
Intel® Machine Learning Scaling Library

Developer Guide

 Intel® Machine Learning Scaling Library Developer Guide

2

Legal Information
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted

by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising

from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All

information provided here is subject to change without notice. Contact your Intel representative to

obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause

deviations from published specifications. Current characterized errata are available on request.

Intel, the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others

© Intel Corporation.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,

and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,

functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel

microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more

information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Developer Guide 3

Contents
Legal Information ..2

1. Introduction ..4

2. Using Intel® Machine Learning Scaling Library ...5

2.1. Prerequisites .. 5

2.2. Generic Workflow .. 5

2.3. Launching Sample Application.. 6

2.3.1. Launching the Sample .. 6
2.3.2. Sample Description .. 7

2.4. Statistics Collection .. 7

3. Environment Variables...9

 Intel® Machine Learning Scaling Library Developer Guide

4

1. Introduction
Intel® Machine Learning Scaling Library is a library providing an efficient implementation of

communication patterns used in deep learning. Some of the library features include:

 Built on top of MPI, allows for use of other communication libraries

 Optimized to drive scalability of communication patterns

 Works on various interconnects: Intel® Omni-Path Architecture, InfiniBand*, and Ethernet

 Common API to support Deep Learning frameworks (Caffe*, Theano*, Torch*, etc.)

The Intel® MLSL package comprises the Intel MLSL Software Development Kit (SDK) and the Intel® MPI

Library Runtime components.

This document provides usage instructions for Intel MLSL, and its configuration reference. For

installation instructions, system requirements, and other information, refer to the README file supplied

with the library.

Using Intel® Machine Learning Scaling Library

Developer Guide 5

2. Using Intel® Machine Learning Scaling
Library

2.1. Prerequisites
Before you start using the Intel® MLSL, make sure to set up the library environment. Use the command:

$ source <install_dir>/intel64/bin/mlslvars.sh

This is sets up the environment both for the C/C++ and Python* bindings.

Here and below, <install_dir> is the Intel MLSL installation directory, which is /opt/intel/mlsl

by default.

2.2. Generic Workflow
Below is a generic flow of using the Intel® MLSL in C++:

1. Initialize the library:

Environment::GetEnv().Init(&argc, &argv);

2. Create a Session and a Distribution objects:

Session *s = Environment::GetEnv().CreateSession();

Distribution *d = Environment::GetEnv().CreateDistribution(<args>);

3. Set the global mini-batch size (equal to the sum of local batch sizes):

s->SetGlobalMinibatchSize(<args>);

4. For each layer, create an Operation object, as follows:

a. Create an OperationRegInfo object:

OperationRegInfo *ori = s->CreateOperationRegInfo(<args>);

b. Depending on the type of parallelism, add input/output activation shapes or shapes of

parameters (weights or biases) to the OperationRegInfo object:

ori->AddInput(<args>); // to add input activation shape

ori->AddOutput(<args>); // to add output activation shape

ori->AddParameterSet(<args>); // to add weight shape

ori->AddParameterSet(<args>); // to add bias shape

c. Create an Operation object using the OperationRegInfo and Distribuiton

objects:

size_t opIdx = s->AddOperation(ori, d);

Operation *op = s->GetOperation(opIdx);

5. Invoke the Commit() method of the Session object:

 Intel® Machine Learning Scaling Library Developer Guide

6

s->Commit();

6. In each forward propagation iteration for each layer, use Activation objects of the

Operation object to exchange data for model parallelism:

op->GetInput(<activation_index>)->WaitComm();

op->GetOutput(<activation_index>)->StartComm();

7. In each backward propagation iteration for each layer:

a. Use Activation objects of the Operation object to exchange gradients with respect

to data for model parallelism:

op->GetOutput(<activation_index>)->WaitComm();

op->GetInput(<activation_index>)->StartComm();

b. Use ParameterSet objects of the Operation object to exchange gradients with

respect to parameters (weights or biases) for data parallelism:

op->GetParameterSet(<parameter_index>)->StartGradientComm();

op->GetParameterSet(<parameter_index>)->WaitGradientComm();

c. In the case of distributed parameter update, use ParameterSet objects of the

Operation object to exchange parameter increments for data parallelism:

op->GetParameterSet(<parameter_index>)->StartIncrementComm();

op->GetParameterSet(<parameter_index>)->WaitIncrementComm();

8. Delete the Session and Distribution objects:

Environment::GetEnv().DeleteSession(s);

Environment::GetEnv().DeleteDistribution(d);

9. Finalize the library:

Environment::GetEnv().Finalize();

The workflow described above is implemented in a sample application mlsl_test.cpp distributed

with Intel® MLSL. There is also a similar sample Python script mlsl_test.py, implementing the same

workflow.

