ‘#’
then grid lines are drawn. See also [cont3], page 49, [contf3], page 49, [dens], page 46,
[grid3], page 50. See Section 6.43 [dens3 sample], page 169, for sample code and

picture.
cont3 vdat adat [’sch’=’’ sval=-1] [MGL command]
cont3 vdat xdat ydat zdat adat [’sch’=’’ sval=-1] [MGL command]

The function draws contour plot for 3d data specified parametrically ali,j,k](x[i,j,k],
v[i,j,k], z[i,j,k]). Contours are plotted for values specified in array v at slice sVal in
direction {‘x’, ‘y’, ‘z’} if sch contain corresponding symbol (by default, ‘y’ direction
is used). If string sch have symbol ‘#’ then grid lines are drawn. If string sch have
symbol ‘t’ or ‘T’ then contour labels will be drawn below (or above) the contours.
See also [dens3|, page 49, [contf3]|, page 49, [cont]|, page 46, [grid3], page 50. See

Section 6.25 [cont3 sample], page 155, for sample code and picture.

cont3 adat [’sch’=’’ sval=-1] [MGL command]

cont3 xdat ydat zdat adat [’sch’=’’ sval=-1] [MGL command]
The same as previous with vector v of num-th elements equidistantly distributed in
color range. Here num is equal to parameter value in options opt (default is 7).

contf3 vdat adat [’sch’=’’ sval=-1] [MGL command]
contf3 vdat xdat ydat zdat adat [’sch’=’’ sval=-1] [MGL command]
The function draws solid (or filled) contour plot for 3d data specified parametrically
ali,j.k|(x[i,j,k], ¥[i,j,k], 2[i,j,k]). Contours are plotted for values specified in array v at
slice sVal in direction {‘x’, ‘y’, ‘z’} if sch contain corresponding symbol (by default,
‘y’ direction is used). If string sch have symbol ‘#’ then grid lines are drawn. See also
[dens3], page 49, [cont3], page 49, [contf], page 47, [grid3], page 50. See Section 6.29

[contf3 sample], page 158, for sample code and picture.

contf3 adat [’sch’=’’ sval=-1] [MGL command]

contf3 xdat ydat zdat adat [’sch’=’’ sval=-1] [MGL command]
The same as previous with vector v of num-th elements equidistantly distributed in
color range. Here num is equal to parameter value in options opt (default is 7).

Chapter 3: MathGL core 50

grid3 adat [’sch’=’’ sval=-1] [MGL command]

grid3 xdat ydat zdat adat [’sch’=’’ sval=-1] [MGL command]
The function draws grid for 3d data specified parametrically ali,j,k|(x[i,j,k]|, y[i,j.k],
z[i,j,k]). Grid is plotted at slice sVal in direction {‘x’, ‘y’, ‘2’} if sch contain corre-
sponding symbol (by default, ‘y’ direction is used). See also [cont3], page 49, [contf3],
page 49, [dens3], page 49, [grid2], page 48, [meshnum], page 21.

dcont vdat adat bdat [’sch’=’’] [MGL command]

dcont vdat xdat ydat zdat adat bdat [’sch’=’’] [MGL command]
The function draws lines at intersections of isosurfaces for 3d data a, b specified para-
metrically ali,j,k]|(x[i,j,k], ¥[i,j,k], z[i,j,k]). Isosurfaces are taken for values specified in
array v. See also [cont], page 46, [cont3], page 49. See Section 6.41 [dcont sample],
page 167, for sample code and picture.

dcont adat bdat [’sch’=’’ sval=-1] [MGL command]

dcont xdat ydat zdat adat bdat [’sch’=’’ sval=-1] [MGL command]
The same as previous with vector v of num-th elements equidistantly distributed in
color range. Here num is equal to parameter value in options opt (default is 7).

beam tr gl g2 adat rval [’sch’=’’ flag=0 num=3] [MGL command]
Draws the isosurface for 3d array a at constant values of a=val. This is special kind
of plot for a specified in accompanied coordinates along curve tr with orts gl, g2
and with transverse scale r. Variable flag is bitwise: ‘0x1’ - draw in accompanied
(not laboratory) coordinates; ‘0x2’ - draw projection to p — z plane; ‘0x4’ - draw
normalized in each slice field. The x-size of data arrays tr, g1, g2 must be nx>2. The
y-size of data arrays tr, g1, g2 and z-size of the data array a must be equal. See also
[surf3], page 48.

3.14 Dual plotting

These plotting functions draw two matriz simultaneously. There are 5 generally different
types of data representations: surface or isosurface colored by other data (SurfC, Surf3C),
surface or isosurface transpared by other data (SurfA, Surf3A), tiles with variable size
(TileS), mapping diagram (Map), STFA diagram (STFA). By default (if absent) values of
X, y, z are equidistantly distributed in axis range. The minor dimensions of arrays x, y, z,
¢ should be equal. Arrays x, y (and z for Surf3C, Surf3A) can be vectors (not matrices
as c¢). String sch sets the color scheme (see Section 2.4 [Color scheme|, page 12) for plot.
String opt contain command options (see Section 2.7 [Command options|, page 17).

surfc zdat cdat [’sch’=’’] [MGL command|]

surfc xdat ydat zdat cdat [’sch’=’’] [MGL command]
The function draws surface specified parametrically {x[i,j], y[i,j], z[i,j]} and color it
by matrix c[i,j]. If string sch have symbol ‘#’ then grid lines are drawn. If string
sch have symbol ‘.’ then plot by dots is produced. All dimensions of arrays z and ¢
must be equal. Surface is plotted for each z slice of the data. See also [surf], page 45,
[surfa], page 51, [surfca], page 51, [beltc], page 51, [surf3c|, page 51. See Section 6.127
[surfc sample], page 264, for sample code and picture.

Chapter 3: MathGL core 51

beltc zdat cdat [’sch’=’’] [MGL command]

beltc xdat ydat zdat cdat [’sch’=’’] [MGL command]
The function draws belts for surface specified parametrically {x[i,j], y[i,j], z[i,j]} and
color it by matrix cli,j|]. This plot can be used as 3d generalization of [plot], page 39).
If sch contain ‘x’ then belts are drawn along x-direction else (by default) belts are
drawn along y-direction. See also [belt], page 45, [surfc], page 50, [meshnum], page 21.
See Section 6.13 [beltc sample], page 145, for sample code and picture.

surf3c adat cdat val [’sch’=’’] [MGL command]

surf3c xdat ydat zdat adat cdat val [’sch’=’’] [MGL command]
The function draws isosurface plot for 3d array specified parametrically ali,j.k](x[i,j,k],
vii,j.k], z[i,j,k]) at a(x,y,z)=val. It is mostly the same as [surf3], page 48, function
but the color of isosurface depends on values of array c. If string sch contain ‘#’ then
wire plot is produced. If string sch have symbol ‘.’ then plot by dots is produced.
See also [surf3], page 48, [surfc|, page 50, [surf3a], page 51, [surf3ca], page 52. See
Section 6.124 [surf3c sample], page 262, for sample code and picture.

surf3c adat cdat [’sch’=’"’] [MGL command]

surf3c xdat ydat zdat adat cdat [’sch’=’’] [MGL command]
Draws num-th uniformly distributed in color range isosurfaces for 3d data. Here num
is equal to parameter value in options opt (default is 3).

surfa zdat cdat [’sch’=’’] [MGL command]

surfa xdat ydat zdat cdat [’sch’=’’] [MGL command]
The function draws surface specified parametrically {x[i,j], ¥[i,j], z[i,j]} and transpar-
ent it by matrix c[i,j]. If string sch have symbol ‘#’ then grid lines are drawn. If string
sch have symbol ‘.’ then plot by dots is produced. All dimensions of arrays z and ¢
must be equal. Surface is plotted for each z slice of the data. See also [surf], page 45,
[surfc], page 50, [surfca], page 51, [surf3a], page 51. See Section 6.126 [surfa sample],
page 263, for sample code and picture.

surf3a adat cdat val [’sch’=’’] [MGL command]

surf3a xdat ydat zdat adat cdat val [’sch’=’’] [MGL command]
The function draws isosurface plot for 3d array specified parametrically ali,j,k](x[i,j,k],
yv[i,j.k], z[i,j,k]) at a(x,y,z)=val. It is mostly the same as [surf3], page 48, function but
the transparency of isosurface depends on values of array c. If string sch contain ‘#’
then wire plot is produced. If string sch have symbol ‘.’ then plot by dots is produced.
See also [surf3], page 48, [surfc|, page 50, [surf3a], page 51, [surf3ca], page 52. See
Section 6.123 [surf3a sample|, page 261, for sample code and picture.

surf3a adat cdat [’sch’=’’] [MGL command]

surf3a xdat ydat zdat adat cdat [’sch’=’’] [MGL command]
Draws num-th uniformly distributed in color range isosurfaces for 3d data. At this
array ¢ can be vector with values of transparency and num=c.nx. In opposite case
num is equal to parameter value in options opt (default is 3).

surfca zdat cdat adat [’sch’=’’] [MGL command]
surfca xdat ydat zdat cdat adat [’sch’=’’] [MGL command]
The function draws surface specified parametrically {x[ij], y[i,j], z[i,j]}, color it by
matrix c[i,j] and transparent it by matrix a[i,j]. If string sch have symbol ‘# then

Chapter 3: MathGL core 52

grid lines are drawn. If string sch have symbol ‘.’ then plot by dots is produced. All
dimensions of arrays z and ¢ must be equal. Surface is plotted for each z slice of the
data. Note, you can use [map|, page 52-like coloring if use ‘%’ in color scheme. See also
[surf], page 45, [surfc], page 50, [surfa], page 51, [surf3ca], page 52. See Section 6.128
[surfca sample], page 264, for sample code and picture.

surf3ca adat cdat bdat val [’sch’=’’] [MGL command]

surf3ca xdat ydat zdat adat cdat bdat val [’sch’=’’] [MGL command]
The function draws isosurface plot for 3d array specified parametrically ali,j.k](x[i,j,k],
yvli,j.k], z[i,j,k]) at a(x,y,z)=val. It is mostly the same as [surf3], page 48, function
but the color and the transparency of isosurface depends on values of array ¢ and
b correspondingly. If string sch contain ‘#’ then wire plot is produced. If string sch
have symbol ‘.’ then plot by dots is produced. Note, you can use [map|, page 52-like
coloring if use ‘%’ in color scheme. See also [surf3], page 48, [surfca], page 51, [surf3c|,
page 51, [surf3al, page 51. See Section 6.125 [surf3ca sample], page 262, for sample
code and picture.

surf3ca adat cdat bdat [’sch’=’"’] [MGL command]

surf3ca xdat ydat zdat adat cdat bdat [’sch’=’’] [MGL command]
Draws num-th uniformly distributed in color range isosurfaces for 3d data. Here
parameter num is equal to parameter value in options opt (default is 3).

tiles zdat rdat [’sch’=’’] [MGL command|]
tiles xdat ydat zdat rdat [’sch’=’’] [MGL command]
tiles xdat ydat zdat rdat cdat [’sch’=’’] [MGL command]

The function draws horizontal tiles for surface specified parametrically {x[i,j], y[i,j],
z[1,j]} and color it by matrix c[i,j]. It is mostly the same as [tile], page 46, but the
size of tiles is determined by r array. If string sch contain style ‘x’ or ‘y’ then tiles
will be oriented perpendicular to x- or y-axis. This is some kind of “transparency”
useful for exporting to EPS files. Tiles is plotted for each z slice of the data. See also
[surfa], page 51, [tile], page 46. See Section 6.138 [tiles sample], page 274, for sample
code and picture.

map udat vdat [’sch’=’’] [MGL command]
map xdat ydat udat vdat [’sch’=’’] [MGL command]
The function draws mapping plot for matrices {ax, ay } which parametrically depend
on coordinates x, y. The initial position of the cell (point) is marked by color. Height
is proportional to Jacobian(ax,ay). This plot is like Arnold diagram 77?7 If string

sch contain symbol ‘.’ then the color ball at matrix knots are drawn otherwise face
is drawn. See Section 5.5.9 [Mapping visualization|, page 115, for sample code and
picture.
stfa re im dn [’sch’=’"’] [MGL command]
stfa xdat ydat re im dn [’sch’=’’] [MGL command]

Draws spectrogram of complex array re+i*im for Fourier size of dn points at plane
z equal to minimal z-axis value. For example in 1D case, result is density plot of
data res[i, j] = | X% nexp(I « j * d) * (refi x dn + d] + I = im[i * dn + d])|/dn with size
{int(nx/dn), dn, ny}. At this array re, im parametrically depend on coordinates x,
y. The size of re and im must be the same. The minor dimensions of arrays x, y, re

Chapter 3: MathGL core 53

should be equal. Arrays x, y can be vectors (not matrix as re). See Section 6.119
[stfa sample], page 258, for sample code and picture.

3.15 Vector fields

These functions perform plotting of 2D and 3D vector fields. There are 5 generally different
types of vector fields representations: simple vector field (Vect), vectors along the curve
(Traj), vector field by dew-drops (Dew), flow threads (Flow, FlowP), flow pipes (Pipe). By
default (if absent) values of x, y, z are equidistantly distributed in axis range. The minor
dimensions of arrays x, y, z, ax should be equal. The size of ax, ay and az must be equal.
Arrays x, y, z can be vectors (not matrices as ax). String sch sets the color scheme (see
Section 2.4 [Color scheme], page 12) for plot. String opt contain command options (see
Section 2.7 [Command options]|, page 17).

lines yldat y2dat [’sch’=’’] [MGL command]
lines x1dat yldat x2dat y2dat [’sch’=’’] [MGL command]
lines x1dat yldat zldat x2dat y2dat z2dat [’sch’=’’] [MGL command]

The function draws lines between points {x1, y1, z1} and {x2, y2, z2}. String pen
specifies the color (see Section 2.3 [Line styles], page 10). By default (pen="") color
from palette is used (see Section 3.2.7 [Palette and colors|, page 23). The minor sizes
of all arrays must be the same. The plots are drawn for each row if one of the data is
the matrix. See also [plot], page 39, [traj], page 53. See Section 6.75 [lines sample],
page 199, for sample code and picture.

traj xdat ydat udat vdat [’sch’=’’] [MGL command]

traj xdat ydat zdat udat vdat wdat [’sch’=’’] [MGL command]
The function draws vectors {ax, ay, az} along a curve {x, y, z}. The length of
arrows are proportional to \f{axQ + ay® + azQ}. String pen specifies the color (see
Section 2.3 [Line styles], page 10). By default (pen="") color from palette is used
(see Section 3.2.7 [Palette and colors|, page 23). Option value set the vector length
factor (if non-zero) or vector length to be proportional the distance between curve
points (if value=0). The minor sizes of all arrays must be equal and large 2. The
plots are drawn for each row if one of the data is the matrix. See also [vect], page 53.
See Section 6.140 [traj sample], page 275, for sample code and picture.

vect udat vdat [’sch’=’’] [MGL command]
vect xdat ydat udat vdat [’sch’=’’] [MGL command]
The function draws plane vector field plot for the field {ax, ay} depending paramet-
rically on coordinates x, y at level z equal to minimal z-axis value. The length and
color of arrows are proportional to \/{az? + ay?}. The number of arrows depend on
[meshnum], page 21. The appearance of the hachures (arrows) can be changed by
symbols:
e ‘f’ for drawing arrows with fixed lengths,
e >’ < for drawing arrows to or from the cell point (default is centering),
e ‘.’ for drawing hachures with dots instead of arrows,

e ‘=’ for enabling color gradient along arrows.

See also [flow], page 54, [dew], page 54. See Section 6.147 [vect sample], page 281, for
sample code and picture.

Chapter 3: MathGL core 54

vect udat vdat wdat [’sch’=’’] [MGL command]
vect xdat ydat zdat udat vdat wdat [’sch’=’’] [MGL command]
This is 3D version of the first functions. Here arrays ax, ay, az must be 3-ranged
tensors with equal sizes and the length and color of arrows is proportional to /{ax?+

ay® + az*}.
vect3 udat vdat wdat [’sch’=’’ sval] [MGL command]
vect3 xdat ydat zdat udat vdat wdat [’sch’=’’ sval] [MGL command]

The function draws 3D vector field plot for the field {ax, ay, az} depending para-
metrically on coordinates x, y, z. Vector field is drawn at slice sVal in direction {‘x’,
‘y’, ‘z’} if sch contain corresponding symbol (by default, ‘y’ direction is used). The
length and color of arrows are proportional to \/{ax? + ay? + az?}. The number of
arrows depend on [meshnum], page 21. The appearance of the hachures (arrows) can

be changed by symbols:
e ‘f’ for drawing arrows with fixed lengths,
e >’ < for drawing arrows to or from the cell point (default is centering),
e ‘.’ for drawing hachures with dots instead of arrows,
e ‘=’ for enabling color gradient along arrows.

See also [vect], page 53, [flow], page 54, [dew], page 54. See Section 6.148 [vect3
sample|, page 282, for sample code and picture.

dew udat vdat [’sch’=’’] [MGL command]
dew xdat ydat udat vdat [’sch’=’’] [MGL command]
The function draws dew-drops for plane vector field {ax, ay} depending parametri-
cally on coordinates x, y at level z equal to minimal z-axis value. Note that this is
very expensive plot in memory usage and creation time! The color of drops is pro-
portional to y/{az?+ay?}. The number of drops depend on [meshnum], page 21. See
also [vect], page 53. See Section 6.46 [dew sample|, page 171, for sample code and

picture.
flow udat vdat [’sch’=’’] [MGL command]
flow xdat ydat udat vdat [’sch’=’’] [MGL command]

The function draws flow threads for the plane vector field {ax, ay} parametrically
depending on coordinates x, y at level z equal to minimal z-axis value. Option value
set the approximate number of threads (default is 5), or accuracy for stationary points
(if style *.” is used) . String sch may contain:

e color scheme — up-half (warm) corresponds to normal flow (like attractor),

bottom-half (cold) corresponds to inverse flow (like source);

e ‘#’ for starting threads from edges only;

e ‘.’ for drawing separatrices only (flow threads to/from stationary points).

e ‘x’ for starting threads from a 2D array of points inside the data;

e ‘v’ for drawing arrows on the threads;

[.

e ‘x’ ‘z’ for drawing tapes of normals in x-y and y-z planes correspondingly.

See also [pipe], page 55, [vect], page 53, [tape|, page 39, [flow3], page 55, [barwidth],
page 21. See Section 6.58 [flow sample|, page 184, for sample code and picture.

Chapter 3: MathGL core 55

flow udat vdat wdat [’sch’=’’] [MGL command]
flow xdat ydat zdat udat vdat wdat [’sch’=’’] [MGL command]
This is 3D version of the first functions. Here arrays ax, ay, az must be 3-ranged
tensors with equal sizes and the color of line is proportional to v/{ax? + ay* + az?}.

flow x0 yO udat vdat [’sch’=’’] [MGL command]

flow x0 yO xdat ydat udat vdat [’sch’=’’] [MGL command]
The same as first one ([flow], page 54) but draws single flow thread starting from
point p0={x0,y0,z0}. String sch may also contain: ‘>’ or ‘<’ for drawing in forward
or backward direction only (default is both).

flow x0 yO z0 udat vdat wdat [’sch’=’’] [MGL command]

flow x0 yO z0 xdat ydat zdat udat vdat wdat [’sch’=’’] [MGL command]
This is 3D version of the previous functions.

flow3 udat vdat wdat [’sch’=’’] [MGL command]

flow3 xdat ydat zdat udat vdat [’sch’=’’] [MGL command]

The function draws flow threads for the 3D vector field {ax, ay, az} parametrically
depending on coordinates x, y, z. Flow threads starts from given plane. Option value
set the approximate number of threads (default is 5). String sch may contain:

e color scheme — up-half (warm) corresponds to normal flow (like attractor),
bottom-half (cold) corresponds to inverse flow (like source);

e ‘x’, ‘z’ for normal of starting plane (default is y-direction);

e ‘v’ for drawing arrows on the threads;

e ‘t’ for drawing tapes of normals in x-y and y-z planes.

See also [flow], page 54, [pipe], page 55, [vect], page 53. See Section 6.59 [flow3
sample], page 185, for sample code and picture.

grad pdat [’sch’=’"] [MGL command]
grad xdat ydat pdat [’sch’=’’] [MGL command]
grad xdat ydat zdat pdat [’sch’=’’] [MGL command]

The function draws gradient lines for scalar field phi[i,j] (or phili,j,k] in 3d case)
specified parametrically {x[i,j,k], y[i,j,k], z[i,j,k]}. Number of lines is proportional to
value option (default is 5). See also [dens], page 46, [cont], page 46, [flow], page 54.

pipe udat vdat [’sch’=’’ r0=0.05] [MGL command]

pipe xdat ydat udat vdat [’sch’=’’ r0=0.05] [MGL command]
The function draws flow pipes for the plane vector field {ax, ay} parametrically
depending on coordinates x, y at level z equal to minimal z-axis value. Number
of pipes is proportional to value option (default is 5). If ‘#’ symbol is specified
then pipes start only from edges of axis range. The color of lines is proportional to
V{az? + ay?}. Warm color corresponds to normal flow (like attractor). Cold one
corresponds to inverse flow (like source). Parameter r0 set the base pipe radius. If
r0<0 or symbol ‘i’ is specified then pipe radius is inverse proportional to amplitude.
The vector field is plotted for each z slice of ax, ay. See also [flow], page 54, [vect],
page 53. See Section 6.93 [pipe sample|, page 217, for sample code and picture.

Chapter 3: MathGL core 56

pipe udat vdat wdat [’sch’=’’ r0=0.05] [MGL command]
pipe xdat ydat zdat udat vdat wdat [’sch’=’’ r0=0.05] [MGL command]
This is 3D version of the first functions. Here arrays ax, ay, az must be 3-ranged
tensors with equal sizes and the color of line is proportional to v/{ax? + ay® + az?}.

3.16 Other plotting

These functions perform miscellaneous plotting. There is unstructured data points plots
(Dots), surface reconstruction (Crust), surfaces on the triangular or quadrangular mesh
(TriPlot, TriCont, QuadPlot), textual formula plotting (Plots by formula), data plots at
edges (Dens[XYZ], Cont[XYZ], ContF[XYZ]). Each type of plotting has similar interface.
There are 2 kind of versions which handle the arrays of data and coordinates or only single
data array. Parameters of color scheme are specified by the string argument. See Section 2.4
[Color scheme], page 12.

densx dat [’sch’=’’ sval=nan)] [MGL command]
densy dat [’sch’=’’ sval=nan)] [MGL command]
densz dat [’sch’=’’ sval=nan] [MGL command]

These plotting functions draw density plot in x, y, or z plain. If a is a tensor (3-
dimensional data) then interpolation to a given sVal is performed. These functions
are useful for creating projections of the 3D data array to the bounding box. See
also [ContXYZ], page 56, [ContFXYZ], page 56, [dens|, page 46, Section 3.18 [Data
manipulation], page 59. See Section 6.44 [dens_xyz sample], page 170, for sample
code and picture.

contx dat [’sch’=’’ sval=nan|] [MGL command]
conty dat [’sch’=’’ sval=nan] [MGL command]
contz dat [’sch’=’’ sval=nan] [MGL command]

These plotting functions draw contour lines in x, y, or z plain. If a is a tensor (3-
dimensional data) then interpolation to a given sVal is performed. These functions
are useful for creating projections of the 3D data array to the bounding box. Option
value set the number of contours. See also [ContFXYZ], page 56, [DensXYZ], page 56,
[cont], page 46, Section 3.18 [Data manipulation], page 59. See Section 6.26 [cont_xyz
sample|, page 156, for sample code and picture.

contfx dat [’sch’=’’ sval=nan] [MGL command]
contfy dat [’sch’=’’ sval=nan| [MGL command]
contfz dat [’sch’=’’ sval=nan] [MGL command]

These plotting functions draw solid contours in x, y, or z plain. If a is a tensor (3-
dimensional data) then interpolation to a given sVal is performed. These functions
are useful for creating projections of the 3D data array to the bounding box. Option
value set the number of contours. See also [ContFXYZ], page 56, [DensXYZ], page 56,
[cont], page 46, Section 3.18 [Data manipulation], page 59. See Section 6.30 [contf_xyz
sample|, page 159, for sample code and picture.

fplot ’y(x)’ [’pen’=’’] [MGL command]
Draws command function ‘y(x)’ at plane z equal to minimal z-axis value, where ‘x’
variable is changed in xrange. You do not need to create the data arrays to plot it.
Option value set initial number of points. See also [plot], page 39.

Chapter 3: MathGL core 57

fplot ’x(t)’ ’y(t)’ ’z(t)’ [’pen’=’’] [MGL command]
Draws command parametrical curve {‘x(t)’, ‘y(t)’, ‘z(t)’} where ‘t’ variable is
changed in range [0, 1]. You do not need to create the data arrays to plot it. Option
value set number of points. See also [plot], page 39.

fsurf ’z(x,y)’ [’sch’="’] [MGL command]
Draws command surface for function ‘z(x,y)’ where ‘x’, ‘y’ variable are changed in
xrange, yrange. You do not need to create the data arrays to plot it. Option value

set number of points. See also [surf], page 45.

fsurf ’x(u,v)’ ’y(u,v)’ ’z(u,v)’ [’sch’=’’] [MGL command]
Draws command parametrical surface {‘x(u,v)’, ‘y(u,v)’, ‘z(u,v)’} where ‘u’, ‘v’
variable are changed in range [0, 1]. You do not need to create the data arrays to

plot it. Option value set number of points. See also [surf], page 45.

triplot idat xdat ydat [’sch’=’’] [MGL command]
triplot idat xdat ydat zdat [’sch’=’’] [MGL command]
triplot idat xdat ydat zdat cdat [’sch’=’’] [MGL command]

The function draws the surface of triangles. Triangle vertexes are set by indexes id
of data points {x[i], y|i], z[i]}. String sch sets the color scheme. If string contain ‘#’
then wire plot is produced. First dimensions of id must be 3 or greater. Arrays x,
¥, z must have equal sizes. Parameter ¢ set the colors of triangles (if id.ny=c.nx) or
colors of vertexes (if x.nx=c.nx). See also [dots], page 58, [crust], page 58, [quadplot],
page 57, [triangulation], page 78. See Section 6.142 [triplot sample|, page 276, for
sample code and picture.

tricont vdat idat xdat ydat zdat cdat [’sch’=’’] [MGL command]
tricont vdat idat xdat ydat zdat [’sch’=’’] [MGL command]
tricont idat xdat ydat zdat [’sch’=’’] [MGL command]

The function draws contour lines for surface of triangles at z=v[k] (or at z equal to
minimal z-axis value if sch contain symbol ‘_’). Triangle vertexes are set by indexes
id of data points {x[i], y[i], z[i]}. Contours are plotted for z[i,j]=v[k] where v[k]
are values of data array v. If v is absent then arrays of option value elements
equidistantly distributed in color range is used. String sch sets the color scheme.
Array c (if specified) is used for contour coloring. First dimensions of id must be 3 or
greater. Arrays x, y, z must have equal sizes. Parameter ¢ set the colors of triangles
(if idny=c.nx) or colors of vertexes (if x.nx=c.nx). See also [triplot], page 57, [cont],
page 46, [triangulation], page 78.

quadplot idat xdat ydat [’sch’=’’] [MGL command]
quadplot idat xdat ydat zdat [’sch’=’’] [MGL command]
quadplot idat xdat ydat zdat cdat [’sch’=’’] [MGL command]

The function draws the surface of quadrangles. Quadrangles vertexes are set by
indexes id of data points {x[i], y[i], z[i]}. String sch sets the color scheme. If string
contain ‘#” then wire plot is produced. First dimensions of id must be 4 or greater.
Arrays x, y, z must have equal sizes. Parameter ¢ set the colors of quadrangles
(if id.ny=c.nx) or colors of vertexes (if x.nx=c.nx). See also [triplot], page 57. See
Section 6.142 [triplot sample], page 276, for sample code and picture.