You can use this sample as a reference when applying Intel MLSL for your framework (for C++ or

Python, respectively). See the section below for description and instructions on using the sample

application.

For detailed API description, refer to the Intel MLSL API Reference at

<install_dir>/doc/API_Reference.htm.

2.3. Launching Sample Application
Intel® MLSL supplies a sample application, mlsl_test.cpp or mlsl_test.py, which demonstrates

the usage of Intel MLSL API.

2.3.1. Launching the Sample
1. For the C++ sample, build mlsl_test.cpp:

Using Intel® Machine Learning Scaling Library

Developer Guide 7

$ cd <install_dir>/test

$ icpc -O2 –I<install_dir>/intel64/include/ -L<install_dir>/intel64/lib

-lmlsl -lmpi -ldl -lrt -lpthread -o mlsl_test mlsl_test.cpp

2. Launch the mlsl_test binary or the mlsl_test.py script with mpirun on the desired

number of nodes (N).

The application takes one argument num_groups, which will define the type of parallelism,

based on the following logic:

 num_groups = 1 – data parallelism, for example:

$ mpirun –n 8 -ppn 1 ./mlsl_test[.py] 1

 num_groups = N – model parallelism, for example:

$ mpirun –n 8 -ppn 1 ./mlsl_test[.py] 8

 num_groups > 1 and num_groups < N – hybrid parallelism, for example:

$ mpirun –n 8 -ppn 1 ./mlsl_test[.py] 2

2.3.2. Sample Description
The application is set up to run a test for two layers. It sets output on the 1st layer and checks input for

the 2nd layer in an fprop() call. Similarly, for the bprop() call, it sets a gradient with respect to input

for the 2nd layer and checks the gradient with respect to output for the 1st layer. For weights, it sets

gradients with respect to weights, checks the gradients accumulation, modifies weights in a wtinc()

call, and then verifies the expected values in an fprop() call for both layers.

The application prints parameters for input and output feature maps and weights, whether the

communication is required, and what type of communication is required. The test status is printed as

PASSED or FAILED. You can grep for FAILED to see if a test failed.

2.4. Statistics Collection
Intel® MLSL statistics allow you to monitor the time spent by operations in Intel MLSL during the

computation and communication phases.

You can start and stop monitoring operations using the MLSL::Statistics API.

You can also fetch, print and reset Intel MLSL statistics data to understand whether your neural network

is computation or communication bound.

Intel MLSL provides the following statistics:

 The total time spent by all operations in the computation phase

 The total time spent by all operations in the communication phase

 The total time expected to spend in the communication phase in an isolated environment (that is,

time spent in blocking communication calls with no computation involved between communication

calls)

 The total communication size of all operations

 The time spent per operation in the computation phase

 The time spent per operation in the communication phase

 Intel® Machine Learning Scaling Library Developer Guide

8

 The expected time spent per operation in the communication phase in an isolated environment

 The communication size for each operation

By analyzing communication time collected in an isolated environment you can understand the impact

of the computation phase on the communication phase.

To enable or disable statistics collection, use the MLSL_STATS environment variable.

Environment Variables

Developer Guide 9

3. Environment Variables

MLSL_ROOT

Syntax

MLSL_ROOT=<path>

Arguments

<path> Installation directory of the Intel® MLSL.

Description

Set this environment variable to specify the installation directory of the Intel® MLSL.

MLSL_NUM_SERVERS

Syntax

MLSL_NUM_SERVERS=<nservers>

Arguments

<nservers> The number of servers per node.

>= 0 The default value is 4. The maximum value is 16.

Description

Set this environment variable to define the number of endpoint servers per node.

NOTE: Each server is a separate process, which uses CPU resources. Take that into account when setting the

OMP_NUM_THREADS variable for OpenMP*. The recommended value for OMP_NUM_THREADS is

max_cores - num_servers, where max_cores is the maximum number of cores, and num_servers

is the number of endpoint servers per node.

MLSL_SERVER_AFFINITY

Syntax

MLSL_SERVER_AFFINITY=<proclist>

Arguments

<proclist> A comma-separated list of logical core numbers. The

server with the i-th index is pinned to the i-th core in the

list. The number should not exceed the number of cores on

the node.