Chapter 3: MathGL core 58

dots xdat ydat zdat [’sch’=’’] [MGL command]

dots xdat ydat zdat adat [’sch’=’’] [MGL command]
The function draws the arbitrary placed points {x[i], y[i], z[i]}. String sch sets the
color scheme and kind of marks. If arrays c, a are specified then they define colors
and transparencies of dots. You can use [tens|, page 39, plot with style ¢ .’ to draw
non-transparent dots with specified colors. Arrays x, y, z, a must have equal sizes. See
also [crust], page 58, [tens], page 39, [mark]|, page 43, [plot], page 39. See Section 6.49
[dots sample|, page 175, for sample code and picture.

crust xdat ydat zdat [’sch’=’’] [MGL command]
The function reconstruct and draws the surface for arbitrary placed points {x[i], y[i],
z[i]}. String sch sets the color scheme. If string contain ‘#’ then wire plot is produced.
Arrays x, y, z must have equal sizes. See also [dots], page 58, [triplot], page 57.

3.17 Nonlinear fitting

These functions fit data to formula. Fitting goal is to find formula parameters for the best fit
the data points, i.e. to minimize the sum Y,(f(z;, vi, 2:) — a;)?/s?. At this, approximation
function ‘£’ can depend only on one argument ‘x’ (1D case), on two arguments ‘x,y’ (2D
case) and on three arguments ‘x,y,z’ (3D case). The function ‘£’ also may depend on
parameters. Normally the list of fitted parameters is specified by var string (like, ‘abcd’).
Usually user should supply initial values for fitted parameters by ini variable. But if he/she
don’t supply it then the zeros are used. Parameter print=true switch on printing the found
coefficients to Message (see Section 3.2.9 [Error handling], page 23).

Functions Fit() and FitS() do not draw the obtained data themselves. They fill the data
fit by formula ‘£’ with found coefficients and return it. At this, the ‘x,y,z’ coordinates are
equidistantly distributed in the axis range. Number of points in fit is defined by option
value (default is mglFitPnts=100). Note, that this functions use GSL library and do
something only if MathGL was compiled with GSL support. See Section 5.5.13 [Nonlinear
fitting hints|, page 120, for sample code and picture.

fits res adat sdat ’func’ ’var’ [ini=0] [MGL command]

fits res xdat adat sdat ’func’ ’var’ [ini=0] [MGL command]

fits res xdat ydat adat sdat ’func’ ’var’ [ini=0] [MGL command]

fits res xdat ydat zdat adat sdat ’func’ ’var’ [ini=0] [MGL command]
Fit data along x-, y- and z-directions for array specified parametrically ai,j,k](x[i,j,k],
v[i,j,k], z[i,j,k]) with weight factor s[i,j,k].

fit res adat ’func’ ’var’ [ini=0] [MGL command]

fit res xdat adat ’func’ ’var’ [ini=0] [MGL command]

fit res xdat ydat adat ’func’ ’var’ [ini=O0] [MGL command]

fit res xdat ydat zdat adat ’func’ ’var’ [ini=O0] [MGL command]
Fit data along x-, y- and z-directions for array specified parametrically a[i,j,k](x[i,j,k],
v[i,j,k], z[i,j,k]) with weight factor 1.

putsfit x y [’pre’=’’ ’fnt’=’’ size=-1] [MGL command]
Print last fitted formula with found coefficients (as numbers) at position p0. The
string prefix will be printed before formula. All other parameters are the same as in
Section 3.8 [Text printing], page 35.

Chapter 3: MathGL core 59

3.18 Data manipulation

hist RES xdat adat [MGL command]
hist RES xdat ydat adat [MGL command]
hist RES xdat ydat zdat adat [MGL command]

These functions make distribution (histogram) of data. They do not draw the ob-
tained data themselves. These functions can be useful if user have data defined for
random points (for example, after PIC simulation) and he want to produce a plot
which require regular data (defined on grid(s)). The range for grids is always selected
as axis range. Arrays x, y, z define the positions (coordinates) of random points.
Array a define the data value. Number of points in output array res is defined by
option value (default is mglFitPnts=100).

fill dat ’eq’ [MGL command]
fill dat ’eq’ vdat [MGL command]
fill dat ’eq’ vdat wdat [MGL command]

Fills the value of array ‘u’ according to the formula in string eq. Formula is an

arbitrary expression depending on variables ‘x’, ‘y’, ‘2’, ‘u’, ‘v’, ‘w’. Coordinates ‘x’,

‘y’, ‘2’ are supposed to be normalized in axis range. Variable ‘u’ is the original value
of the array. Variables ‘v’ and ‘w’ are values of arrays v, w which can be NULL (i.e.

can be omitted).

datagrid dat xdat ydat zdat [MGL command]
Fills the value of array ‘u’ according to the linear interpolation of triangulated surface,
found for arbitrary placed points ‘x’, ‘y’, ‘z’. Interpolation is done at points equidis-
tantly distributed in axis range. NAN value is used for grid points placed outside of
triangulated surface. See Section 5.5.11 [Making regular data], page 118, for sample

code and picture.

refill dat xdat vdat [sl=-1] [MGL command]
refill dat xdat ydat vdat [sl=-1] [MGL command]
refill dat xdat ydat zdat vdat [MGL command]

Fills by interpolated values of array v at the point {x, y, z}={X[il, Y[j], Z[k]}
(or {x, y, z}={X[i,j,k], Y[i,j,k], Z[i,j,k]} if x, y, z are not 1d arrays), where
X,Y,Z are equidistantly distributed in axis range and have the same sizes as array
dat. If parameter sl is 0 or positive then changes will be applied only for slice sl.

pde RES ’ham’ ini_re ini_im [dz=0.1 k0=100] [MGL command]
Solves equation du/dz = i*k0*ham(p,q,x,y,z,lul)[u], where p=-i/k0*d/dx,
q=-i/k0*d/dy are pseudo-differential operators. Parameters ini_re, ini_im specify
real and imaginary part of initial field distribution. Coordinates ‘x’, ‘y’, ‘z’ are
supposed to be normalized in axis range. Note, that really this ranges are increased
by factor 3/2 for purpose of reducing reflection from boundaries. Parameter dz
set the step along evolutionary coordinate z. At this moment, simplified form of
function ham is supported — all “mixed” terms (like ‘x*p’->x*d/dx) are excluded.
For example, in 2D case this function is effectively ham = f(p,z) + g(x, z,u).
However commutable combinations (like ‘x*q’->x*d/dy) are allowed. Here variable
‘u’ is used for field amplitude |ul. This allow one solve nonlinear problems — for

Chapter 3: MathGL core 60

example, for nonlinear Shrodinger equation you may set ham="p~2 + q~2 - u~2".
You may specify imaginary part for wave absorption, like ham = "p~2 + i*x* (x>0)",
but only if dependence on variable ‘i’ is linear (i.e. ham = hre + i % him). See
Section 5.5.14 [PDE solving hints]|, page 121, for sample code and picture.

61

4 Data processing

This chapter describe commands for allocation, resizing, loading and saving, modifying of
data arrays. Also it can numerically differentiate and integrate data, interpolate, fill data by
formula and so on. Class supports data with dimensions up to 3 (like function of 3 variables
- x,y,z). Data arrays are denoted by Small Caps (like DAT) if it can be (re-)created by MGL
commands.

4.1 Public variables

MGL don’t support direct access to data arrays. See section Section 4.4 [Data filling],
page 63,

4.2 Data constructor

There are many functions, which can create data for output (see Section 4.4 [Data fill-
ing], page 63, Section 4.5 [File I/0], page 65, Section 4.6 [Make another datal, page 67,
Section 4.11 [Global functions|, page 75). Here I put most useful of them.

new DAT [nx=1 ’eq’] [MGL command]
new DAT nx ny [’eq’] [MGL command]
new DAT nx ny nz [’eq’] [MGL command]

Default constructor. Allocates the memory for data array and initializes it by zero.
If string eq is specified then data will be filled by corresponding formula as in [fill],

page 63.
copy DAT dat2 [’eq’=’"] [MGL command]
copy DAT val [MGL command]

Copy constructor. Allocates the memory for data array and copy values from other
array. At this, if parameter eq or val is specified then the data will be modified by
corresponding formula similarly to [fill], page 63.

copy REDAT IMDAT dat2 [’eq’=’’] [MGL command]
Allocates the memory for data array and copy real and imaginary values from complex
array dat2.

copy ’name’ [MGL command]

Allocates the memory for data array and copy values from other array specified by
its name, which can be "invalid" for MGL names (like one read from HDF5 files).

read DAT ’fname’ [MGL command]
Reads data from tab-separated text file with auto determining sizes of the data.

delete dat [MGL command]
delete ’name’ [MGL command]
Deletes the data array from memory.

Chapter 4: Data processing 62

4.3 Data resizing

new DAT [nx=1 ny=1 nz=1] [MGL command]
Creates or recreates the array with specified size and fills it by zero. This function
does nothing if one of parameters mx, my, mz is zero or negative.

rearrange dat mx [my=0 mz=0] [MGL command]
Rearrange dimensions without changing data array so that resulting sizes should be
mx*my*mz < nx*ny*nz. If some of parameter my or mz are zero then it will be
selected to optimal fill of data array. For example, if my=0 then it will be change to
my=nx*ny*nz/mx and mz=1.

transpose dat [’dim’=’yxz’] [MGL command]
Transposes (shift order of) dimensions of the data. New order of dimensions is spec-
ified in string dim. This function can be useful also after reading of one-dimensional
data.

extend dat nl [n2=0] [MGL command]
Increase the dimensions of the data by inserting new (|nl|+1)-th slices after (for
n1>0) or before (for n1<0) of existed one. It is possible to insert 2 dimensions si-
multaneously for 1d data by using parameter n2. Data to new slices is copy from
existed one. For example, for n1>0 new array will be a?** = a%?® where j=0...n1.

1]
Correspondingly, for n1<0 new array will be a

rew = 2l where i=0...|n1 .

squeeze dat rx [ry=1 rz=1 sm=off] [MGL command]
Reduces the data size by excluding data elements which indexes are not divisible by
rx, ry, rz correspondingly. Parameter smooth set to use smoothing (i.e. ayu[i] =
> jmiisr alj]/7T) or mot (i.e. aouli] = alj x1]).

crop dat nl n2 ’dir’ [MGL command]
Cuts off edges of the data i<nl and i>n2 if n2>0 or i>n[xyz]-n2 if n2<=0 along
direction dir.

crop dat ’how’ [MGL command]
Cuts off far edge of the data to be more optimal for fast Fourier transform. The
resulting size will be the closest value of 2°n*3"m*5"1 to the original one. The string

how may contain: ‘x’, ‘y’, ‘2’ for directions, and ‘2’, ‘3’, ‘56’ for using corresponding
bases.

insert dat ’dir’ [pos=off num=0] [MGL command]
Insert num slices along dir-direction at position pos and fill it by zeros.

delete dat ’dir’ [pos=off num=0] [MGL command]
Delete num slices along dir-direction at position pos.

delete dat [MGL command]

delete ’name’ [MGL command]

Deletes the whole data array.

Chapter 4: Data processing 63

sort dat idx [idy=-1] [MGL command]
Sort data rows (or slices in 3D case) by values of specified column idx (or cell {idx,idy }
for 3D case). Note, this function is not thread safe!

clean dat idx [MGL command]
Delete rows which values are equal to next row for given column idx.

join dat vdat [v2dat ...] [MGL command]
Join data cells from vdat to dat. At this, function increase dat sizes according follow-
ing: z-size for data arrays arrays with equal x-,y-sizes; or y-size for data arrays with
equal x-sizes; or x-size otherwise.

4.4 Data filling

list paT vl ... [MGL command]
Creates new variable with name dat and fills it by numeric values of command ar-
guments v1 Command can create one-dimensional and two-dimensional arrays

with arbitrary values. For creating 2d array the user should use delimiter ‘|’ which
means that the following values lie in next row. Array sizes are [maximal of row sizes
* number of rows|. For example, command 1list 1 | 2 3 creates the array [1 0; 2 3.
Note, that the maximal number of arguments is 1000.

list paT d1 ... [MGL command]
Creates new variable with name dat and fills it by data values of arrays of command
arguments dI Command can create two-dimensional or three-dimensional (if ar-

rays in arguments are 2d arrays) arrays with arbitrary values. Minor dimensions of all
arrays in arguments should be equal to dimensions of first array d1. In the opposite
case the argument will be ignored. Note, that the maximal number of arguments is
1000.

var DAT num vl [v2=nan)] [MGL command]
Creates new variable with name dat for one-dimensional array of size num. Array
elements are equidistantly distributed in range [v1, v2|. If v2=nan then v2=vl is
used.

fill dat v1 v2 [’dir’=’X’] [MGL command]
Equidistantly fills the data values to range [v1, v2| in direction dir={‘x’,‘y’,'2’}.

fill dat ’eq’ [vdat wdat] [MGL command]
Fills the value of array according to the formula in string eq. Formula is an arbitrary
expression depending on variables ‘x’, ‘y’, ‘z’, ‘u’, ‘v’, ‘w’. Coordinates ‘x’, ‘y’, ‘2’
are supposed to be normalized in axis range of canvas gr (in difference from Modify
functions). Variables ‘i’; ‘j’, ‘k’ denote corresponding index. At this, zero value is
used for variables if corresponding dimension is absent in the data. Variable ‘u’ is the
original value of the array. Variables ‘v’ and ‘w’ are values of vdat, wdat which can

be NULL (i.e. can be omitted).

modify dat ’eq’ [dim=0] [MGL command]
modify dat ’eq’ vdat [wdat] [MGL command]

The same as previous ones but coordinates ‘x’, ‘y’, ‘2z’ are supposed to be normalized
in range [0,1]. Variables ‘i’, ‘j’, ‘k’ denote corresponding index. At this, zero value

Chapter 4: Data processing 64

is used for variables if corresponding dimension is absent in the data. If dim>0 is
specified then modification will be fulfilled only for slices >=dim.

fillsample dat ’how’ [MGL command]
Fills data by 'x’ or 'k’ samples for Hankel (’h’) or Fourier (’f’) transform.

datagrid dat xdat ydat zdat [MGL command]
Fills the value of array according to the linear interpolation of triangulated sur-
face assuming x-,y-coordinates equidistantly distributed in axis range (or in range
[x1,x2]*[y1,y2]). Triangulated surface is found for arbitrary placed points ‘x’, ‘y’,
(s ?

z’. NAN value is used for grid points placed outside of triangulated surface. See
Section 5.5.11 [Making regular datal, page 118, for sample code and picture.

put dat val [i=all j=all k=all] [MGL command]
Sets value(s) of array a[i, j, k] = val. Negative indexes i, j, k=-1 set the value val
to whole range in corresponding direction(s). For example, Put (val,-1,0,-1); sets
a[i,0,j]=val for i=0...(nx-1), j=0...(nz-1).

put dat vdat [i=all j=all k=all] [MGL command]
Copies value(s) from array v to the range of original array. Negative indexes I, j,
k=-1 set the range in corresponding direction(s). At this minor dimensions of array
v should be large than corresponding dimensions of this array. For example, Put (v, -
1,0,-1); sets a[i,0,j]=v.ny>nz ? v[i,j] : v[i], where i=0...(nx-1), j=0...(nz-1) and
condition v.nx>=nx is true.

refill dat xdat vdat [sl=-1] [MGL command]
refill dat xdat ydat vdat [sl=-1] [MGL command]
refill dat xdat ydat zdat vdat [MGL command]

Fills by interpolated values of array v at the point {x, y, z}={X[il, Y[j], Z[k]}
(or {x, y, z}={X[1,j,k], Y[i,j,k], Z[i,],k]} if x, y, z are not 1d arrays), where
X,Y,Z are equidistantly distributed in range [x1,x2]*[y1,y2]|*[z1,22] and have the same
sizes as this array. If parameter sl is 0 or positive then changes will be applied only
for slice sl.

gspline dat xdat vdat [sl=-1] [MGL command]
Fills by global cubic spline values of array v at the point x=X[i], where X are equidis-
tantly distributed in range [x1,x2] and have the same sizes as this array. If parameter
sl is 0 or positive then changes will be applied only for slice sl.

idset dat ’ids’ [MGL command]
Sets the symbol ids for data columns. The string should contain one symbol ’a’...’z’

per column. These ids are used in [column]|, page 67.

bernoulli dat [p=0.5] [MGL command]
Fills data by random numbers of Bernoulli distribution with probability p.

binomial dat n [p=0.5] [MGL command|]
Fills by random numbers according to binomial distribution in n coin flips with prob-
ability p.

Chapter 4: Data processing 65

brownian dat yl y2 sigma h [MGL command]
Fills by fractional brownian motion.

discrete dat vdat [MGL command]
Fills by random numbers according to discrete distribution.

exponential dat [p] [MGL command]
Fills by random numbers according to exponential distribution with scale p.

gaussian dat [mu=0 sigma=1] [MGL command]
Fills by random numbers according to Gaussian distribution with average mu and
scale sigma.

shuffle dat [’dir’=’a’| [MGL command]
Shuffle data cells (for dir=‘a’) or slices (for dir=‘xyz’).

uniform dat lo hi [MGL command]
Fills by random numbers uniformly chosen in (lo,hi).

uniformint dat lo hi [MGL command]
Fills by random integers uniformly chosen in [lo,hi).

4.5 File I/0O
read DAT ’fname’ [MGL command]
read REDAT IMDAT ’fname’ [MGL command]

Reads data from tab-separated text file with auto determining sizes of the data.
Double newline means the beginning of new z-slice.

read DAT ’fname’ mx [my=1 mz=1] [MGL command]

read REDAT IMDAT ’fname’ mx [my=1 mz=1] [MGL command]
Reads data from text file with specified data sizes. This function does nothing if one
of parameters mx, my or mz is zero or negative.

readmat DAT ’fname’ [dim=2] [MGL command]
Read data from text file with size specified at beginning of the file by first dim
numbers. At this, variable dim set data dimensions.

readall DAT ’templ’ vl v2 [dv=1 slice=off] [MGL command]
Join data arrays from several text files. The file names are determined by function
call sprintf (fname,templ,val) ;, where val changes from from to to with step step.
The data load one-by-one in the same slice if as_slice=false or as slice-by-slice if
as_slice=true.

readall DAT ’templ’ [slice=off] [MGL command]
Join data arrays from several text files which filenames satisfied the template templ
(for example, templ="t_x*.dat"). The data load one-by-one in the same slice if
as_slice=false or as slice-by-slice if as_slice=true.

Chapter 4: Data processing 66

scanfile pAT ’fname’ ’templ’ [MGL command]
Read file fname line-by-line and scan each line for numbers according the template
templ. The numbers denoted as ‘%g’ in the template. See Section 5.5.22 [Saving and
scanning file], page 131, for sample code and picture.

save dat ’fname’ [MGL command]
Saves the whole data array (for ns=-1) or only ns-th slice to the text file fname.

save val dat ’fname’ [MGL command]
Saves the value val to the text file fname.

save ’str’ ’fname’ [’mode’=’a’] [MGL command]
Saves the string str to the text file fname. For parameter mode="‘a’ will append string
to the file (default); for mode=‘w’ will overwrite the file. See Section 5.5.22 [Saving
and scanning file], page 131, for sample code and picture.

readhdf pAT ’fname’ ’dname’ [MGL command]
Reads data array named dname from HDF5 or HDF4 file. This function does nothing
if HDF5|HDF4 was disabled during library compilation.

savehdf dat ’fname’ ’dname’ [rewrite=off] [MGL command]
Saves data array named dname to HDF5 file. This function does nothing if HDF5
was disabled during library compilation.

savehdf val ’fname’ ’dname’ [rewrite=off] [MGL command]
Saves value val named dname to HDF5 file. This function does nothing if HDF5 was
disabled during library compilation.

datas ’fname’ [MGL command]
Put data names from HDF5 file fname into buf as '\t’ separated fields. In MGL
version the list of data names will be printed as message. This function does nothing
if HDF5 was disabled during library compilation.

openhdf ’fname’ [MGL command]
Reads all data array from HDF5 file fname and create MGL variables with names of
data names in HDF file. Complex variables will be created if data name starts with
.

import DAT ’fname’ ’sch’ [v1=0 v2=1] [MGL command]
Reads data from bitmap file (now support only PNG format). The RGB values of
bitmap pixels are transformed to mreal values in range [v1, v2] using color scheme
scheme (see Section 2.4 [Color scheme], page 12).

export dat ’fname’ ’sch’ [v1=0 v2=0] [MGL command]
Saves data matrix (or ns-th slice for 3d data) to bitmap file (now support only PNG
format). The data values are transformed from range [vI, v2] to RGB pixels of bitmap
using color scheme scheme (see Section 2.4 [Color scheme]|, page 12). If vI>=v2 then
the values of v1, v2 are automatically determined as minimal and maximal value of
the data array.

Chapter 4: Data processing 67

readbin dat ’fname’ type [MGL command]
Reads data from binary file. Parameter type determine the number format: 0 -
double, 1 - float, 2 - long double, 3 - long int, 4 - int, 5 - short int, 6 - char. NOTE:
this function may not correctly read binary files written in different CPU kind! It is
better to use HDF files, see [readhdf], page 66.

4.6 Make another data

subdata RES dat xx [yy=all zz=all] [MGL command]
Extracts sub-array data from the original data array keeping fixed positive index. For
example SubData(-1,2) extracts 3d row (indexes are zero based), SubData(4,-1)
extracts 5th column, SubData(-1,-1,3) extracts 4th slice and so on. If argument(s)
are non-integer then linear interpolation between slices is used. In MGL version this
command usually is used as inline one dat (xx,yy,zz). Function return NULL or
create empty data if data cannot be created for given arguments.

subdata RES dat xdat [ydat zdat] [MGL command]
Extracts sub-array data from the original data array for indexes specified by arrays
xx, yy, zz (indirect access). This function work like previous one for 1D arguments
or numbers, and resulting array dimensions are equal dimensions of 1D arrays for
corresponding direction. For 2D and 3D arrays in arguments, the resulting array
have the same dimensions as input arrays. The dimensions of all argument must be
the same (or to be scalar 1*¥1*1) if they are 2D or 3D arrays. In MGL version this
command usually is used as inline one dat (xx,yy,zz). Function return NULL or
create empty data if data cannot be created for given arguments. In C function some
of xx, yy, zz can be NULL.

column RES dat ’eq’ [MGL command]
Get column (or slice) of the data filled by formula eq on column ids. For example,
Column("n*w"2/exp(t)") ;. The column ids must be defined first by [idset], page 64,
function or read from files. In MGL version this command usually is used as inline one
dat('eq'). Function return NULL or create empty data if data cannot be created
for given arguments.

resize RES dat mx [my=1 mz=1] [MGL command]
Resizes the data to new size mx, my, mz from box (part) [x1,x2] x [y1l,y2] x [z1,22]
of original array. Initially x,y,z coordinates are supposed to be in [0,1]. If one of sizes
mx, my or mz is 0 then initial size is used. Function return NULL or create empty
data if data cannot be created for given arguments.

evaluate RES dat idat [norm=on] [MGL command]
evaluate RES dat idat jdat [norm=on)] [MGL command]
evaluate RES dat idat jdat kdat [norm=on] [MGL command]

Gets array which values is result of interpolation of original array for coordinates from
other arrays. All dimensions must be the same for data idat, jdat, kdat. Coordinates
from idat, jdat, kdat are supposed to be normalized in range [0,1] (if norm=true)
or in ranges [0,nx], [0,ny], [0,nz] correspondingly. Function return NULL or create
empty data if data cannot be created for given arguments.

Chapter 4: Data processing 68

section RES dat ids [’dir’=’y’ val=nan] [MGL command]

section RES dat id [’dir’=’y’ val=nan] [MGL command]
Gets array which is id-th section (range of slices separated by value val) of original
array dat. For id<0 the reverse order is used (i.e. -1 give last section). If several ids
are provided then output array will be result of sequential joining of sections.

solve RES dat val ’dir’ [norm=on] [MGL command]
solve RES dat val ’dir’ idat [norm=on)] [MGL command]
Gets array which values is indexes (roots) along given direction dir, where interpolated
values of data dat are equal to val. Output data will have the sizes of dat in directions
transverse to dir. If data idat is provided then its values are used as starting points.
This allows one to find several branches by consequentive calls. Indexes are supposed
to be normalized in range [0,1] (if norm=true) or in ranges [0,nx], [0,ny], [0,nz]
correspondingly. Function return NULL or create empty data if data cannot be
created for given arguments. See [Solve sample], page 99, for sample code and picture.

roots RES ’func’ ini [’var’=’x’] [MGL command]

roots RES ’func’ ini [’var’=’x’] [MGL command]
Find roots of equation 'func’=0 for variable var with initial guess ini. Secant method
is used for root finding. Function return NULL or create empty data if data cannot
be created for given arguments.

roots RES ’funcs’ ’vars’ ini [MGL command]
Find roots of system of equations 'funcs’=0 for variables vars with initial guesses ini.
Secant method is used for root finding. Function return NULL or create empty data
if data cannot be created for given arguments.

detect RES dat 1lvl dj [di=0 minlen=0] [MGL command]
Get curves {x,y}, separated by NAN values, for local maximal values of array dat
as function of x-coordinate. Noises below Ivl amplitude are ignored. Parameter dj
(in range [0,ny]) set the "attraction" y-distance of points to the curve. Similarly,
di continue curve in x-direction through gaps smaller than di points. Curves with
minimal length smaller than minlen will be ignored.

hist RES dat num vl v2 [nsub=0] [MGL command]

hist RES dat wdat num vl v2 [nsub=0] [MGL command]
Creates n-th points distribution of the data values in range [v1, v2]. Array w specifies
weights of the data elements (by default is 1). Parameter nsub define the number of
additional interpolated points (for smoothness of histogram). If nsub<0 then linear
interpolation is used instead of spline one. Function return NULL or create empty
data if data cannot be created for given arguments. See also Section 3.18 [Data
manipulation], page 59,

momentum RES dat ’how’ [’dir’=’z’] [MGL command]
Gets momentum (1d-array) of the data along direction dir. String how contain kind
of momentum. The momentum is defined like as res, = >, how(ws, y;, 21)ai;/ >, aij
if dir='z" and so on. Coordinates ‘x’, ‘y’, ‘2’ are data indexes normalized in range
[0,1]. Function return NULL or create empty data if data cannot be created for given
arguments.