 Intel® Machine Learning Scaling Library Developer Guide

10

n-1,n-2,n-3,n-4,… This is the default value – servers are pinned to cores in the

reversed order.

n – the number of available cores

Description

Set this environment variable to define the processor core affinity for endpoint servers for best

performance.

NOTE: The recommended values can be retrieved by querying /proc/interrupts:

 For the Intel® Omni-Path Fabric (Intel® OP Fabric) you are recommended to map servers to the

cores handling the Intel OP Fabric send direct memory access (SDMA) interrupts.

 For Ethernet you are recommended to map servers to the cores handling the Tx/Rx interrupts.

MLSL_STATS

Syntax

MLSL_STATS=<arg>

Arguments

<arg> Binary indicator

1 Enable statistics collection.

0 Disable statistics collection. This is the default value.

Description

Set this environment variable to enable statistics collection. See Statistics Collection for details.

MLSL_LOG_LEVEL

Syntax

MLSL_LOG_LEVEL=<level>

Arguments

<level> Logging information level

0 The error level. Prints out critical errors that lead to application termination. This is the

default value.

Environment Variables

Developer Guide 11

1 The informational level. Prints out informational messages about the application

progress.

2 The debug level. Prints out detailed informational messages that are most useful to

debug an application.

3 The trace level. Prints out more detailed informational messages than in the debug level.

Description

Set this environment variable to print logging information about the application. Higher levels include

information logged in the lower levels.

MLSL_SERVER_CREATION_TYPE

Syntax

MLSL_SERVER_CREATION_TYPE=<arg>

Arguments

<arg> Launch method index

0 Use MPI spawn API

1 Use mpirun

Description

Set this environment variable to specify a method for launching endpoint servers.

MLSL_HOSTNAME_TYPE

Syntax

MLSL_HOSTNAME_TYPE=<arg>

Arguments

<arg> Index of host name retrieval method

0 Use MPI_Get_processor_name

1 Use gethostname and getaddrinfo

2 Use the interface IP address

Description

Set this environment variable to specify a method of retrieving host names of endpoint servers.

 Intel® Machine Learning Scaling Library Developer Guide

12

If using the value 2, make sure to also specify the interface using one of the variables below:

 MLSL_IFACE_NAME – select an interface by prefix name

 MLSL_IFACE_IDX – select an interface by index

MLSL_HOSTNAME

Syntax

MLSL_HOSTNAME=<name>

Arguments

<name> The hostname.

Description

Set this environment variable to specify the hostname to be used for launching endpoint servers. The

variable must be set for each Intel MLSL process.

For example, to set the variable through Intel® MPI Library -gtool option:

$ mpirun ... -gtool "env MLSL_HOSTNAME=name1:0; env MLSL_HOSTNAME=name2:1"

MLSL_ MSG_PRIORITY

Syntax

MLSL_ MSG_PRIORITY=<arg>

Arguments

<arg> Binary indicator

1 Enable reversed order of communication calls execution.

0 Disable reversed order of communication calls execution. This is the default value.

Description

Set this environment variable to enable executing communication calls in the order opposite to the

order they are started.

When performing backward propagation, the gradient reduction communication generally starts from

the last layers of the network topology finishing at the first ones. With this experimental feature

enabled, the communication for first layers has a higher priority, which allows layer one to minimize the

time spent in SGD and start a forward pass for the next iteration as soon as possible.

NOTE: This feature is experimental and has the following limitations: it can be enabled only for a specific

implementation of the Allreduce algorithm and only when the number of communicating processes

is a power of two.

Environment Variables

Developer Guide 13

MLSL_ MSG_PRIORITY_THRESHOLD

Syntax

MLSL_MSG_PRIORITY_THRESHOLD=<arg>

Arguments

<arg> Message size in bytes

> 0 The default value is 10000

Description

Set this environment variable to define the lower threshold of message sizes where the experimental

priority feature is enabled. The variable only takes effect when MLSL_MSG_PRIORITY is set.

	Intel® Machine Learning Scaling Library Developer Guide

	Legal Information
	1. Introduction
	2. Using Intel® Machine Learning Scaling Library
	2.1. Prerequisites
	2.2. Generic Workflow
	2.3. Launching Sample Application
	2.3.1. Launching the Sample
	2.3.2. Sample Description

	2.4. Statistics Collection

	3. Environment Variables