Chapter 4: Data processing 69

sum RES dat ’dir’ [MGL command]
Gets array which is the result of summation in given direction or direction(s). Func-
tion return NULL or create empty data if data cannot be created for given arguments.

max RES dat ’dir’ [MGL command]
Gets array which is the maximal data values in given direction or direction(s). Func-
tion return NULL or create empty data if data cannot be created for given arguments.

min RES dat ’dir’ [MGL command]
Gets array which is the maximal data values in given direction or direction(s). Func-
tion return NULL or create empty data if data cannot be created for given arguments.

minmax RES dat [MGL command]
Gets positions of local maximums and minimums. Function return NULL or create
empty data if there is no minimums and maximums.

conts RES val dat [MGL command]
Gets coordinates of contour lines for datli,jjJ=val. NAN values separate the the curves.
Function return NULL or create empty data if there is contour lines.

combine RES adat bdat [MGL command]
Returns direct multiplication of arrays (like, res[i,j] = this[i]*a[j] and so on). Function
return NULL or create empty data if data cannot be created for given arguments.

trace RES dat [MGL command]
Gets array of diagonal elements a[i,i] (for 2D case) or al[i,i,i] (for 3D case) where
i=0...nx-1. Function return copy of itself for 1D case. Data array must have dimen-
sions ny,nz >= nx or ny,nz = 1. Function return NULL or create empty data if data
cannot be created for given arguments.

correl RES adat bdat ’dir’ [MGL command]
Find correlation between data a (or this in C++) and b along directions dir. Fourier
transform is used to find the correlation. So, you may want to use functions [swap],
page 71, or [norm], page 72, before plotting it. Function return NULL or create empty
data if data cannot be created for given arguments.

pulse RES dat ’dir’ [MGL command]
Find pulse properties along direction dir: pulse maximum (in column 0) and its
position (in column 1), pulse width near maximum (in column 3) and by half height
(in column 2), energy in first pulse (in column 4). NAN values are used for widths
if maximum is located near the edges. Note, that there is uncertainty for complex
data. Usually one should use square of absolute value (i.e. |dat[i]|~2) for them. So,
MathGL don’t provide this function for complex data arrays. However, C function will
work even in this case but use absolute value (i.e. |dat[i]|). Function return NULL
or create empty data if data cannot be created for given arguments. See also [max],
page 69, [min], page 69, [momentum], page 68, [sum|, page 69. See Section 5.5.16
[Pulse properties|, page 126, for sample code and picture.

first rREs dat ’dir’ val [MGL command]
Get array of positions of first value large val. For complex data the absolute value is
used. See also [last], page 70.

Chapter 4: Data processing 70

last REs dat ’dir’ val [MGL command]
Get array of positions of last value large val. For complex data the absolute value is
used. See also [first], page 69.

4.7 Data changing

These functions change the data in some direction like differentiations, integrations and
so on. The direction in which the change will applied is specified by the string parameter,

[0 R

which may contain ‘x’, ‘y’ or ‘z’ characters for 1-st, 2-nd and 3-d dimension correspondingly.

cumsum dat ’dir’ [MGL command]
Cumulative summation of the data in given direction or directions.

integrate dat ’dir’ [MGL command]
Integrates (like cumulative summation) the data in given direction or directions.

diff dat ’dir’ [MGL command]
Differentiates the data in given direction or directions.

diff dat xdat ydat [zdat] [MGL command]
Differentiates the data specified parametrically in direction x with y, z=constant.
Parametrical differentiation uses the formula (for 2D case): da/dx = (a; * y; — a; *
y;)/(x; *y; —x; % y;) where a; = da/di,a; = da/dj denotes usual differentiation along
1st and 2nd dimensions. The similar formula is used for 3D case. Note, that you may
change the order of arguments — for example, if you have 2D data a(i,j) which depend
on coordinates {x(i,j), y(i,j)} then usual derivative along ‘x’ will be Diff (x,y); and
usual derivative along ‘y’ will be Diff (y,x) ;.

diff2 dat ’dir’ [MGL command]
Double-differentiates (like Laplace operator) the data in given direction.

sinfft dat ’dir’ [MGL command]
Do Sine transform of the data in given direction or directions. The Sine transform
is Y a;sin(kj) (see http://en.wikipedia.org/wiki/Discrete_sine_transform#

DST-T).
cosfft dat ’dir’ [MGL command]
Do Cosine transform of the data in given direction or directions. The

Cosine transform is > ajcos(kj) (see http://en.wikipedia.org/wiki/
Discrete_cosine_transform#DCT-I).

hankel dat ’dir’ [MGL command]
Do Hankel transform of the data in given direction or directions. The Hankel trans-
form is >~ a;Jo(kj) (see http://en.wikipedia.org/wiki/Hankel_transform).

wavelet dat ’dir’ k [MGL command]
Apply wavelet transform of the data in given direction or directions. Parameter dir
set the kind of wavelet transform: ‘d’ for daubechies, ‘D’ for centered daubechies, ‘h’
for haar, ‘H’ for centered haar, ‘b’ for bspline, ‘B’ for centered bspline. If string dir
contain symbol ‘i’ then inverse wavelet transform is applied. Parameter k set the size
of wavelet transform.

http://en.wikipedia.org/wiki/Discrete_sine_transform#DST-I
http://en.wikipedia.org/wiki/Discrete_sine_transform#DST-I
http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-I
http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-I
http://en.wikipedia.org/wiki/Hankel_transform

Chapter 4: Data processing 71

swap dat ’dir’ [MGL command]
Swaps the left and right part of the data in given direction (useful for Fourier spec-
trum).

roll dat ’dir’ num [MGL command]
Rolls the data along direction dir. Resulting array will be out[i] = ini[(i+num)%nx]|
if dir="x".

mirror dat ’dir’ [MGL command]

Mirror the left-to-right part of the data in given direction. Looks like change the value
index i->n-i. Note, that the similar effect in graphics you can reach by using options
(see Section 2.7 [Command options], page 17), for example, surf dat; xrange 1 -1.

sew dat [’dir’=’xyz’ da=2*pi] [MGL command]
Remove value steps (like phase jumps after inverse trigonometric functions) with
period da in given direction.

smooth data [’dir’=’xyz’] [MGL command]
Smooths the data on specified direction or directions. String dirs specifies the dimen-
sions which will be smoothed. It may contain characters:

e ‘xyz’ for smoothing along x-,y-,z-directions correspondingly,
e ‘0’ does nothing,

e ‘3’ for linear averaging over 3 points,

e ‘5’ for linear averaging over 5 points,

e ‘d1’..‘d9’ for linear averaging over (2*N+1)-th points,

4

e ‘pl’..‘p9’ for parabolic averaging over (2*N+1)-th points,

‘=’ for finding upper bound,

e ‘_’ for finding lower bound.

By default quadratic averaging over 5 points is used.

envelop dat [’dir’=’x’] [MGL command]
Find envelop for data values along direction dir.

diffract dat ’how’ q [MGL command]
Calculates one step of diffraction by finite-difference method with parameter q=dt/dz>
using method with 3-d order of accuracy. Parameter how may contain:

e ‘xyz’ for calculations along x-,y-,z-directions correspondingly;
e ‘r’ for using axial symmetric Laplace operator for x-direction;
e ‘0’ for zero boundary conditions;

e ‘1’ for constant boundary conditions;

e ‘2’ for linear boundary conditions;

e ‘3’ for parabolic boundary conditions;

e ‘4’ for exponential boundary conditions;

e ‘5’ for gaussian boundary conditions.

Chapter 4: Data processing 72

norm dat vl v2 [sym=off dim=0] [MGL command]
Normalizes the data to range [v1,v2]. If flag sym=true then symmetrical interval
[max(|vll,|v2]), max(|vll,|v2])] is used. Modification will be applied only for
slices >=dim.

normsl dat vl v2 [’dir’=’z’ keep=on sym=off] [MGL command]
Normalizes data slice-by-slice along direction dir the data in slices to range [v1,v2]. If
flag sym=true then symmetrical interval [-max(|v1l,|v2]), max(|vll,|v2])]is used.

If keep is set then maximal value of k-th slice will be limited by \/ >oai(k)/ > ai;(0).

keep dat ’dir’ i [j=0] [MGL command]
Conserves phase/sign or amplitude (if dir contain ‘a’) of data along directions dir
by fixing one at point {i,j} of the initial slice. The function is useful for removing
common phase change of a complex data. See Section 6.70 [keep sample|, page 195,
for sample code and picture.

limit dat val [MGL command]
Limits the data values to be inside the range [-val,val], keeping the original sign
of the value (phase for complex numbers). This is equivalent to operation a[i] *=
abs(al[il)<val?l.:val/abs(al[i]);.

coil dat vl v2 [sep=on)] [MGL command]
Project the periodical data to range [v1,v2] (like mod () function). Separate branches
by NAN if sep=true.

dilate dat [val=1 step=1] [MGL command]
Return dilated by step cells array of 0 or 1 for data values larger val.

erode dat [val=1 step=1] [MGL command]
Return eroded by step cells array of 0 or 1 for data values larger val.

4.8 Interpolation

MGL scripts can use spline interpolation by [evaluate], page 67, or [refill], page 64, com-
mands. Also you can use [resize], page 67, for obtaining a data array with new sizes.

4.9 Data information

There are a set of functions for obtaining data properties in MGL language. However most
of them can be found using "suffixes". Suffix can get some numerical value of the data
array (like its size, maximal or minimal value, the sum of elements and so on) as number.
Later it can be used as usual number in command arguments. The suffixes start from point
‘.’ right after (without spaces) variable name or its sub-array. For example, a.nx give the
x-size of data a, b(1) .max give maximal value of second row of variable b, (c(:,0)~2) .sum
give the sum of squares of elements in the first column of ¢ and so on.

info dat [MGL command]
Gets or prints to file fp or as message (in MGL) information about the data (sizes,
maximum/minimum, momentums and so on).

Chapter 4: Data processing 73

info ’txt’ [MGL command]
Prints string txt as message.

info val [MGL command]
Prints value of number val as message.

print dat [MGL command]
print ’txt’ [MGL command]
print val [MGL command]

The same as [info], page 72, but immediately print to stdout.

echo dat [MGL command]
Prints all values of the data array dat as message.

progress val max [MGL command]
Display progress of something as filled horizontal bar with relative length val/max.
Note, it work now only in console and in FLTK-based applications, including mgllab
and mglview.

(dat) .nx [MGL suffix]

(dat) .ny [MGL suffix]

(dat) .nz [MGL suffix]
Gets the x-, y-, z-size of the data.

(dat) .max [MGL suffix]
Gets maximal value of the data.

(dat) .min [MGL suffix]
Gets minimal value of the data.

(dat) .mx [MGL suffix]

(dat) .my [MGL suffix]

(dat) .mz [MGL suffix]

Gets approximated (interpolated) position of maximum to variables x, y, z and returns

the maximal value.

(dat) .mxf [MGL suffix]
(dat) .myf [MGL suffix]
(dat) .mzf [MGL suffix]
(dat) .mx1l [MGL suffix]
(dat) .myl [MGL suffix]
(dat) .mzl [MGL suffix]

Get first starting from give position (or last one if from<0) maximum along direction

dir, and save its orthogonal coordinates in p1, p2.

(dat) .sum [MGL suffix]
(dat) .ax [MGL suffix]
(dat) .ay [MGL suffix]
(dat) .az [MGL suffix]
(dat) .aa [MGL suffix]

Chapter 4: Data processing 74

(dat) .wx [MGL suffix]
(dat) .wy [MGL suffix]
(dat) .wz [MGL suffix]
(dat) .wa [MGL suffix]
(dat) .sx [MGL suffix]
(dat) .sy [MGL suffix]
(dat) .sz [MGL suffix]
(dat) .sa [MGL suffix]
(dat) .kx [MGL suffix]
(dat) .ky [MGL suffix]
(dat) .kz [MGL suffix]
(dat) .ka [MGL suffix]

Gets zero-momentum (energy, I = Y dat;) and write first momentum (median, a =
Y- &dat;/I), second momentum (width, w? = >°(& — a)?dat;/I), third momentum
(skewness, s = Y (& — a)?dat;/Iw?) and fourth momentum (kurtosis, k = > (& —
a)*dat;/3Tw?) to variables. Here ¢ is corresponding coordinate if dir is ‘'x y'’ or
‘12", Otherwise median is a = Y dat; /N, width is w? = 3 (dat; — a)?/N and so on.

1 G
)

(dat) .fst [MGL suffix]
Find position (after specified in i, j, k) of first nonzero value of formula cond. Function
return the data value at found position.

(dat) .1st [MGL suffix]
Find position (before specified in i, j, k) of last nonzero value of formula cond. Func-
tion return the data value at found position.

(dat) .a [MGL suffix]
Give first (for .a, i.e. dat->a[0]).

4.10 Operators

copy DAT dat2 [’eq’=’"] [MGL command]
Copies data from other variable.

copy dat val [MGL command]
Set all data values equal to val.

multo dat dat2 [MGL command]

multo dat val [MGL command]

Multiplies data element by the other one or by value.

divto dat dat2 [MGL command]
divto dat val [MGL command]
Divides each data element by the other one or by value.

addto dat dat2 [MGL command]
addto dat val [MGL command]
Adds to each data element the other one or the value.

Chapter 4: Data processing 75

subto dat dat2 [MGL command]
subto dat val [MGL command]
Subtracts from each data element the other one or the value.

4.11 Global functions

transform DAT ’type’ real imag [MGL command]
Does integral transformation of complex data real, imag on specified direction. The
order of transformations is specified in string type: first character for x-dimension,
second one for y-dimension, third one for z-dimension. The possible character are:
‘f’ is forward Fourier transformation, ‘i’ is inverse Fourier transformation, ‘s’ is Sine
transform, ‘c’ is Cosine transform, ‘h’ is Hankel transform, ‘n’ or * ’ is no transforma-

tion.

transforma DAT ’type’ ampl phase [MGL command]
The same as previous but with specified amplitude ampl and phase phase of complex
numbers.

fourier reDat imDat ’dir’ [MGL command]

fourier complexDat ’dir’ [MGL command]

Does Fourier transform of complex data re+i*im in directions dir. Result is placed
back into re and im data arrays. If dir contain ‘i’ then inverse Fourier is used.

stfad RES real imag dn [’dir’=’x’] [MGL command]
Short time Fourier transformation for real and imaginary parts. Output is ampli-
tude of partial Fourier of length dn. For example if dir=‘%’, result will have size
{int(nx/dn), dn, ny} and it will contain res[i,j, k] = | % nexp(I % j * d) * (real[i
dn + d, k| + I * imag[i * dn + d, k])|/dn.

triangulate dat xdat ydat [MGL command]
Do Delone triangulation for 2d points and return result suitable for [triplot], page 57,
and [tricont], page 57. See Section 5.5.11 [Making regular datal, page 118, for sample
code and picture.

tridmat RES ADAT BDAT CDAT DDAT ’how’ [MGL command]

Get array as solution of tridiagonal system of equations Ali]*x[i-
1]+B[i]*x[i]+C[i]*x[i+1]=DIJi]. String how may contain:

e ‘xyz’ for solving along x-,y-,z-directions correspondingly;

e ‘h’ for solving along hexagonal direction at x-y plain (require square matrix);

e ‘c’ for using periodical boundary conditions;

e ‘d’ for for diffraction/diffuse calculation (i.e. for using -Al[i]*D[i-1]+(2-B[i])*DIJi]-

C[i]*D[i+1] at right part instead of DIi}).

Data dimensions of arrays A, B, C should be equal. Also their dimensions need to

be equal to all or to minor dimension(s) of array D. See Section 5.5.14 [PDE solving
hints|, page 121, for sample code and picture.

Chapter 4: Data processing 76

pde RES ’ham’ ini_re ini_im [dz=0.1 k0=100] [MGL command]

apde

Solves equation du/dz = i*k0*ham(p,q,x,y,z,lul)[u], where p=-i/k0*d/dx,
q=-i/k0*d/dy are pseudo-differential operators. Parameters ini_re, ini_im specify
real and imaginary part of initial field distribution. Parameters Min, Max set
the bounding box for the solution. Note, that really this ranges are increased by
factor 3/2 for purpose of reducing reflection from boundaries. Parameter dz set the
step along evolutionary coordinate z. At this moment, simplified form of function
ham is supported — all “mixed” terms (like ‘x*p’->x*d/dx) are excluded. For
example, in 2D case this function is effectively ham = f(p, z) + g(z, z,u). However
commutable combinations (like ‘x*q’->x*d/dy) are allowed. Here variable ‘v’ is used
for field amplitude |u|. This allow one solve nonlinear problems — for example,
for nonlinear Shrodinger equation you may set ham="p~2 + q~2 - u”2". You may
specify imaginary part for wave absorption, like ham = "p~2 + i*x*(x>0)". See also
[apde], page 76, [qo2d], page 77, [qo3d], page 77. See Section 5.5.14 [PDE solving
hints]|, page 121, for sample code and picture.

RES ’ham’ ini_re ini_im [dz=0.1 k0=100] [MGL command]
Solves equation du/dz = i*k0*ham(p,q,x,y,z,lul)[u], where p=-i/k0*d/dx,
q=-i/k0*d/dy are pseudo-differential operators. Parameters ini_re, ini_im specify
real and imaginary part of initial field distribution. Parameters Min, Max set the
bounding box for the solution. Note, that really this ranges are increased by factor
3/2 for purpose of reducing reflection from boundaries. Parameter dz set the step
along evolutionary coordinate z. The advanced and rather slow algorithm is used
for taking into account both spatial dispersion and inhomogeneities of media [see
A.A. Balakin, E.D. Gospodchikov, A.G. Shalashov, JETP letters v.104, p.690-695
(2016)]. Variable ‘v’ is used for field amplitude |ul. This allow one solve nonlinear
problems — for example, for nonlinear Shrodinger equation you may set ham="p"2 +
q"2 - u"2". You may specify imaginary part for wave absorption, like ham = "p~2
+ ixx*(x>0)". See also [pde|, page 76. See Section 5.5.14 [PDE solving hints],
page 121, for sample code and picture.

ray RES ’ham’ x0 yO z0 pO g0 vO [dt=0.1 tmax=10] [MGL command]

Solves GO ray equation like dr/dt = d ham/dp, dp/dt = -d ham/dr. This is Hamil-
tonian equations for particle trajectory in 3D case. Here ham is Hamiltonian which
may depend on coordinates ‘x’; ‘y’, ‘z’, momentums ‘p’=px, ‘q’=py, ‘v’=pz and time
‘t’: ham = H(x,y, z,p,q,v,t). The starting point (at t=0) is defined by variables r0,
p0. Parameters dt and tmax specify the integration step and maximal time for ray

tracing. Result is array of {x,y,z,p,q,v,t} with dimensions {7 * int(tmax/dt+1) }.

ode RES ’df’ ’var’ ini [dt=0.1 tmax=10] [MGL command]

Solves ODE equations dx/dt = df(x). The functions df can be specified as string of
'-separated textual formulas (argument var set the character ids of variables x[i])
or as callback function, which fill dx array for give x’s. Parameters ini, dt, tmax set
initial values, time step and maximal time of the calculation. Function stop execution
if NAN or INF values appears. Result is data array with dimensions {n * Nt}, where
Nt <= int(tmax/dt+1).

If dt*tmax<0 then regularization is switched on, which change equations to dx/ds =
df(x)/max(1df(x)|) to allow accurately passes region of strong df variation or quickly

Chapter 4: Data processing 77

bypass region of small df. Here s is the new "time". At this, real time is determined
as dt/ds=max(|df(x)|). If you need real time, then add it into equations manually,
like ‘ode res 'y;-sin(x);1' 'xyt' [3,0] 0.3 -100’. This also preserve accuracy at
stationary points (i.e. at small df in periodic case).

ode RES ’df’ ’var’ ’brd’ ini [dt=0.1 tmax=10] [MGL command]

qo2d

qo3d

Solves difference approximation of PDE as a set of ODE dx/dt = df(x,j). Functions
df can be specified as string of ’;’-separated textual formulas, which can depend on
index j and current time ‘t’. Argument var set the character ids of variables x[i].
Parameter brd sets the kind of boundary conditions on j: ‘0’ or ‘z’ — zero at border,
‘1’ or ‘¢’ — constant at border, ‘2’ or ‘1’ — linear at border (laplacian is zero), ‘3’ or ‘s’
— square at border, ‘4’ or ‘e’ — exponential at border, ‘5’ or ‘g’ — gaussian at border.
The cases ‘e’ and ‘g’ are applicable for the complex variant only. Parameters ini,
dt, tmax set initial values, time step and maximal time of the calculation. Function
stop execution if NAN or INF values appears. Result is data array with dimensions
{n * Nt}, where Nt <= int(tmax/dt+1). For example, difference aprroximation of
diffusion equation with zero boundary conditions can be solved by call: ‘ode res
'u(G+1)-2*xu(j)+u(j-1)"' 'u' '0' u0’, where ‘w0’ is an initial data array.

If dt*tmax<0 then regularization is switched on, which change equations to dx/ds =
df(x)/max(|df(x)|) to allow accurately passes region of strong df variation or quickly
bypass region of small df. Here s is the new "time". At this, real time is determined
as dt/ds=max(|df(x)]). If you need real time, then add it into equations manually,
like ‘ode res 'y;-sin(x);1' 'xyt' [3,0] 0.3 -100’. This also preserve accuracy at
stationary points (i.e. at small df in periodic case).

RES ’ham’ ini_re ini_im ray [r=1 k0=100 xx yy] [MGL command]
Solves equation du/dt = i*k0*ham(p,q,x,y,lul)[u], where p=-i/k0*d/dx, q=-
i/k0*d/dy are pseudo-differential operators (see mglPDE() for details). Parameters
ini_re, ini_im specify real and imaginary part of initial field distribution. Parameters
ray set the reference ray, i.e. the ray around which the accompanied coordinate
system will be maked. You may use, for example, the array created by [ray], page 76,
function. Note, that the reference ray must be smooth enough to make accompanied
coodrinates unambiguity. Otherwise errors in the solution may appear. If xx and
yy are non-zero then Cartesian coordinates for each point will be written into them.
See also [pde], page 76, [qo3d]|, page 77. See Section 5.5.14 [PDE solving hints],
page 121, for sample code and picture.

RES ’ham’ ini_re ini_im ray [r=1 k0=100 xx yy 2zz] [MGL command]
Solves equation du/dt = i*k0*ham(p,q,v,x,y,z,lul)[u], where p=-i/k0*d/dx,
q=-i/k0*d/dy, v=-i/k0*d/dz are pseudo-differential operators (see mglPDE() for
details). Parameters ini_re, ini_im specify real and imaginary part of initial field
distribution. Parameters ray set the reference ray, i.e. the ray around which the
accompanied coordinate system will be maked. You may use, for example, the array
created by [ray|, page 76, function. Note, that the reference ray must be smooth
enough to make accompanied coodrinates unambiguity. Otherwise errors in the
solution may appear. If xx and yy and zz are non-zero then Cartesian coordinates
for each point will be written into them. See also [pde|, page 76, [qo2d], page 77.
See Section 5.5.14 [PDE solving hints], page 121, for sample code and picture.

Chapter 4: Data processing 78

jacobian RES xdat ydat [zdat] [MGL command]
Computes the Jacobian for transformation {i,j,k} to {x,y,z} where initial coordinates
{i,j,k} are data indexes normalized in range [0,1]. The Jacobian is determined by
formula det | |dr,/d€s | | where r={x,y,z} and {={i,j,k}. All dimensions must be the
same for all data arrays. Data must be 3D if all 3 arrays {x,y,z} are specified or 2D
if only 2 arrays {x,y} are specified.

triangulation RES xdat ydat [MGL command]
Computes triangulation for arbitrary placed points with coordinates {x,y} (i.e. finds
triangles which connect points). MathGL use s-hull (http://www.s-hull.org/) code
for triangulation. The sizes of 1st dimension must be equal for all arrays x.nx=y.nx.
Resulting array can be used in [triplot], page 57, or [tricont], page 57, functions
for visualization of reconstructed surface. See Section 5.5.11 [Making regular datal,
page 118, for sample code and picture.

ifs2d RES dat num [skip=20] [MGL command]
Computes num points {x[i]=res[0,i], y[i]=res[L,i]} for fractal using iterated function
system. Matrix dat is used for generation according the formulas
x[i+1] = dat[0,il*x[i] + dat[1,il*y[i] + dat[4,il;
y[i+1] = dat[2,i]*x[i] + dat[3,i]l*y[i] + dat[5,i];
Value dat[6,1] is used as weight factor for i-th row of matrix dat. At this first skip
iterations will be omitted. Data array dat must have x-size greater or equal to 7. See
also [ifs3d], page 78, [flame2d], page 79. See Section 6.65 [ifs2d sample], page 190, for
sample code and picture.

ifs3d RES dat num [skip=20] [MGL command]
Computes num points {x[i]=res[0,i], y[i]=res[1,i], z]i|=res[2,i]} for fractal using iter-
ated function system. Matrix dat is used for generation according the formulas
x[i+1] = dat[0,i]*x[i] + dat[1,il*y[i] + dat[2,i]*z[i] + dat[9,i];
y[i+1] dat[3,i]*x[i] + dat[4,i]l*y[i] + dat[5,il*z[i] + dat[10,i];
z[i+1] dat[6,i]*x[1] + dat[7,il*y[i] + dat[8,i]l*z[i] + dat[11,i];
Value dat [12,1] is used as weight factor for i-th row of matrix dat. At this first skip
iterations will be omitted. Data array dat must have x-size greater or equal to 13.
See also [ifs2d], page 78. See Section 6.66 [ifs3d sample], page 191, for sample code
and picture.

ifsfile RES ’fname’ ’name’ num [skip=20] [MGL command]
Reads parameters of IFS fractal named name from file fname and computes num
points for this fractal. At this first skip iterations will be omitted. See also [ifs2d],
page 78, [ifs3d], page 78.
IF'S file may contain several records. Each record contain the name of fractal (‘binary’
in the example below) and the body of fractal, which is enclosed in curly braces {}.
Symbol ¢;’ start the comment. If the name of fractal contain ‘(3D)’ or ‘(3d)’ then the
3d IFS fractal is specified. The sample below contain two fractals: ‘binary’ — usual
2d fractal, and ‘3dfern (3D)’ — 3d fractal. See also [ifs2d], page 78, [ifs3d], page 78.

binary
{ ; comment allowed here

http://www.s-hull.org/

Chapter 4: Data processing 79

; and here
.5 .0 .0 .5 -2.563477 -0.000003 .333333 ; also comment allowed here
.5 .0 .0 .5 2.436544 -0.000003 .333333
.0 -.5 .6 .0 4.873085 7.563492 .333333
}
3dfern (3D) {
.00 .00 0 .0 .18 .0 0 0.0 0.00 0 0.0 O .01
.86 .00 0 .0 .86 .1 0 -0.10.850 1.6 0 .85
.20 -.20 0 .2 .20 .0 0 0.0 0.30 0 0.8 0 .07
-.20 .200 .2 .20 .00 0.0 0.30 0 0.8 0 .07
+
flame2d RES dat func num [skip=20] [MGL command]

Computes num points {x[i]=res[0,i], y[i]=res[1,i]} for "flame" fractal using iterated
function system. Array func define "flame" function identificator (funcl0,i,j]), its
weight (func[0,i,j]) and arguments (func[2 ... 5,i,j]). Matrix dat set linear transfor-
mation of coordinates before applying the function. The resulting coordinates are

xx = dat[0,i]*x[j] + dat[1,jl*y[i] + dat[4,]j];
yy = dat[2,i]*x[j] + dat[3,jl*y[i] + dat[5,j];
x[j+1] = sum_i @var{func}[1,i,jl*@var{func}[0,i,j]l_x(xx, yy; @var{func}[2,i,j],...,Qva
y[j+1] = sum_i @var{func}[1,i,jl*@var{func}[0,i,j]l_y(xx, yy; @var{func}[2,i,j],...,Qva

The possible function ids are: mglFlame2d_linear=0, mglFlame2d_sinusoidal,
mglFlame2d_spherical, mglFlame2d_swirl, mglFlame2d_horseshoe,
mglFlame2d_polar, mglFlame2d_handkerchief ,mglFlame2d_heart, mglFlame2d_
disc, mglFlame2d_spiral, mglFlame2d_hyperbolic, mglFlame2d_diamond,
mglFlame2d_ex, mglFlame2d_julia, mglFlame2d_bent, mglFlame2d_waves,
mglFlame2d_fisheye, mglFlame2d_popcorn, mglFlame2d_exponential,
mglFlame2d_power, mglFlame2d_cosine, mglFlame2d_rings, mglFlame2d_fan,
mglFlame2d_blob, mglFlame2d_pdj, mglFlame2d_fan2, mglFlame2d_

rings2, mglFlame2d_eyefish, mglFlame2d_bubble, mglFlame2d_cylinder,
mglFlame2d_perspective, mglFlame2d_noise, mglFlame2d_juliaNl,
mglFlame2d_juliaScope, mglFlame2d_blur, mglFlame2d_gaussian,
mglFlame2d_radialBlur, mglFlame2d_pie, mglFlame2d_ngon, mglFlame2d_
curl, mglFlame2d_rectangles, mglFlame2d_arch, mglFlame2d_tangent,
mglFlame2d_square, mglFlame2d_blade, mglFlame2d_secant, mglFlame2d_
rays, mglFlame2d_twintrian, mglFlame2d_cross, mglFlame2d_disc2,
mglFlame2d_supershape, mglFlame2d_flower, mglFlame2d_conic, mglFlame2d_
parabola, mglFlame2d_bent2, mglFlame2d_bipolar, mglFlame2d_boarders,
mglFlame2d_butterfly, mglFlame2d_cell, mglFlame2d_cpow, mglFlame2d_
curve, mglFlame2d_edisc, mglFlame2d_elliptic, mglFlame2d_escher,
mglFlame2d_foci, mglFlame2d_lazySusan, mglFlame2d_loonie, mglFlame2d_
preBlur, mglFlame2d_modulus, mglFlame2d_oscope, mglFlame2d_polar2,
mglFlame2d_popcorn2, mglFlame2d_scry, mglFlame2d_separation,
mglFlame2d_split, mglFlame2d_splits, mglFlame2d_stripes, mglFlame2d_
wedge, mglFlame2d_wedgeJulia, mglFlame2d_wedgeSph, mglFlame2d_whorl,
mglFlame2d_waves2, mglFlame2d_exp, mglFlame2d_log, mglFlame2d_sin,

Chapter 4: Data processing 80

mglFlame2d_cos, mglFlame2d_tan, mglFlame2d_sec, mglFlame2d_csc,
mglFlame2d_cot, mglFlame2d_sinh, mglFlame2d_cosh, mglFlame2d_tanh,
mglFlame2d_sech, mglFlame2d_csch, mglFlame2d_coth, mglFlame2d_auger,
mglFlame2d_flux. Value dat[6,1i] is used as weight factor for i-th row of matrix
dat. At this first skip iterations will be omitted. Sizes of data arrays must be:
datnx>=7, funcnx>=2 and funcnz=dat.ny. See also [ifs2d], page 78, [ifs3d],
page 78. See Section 6.57 [flame2d sample], page 183, for sample code and picture.

4.12 Evaluate expression

You can use arbitrary formulas of existed data arrays or constants as any argument of data
processing or data plotting commands. There are only 2 limitations: formula shouldn’t con-
tain spaces (to be recognized as single argument), and formula cannot be used as argument
which will be (re)created by MGL command.

4.13 Special data classes

MGL use these special classes automatically.

81

5 MathGL examples

This chapter contain information about basic and advanced MathGL, hints and samples for
all types of graphics. I recommend you read first 2 sections one after another and at least
look on Section 5.5 [Hints], page 103, section. Also I recommend you to look at Chapter 2
[General concepts], page 9, and Section 5.6 [FAQ)], page 132.

5.1 Basic usage

MGL script can be used by several manners. Each has positive and negative sides:
e Using UDAV.

Positive sides are possibilities to view the plot at once and to modify it, rotate, zoom or
switch on transparency or lighting by hands or by mouse. Negative side is the needness
of the X-terminal.

o Using command line tools.

Positive aspects are: batch processing of similar data set, for example, a set of resulting
data files for different calculation parameters), running from the console program, in-
cluding the cluster calculation), fast and automated drawing, saving pictures for further
analysis, or demonstration). Negative sides are: the usage of the external program for
picture viewing. Also, the data plotting is non-visual. So, you have to imagine the pic-
ture, view angles, lighting and so on) before the plotting. I recommend to use graphical
window for determining the optimal parameters of plotting on the base of some typical
data set. And later use these parameters for batch processing in console program.

In this case you can use the program: mglconv or mglview for viewing.
o Using C/C++/... code.

You can easily execute MGL script within C/C++/Fortan code. This can be useful
for fast data plotting, for example, in web applications, where textual string (MGL
script) may contain all necessary information for plot. The basic C++ code may look
as following

const char *mgl_script; // script itself, can be of type const wchar_tx*
mglGraph gr;

mglParse pr;

pr.Execute(&gr, mgl_script);

The simplest script is

box # draw bounding box
axis # draw axis
fplot 'x"3' # draw some function

Just type it in UDAV and press F5. Also you can save it in text file ‘test.mgl’ and type
in the console mglconv test.mgl what produce file ‘test.mgl.png’ with resulting picture.

5.2 Advanced usage

Now I show several non-obvious features of MGL: several subplots in a single picture,
curvilinear coordinates, text printing and so on. Generally you may miss this section at
first reading, but I don’t recommend it.

Chapter 5: MathGL examples 82

5.2.1 Subplots

Let me demonstrate possibilities of plot positioning and rotation. MathGL has a set of
functions: [subplot], page 28, [inplot], page 29, [title], page 29, [aspect], page 30, and
[rotate], page 29, and so on (see Section 3.4 [Subplots and rotation], page 28). The order
of their calling is strictly determined. First, one changes the position of plot in image area
(functions [subplot], page 28, [inplot], page 29, and [multiplot], page 28). Secondly, you
can add the title of plot by [title], page 29, function. After that one may rotate the plot
(command [rotate], page 29). Finally, one may change aspects of axes (command [aspect],
page 30). The following code illustrates the aforesaid it:

subplot 2 2 0

box:text -1 1.1 'Just box' ':L'
inplot 0.2 0.5 0.7 1 off
box:text 0 1.2 'InPlot example'

subplot 2 2 1:title 'Rotate only'
rotate 50 60:box

subplot 2 2 2:title 'Rotate and Aspect'
rotate 50 60:aspect 1 1 2:box

subplot 2 2 3:title 'Shear’
box 'c':shear 0.2 0.1:box

Here I used function Puts for printing the text in arbitrary position of picture (see
Section 3.8 [Text printing], page 35). Text coordinates and size are connected with axes.
However, text coordinates may be everywhere, including the outside the bounding box. I'll
show its features later in Section 5.2.7 [Text features], page 92.

Note that several commands can be placed in a string if they are separated by ‘:’ symbol.

Chapter 5: MathGL examples

1okiot cxample

Just box

Rotate only

Rotate and Aspect Shear

More complicated sample show how to use most of positioning functions:

subplot 3 2 0:title 'StickPlot'

stickplot 3 0 20 30:box 'r':text 0 0 O '0' 'r'
stickplot 3 1 20 30:box 'g':text 0 0 0 '1' 'g'
stickplot 3 2 20 30:box 'b':text 0 0 O '2' 'b'

subplot 3 2 3 '':title 'ColumnPlot'

columnplot 3 O:box 'r':text 0 0 '0' 'r'
columnplot 3 1:box 'g':text 0 0 '1' 'g'
columnplot 3 2:box 'b':text 0 0 '2' 'b'

subplot 3 2 4 '':title 'GridPlot'

gridplot 2 2 O:box 'r':text 0 O '0' 'r'
gridplot 2 2 1:box 'g':text 0 O '1' 'g!'
gridplot 2 2 2:box 'b':text 0 O '2' 'b'
gridplot 2 2 3:box 'm':text 0 O '3' 'm'

subplot 3 2 5 '':title 'InPlot':box
inplot 0.4 1 0.6 1 on:box 'r'

multiplot 3 2 1 2 1 '':title 'MultiPlot and ShearPlot':box
shearplot 3 0 0.2 0.1:box 'r':text 0 0 '0' 'r'
shearplot 3 1 0.2 0.1:box 'g':text 0 0 '1' 'g'
shearplot 3 2 0.2 0.1:box 'b':text 0 0 '2' 'b'

Chapter 5: MathGL examples 84

StickPlot MultiPlot and ShearPlot

T

ColumnPlot GridPlot

[J L 4

5.2.2 Axis and ticks

MathGL library can draw not only the bounding box but also the axes, grids, labels and so
on. The ranges of axes and their origin (the point of intersection) are determined by func-
tions SetRange (), SetRanges (), SetOrigin() (see Section 3.3.1 [Ranges (bounding box)],
page 24). Ticks on axis are specified by function SetTicks, SetTicksVal, SetTicksTime
(see Section 3.3.3 [Ticks], page 26). But usually

Command [axis|, page 36, draws axes. Its textual string shows in which directions
the axis or axes will be drawn (by default "xyz", function draws axes in all directions).
Command [grid], page 37, draws grid perpendicularly to specified directions. Example of
axes and grid drawing is:
subplot 2 2 0:title 'Axis origin, Grid'
origin O O:axis:grid:fplot 'x"3'

subplot 2 2 1:title '2 axis'

ranges -1 1 -1 l:origin -1 -1:axis
ylabel 'axis_1':fplot 'sin(pi*x)' 'r2'
ranges 0 1 O 1l:origin 1 1:axis

ylabel 'axis_2':fplot 'cos(pix*x)'

subplot 2 2 3:title 'More axis'

origin nan nan:xrange -1 1l:axis

xlabel 'x' O:ylabel 'y_1' O:fplot 'x"2' 'k'
yrange -1 l:origin -1.3 -l:axis 'y' 'r'
ylabel '#r{y_2}' 0.2:fplot 'x"3' 'r'

subplot 2 2 2:title '4 segments, inverted axis':origin O O:
inplot 0.5 1 0.5 1 on:ranges O 10 O 2:axis
fplot 'sqrt(x/2)':xlabel 'W' 1:ylabel 'U' 1

Chapter 5: MathGL examples 85

inplot 0 0.5 0.5 1 on:ranges 1 0 0 2:axis 'x'
fplot 'sqrt(x)+x~3':xlabel '\tau' 1

inplot 0.5 1 0 0.5 on:ranges 0 10 4 O:axis 'y'
fplot 'x/4':ylabel 'L' -1

inplot 0 0.5 0 0.5 on:ranges 1 0 4 O:fplot '4xx"2'

Note, that MathGL can draw not only single axis (which is default). But also several
axis on the plot (see right plots). The idea is that the change of settings does not influence
on the already drawn graphics. So, for 2-axes I setup the first axis and draw everything
concerning it. Then I setup the second axis and draw things for the second axis. Generally,
the similar idea allows one to draw rather complicated plot of 4 axis with different ranges
(see bottom left plot).

At this inverted axis can be created by 2 methods. First one is used in this sample —
just specify minimal axis value to be large than maximal one. This method work well for
2D axis, but can wrongly place labels in 3D case. Second method is more general and work
in 3D case too — just use [aspect], page 30, function with negative arguments. For example,
following code will produce exactly the same result for 2D case, but 2nd variant will look
better in 3D.

variant 1
ranges 0 10 4 O:axis

variant 2
ranges 0 10 O 4:aspect 1 -1l:axis

Axis origin, Grid 2 axis

1

02 04 06 08
axis 2

—_ 1
Al
o
Y

105 _0
S
axis 1

4 segments, inverted axis More axis

0.5

C] .
LT R P Lk

£
02 04 05 08

—0.5

'
0.5 1

ol

L

=5

Another MathGL feature is fine ticks tunning. By default (if it is not changed by
SetTicks function), MathGL try to adjust ticks positioning, so that they looks most human
readable. At this, MathGL try to extract common factor for too large or too small axis

Chapter 5: MathGL examples 86

ranges, as well as for too narrow ranges. Last one is non-common notation and can be
disabled by SetTuneTicks function.

Also, one can specify its own ticks with arbitrary labels by help of SetTicksVal function.
Or one can set ticks in time format. In last case MathGL will try to select optimal format
for labels with automatic switching between years, months/days, hours/minutes/seconds
or microseconds. However, you can specify its own time representation using formats de-
scribed in http://www.manpagez.com/man/3/strftime/. Most common variants are ‘%X’
for national representation of time, ‘%x’ for national representation of date, ‘%Y’ for year
with century.

The sample code, demonstrated ticks feature is

subplot 3 3 0O:title 'Usual axis'
axis

subplot 3 3 1:title 'Too big/small range'
ranges -1000 1000 0 0.001:axis

subplot 3 3 2:title 'LaTeX-like labels'
axis 'F!'

subplot 3 3 3:title 'Too narrow range'
ranges 100 100.1 10 10.01:axis

subplot 3 3 4:title 'No tuning, manual "+"'
axis '+!'

for version <2.3 you can use

#tuneticks off:axis

subplot 3 3 5:title 'Template for ticks'
xtick 'xxx:%g':ytick 'y:%g'
axis

xtick '':ytick '' # switch it off for other plots

subplot 3 3 6:title 'No tuning, higher precision'
axis '!4'

subplot 3 3 7:title 'Manual ticks'

ranges -pi pi 0 2

xtick pi 3 '\pi'

xtick 0.886 'x"*' on # note this will disable subticks drawing

or you can use

#xtick -pi '\pi' -pi/2 '-\pi/2' 0 'O' 0.886 'x"*' pi/2 '\pi/2' pi 'pi'

or you can use

#list v -pi -pi/2 0 0.886 pi/2 pi:xtick v '-\pi\n-\pi/2\n{}0\n{}x"*\n\pi/2\n\pi'[]
axis:grid:fplot '2%cos(x"2)"2' 'r2'

http://www.manpagez.com/man/3/strftime/

Chapter 5: MathGL examples 87

subplot 3 3 8:title 'Time ticks'
xrange 0 3eb5:ticktime 'x':axis

Usual axis with "' style _ Too big/small range LaTeX-like labels

[

24 ke

a0,
La ‘Nﬂ"-klﬂ—"ﬁ\:‘"ﬂ(l" [

Too narrow Tange No tuning, manual '+' Template for ticks

S s o

g

TR TR T R T R

T WD A0 H0E 0D HI001 1001 P x x E?
i ity g, g

iy g0 gy Vit Wit o iy,

No tuning, higher precision Manual ticks Time ticks

03

;/,f,,,
g e,y ey

S P S— .
0 0Lz 06K L0de L0 1001 —x TS x OLOLTU BLARTD OLO3RE DLAMA0

The last sample I want to show in this subsection is Log-axis. From MathGL’s point
of view, the log-axis is particular case of general curvilinear coordinates. So, we need first
define new coordinates (see also Section 5.2.3 [Curvilinear coordinates|, page 88) by help of
SetFunc or SetCoor functions. At this one should wary about proper axis range. So the
code looks as following;:

subplot 2 2 0 '<_':title 'Semi-log axis'
ranges 0.01 100 -1 1:axis 'lg(x)' '' "!
axis:grid 'xy' 'g':fplot 'sin(1/x)'
xlabel 'x' O:ylabel 'y = sin 1/x' O

subplot 2 2 1 '<_':title 'Log-log axis'

ranges 0.01 100 0.1 100:axis 'lg(x)' 'lg(y)' "'
axis:grid '!' 'h=':grid:fplot 'sqrt(1+x~2)'
xlabel 'x' O:ylabel 'y = \sqrt{i+x"2}' 0

subplot 2 2 2 '<_':title 'Minus-log axis'

ranges -100 -0.01 -100 -0.1:axis '-1g(-x)' '-1lg(-y)' "'
axis:fplot '-sqrt(1+x~2)'

xlabel 'x' O:ylabel 'y = -\sqrt{1+x"2}' 0

subplot 2 2 3 '<_':title 'Log-ticks'
ranges 0.01 100 0 100:axis 'sqrt(x)' '' '!
axis:fplot 'x'

xlabel 'x' 1l:ylabel 'y =x' O

Chapter 5: MathGL examples 88

Semi-log axis . Log-log axis
T B
"W LI
2 S %o
= | Wl““ +=
'?C'ml|w') 7?
Al - +—
| |‘ I _
e e e e R C e e
X X
. Minus-log axis . Log-ticks
=| =
r;<'_‘ B
+ 1 = :
s i .
= e =T
g i sk
EIE(;Z” ‘ —II(JM I —‘] I ‘—]:C)'l ‘ I—]()"Z]C{;-f‘l-].”.‘ i ‘I() ‘ L 107
X X

You can see that MathGL automatically switch to log-ticks as we define log-axis formula
(in difference from v.1.*). Moreover, it switch to log-ticks for any formula if axis range
will be large enough (see right bottom plot). Another interesting feature is that you not
necessary define usual log-axis (i.e. when coordinates are positive), but you can define
“minus-log” axis when coordinate is negative (see left bottom plot).

5.2.3 Curvilinear coordinates

As I noted in previous subsection, MathGL support curvilinear coordinates. In difference
from other plotting programs and libraries, MathGL uses textual formulas for connection
of the old (data) and new (output) coordinates. This allows one to plot in arbitrary coordi-
nates. The following code plots the line y=0, z=0 in Cartesian, polar, parabolic and spiral
coordinates:

origin -1 1 -1
subplot 2 2 0:title 'Cartesian':rotate 50 60
fplot '2%t-1' '0.5' '0' '2r':axis:grid

axis 'y*sin(pi*x)' 'y*cos(pi*x)' '':
subplot 2 2 1:title 'Cylindrical':rotate 50 60
fplot '2%t-1' '0.5' '0' '2r':axis:grid

axis '2%yxx' 'yxy - x*kx' '
subplot 2 2 2:title 'Parabolic':rotate 50 60
fplot '2%t-1' '0.5' '0' '2r':axis:grid

axis 'y*sin(pi*x)' 'y*cos(pi*x)' 'x+z'
subplot 2 2 3:title 'Spiral':rotate 50 60
fplot '2%t-1' '0.5' '0' '2r':axis:grid

Chapter 5: MathGL examples

Cartesian Cylindrical

5.2.4 Colorbars

89

MathGL handle [colorbar|, page 36, as special kind of axis. So, most of functions for axis
and ticks setup will work for colorbar too. Colorbars can be in log-scale, and generally as

arbitrary function scale; common factor of colorbar labels can be separated; and so on.

But of course, there are differences — colorbars usually located out of bounding box. At
this, colorbars can be at subplot boundaries (by default), or at bounding box (if symbol
‘I’ is specified). Colorbars can handle sharp colors. And they can be located at arbitrary
position too. The sample code, which demonstrate colorbar features is:

call 'prepare2d'
new v 9 'x'

subplot 2 2 0:title 'Colorbar out of box':box
colorbar '<':colorbar '>':colorbar '_':colorbar

1=~

subplot 2 2 1:title 'Colorbar near box':box
colorbar '<I':colorbar '>I':colorbar '_I':colorbar '"I'

subplot 2 2 2:title 'manual colors':box:contd v a
colorbar v '<':colorbar v '>':colorbar v '_':colorbar v

subplot 2 2 3:title '':text -0.5 1.55 'Color positions'

colorbar 'bwr>' 0.25 O:text -0.9 1.2 'Default'
colorbar 'b{w,0.3}r>' 0.5 O:text -0.1 1.2 'Manual’

crange 0.01 1e3
colorbar '>' 0.75 O:text 0.65 1.2 'Normal scale'
colorbar '>':text 1.35 1.2 'Log scale'

:C!

-2

Chapter 5: MathGL examples 90

Colorbar out of box Colorbar near box
- . 4 s o 0s 1
I - -1 —0.5 l? 05 1 _‘I - ; -
I 3 I 3
-1 —0.5 {13 0.5 1 !
[4 s o 03 1
man g itions -
a ual C(.)](rh- Color positions %log scale
-1 -035-05-025 0 025 05 075 | Default Manual Norpal scale Log scale
A - - = =]
\ 2)
a5 o I I
I z,s . b = | 3 ” B
o =S - - =

o = =

. > f“ni - . i -
A A T T = 5
el 15 =
n
. —) - 1,

PAS A 1 |

—L 07505025 0025 05 035 1
EE W @ W

5.2.5 Bounding box

Box around the plot is rather useful thing because it allows one to: see the plot boundaries,
and better estimate points position since box contain another set of ticks. MathGL provide
special function for drawing such box — [box], page 37, function. By default, it draw black
or white box with ticks (color depend on transparency type, see Section 5.5.3 [Types of
transparency|, page 106). However, you can change the color of box, or add drawing of
rectangles at rear faces of box. Also you can disable ticks drawing, but I don’t know why
anybody will want it. The sample code, which demonstrate [box|, page 37, features is:

subplot 2 2 0:title 'Box (default)':rotate 50 60:box
subplot 2 2 1:title 'colored':rotate 50 60:box 'r'
subplot 2 2 2:title 'with faces':rotate 50 60:box 'Q'

subplot 2 2 3:title 'both':rotate 50 60:box '@cm'

Chapter 5: MathGL examples 91

Box (default) colored

with faces both

5.2.6 Ternary axis

There are another unusual axis types which are supported by MathGL. These are ternary
and quaternary axis. Ternary axis is special axis of 3 coordinates a, b, ¢ which satisfy
relation a+b+c=1. Correspondingly, quaternary axis is special axis of 4 coordinates a, b, c,
d which satisfy relation a+b+c+d=1.

Generally speaking, only 2 of coordinates (3 for quaternary) are independent. So,
MathGL just introduce some special transformation formulas which treat a as ‘x’, b as
‘y’ (and ¢ as ‘2’ for quaternary). As result, all plotting functions (curves, surfaces, contours
and so on) work as usual, but in new axis. You should use [ternary], page 26, function for
switching to ternary/quaternary coordinates. The sample code is:

ranges 01 0101

new x 50 '0.25%(1+cos(2*pi*x))’

new y 50 '0.25%(1+sin(2*pi*x))’

new z 50 'x'

new a 20 30 '30*x*xy*(1-x-y) 2% (x+y<1)'
new rx 10 'rnd':copy ry (1-rx)*rnd
light on

subplot 2 2 0:title 'Ordinary axis 3D':rotate 50 60
box:axis:grid

plot x y z 'r2':surf a '#'

xlabel 'B':ylabel 'C':zlabel 'Z'

subplot 2 2 1:title 'Ternary axis (x+y+t=1)':ternary 1
box:axis:grid 'xyz' 'B;'

plot x y 'r2':plot rx ry 'q” ':cont a:line 0.5 0 0 0.75 'g2'
xlabel 'B':ylabel 'C':tlabel 'A'

Chapter 5: MathGL examples 92

subplot 2 2 2:title 'Quaternary axis 3D':rotate 50 60:ternary 2
box:axis:grid 'xyz' 'B;'

plot x y z 'r2':surf a '#'

xlabel 'B':ylabel 'C':tlabel 'A':zlabel 'D'

subplot 2 2 3:title 'Ternary axis 3D':rotate 50 60:ternary 1
box:axis:grid 'xyz' 'B;'

plot x y z 'r2':surf a '#'

xlabel 'B':ylabel 'C':tlabel 'A':zlabel 'Z'

Ordinary axis 3D Ternary axis (x+y+t=1)

D

n)
J/ %
/

AR

o

20 N2 04046 08 1

5.2.7 Text features

MathGL prints text by vector font. There are functions for manual specifying of text
position (like Puts) and for its automatic selection (like Label, Legend and so on). MathGL
prints text always in specified position even if it lies outside the bounding box. The default
size of font is specified by functions SetFontSize* (see Section 3.2.6 [Font settings], page 22).
However, the actual size of output string depends on subplot size (depends on functions
SubPlot, InPlot). The switching of the font style (italic, bold, wire and so on) can be
done for the whole string (by function parameter) or inside the string. By default MathGL
parses TeX-like commands for symbols and indexes (see Section 2.5 [Font styles|, page 14).

Text can be printed as usual one (from left to right), along some direction (rotated text),
or along a curve. Text can be printed on several lines, divided by new line symbol ‘\n’.

Example of MathGL font drawing is:
call 'prepareld'

subplot 2 2 0 '
text 0 1 'Text can be in ASCII and in Unicode'
text 0 0.6 'It can be \wire{wire}, \big{big} or #r{colored}'

Chapter 5: MathGL examples 93

text 0 0.2 'One can change style in string: \b{bold}, \i{italic, \b{bothl}}'
text 0 -0.2 'Easy to \afoverline} or \u{underline}'

text 0 -0.6 'Easy to change indexes ~“{up} _{down} @{center}'

text 0 -1 'It parse TeX: \int \alpha \cdot \

\sqrt3{sin(\pi x)°2 + \gamma_{i_k}} dx'

subplot 2 2 1 "'
text 0 0.5 '\sqrt{\frac{\alpha~{\gamma~2}+\overset 1{\big\infty}}{\sqrt3{2+b}}}'
text 0 -0.5 'Text can be printed\n{}on several lines'

subplot 2 2 2 '':box:plot y(:,0)
text y 'This is very very long string drawn along a curve' 'k'
text y 'Another string drawn under a curve' 'Tr'

subplot 2 2 3 '':1line -1 -1 1 -1 'rA':text 0 -1 1 -1 'Horizontal'
line -1 -1 1 1 'rA':text 0 0 1 1 'At angle' 'Q'
line -1 -1 -1 1 'rA':text -1 0 -1 1 'Vertical'

Text can be in ASCII and in Unicode

It can be wire, D1g or colored o' +]
g ‘ \/V2+b

One can change style in string: bold, italic, both

s B e T
Basy to overline or underline Vi et pesition b Ll Gucl- el 20 2
Text can be printed

Eusy to change indexes ™ gy, conter N
on several lines

T with radien
It parse TeX: fo {/sin(mx¥ + y, dx or wit fikient
T T A x
W Ve
\'}C?/ e L
AL 05@/\0 i _
ko +,) E]
%, fong string e
L drawn “’70;,; " i >
-
)
(‘90(:?6